Multi-omics Data Integration Analysis Identified Therapeutic Targets and Potential Reuse Drugs for Osteoporosis


Cite item

Full Text

Abstract

Aims:To facilitate drug discovery and development for the treatment of osteoporosis

Background:With global aging, osteoporosis has become a common problem threatening the health of the elderly. It is of important clinical value to explore new targets for drug intervention and develop promising drugs for the treatment of osteoporosis.

Objective:To understand the major molecules that mediate the communication between the cell populations of bone marrow-derived mesenchymal stem cells (BM-MSCs) in osteoporosis and osteoarthritis patients and identify potential reusable drugs for the treatment of osteoporosis.

Methods:Single-cell RNA sequencing (scRNA-seq) data of BM-MSCs in GSE147287 dataset were classified using the Seurat package. CellChat was devoted to analyzing the ligand-receptor pairs (LR pairs) contributing to the communication between BM-MSCs subsets. The LR pairs that were differentially expressed between osteoporosis samples and control samples and significantly correlated with immune score were screened in the GSE35959 dataset, and the differentially expressed gene in both GSE35959 and GSE13850 data sets were identified as targets from a single ligand or receptor. The therapeutic drugs for osteoporosis were screened by network proximity method, and the top-ranked drugs were selected for molecular docking and molecular dynamics simulation with the target targets.

Results:Twelve subsets of BM-MSCs were identified, of which CD45-BM-MSCS_4, CD45-BM- MSCS_5, and CD45+ BM-MSCs_5 subsets showed significantly different distributions between osteoporosis samples and osteoarthritis samples. Six LR pairs were identified in the bidirectional communication between these three BM-MSCs subsets and other BM-MSCs subsets. Among them, MIF-CD74 and ITGB2-ICAM2 were significantly correlated with the immune score. CD74 was identified as the target, and a total of 48 drugs targeting CD47 protein were identified. Among them, DB01940 had the lowest free energy binding score with CD74 protein and the binding state was very stable.

Conclusion:This study provided a new network-based framework for drug reuse and identified initial insights into therapeutic agents targeting CD74 in osteoporosis, which may be meaningful for promoting the development of osteoporosis treatment.

About the authors

Mingdong Li

Department of Orthopaedics and Traumatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University

Email: info@benthamscience.net

Xing Gao

International Nursing School, Hainan Medical University

Email: info@benthamscience.net

Yuchen Zhang

Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University

Email: info@benthamscience.net

Jinglei Wang

Department of Orthopaedics and Traumatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University

Email: info@benthamscience.net

Run Dong

Department of Orthopaedics and Traumatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University

Email: info@benthamscience.net

Peng Li

Orthopedic Surgery Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen

Author for correspondence.
Email: info@benthamscience.net

Yongxiong He

Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Looker, A.C.; Sarafrazi Isfahani, N.; Fan, B.; Shepherd, J.A. Trends in osteoporosis and low bone mass in older US adults, 2005–2006 through 2013–2014. Osteoporos. Int., 2017, 28(6), 1979-1988. doi: 10.1007/s00198-017-3996-1 PMID: 28315954
  2. Andreo-López, M.C.; Contreras-Bolívar, V.; García-Fontana, B.; García-Fontana, C.; Muñoz-Torres, M. The influence of the mediterranean dietary pattern on osteoporosis and sarcopenia. Nutrients, 2023, 15(14), 3224. doi: 10.3390/nu15143224 PMID: 37513646
  3. Rahim, F.; Zaki Zadeh, A.; Javanmardi, P.; Emmanuel Komolafe, T.; Khalafi, M.; Arjomandi, A.; Ghofrani, H.A.; Shirbandi, K. Machine learning algorithms for diagnosis of hip bone osteoporosis: A systematic review and meta-analysis study. Biomed. Eng. Online, 2023, 22(1), 68. doi: 10.1186/s12938-023-01132-9 PMID: 37430259
  4. Noh, J.Y.; Yang, Y.; Jung, H. Molecular mechanisms and emerging therapeutics for osteoporosis. Int. J. Mol. Sci., 2020, 21(20), 7623. doi: 10.3390/ijms21207623 PMID: 33076329
  5. Reid, I.R.; Billington, E.O. Drug therapy for osteoporosis in older adults. Lancet, 2022, 399(10329), 1080-1092. doi: 10.1016/S0140-6736(21)02646-5 PMID: 35279261
  6. Black, DM.; Rosen, CJ.; Clinical Practice. Postmenopausal Osteoporosis. N. Engl. J. Med., 2016, 21;374(3), 254-62. doi: 10.1056/NEJMcp1513724 PMID: 26789873
  7. Clynes, M.A.; Harvey, N.C.; Curtis, E.M.; Fuggle, N.R.; Dennison, E.M.; Cooper, C. The epidemiology of osteoporosis. Br. Med. Bull., 2020, 133(1), 105-117. PMID: 32282039
  8. Aibar-Almazán, A.; Voltes-Martínez, A.; Castellote-Caballero, Y.; Afanador-Restrepo, D.F.; Carcelén-Fraile, M.C.; López-Ruiz, E. Current status of the diagnosis and management of osteoporosis. Int. J. Mol. Sci., 2022, 23(16), 9465. doi: 10.3390/ijms23169465 PMID: 36012730
  9. Foessl, I.; Dimai, H.P.; Obermayer-Pietsch, B. Long-term and sequential treatment for osteoporosis. Nat. Rev. Endocrinol., 2023, 19(9), 520-533. doi: 10.1038/s41574-023-00866-9 PMID: 37464088
  10. Dayanandan, A.P.; Cho, W.J.; Kang, H.; Bello, A.B.; Kim, B.J.; Arai, Y.; Lee, S.H. Emerging nano-scale delivery systems for the treatment of osteoporosis. Biomater. Res., 2023, 27(1), 68. doi: 10.1186/s40824-023-00413-7 PMID: 37443121
  11. Saxena, Y.; Routh, S.; Mukhopadhaya, A. Immunoporosis: Role of innate immune cells in osteoporosis. Front. Immunol., 2021, 12, 687037. doi: 10.3389/fimmu.2021.687037 PMID: 34421899
  12. Guney, E.; Menche, J.; Vidal, M.; Barábasi, A.L. Network-based in silico drug efficacy screening. Nat. Commun., 2016, 7(1), 10331. doi: 10.1038/ncomms10331 PMID: 26831545
  13. Gu, X.Y.; Huo, J-L.; Yu, Z-Y.; Jiang, J-C.; Xu, Y-X.; Zhao, L-J. Immunotherapy in hepatocellular carcinoma: An overview of immune checkpoint inhibitors, drug resistance, and adverse effects. Oncologie, 2024, 26(1), 9-25. doi: 10.1515/oncologie-2023-0412
  14. Siegelin, M.D.; Schneider, E.; Westhoff, M.A.; Wirtz, C.R.; Karpel-Massler, G. Current state and future perspective of drug repurposing in malignant glioma. Semin. Cancer Biol., 2021, 68, 92-104. doi: 10.1016/j.semcancer.2019.10.018 PMID: 31734137
  15. Kim, K.J.; Moon, S.J.; Park, K.S.; Tagkopoulos, I. Network-based modeling of drug effects on disease module in systemic sclerosis. Sci. Rep., 2020, 10(1), 13393. doi: 10.1038/s41598-020-70280-y PMID: 32770109
  16. Li, S.; Lu, C.; Zhao, Z.; Lu, D.; Zheng, G. Uncovering neuroinflammation-related modules and potential repurposing drugs for Alzheimer’s disease through multi-omics data integrative analysis. Front. Aging Neurosci., 2023, 15, 1161405. doi: 10.3389/fnagi.2023.1161405 PMID: 37333458
  17. Shahini, E.; Pasculli, G.; Mastropietro, A.; Stolfi, P.; Tieri, P.; Vergni, D.; Cozzolongo, R.; Pesce, F.; Giannelli, G. Network proximity-based drug repurposing strategy for early and late stages of primary biliary cholangitis. Biomedicines, 2022, 10(7), 1694. doi: 10.3390/biomedicines10071694 PMID: 35884999
  18. Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol., 2018, 36(5), 411-420. doi: 10.1038/nbt.4096 PMID: 29608179
  19. Laurens, V.D.M.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res., 2008, 9(2605), 2579-2605.
  20. Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and analysis of cell-cell communication using CellChat. Nat. Commun., 2021, 12(1), 1088. doi: 10.1038/s41467-021-21246-9 PMID: 33597522
  21. Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612. doi: 10.1038/ncomms3612 PMID: 24113773
  22. Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457. doi: 10.1038/nmeth.3337 PMID: 25822800
  23. Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 2013, 14(1), 7. doi: 10.1186/1471-2105-14-7 PMID: 23323831
  24. Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics, 2017, 33(19), 3036-3042. doi: 10.1093/bioinformatics/btx350 PMID: 28575181
  25. Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898. doi: 10.1021/acs.jcim.1c00203 PMID: 34278794
  26. Bai, R.J.; Li, Y.S.; Zhang, F.J. Osteopontin, a bridge links osteoarthritis and osteoporosis. Front. Endocrinol. (Lausanne), 2022, 13, 1012508. doi: 10.3389/fendo.2022.1012508 PMID: 36387862
  27. Xu, J.; Yu, L.; Liu, F.; Wan, L.; Deng, Z. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: A review. Front. Immunol., 2023, 14, 1222129. doi: 10.3389/fimmu.2023.1222129 PMID: 37475866
  28. Jiang, Y.; Zhang, P.; Zhang, X.; Lv, L.; Zhou, Y. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis. Cell Prolif., 2021, 54(1), e12956. doi: 10.1111/cpr.12956 PMID: 33210341
  29. Hu, L.; Yin, C.; Zhao, F.; Ali, A.; Ma, J.; Qian, A. Mesenchymal stem cells: Cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int. J. Mol. Sci., 2018, 19(2), 360. doi: 10.3390/ijms19020360 PMID: 29370110
  30. Ma, T.; Su, G.; Wu, Q.; Shen, M.; Feng, X.; Zhang, Z. Mesenchymal stem cell exosomes: A promising delivery system for glioma therapy. Oncologie, 2024, 0(0) doi: 10.1515/oncologie-2023-0482
  31. Bozza, M.T.; Lintomen, L.; Kitoko, J.Z.; Paiva, C.N.; Olsen, P.C. The role of MIF on eosinophil biology and eosinophilic inflammation. Clin. Rev. Allergy Immunol., 2020, 58(1), 15-24. doi: 10.1007/s12016-019-08726-z PMID: 30680604
  32. Mun, S.H.; Won, H.Y.; Hernandez, P.; Aguila, H.L.; Lee, S.K. Deletion of CD74, a putative MIF receptor, in mice enhances osteoclastogenesis and decreases bone mass. J. Bone Miner. Res., 2013, 28(4), 948-959. doi: 10.1002/jbmr.1787 PMID: 23044992
  33. Gu, R.; Santos, L.L.; Ngo, D.; Fan, H.; Singh, P.P.; Fingerle-Rowson, G.; Bucala, R.; Xu, J.; Quinn, J.M.W.; Morand, E.F. Macrophage migration inhibitory factor is essential for osteoclastogenic mechanisms in vitro and in vivo mouse model of arthritis. Cytokine, 2015, 72(2), 135-145. doi: 10.1016/j.cyto.2014.11.015 PMID: 25647268
  34. Becker-Herman, S.; Rozenberg, M.; Hillel-Karniel, C.; Gil-Yarom, N.; Kramer, M.P.; Barak, A.; Sever, L.; David, K.; Radomir, L.; Lewinsky, H.; Levi, M.; Friedlander, G.; Bucala, R.; Peled, A.; Shachar, I. CD74 is a regulator of hematopoietic stem cell maintenance. PLoS Biol., 2021, 19(3), e3001121. doi: 10.1371/journal.pbio.3001121 PMID: 33661886
  35. Hopwood, B.; Tsykin, A.; Findlay, D.M.; Fazzalari, N.L. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-β/bone morphogenic protein signalling. Arthritis Res. Ther., 2007, 9(5), R100. doi: 10.1186/ar2301 PMID: 17900349
  36. Löfdahl, E.; Ahmed, S.; Ahmed, A.; Rådegran, G. Plasma biomarkers for clinical assessment of bone mineral density in heart transplanted patients-a single-center study at skåne university hospital in lund. Transpl. Int., 2022, 35, 10161. doi: 10.3389/ti.2022.10161 PMID: 36148003
  37. Li, X.; Akiyama, M.; Nakahama, K.; Koshiishi, T.; Takeda, S.; Morita, I. Role of intercellular adhesion molecule-2 in osteoclastogenesis. Genes Cells, 2012, 17(7), 568-575. doi: 10.1111/j.1365-2443.2012.01608.x PMID: 22646472
  38. Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther., 2020, 5(1), 113. doi: 10.1038/s41392-020-00213-8 PMID: 32616710
  39. Li, M.; Wei, J.; Xu, G.; Liu, Y.; Zhu, J. Surgery combined with molecular targeted therapy successfully treated giant esophageal gastrointestinal stromal tumor. Oncologie, 2022, 24(2), 349-356. doi: 10.32604/oncologie.2022.022436
  40. Sadybekov, A.V.; Katritch, V. Computational approaches streamlining drug discovery. Nature, 2023, 616(7958), 673-685. doi: 10.1038/s41586-023-05905-z PMID: 37100941

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers