PLGA Nanoparticles as New Drug Delivery Systems in Leishmaniasis Chemotherapy: A Review of Current Practices
- Authors: Valiallahi A.1, Vazifeh Z.2, Gatabi Z.3, Davoudi M.4, Gatabi I.5
-
Affiliations:
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University
- Department of Biotechnology, Shahed University
- Department of Pharmaceutics, Faculty of Pharmacy,, Mazandaran University of Medical Sciences
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine,, ehran University of Medical Sciences,
- College Station,, Texas A&M University,
- Issue: Vol 31, No 39 (2024)
- Pages: 6371-6392
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645107
- DOI: https://doi.org/10.2174/0929867331666230823094737
- ID: 645107
Cite item
Full Text
Abstract
:Although leishmaniasis is one of the most common parasitic diseases, its traditional treatments suffer from some serious problems. To solve such issues, we can take advantage of the effective nanoparticle-based approaches to deliver anti-leishmanial agents into leishmania-infected macrophages either using passive targeting or using macrophagerelated receptors. Despite the high potential of nanotechnology, Liposomal Amphotericin B (AmBisome®) is the only FDA-approved nanoparticle-based anti-leishmanial therapy. In an effort to find more anti-leishmanial nano-drugs, this 2011-2021 review study aimed to investigate the in-vivo and in-vitro effectiveness of poly (lactic-co-glycolic acid) nanoparticles (PLGA-NPs) in the delivery of some traditional anti-leishmanial drugs. Based on the results, PLGA-NPs could improve solubility, controlled release, trapping efficacy, bioavailability, selectivity, and mucosal penetration of the drugs, while they decreased resistance, dose/duration of administration and organotoxicity of the agents. However, none of these nano-formulations have been able to enter clinical trials so far. We summarized the data about the common problems of anti-leishmanial agents and the positive effects of various PLGA nano-formulations on reducing these drawbacks under both in-vitro and in-vivo conditions in three separate tables. Overall, this study proposes two AmB-loaded PLGA with a 99% reduction in parasite load as promising nanoparticles for further studies.
About the authors
Alaleh Valiallahi
Department of Microbiology, Faculty of Biological Sciences, Alzahra University
Email: info@benthamscience.net
Zahra Vazifeh
Department of Biotechnology, Shahed University
Email: info@benthamscience.net
Zahra Gatabi
Department of Pharmaceutics, Faculty of Pharmacy,, Mazandaran University of Medical Sciences
Email: info@benthamscience.net
Maryam Davoudi
Department of Clinical Laboratory Sciences, Faculty of Allied Medicine,, ehran University of Medical Sciences,
Email: info@benthamscience.net
Iman Gatabi
College Station,, Texas A&M University,
Author for correspondence.
Email: info@benthamscience.net
References
- Kevric, I.; Cappel, M.A.; Keeling, J.H. New world and old world leishmania infections: A practical review. Dermatol. Clin., 2015, 33(3), 579-593. doi: 10.1016/j.det.2015.03.018 PMID: 26143433
- Shirian, S.; Oryan, A.; Hatam, G.R.; Panahi, S.; Daneshbod, Y. Comparison of conventional, molecular, and immunohistochemical methods in diagnosis of typical and atypical cutaneous leishmaniasis. Arch. Pathol. Lab. Med., 2014, 138(2), 235-240. doi: 10.5858/arpa.2013-0098-OA PMID: 24476521
- Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A review. F1000 Res., 2017, 6, 750. doi: 10.12688/f1000research.11120.1 PMID: 28649370
- Elmahallawy, E.K.; Alkhaldi, A.A.M.; Saleh, A.A. Host immune response against leishmaniasis and parasite persistence strategies: A review and assessment of recent research. Biomed. Pharmacother., 2021, 139, 111671. doi: 10.1016/j.biopha.2021.111671 PMID: 33957562
- Mignot, G.; Bhattacharya, Y.; Reddy, A. Ocular Leishmaniasis: A systematic review. Indian J. Ophthalmol., 2021, 69(5), 1052-1060. doi: 10.4103/ijo.IJO_2232_20 PMID: 33913831
- Oryan, A.; Akbari, M. Worldwide risk factors in leishmaniasis. Asian Pac. J. Trop. Med., 2016, 9(10), 925-932. doi: 10.1016/j.apjtm.2016.06.021 PMID: 27794384
- Oryan, A. Plant-derived compounds in treatment of leishmaniasis. Majallah-i Tahqiqat-i Dampizishki-i Iran, 2015, 16(1), 1-19. PMID: 27175144
- Mann, S.; Frasca, K.; Scherrer, S. Henao-Martínez, A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A Review of leishmaniasis: Current knowledge and future directions. Curr. Trop. Med. Rep., 2021, 8(2), 121-132. doi: 10.1007/s40475-021-00232-7 PMID: 33747716
- Akbari, M.; Oryan, A.; Hatam, G. Application of nanotechnology in treatment of leishmaniasis: A Review. Acta Trop., 2017, 172, 86-90. doi: 10.1016/j.actatropica.2017.04.029 PMID: 28460833
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; Boer, M.; Team, W.L.C. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012, 7(5), e35671. doi: 10.1371/journal.pone.0035671 PMID: 22693548
- Santos, S.S. de Araújo, R.V.; Giarolla, J.; Seoud, O.E.; Ferreira, E.I. Searching for drugs for chagas disease, leishmaniasis and schistosomiasis: A review. Int. J. Antimicrob. Agents, 2020, 55(4), 105906. doi: 10.1016/j.ijantimicag.2020.105906 PMID: 31987883
- Raj, S.; Sasidharan, S.; Balaji, S.N.; Saudagar, P. An overview of biochemically characterized drug targets in metabolic pathways of Leishmania parasite. Parasitol. Res., 2020, 119(7), 2025-2037. doi: 10.1007/s00436-020-06736-x PMID: 32504119
- Singh, O.P.; Gedda, M.R.; Mudavath, S.L.; Srivastava, O.N.; Sundar, S. Envisioning the innovations in nanomedicine to combat visceral leishmaniasis: For future theranostic application. Nanomedicine, 2019, 14(14), 1911-1927. doi: 10.2217/nnm-2018-0448 PMID: 31313971
- Da Silva, E.O.; Borges, P.F.C.; Santana, R.B.; Moura, H.S.D.; Barcellos, J.F.M.; Jensen, B.B.; Pinheiro, F.G.; Naiff, M.F.; Espir, T.T.; Franco, A.M.R. Evaluation of the lymphoproliferation of mononuclear cells in cutaneous leishmaniasis patients treated with Libidibia ferrea. Acta Brasiliensis, 2021, 5(3), 97-102. doi: 10.22571/2526-4338560
- Saleem, K.; Khursheed, Z.; Hano, C.; Anjum, I.; Anjum, S. Applications of nanomaterials in leishmaniasis: A focus on recent advances and challenges. Nanomaterials, 2019, 9(12), 1749. doi: 10.3390/nano9121749 PMID: 31818029
- Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.C.; Barrett, M.P.; López-Vélez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl. Trop. Dis., 2017, 11(12), e0006052. doi: 10.1371/journal.pntd.0006052 PMID: 29240765
- Yadav, A.; Patel, M.; Patel, R.; Plekhanova, Y.; Reshetilov, A.; Shurygina, I.A.; Shurygin, M.G.; Wypij, M.; Ghosh, S.; Kitture, R. Nanobiotechnology in diagnosis, drug delivery and treatment; Wiley-Blackwell, 2020.
- Azim, M.; Khan, S.A.; Ullah, S.; Ullah, S.; Anjum, S.I. Therapeutic advances in the topical treatment of cutaneous leishmaniasis: A review. PLoS Negl. Trop. Dis., 2021, 15(3), e0009099. doi: 10.1371/journal.pntd.0009099 PMID: 33657097
- Gutiérrez, V.; Seabra, A.B.; Reguera, R.M.; Khandare, J. Calderón, M. New approaches from nanomedicine for treating leishmaniasis. Chem. Soc. Rev., 2016, 45(1), 152-168. doi: 10.1039/C5CS00674K PMID: 26487097
- Zaioncz, S.; Khalil, N.M.; Mainardes, R.M. Exploring the role of nanoparticles in amphotericin B delivery. Curr. Pharm. Des., 2017, 23(3), 509-521. doi: 10.2174/1381612822666161027103640 PMID: 27799043
- Jamshaid, H.; Din, F.; Khan, G.M. Nanotechnology based solutions for anti-leishmanial impediments: A detailed insight. J. Nanobiotechnology, 2021, 19(1), 106. doi: 10.1186/s12951-021-00853-0 PMID: 33858436
- Nafari, A.; Cheraghipour, K.; Sepahvand, M.; Shahrokhi, G.; Gabal, E.; Mahmoudvand, H. Nanoparticles: New agents toward treatment of leishmaniasis. Parasite Epidemiol. Control, 2020, 10, e00156. doi: 10.1016/j.parepi.2020.e00156 PMID: 32566773
- Kammona, O.; Tsanaktsidou, E. Nanotechnology-aided diagnosis, treatment and prevention of leishmaniasis. Int. J. Pharm., 2021, 605, 120761. doi: 10.1016/j.ijpharm.2021.120761 PMID: 34081999
- De Almeida, L.; Fujimura, A.T.; Cistia, M.L.D.; Fonseca-Santos, B.; Imamura, K.B.; Michels, P.M.; Chorilli, M.; Graminha, M.S. Nanotechnological strategies for treatment of leishmaniasisa review. J. Biomed. Nanotechnol., 2017, 13(2), 117-133. doi: 10.1166/jbn.2017.2349 PMID: 29376626
- Elmi, T.; Gholami, S.; Fakhar, M.; Azizi, F. A review on the use of nanoparticles in the treatment. J. Mazandaran Univ. Med. Sci., 2013, 23(102), 126-133.
- Oliveira, S.S.C.; Ferreira, C.S.; Branquinha, M.H.; Santos, A.L.S.; Chaud, M.V.; Jain, S.; Cardoso, J.C.; Kovačević, A.B.; Souto, E.B.; Severino, P. Overcoming multi‐resistant leishmania treatment by nanoencapsulation of potent antimicrobials. J. Chem. Technol. Biotechnol., 2021, 96(8), 2123-2140. doi: 10.1002/jctb.6633
- de Carvalho Oliveira, S.S.; Branquinha, M.H.; Cruz, M.d.S.P.; dos Santos, A.L.S.; Sangenito, L.S. Trendings of amphotericin B-loaded nanoparticles as valuable chemotherapeutic approaches against leishmaniasis. Applications of Nanobiotechnology for Neglected Tropical Diseases, 2021, 291-327.
- Eifler, A.C.; Thaxton, C.S. Biomedical nanotechnology; Springer, 2011, pp. 325-338. doi: 10.1007/978-1-61779-052-2_21
- Kim, S.M.; Patel, M.; Patel, R. PLGA core-shell nano/microparticle delivery system for biomedical application. Polymers, 2021, 13(20), 3471. doi: 10.3390/polym13203471 PMID: 34685230
- Elmowafy, E.M.; Tiboni, M.; Soliman, M.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig., 2019, 49(4), 347-380. doi: 10.1007/s40005-019-00439-x
- Tosyali, O.A.; Allahverdiyev, A.; Bagirova, M.; Abamor, E.S.; Aydogdu, M.; Dinparvar, S.; Acar, T.; Mustafaeva, Z.; Derman, S. Nano-co-delivery of lipophosphoglycan with soluble and autoclaved leishmania antigens into PLGA nanoparticles: Evaluation of in vitro and in vivo immunostimulatory effects against visceral leishmaniasis. Mater. Sci. Eng. C, 2021, 120, 111684. doi: 10.1016/j.msec.2020.111684 PMID: 33545846
- Sung, Y.K.; Kim, S.W. Recent advances in polymeric drug delivery systems. Biomater. Res., 2020, 24, 12. doi: 10.1186/s40824-020-00190-7
- Chan, J.M.; Valencia, P.M.; Zhang, L.; Langer, R.; Farokhzad, O.C. In: Cancer Nanotechnology Springer; , 2010, pp. 163-175.
- El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691. doi: 10.1016/j.ijpharm.2017.06.052 PMID: 28629982
- Shakya, A.K.; Madhyastha, H. Integrating biologically-inspired nanotechnology into medical practice; IGI Global, 2017, pp. 32-49. doi: 10.4018/978-1-5225-0610-2.ch002
- Jin, Z.; Gao, S.; Cui, X.; Sun, D.; Zhao, K. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines. Int. J. Pharm., 2019, 572, 118731. doi: 10.1016/j.ijpharm.2019.118731 PMID: 31669213
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18. doi: 10.1016/j.colsurfb.2009.09.001 PMID: 19782542
- Sánchez, A.; Mejía, S.P.; Orozco, J. Recent advances in polymeric nanoparticle-encapsulated drugs against intracellular infections. Molecules, 2020, 25(16), 3760. doi: 10.3390/molecules25163760 PMID: 32824757
- Castro, K.C.; Costa, J.M.; Campos, M.G.N. Drug-loaded polymeric nanoparticles: A review. Int. J. Polym. Mater., 2022, 71(1), 1-13. doi: 10.1080/00914037.2020.1798436
- ul Hassan, N.; Chaudhery, I.; Ahmed, N. In advances in polymeric nanomaterials for biomedical applications; Elsevier, 2021, pp. 191-224.
- Günday, C.; Anand, S.; Gencer, H.B. Munafò, S.; Moroni, L.; Fusco, A.; Donnarumma, G.; Ricci, C.; Hatir, P.C.; Türeli, N.G.; Türeli, A.E.; Mota, C.; Danti, S. Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in tissue engineering applications. Drug Deliv. Transl. Res., 2020, 10(3), 706-720. doi: 10.1007/s13346-020-00736-1 PMID: 32100267
- Lam, S.J.; Wong, E.H.H.; Boyer, C.; Qiao, G.G. Antimicrobial polymeric nanoparticles. Prog. Polym. Sci., 2018, 76, 40-64. doi: 10.1016/j.progpolymsci.2017.07.007
- Spirescu, V.A.; Chircov, C.; Grumezescu, A.M.; Andronescu, E. Polymeric nanoparticles for antimicrobial therapies: An up-to-date overview. Polymers (Basel), 2021, 13(5), 724. doi: 10.3390/polym13050724 PMID: 33673451
- Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C, 2016, 60, 569-578. doi: 10.1016/j.msec.2015.11.067 PMID: 26706565
- Wong, K.H.; Lu, A.; Chen, X.; Yang, Z. Natural ingredient-based polymeric nanoparticles for cancer treatment. Molecules, 2020, 25(16), 3620. doi: 10.3390/molecules25163620 PMID: 32784890
- Chandarana, M.; Curtis, A.; Hoskins, C. The use of nanotechnology in cardiovascular disease. Appl. Nanosci., 2018, 8(7), 1607-1619. doi: 10.1007/s13204-018-0856-z
- Pechanova, O.; Dayar, E.; Cebova, M. Therapeutic potential of polyphenols-loaded polymeric nanoparticles in cardiovascular system. Molecules, 2020, 25(15), 3322. doi: 10.3390/molecules25153322 PMID: 32707934
- Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front Chem., 2014, 2, 63. doi: 10.3389/fchem.2014.00063 PMID: 25221775
- Elgiddawy, N.; Ren, S.; Yassar, A.; Louis-Joseph, A.; Sauriat-Dorizon, H.; El Rouby, W.M.A.; El-Gendy, A.O.; Farghali, A.A.; Korri-Youssoufi, H. Dispersible conjugated polymer nanoparticles as biointerface materials for label-free bacteria detection. ACS Appl. Mater. Interfaces, 2020, 12(36), 39979-39990. doi: 10.1021/acsami.0c08305 PMID: 32805819
- Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric nanoparticles: The future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(2), 271-299. doi: 10.1002/wnan.1364 PMID: 26314803
- Mallakpour, S.; Behranvand, V. Polymeric nanoparticles: Recent development in synthesis and application. Express Polym. Lett., 2016, 10(11), 895-913. doi: 10.3144/expresspolymlett.2016.84
- Sur, S.; Rathore, A.; Dave, V.; Reddy, K.R.; Chouhan, R.S.; Sadhu, V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects, 2019, 20, 100397. doi: 10.1016/j.nanoso.2019.100397
- Idrees, H.; Zaidi, S.Z.J.; Sabir, A.; Khan, R.U.; Zhang, X.; Hassan, S. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials, 2020, 10(10), 1970. doi: 10.3390/nano10101970 PMID: 33027891
- Begines, B.; Ortiz, T.; Pérez-Aranda, M. Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials, 2020, 10(7), 1403. doi: 10.3390/nano10071403 PMID: 32707641
- Sousa-Batista, A.J.; Cerqueira-Coutinho, C.; do Carmo, F.S.; Albernaz, M.S.; Santos-Oliveira, R. Polycaprolactone antimony nanoparticles as drug delivery system for leishmaniasis. Am. J. Ther., 2019, 26(1), e12-e17. doi: 10.1097/MJT.0000000000000539 PMID: 30601770
- Swider, E.; Koshkina, O.; Tel, J.; Cruz, L.J.; de Vries, I.J.M.; Srinivas, M. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater., 2018, 73, 38-51. doi: 10.1016/j.actbio.2018.04.006 PMID: 29653217
- Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731. doi: 10.3390/molecules25163731 PMID: 32824172
- Reddy, Y.D. A brief review on polymeric nanoparticles for drug delivery and targeting. J. Pharm. Innov., 2015, 2(7)
- Tiruwa, R. A review on nanoparticles-preparation and evaluation parameters. Indian J. Pharm. Biol. Res., 2016, 4(2), 27.
- Erdoğar, N.; Akkın, S.; Bilensoy, E. Nanocapsules for drug delivery: An updated review of the last decade. Recent Pat. Drug Deliv. Formul., 2019, 12(4), 252-266. doi: 10.2174/1872211313666190123153711 PMID: 30674269
- Frank, L.A.; Contri, R.V.; Beck, R.C.R.; Pohlmann, A.R.; Guterres, S.S. Improving drug biological effects by encapsulation into polymeric nanocapsules. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(5), 623-639. doi: 10.1002/wnan.1334 PMID: 25641603
- Rambaran, T.F. Nanopolyphenols: A review of their encapsulation and anti-diabetic effects. SN Appl. Sci., 2020, 2(8), 1335. doi: 10.1007/s42452-020-3110-8
- Neumann, K.; Lilienkampf, A.; Bradley, M. Responsive polymeric nanoparticles for controlled drug delivery. Polym. Int., 2017, 66(12), 1756-1764. doi: 10.1002/pi.5471
- Abasian, P.; Ghanavati, S.; Rahebi, S.; Nouri Khorasani, S.; Khalili, S. Polymeric nanocarriers in targeted drug delivery systems: A review. Polym. Adv. Technol., 2020, 31(12), 2939-2954. doi: 10.1002/pat.5031
- Xu, Y.; Kim, C.S.; Saylor, D.M.; Koo, D. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J. Biomed. Mater. Res. B Appl. Biomater., 2017, 105(6), 1692-1716. doi: 10.1002/jbm.b.33648 PMID: 27098357
- Ghitman, J.; Biru, E.I.; Stan, R.; Iovu, H. Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Mater. Des., 2020, 193, 108805. doi: 10.1016/j.matdes.2020.108805
- Crucho, C.I.C.; Barros, M.T. Formulation of functionalized PLGA polymeric nanoparticles for targeted drug delivery. Polymer, 2015, 68, 41-46. doi: 10.1016/j.polymer.2015.04.083
- Essa, D.; Kondiah, P.P.D.; Choonara, Y.E.; Pillay, V. The design of poly (lactide-co-glycolide) nanocarriers for medical applications. Front. Bioeng. Biotechnol., 2020, 8, 48. doi: 10.3389/fbioe.2020.00048 PMID: 32117928
- Kapoor, D.N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: A unique polymer for drug delivery. Ther. Deliv., 2015, 6(1), 41-58. doi: 10.4155/tde.14.91 PMID: 25565440
- Mir, M.; Ahmed, N.; Rehman, A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B Biointerfaces, 2017, 159, 217-231. doi: 10.1016/j.colsurfb.2017.07.038 PMID: 28797972
- Chereddy, K.K.; Vandermeulen, G.; Préat, V. PLGA based drug delivery systems: Promising carriers for wound healing activity. Wound Repair Regen., 2016, 24(2), 223-236. doi: 10.1111/wrr.12404 PMID: 26749322
- Rani, R.; Dilbaghi, N.; Dhingra, D.; Kumar, S. Optimization and evaluation of bioactive drug-loaded polymeric nanoparticles for drug delivery. Int. J. Biol. Macromol., 2015, 78, 173-179. doi: 10.1016/j.ijbiomac.2015.03.070 PMID: 25881957
- Guo, P.; Liu, D.; Subramanyam, K.; Wang, B.; Yang, J.; Huang, J.; Auguste, D.T.; Moses, M.A. Nanoparticle elasticity directs tumor uptake. Nat. Commun., 2018, 9(1), 130. doi: 10.1038/s41467-017-02588-9 PMID: 29317633
- Rabanel, J.M.; Aoun, V.; Elkin, I.; Mokhtar, M.; Hildgen, P. Drug-loaded nanocarriers: Passive targeting and crossing of biological barriers. Curr. Med. Chem., 2012, 19(19), 3070-3102. doi: 10.2174/092986712800784702 PMID: 22612696
- Briones, E.; Isabel Colino, C.; Lanao, J.M. Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J. Control. Release, 2008, 125(3), 210-227. doi: 10.1016/j.jconrel.2007.10.027 PMID: 18077047
- Palma, E.; Pasqua, A.; Gagliardi, A.; Britti, D.; Fresta, M.; Cosco, D. Antileishmanial activity of amphotericin B-loaded-PLGA nanoparticles: An overview. Materials, 2018, 11(7), 1167. doi: 10.3390/ma11071167 PMID: 29987206
- Nagavarma, B.; Yadav, H.K.; Ayaz, A.; Vasudha, L.; Shivakumar, H. Different techniques for preparation of polymeric nanoparticles-a review. Asian J. Pharm. Clin. Res., 2012, 5(3), 16-23.
- Elsabahy, M.; Wooley, K.L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev., 2012, 41(7), 2545-2561. doi: 10.1039/c2cs15327k PMID: 22334259
- Morachis, J.M.; Mahmoud, E.A.; Almutairi, A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol. Rev., 2012, 64(3), 505-519. doi: 10.1124/pr.111.005363 PMID: 22544864
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663. doi: 10.1021/acs.chemrev.5b00346 PMID: 26854975
- Panta, P.; Kwon, J.S.; Son, A.R.; Lee, K.W.; Kim, M.S. Protein drug-loaded polymeric nanoparticles. j. biomed. sci. eng., 2014, 2014 doi: 10.4236/jbise.2014.710082
- Bee, S.L.; Hamid, Z.A.A.; Mariatti, M.; Yahaya, B.H.; Lim, K.; Bee, S.T.; Sin, L.T. Approaches to improve therapeutic efficacy of biodegradable PLA/PLGA microspheres: A review. Polym. Rev., 2018, 58(3), 495-536. doi: 10.1080/15583724.2018.1437547
- Chaudhary, S.A.; Patel, D.M.; Patel, J.K.; Patel, D.H. Emerging Technologies for Nanoparticle Manufacturing; Springer, 2021, pp. 287-300. doi: 10.1007/978-3-030-50703-9_12
- Arruebo, M.; Uson, L.; Miana, M.; Ortiz de Solorzano, I.; Sebastian, V.; Larrea, A. Continuous synthesis of drug-loaded nanoparticles using microchannel emulsification and numerical modeling: Effect of passive mixing. Int. J. Nanomedicine, 2016, 11, 3397-3416. doi: 10.2147/IJN.S108812 PMID: 27524896
- Lagreca, E.; Onesto, V.; Di Natale, C.; La Manna, S.; Netti, P.A.; Vecchione, R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog. Biomater., 2020, 9(4), 153-174. doi: 10.1007/s40204-020-00139-y PMID: 33058072
- Mendoza-Muñoz, N.; Alcalá-Alcala, S.; Quintanar-Guerrero, D. Polymer nanoparticles for nanomedicines; Springer, 2016, pp. 87-121.
- Mahapatro, A.; Singh, D.K. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J. Nanobiotechnology, 2011, 9(1), 55. doi: 10.1186/1477-3155-9-55 PMID: 22123084
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release, 2012, 161(2), 505-522. doi: 10.1016/j.jconrel.2012.01.043 PMID: 22353619
- Kumar, G.; Shafiq, N.; Malhotra, S. Drug-loaded PLGA nanoparticles for oral administration: Fundamental issues and challenges ahead. Critical Reviews in Therapeutic Drug Carrier Systems, 2012, 29, (2).
- Sharma, S.; Parmar, A.; Kori, S.; Sandhir, R. PLGA-based nanoparticles: A new paradigm in biomedical applications. Trends Analyt. Chem., 2016, 80, 30-40. doi: 10.1016/j.trac.2015.06.014
- Martins, C.; Sousa, F.; Araújo, F.; Sarmento, B Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv. Healthc. Mater., 2018, 7(1), 1701035. doi: 10.1002/adhm.201701035 PMID: 29171928
- Ramazani, F.; Chen, W.; van Nostrum, C.F.; Storm, G.; Kiessling, F.; Lammers, T.; Hennink, W.E.; Kok, R.J. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges. Int. J. Pharm., 2016, 499(1-2), 358-367. doi: 10.1016/j.ijpharm.2016.01.020 PMID: 26795193
- Locatelli, E.; Comes Franchini, M. Biodegradable PLGA-b-PEG polymeric nanoparticles: Synthesis, properties, and nanomedical applications as drug delivery system. J. Nanopart. Res., 2012, 14(12), 1316. doi: 10.1007/s11051-012-1316-4
- Zhang, K.; Tang, X.; Zhang, J.; Lu, W.; Lin, X.; Zhang, Y.; Tian, B.; Yang, H.; He, H. PEGPLGA copolymers: Their structure and structure-influenced drug delivery applications. J. Control. Release, 2014, 183, 77-86. doi: 10.1016/j.jconrel.2014.03.026 PMID: 24675377
- Operti, M.C.; Bernhardt, A.; Grimm, S.; Engel, A.; Figdor, C.G.; Tagit, O. PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int. J. Pharm., 2021, 605, 120807. doi: 10.1016/j.ijpharm.2021.120807 PMID: 34144133
- Metselaar, J.M.; Lammers, T. Challenges in nanomedicine clinical translation. Drug Deliv. Transl. Res., 2020, 10(3), 721-725. doi: 10.1007/s13346-020-00740-5 PMID: 32166632
- Donahue, N.D.; Acar, H.; Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev., 2019, 143, 68-96. doi: 10.1016/j.addr.2019.04.008 PMID: 31022434
- Prasanna, P.; Kumar, P.; Kumar, S.; Rajana, V.K.; Kant, V.; Prasad, S.R.; Mohan, U.; Ravichandiran, V.; Mandal, D. Current status of nanoscale drug delivery and the future of nano-vaccine development for leishmaniasis: A review. Biomed. Pharmacother., 2021, 141, 111920. doi: 10.1016/j.biopha.2021.111920 PMID: 34328115
- Augustine, R.; Hasan, A.; Primavera, R.; Wilson, R.J.; Thakor, A.S.; Kevadiya, B.D. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun., 2020, 25, 101692. doi: 10.1016/j.mtcomm.2020.101692
- Ottemann, B.M.; Helmink, A.J.; Zhang, W.; Mukadam, I.; Woldstad, C.; Hilaire, J.R.; Liu, Y.; McMillan, J.M.; Edagwa, B.J.; Mosley, R.L.; Garrison, J.C.; Kevadiya, B.D.; Gendelman, H.E. Bioimaging predictors of rilpivirine biodistribution and antiretroviral activities. Biomaterials, 2018, 185, 174-193. doi: 10.1016/j.biomaterials.2018.09.018 PMID: 30245386
- Toy, R.; Peiris, P.M.; Ghaghada, K.B.; Karathanasis, E. Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine, 2014, 9(1), 121-134. doi: 10.2217/nnm.13.191 PMID: 24354814
- Florez, L.; Herrmann, C.; Cramer, J.M.; Hauser, C.P.; Koynov, K.; Landfester, K.; Crespy, D. Mailänder, V. How shape influences uptake: Interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells. Small, 2012, 8(14), 2222-2230. doi: 10.1002/smll.201102002 PMID: 22528663
- Huang, X.; Teng, X.; Chen, D.; Tang, F.; He, J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials, 2010, 31(3), 438-448. doi: 10.1016/j.biomaterials.2009.09.060 PMID: 19800115
- Dasgupta, S.; Auth, T.; Gompper, G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett., 2014, 14(2), 687-693. doi: 10.1021/nl403949h PMID: 24383757
- Graf, C.; Nordmeyer, D.; Sengstock, C.; Ahlberg, S.; Diendorf, J.; Raabe, J.; Epple, M.; Köller, M.; Lademann, J.; Vogt, A.; Rancan, F.; Rühl, E. Shape-dependent dissolution and cellular uptake of silver nanoparticles. Langmuir, 2018, 34(4), 1506-1519. doi: 10.1021/acs.langmuir.7b03126 PMID: 29272915
- Anselmo, A.C.; Zhang, M.; Kumar, S.; Vogus, D.R.; Menegatti, S.; Helgeson, M.E.; Mitragotri, S. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano, 2015, 9(3), 3169-3177. doi: 10.1021/acsnano.5b00147 PMID: 25715979
- Yi, X.; Gao, H. Kinetics of receptor-mediated endocytosis of elastic nanoparticles. Nanoscale, 2017, 9(1), 454-463. doi: 10.1039/C6NR07179A PMID: 27934990
- Chen, Y.; Li, L.; Gong, L.; Zhou, T.; Liu, J. Surface regulation towards stimuli‐responsive luminescence of ultrasmall thiolated gold nanoparticles for ratiometric imaging. Adv. Funct. Mater., 2019, 29(10), 1806945. doi: 10.1002/adfm.201806945
- Sharifi, M.; Hosseinali, S.H.; Hossein Alizadeh, R.; Hasan, A.; Attar, F.; Salihi, A.; Shekha, M.S.; Amen, K.M.; Aziz, F.M.; Saboury, A.A.; Akhtari, K.; Taghizadeh, A.; Hooshmand, N.; El-Sayed, M.A.; Falahati, M. Plasmonic and chiroplasmonic nanobiosensors based on gold nanoparticles. Talanta, 2020, 212, 120782. doi: 10.1016/j.talanta.2020.120782 PMID: 32113545
- Yamada, M.; Foote, M.; Prow, T.W. Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(3), 428-445. doi: 10.1002/wnan.1322 PMID: 25521618
- Zhou, H.S.; Honma, I.; Komiyama, H.; Haus, J.W. Coated semiconductor nanoparticles; the cadmium sulfide/lead sulfide systems synthesis and properties. J. Phys. Chem., 1993, 97(4), 895-901. doi: 10.1021/j100106a015
- Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed., 2014, 53(46), n/a. doi: 10.1002/anie.201403036 PMID: 25294565
- Belfiore, L.; Saunders, D.N.; Ranson, M.; Thurecht, K.J.; Storm, G.; Vine, K.L. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J. Control. Release, 2018, 277, 1-13. doi: 10.1016/j.jconrel.2018.02.040 PMID: 29501721
- Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25. doi: 10.1016/j.addr.2013.11.009 PMID: 24270007
- Mou, Q.; Ma, Y.; Zhu, X.; Yan, D. A small molecule nanodrug consisting of amphiphilic targeting ligandchemotherapy drug conjugate for targeted cancer therapy. J. Control. Release, 2016, 230, 34-44. doi: 10.1016/j.jconrel.2016.03.037 PMID: 27040815
- Ding, H.; Ma, Y. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. Biomaterials, 2012, 33(23), 5798-5802. doi: 10.1016/j.biomaterials.2012.04.055 PMID: 22607914
- Pozzi, D.; Colapicchioni, V.; Caracciolo, G.; Piovesana, S.; Capriotti, A.L.; Palchetti, S.; De Grossi, S.; Riccioli, A.; Amenitsch, H.; Laganà, A. Effect of polyethyleneglycol (PEG) chain length on the bionano-interactions between PEGylated lipid nanoparticles and biological fluids: From nanostructure to uptake in cancer cells. Nanoscale, 2014, 6(5), 2782-2792. doi: 10.1039/c3nr05559k PMID: 24463404
- Arpagaus, C. PLA/PLGA nanoparticles prepared by nano spray drying. J. Pharm. Investig., 2019, 49(4), 405-426. doi: 10.1007/s40005-019-00441-3
- Liu, J.; Leng, P.; Liu, Y. Oral drug delivery with nanoparticles into the gastrointestinal mucosa. Fundam. Clin. Pharmacol., 2021, 35(1), 86-96. doi: 10.1111/fcp.12594 PMID: 32749731
- Fakhar, M.; Keighobadi, M.; Emami, S. Hypothesis: The potential application of doxorubicin against cutaneous leishmaniasis. Trop. Parasitol., 2015, 5(1), 69-70. doi: 10.4103/2229-5070.145594 PMID: 25709959
- Kansal, S.; Tandon, R.; Verma, P.R.P.; Dube, A.; Mishra, P.R. Development of doxorubicin loaded novel core shell structured nanocapsules for the intervention of visceral leishmaniasis. J. Microencapsul., 2013, 30(5), 441-450. doi: 10.3109/02652048.2012.752532 PMID: 23534494
- Al-Kuraishy, H.M.; Dahash, S.L.; Abass, O.K.; Abdul-Razaq, M.M.; Al-Gareeb, A. Aesculus hippocastanum-derived extract β-Aescin and in vitro antibacterial activity. J. Microsc. Ultrastruct., 2021, 9(1), 26-30. doi: 10.4103/JMAU.JMAU_56_19 PMID: 33850709
- Van de Ven, H.; Vermeersch, M.; Matheeussen, A.; Vandervoort, J.; Weyenberg, W.; Apers, S.; Cos, P.; Maes, L.; Ludwig, A. PLGA nanoparticles loaded with the antileishmanial saponin β-aescin: Factor influence study and in vitro efficacy evaluation. Int. J. Pharm., 2011, 420(1), 122-132. doi: 10.1016/j.ijpharm.2011.08.016 PMID: 21864661
- Costa Lima, S.A.; Resende, M.; Silvestre, R.; Tavares, J.; Ouaissi, A.; Lin, P.K.T.; Cordeiro-da-Silva, A. Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: in vitro and in vivo studies. Nanomedicine, 2012, 7(12), 1839-1849. doi: 10.2217/nnm.12.74 PMID: 22812711
- Keskin, E.; Ucisik, M.H.; Sucu, B.O.; Guzel, M. Novel synthetic approaches for bisnaphthalimidopropyl (BNIP) derivatives as potential anti-parasitic agents for the treatment of leishmaniasis. Molecules, 2019, 24(24), 4607. doi: 10.3390/molecules24244607 PMID: 31888250
- Sundar, S.; Chakravarty, J. Liposomal amphotericin B and leishmaniasis: Dose and response. J. Glob. Infect. Dis., 2010, 2(2), 159-166. doi: 10.4103/0974-777X.62886 PMID: 20606972
- Shirzadi, M.R. Lipsosomal amphotericin B: A review of its properties, function, and use for treatment of cutaneous leishmaniasis. Res. Rep. Trop. Med., 2019, 10, 11-18. doi: 10.2147/RRTM.S200218 PMID: 31118866
- de Carvalho, R.F.; Ribeiro, I.F.; Miranda-Vilela, A.L.; de Souza Filho, J.; Martins, O.P.; de Oliveira Cintra e Silva, D.; Tedesco, A.C.; Lacava, Z.G.M.; Báo, S.N.; Sampaio, R.N.R. Leishmanicidal activity of amphotericin B encapsulated in PLGADMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. Exp. Parasitol., 2013, 135(2), 217-222. doi: 10.1016/j.exppara.2013.07.008 PMID: 23891944
- Coelho, A.A.S.; Loureiro, E.V.S.; Silva, A.C.J.; Silva, A.B.C.; Alves, H.C.; Lucianelli-Junior, D.; Pantoja, A.V.; Santos, O.S.; Granato, R.R.; Silva-Júnior, A.F.; Nascimento, R.M.; Mendonça, R.Z.; Laurentino, R.V.; Valentin, F.N. Historical analysis of leishmaniasis cases in the transamazonian region: From 2009 to 2019. Revista Eletrônica Acervo Saúde, 2021, 13(11), e9163-e9163. doi: 10.25248/reas.e9163.2021
- Moreira, V.R.; de Jesus, L.C.L.; Soares, R.E.P.; Silva, L.D.M.; Pinto, B.A.S.; Melo, M.N.; Paes, A.M.A.; Pereira, S.R.F. Meglumine antimoniate (Glucantime) causes oxidative stress-derived DNA damage in BALB/c mice infected by Leishmania (Leishmania) infantum. Antimicrob. Agents Chemother., 2017, 61(6), e02360-e16. doi: 10.1128/AAC.02360-16 PMID: 28320726
- Want, M.Y.; Islamuddin, M.; Chouhan, G.; Dasgupta, A.K.; Chattopadhyay, A.P.; Afrin, F. A new approach for the delivery of artemisinin: Formulation, characterization, and ex-vivo antileishmanial studies. J. Colloid Interface Sci., 2014, 432, 258-269. doi: 10.1016/j.jcis.2014.06.035 PMID: 25086720
- Geroldinger, G.; Tonner, M.; Quirgst, J.; Walter, M.; De Sarkar, S.; Machín, L.; Monzote, L.; Stolze, K.; Catharina Duvigneau, J.; Staniek, K.; Chatterjee, M.; Gille, L. Activation of artemisinin and heme degradation in Leishmania tarentolae promastigotes: A possible link. Biochem. Pharmacol., 2020, 173, 113737. doi: 10.1016/j.bcp.2019.113737 PMID: 31786259
- Dorlo, T.P.C.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother., 2012, 67(11), 2576-2597. doi: 10.1093/jac/dks275 PMID: 22833634
- Pinto-Martinez, A.K.; Rodriguez-Durán, J.; Serrano-Martin, X.; Hernandez-Rodriguez, V.; Benaim, G. Mechanism of action of miltefosine on Leishmania donovani involves the impairment of acidocalcisome function and the activation of the sphingosine-dependent plasma membrane Ca2+ channel. Antimicrob. Agents Chemother., 2017, 62(1), e01614-e01617. PMID: 29061745
- Melo, T.S.; Gattass, C.R.; Soares, D.C.; Cunha, M.R.; Ferreira, C.; Tavares, M.T.; Saraiva, E.; Parise-Filho, R.; Braden, H.; Delorenzi, J.C. Oleanolic acid (OA) as an antileishmanial agent: Biological evaluation and in silico mechanistic insights. Parasitol. Int., 2016, 65(3), 227-237. doi: 10.1016/j.parint.2016.01.001 PMID: 26772973
- Ghosh, S.; Kar, N.; Bera, T. Oleanolic acid loaded poly lactic co- glycolic acid- vitamin E TPGS nanoparticles for the treatment of Leishmania donovani infected visceral leishmaniasis. Int. J. Biol. Macromol., 2016, 93(Pt A), 961-970. doi: 10.1016/j.ijbiomac.2016.09.014 PMID: 27645930
- Valle, I.V.; Machado, M.E. Araújo, C.C.B.; da Cunha-Junior, E.F.; da Silva Pacheco, J.; Torres-Santos, E.C.; da Silva, L.C.R.P.; Cabral, L.M.; do Carmo, F.A.; Sathler, P.C. Oral pentamidine-loaded poly(d,l-lactic-co-glycolic) acid nanoparticles: An alternative approach for leishmaniasis treatment. Nanotechnology, 2019, 30(45), 455102. doi: 10.1088/1361-6528/ab373e PMID: 31365912
- Basselin, M.; Lawrence, F.; Robert-Gero, M. Pentamidine uptake in Leishmania donovani and Leishmania amazonensis promastigotes and axenic amastigotes. Biochem. J., 1996, 315(2), 631-634. doi: 10.1042/bj3150631 PMID: 8615840
- de Macedo-Silva, S.T.; Urbina, J.A.; de Souza, W.; Rodrigues, J.C.F. In vitro activity of the antifungal azoles itraconazole and posaconazole against Leishmania amazonensis. PLoS One, 2013, 8(12), e83247. doi: 10.1371/journal.pone.0083247 PMID: 24376670
- Afzal, I.; Sarwar, H.S.; Sohail, M.F.; Varikuti, S.; Jahan, S.; Akhtar, S.; Yasinzai, M.; Satoskar, A.R.; Shahnaz, G. Mannosylated thiolated paromomycin-loaded PLGA nanoparticles for the oral therapy of visceral leishmaniasis. Nanomedicine, 2019, 14(4), 387-406. doi: 10.2217/nnm-2018-0038 PMID: 30688557
- Pokharel, P.; Ghimire, R.; Lamichhane, P. Efficacy and safety of paromomycin for visceral leishmaniasis: A systematic review. J. Trop. Med., 2021, 2021 doi: 10.1155/2021/8629039
- Cruz, K.P.; Patricio, B.F.C.; Pires, V.C.; Amorim, M.F.; Pinho, A.G.S.F.; Quadros, H.C.; Dantas, D.A.S.; Chaves, M.H.C.; Formiga, F.R.; Rocha, H.V.A.; Veras, P.S.T. Development and characterization of PLGA nanoparticles containing 17-DMAG, an Hsp90 inhibitor. Front Chem., 2021, 9, 644827. doi: 10.3389/fchem.2021.644827 PMID: 34055735
- Anyika, M.; McMullen, M.; Forsberg, L.K.; Dobrowsky, R.T.; Blagg, B.S.J. Development of noviomimetics as C-terminal Hsp90 inhibitors. ACS Med. Chem. Lett., 2016, 7(1), 67-71. doi: 10.1021/acsmedchemlett.5b00331 PMID: 26819668
- Fernández, M.; Holgado, M.Á.; Cayero-Otero, M.D.; Pineda, T.; Yepes, L.M.; Gaspar, D.P.; Almeida, A.J.; Robledo, S.M.; Martín-Banderas, L. Improved antileishmanial activity and cytotoxicity of a novel nanotherapy for N-iodomethyl-N,N-dimethyl-N-(6,6-diphenylhex-5-en-1-yl)ammonium iodide. J. Drug Deliv. Sci. Technol., 2021, 61, 101988. doi: 10.1016/j.jddst.2020.101988
- Onoue, S.; Nakamura, T.; Uchida, A.; Ogawa, K.; Yuminoki, K.; Hashimoto, N.; Hiza, A.; Tsukaguchi, Y.; Asakawa, T.; Kan, T.; Yamada, S. Physicochemical and biopharmaceutical characterization of amorphous solid dispersion of nobiletin, a citrus polymethoxylated flavone, with improved hepatoprotective effects. Eur. J. Pharm. Sci., 2013, 49(4), 453-460. doi: 10.1016/j.ejps.2013.05.014 PMID: 23707470
- Jain, D.; Singh, A.; Stephen, B.J.; Jain, D.; Sanadhya, S.; Daima, H.K.; Madhyastha, H.; Madhyastha, R. Nanotoxicology; CRC Press, 2021, pp. 73-96. doi: 10.1201/9780429299742-4
- Vinck, R.; Nguyen, L.A.; Munier, M.; Caramelle, L.; Karpman, D.; Barbier, J.; Cintrat, J.-C.; Pruvost, A.; Gillet, D. Subcutaneous administration of the retrograde transport inhibitor Retro-2.1 formulated in a PLGA-PEG-PLGA thermosensitive hydrogel leads to a sustained release of the drug and a better control of its metabolism in vivo. 2021,
- Meireles, P.W.; de Souza, D.P.B.; Rezende, M.G.; Borsodi, M.P.G.; de Oliveira, D.E.; da Silva, L.C.R.P.; de Souza, A.M.T.; Viana, G.M.; Rodrigues, C.R.; do Carmo, F.A.; de Sousa, V.P.; Rossi-Bergmann, B.; Cabral, L.M. Nanoparticles loaded with a new thiourea derivative: Development and in vitro evaluation against Leishmania amazonensis. Curr. Drug Deliv., 2020, 17(8), 694-702. doi: 10.2174/1567201817666200704132348 PMID: 32621717
- Sousa-Batista, A.J.; Arruda-Costa, N.; Rossi-Bergmann, B.; Ré, M.I. Improved drug loading via spray drying of a chalcone implant for local treatment of cutaneous leishmaniasis. Drug Dev. Ind. Pharm., 2018, 44(9), 1473-1480. doi: 10.1080/03639045.2018.1461903 PMID: 29618227
- Sousa-Batista, A.J.; Arruda-Costa, N.; Escrivani, D.O.; Reynaud, F.; Steel, P.G.; Rossi-Bergmann, B. Single-dose treatment for cutaneous leishmaniasis with an easily synthesized chalcone entrapped in polymeric microparticles. Parasitology, 2020, 147(9), 1032-1037. doi: 10.1017/S0031182020000712 PMID: 32364107
- Halder, A.; Shukla, D.; Das, S.; Roy, P.; Mukherjee, A.; Saha, B. Lactoferrin-modified Betulinic Acid-loaded PLGA nanoparticles are strong anti-leishmanials. Cytokine, 2018, 110, 412-415. doi: 10.1016/j.cyto.2018.05.010 PMID: 29784509
- Silva, M.C.P.d.; Brito, J.M.; Ferreira, A.d.S.; Vale, A.A.M.; Santos, A.P.A.d.; Silva, L.A.; Pereira, P.V.S.; Nascimento, F.R.F.; Nicolete, R.; Guerra, R.N.M. Antileishmanial and immunomodulatory effect of babassu-loaded PLGA microparticles: A useful drug target to Leishmania amazonensis infection. Evidence-Based Complementary and Alternative Medicine, 2018, 2018 doi: 10.1155/2018/3161045
- Barros, D.; Costa Lima, S.A.; Cordeiro-da-Silva, A. Surface functionalization of polymeric nanospheres modulates macrophage activation: relevance in Leishmaniasis therapy. Nanomedicine, 2015, 10(3), 387-403. doi: 10.2217/nnm.14.116 PMID: 25707974
- Kumar, R.; Sahoo, G.C.; Pandey, K.; Das, V.N.R.; Das, P. Study the effects of PLGA-PEG encapsulated Amphotericin B nanoparticle drug delivery system against Leishmania donovani. Drug Deliv., 2015, 22(3), 383-388. doi: 10.3109/10717544.2014.891271 PMID: 24601828
- Verma, R.; Pandya, S.; Misra, A. Loading and release of amphotericin-B from biodegradable poly(lactic-co-glycolic acid) nanoparticles. J. Biomed. Nanotechnol., 2011, 7(1), 118-120. doi: 10.1166/jbn.2011.1230 PMID: 21485832
- Scala, A.; Piperno, A.; Micale, N.; Mineo, P.G.; Abbadessa, A.; Risoluti, R.; Castelli, G.; Bruno, F.; Vitale, F.; Cascio, A.; Grassi, G. "Click" on PLGA-PEG and hyaluronic acid: Gaining access to anti-leishmanial pentamidine bioconjugates. J. Biomed. Mater. Res. B Appl. Biomater., 2018, 106(8), 2778-2785. doi: 10.1002/jbm.b.34058 PMID: 29219244
- Kumar, R.; Sahoo, G.C.; Pandey, K.; Das, V.N.R.; Topno, R.K.; Ansari, M.Y.; Rana, S.; Das, P. Development of PLGAPEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis. Mater. Sci. Eng. C, 2016, 59, 748-753. doi: 10.1016/j.msec.2015.10.083 PMID: 26652429
- Biswaro, L.S.; Garcia, M.P.; da Silva, J.R.; Neira Fuentes, L.F.; Vera, A.; Escobar, P.; Azevedo, R.B. Itraconazole encapsulated PLGA-nanoparticles covered with mannose as potential candidates against leishmaniasis. J. Biomed. Mater. Res. B Appl. Biomater., 2019, 107(3), 680-687. doi: 10.1002/jbm.b.34161 PMID: 30091522
- Costa Lima, S.A.; Silvestre, R.; Barros, D.; Cunha, J.; Baltazar, M.T.; Dinis-Oliveira, R.J.; Cordeiro-da-Silva, A. Crucial CD8+ T-lymphocyte cytotoxic role in amphotericin B nanospheres efficacy against experimental visceral leishmaniasis. Nanomedicine, 2014, 10(5), e1021-e1030. doi: 10.1016/j.nano.2013.12.013 PMID: 24412471
- Sousa-Batista, A.J.; Pacienza-Lima, W.; Arruda-Costa, N. Falcão, C.A.B.; Ré, M.I.; Rossi-Bergmann, B. Depot subcutaneous injection with chalcone CH8-loaded poly (lactic-co-glycolic acid) microspheres as a single-dose treatment of cutaneous leishmaniasis. Antimicrob. Agents Chemother., 2018, 62(3), e01822-e17. doi: 10.1128/AAC.01822-17 PMID: 29263064
- Navaei, A.; Rasoolian, M.; Momeni, A.; Emami, S.; Rafienia, M. Double-walled microspheres loaded with meglumine antimoniate: preparation, characterization and in vitro release study. Drug Dev. Ind. Pharm., 2014, 40(6), 701-710. doi: 10.3109/03639045.2013.777734 PMID: 23594302
- Sharma, S.; Kumar, P.; Jaiswal, A.; Dube, A.; Gupta, S. Development and characterization of doxorubicin loaded microparticles against experimental visceral leishmaniasis. J. Biomed. Nanotechnol., 2011, 7(1), 135-136. doi: 10.1166/jbn.2011.1237 PMID: 21485839
- He, C.; Yin, L.; Tang, C.; Yin, C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials, 2012, 33(33), 8569-8578. doi: 10.1016/j.biomaterials.2012.07.063 PMID: 22906606
- De Muylder, G.; Ang, K.K.H.; Chen, S.; Arkin, M.R.; Engel, J.C.; McKerrow, J.H. A screen against Leishmania intracellular amastigotes: Comparison to a promastigote screen and identification of a host cell-specific hit. PLoS Negl. Trop. Dis., 2011, 5(7), e1253. doi: 10.1371/journal.pntd.0001253 PMID: 21811648
- Aronson, N.; Herwaldt, B.L.; Libman, M.; Pearson, R.; Lopez-Velez, R.; Weina, P.; Carvalho, E.M.; Ephros, M.; Jeronimo, S.; Magill, A. Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clin. Infect. Dis., 2016, 63(12), e202-e264. doi: 10.1093/cid/ciw670 PMID: 27941151
- Han, F.Y.; Thurecht, K.J.; Whittaker, A.K.; Smith, M.T. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front. Pharmacol., 2016, 7, 185. doi: 10.3389/fphar.2016.00185 PMID: 27445821
- Park, K.; Skidmore, S.; Hadar, J.; Garner, J.; Park, H.; Otte, A.; Soh, B.K.; Yoon, G.; Yu, D.; Yun, Y.; Lee, B.K.; Jiang, X.; Wang, Y. Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation. J. Control. Release, 2019, 304, 125-134. doi: 10.1016/j.jconrel.2019.05.003 PMID: 31071374
Supplementary files
