Application Research Progress of Nanomaterial Graphene and its Derivative Complexes in Tumor Diagnosis and Therapy
- Authors: Cui L.1, Fan L.1, Shen Z.1
-
Affiliations:
- Department of Radiology, Affiliated Tumor Hospital of Nantong University
- Issue: Vol 31, No 39 (2024)
- Pages: 6436-6459
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645111
- DOI: https://doi.org/10.2174/0109298673251648231106112354
- ID: 645111
Cite item
Full Text
Abstract
:Functional nanomaterial graphene and its derivatives have attracted considerable attention in many fields because of their unique physical and chemical properties. Most notably, graphene has become a research hotspot in the biomedical field, especially in relation to malignant tumors. In this study, we briefly review relevant research from recent years on graphene and its derivatives in tumor diagnosis and antitumor therapy. The main contents of the study include the graphene-derivative diagnosis of tumors in the early stage, graphene quantum dots, photodynamics, MRI contrast agent, acoustic dynamics, and the effects of ultrasonic cavitation and graphene on tumor therapy. Moreover, the biocompatibility of graphene is briefly described. This review provides a broad overview of the applications of graphene and its derivatives in tumors. Conclusion, graphene and its derivatives play an important role in tumor diagnosis and treatment.
About the authors
Li Cui
Department of Radiology, Affiliated Tumor Hospital of Nantong University
Email: info@benthamscience.net
Lu Fan
Department of Radiology, Affiliated Tumor Hospital of Nantong University
Email: info@benthamscience.net
Zhi Shen
Department of Radiology, Affiliated Tumor Hospital of Nantong University
Author for correspondence.
Email: info@benthamscience.net
References
- Chae, S.; Le, T.H.; Park, C.S.; Choi, Y.; Kim, S.; Lee, U.; Heo, E.; Lee, H.; Kim, Y.A.; Kwon, O.S.; Yoon, H. Anomalous restoration of sp 2 hybridization in graphene functionalization. Nanoscale, 2020, 12(25), 13351-13359. doi: 10.1039/D0NR03422C PMID: 32572409
- Sidorov, A.N.; Yazdanpanah, M.M.; Jalilian, R.; Ouseph, P.J.; Cohn, R.W.; Sumanasekera, G.U. Electrostatic deposition of graphene. Nanotechnology, 2007, 18(13), 135301. doi: 10.1088/0957-4484/18/13/135301 PMID: 21730375
- Seema, H.; Shirinfar, B.; Shi, G.; Youn, I.S.; Ahmed, N. Facile synthesis of a selective biomolecule chemosensor and fabrication of its highly fluorescent graphene complex. J. Phys. Chem. B, 2017, 121(19), 5007-5016. doi: 10.1021/acs.jpcb.7b02888 PMID: 28463493
- Goldoni, R.; Farronato, M.; Connelly, S.T.; Tartaglia, G.M.; Yeo, W.H. Recent advances in graphene-based nanobiosensors for salivary biomarker detection. Biosens. Bioelectron., 2021, 171, 112723. doi: 10.1016/j.bios.2020.112723 PMID: 33096432
- Meng, Q.; Yu, Y.; Tian, J.; Yang, Z.; Guo, S.; Cai, R.; Han, S.; Liu, T.; Ma, J. Multifunctional, durable and highly conductive graphene/sponge nanocomposites. Nanotechnology, 2020, 31(46), 465502. doi: 10.1088/1361-6528/ab9f73 PMID: 32575085
- Zhang, Z.Z.; Song, X.X.; Luo, G.; Su, Z.J.; Wang, K.L.; Cao, G.; Li, H.O.; Xiao, M.; Guo, G.C.; Tian, L.; Deng, G.W.; Guo, G.P. Coherent phonon dynamics in spatially separated graphene mechanical resonators. Proc. Natl. Acad. Sci., 2020, 117(11), 5582-5587. doi: 10.1073/pnas.1916978117 PMID: 32123110
- Mahajan, C.R.; Joshi, L.B.; Varma, U.; Naik, J.B.; Chaudhari, V.R.; Mishra, S. Sustainable drug delivery of famotidine using chitosan-functionalized graphene oxide as nanocarrier. Glob. Chall., 2019, 3(10), 1900002. doi: 10.1002/gch2.201900002 PMID: 31592120
- Prabowo, B.A.; Purwidyantri, A.; Liu, B.; Lai, H.C.; Liu, K.C. Gold nanoparticle-assisted plasmonic enhancement for DNA detection on a graphene-based portable surface plasmon resonance sensor. Nanotechnology, 2021, 32(9), 095503. doi: 10.1088/1361-6528/abcd62 PMID: 33232941
- Nejabat, M.; Charbgoo, F.; Ramezani, M. Graphene as multifunctional delivery platform in cancer therapy. J. Biomed. Mater. Res. A, 2017, 105(8), 2355-2367. doi: 10.1002/jbm.a.36080 PMID: 28371194
- Gholivand, K.; Faraghi, M.; Pooyan, M.; Babaee, L.S.; Malekshah, R.E.; Pirastehfar, F.; Vahabirad, M. Anti-cancer activity of new phosphoramide-functionalized graphene oxides: An experimental and theoretical evaluation. Curr. Med. Chem., 2023, 30(30), 3486-3503. doi: 10.2174/0929867330666221027152716 PMID: 36305155
- Keramat, A.; Kadkhoda, J.; Farahzadi, R.; Fathi, E.; Davaran, S. The potential of graphene oxide and reduced graphene oxide in diagnosis and treatment of cancer. Curr. Med. Chem., 2022, 29(26), 4529-4546. doi: 10.2174/0929867329666220208092157 PMID: 35135444
- Pedrosa, M.; Da Silva, E.S.; Pastrana-Martínez, L.M.; Drazic, G.; Falaras, P.; Faria, J.L.; Figueiredo, J.L.; Silva, A.M.T. Hummers and Brodies graphene oxides as photocatalysts for phenol degradation. J. Colloid Interface Sci., 2020, 567, 243-255. doi: 10.1016/j.jcis.2020.01.093 PMID: 32062085
- Patel, M.A.; Yang, H.; Chiu, P.L.; Mastrogiovanni, D.D.T.; Flach, C.R.; Savaram, K.; Gomez, L.; Hemnarine, A.; Mendelsohn, R.; Garfunkel, E.; Jiang, H.; He, H. Direct production of graphene nanosheets for near infrared photoacoustic imaging. ACS Nano, 2013, 7(9), 8147-8157. doi: 10.1021/nn403429v PMID: 24001023
- Peng, L.; Xu, Z.; Liu, Z.; Wei, Y.; Sun, H.; Li, Z.; Zhao, X.; Gao, C. An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun., 2015, 6(1), 5716. doi: 10.1038/ncomms6716 PMID: 25607686
- Kim, F.; Luo, J.; Cruz-Silva, R.; Cote, L.J.; Sohn, K.; Huang, J. Self-propagating domino-like reactions in oxidized graphite. Adv. Funct. Mater., 2010, 20(17), 2867-2873. doi: 10.1002/adfm.201000736
- Zheng, F.; Xu, W.L.; Jin, H.D.; Zhu, M.Q.; Yuan, W.H.; Hao, X.T.; Ghiggino, K.P. Purified dispersions of graphene in a nonpolar solvent via solvothermal reduction of graphene oxide. Chem. Commun., 2015, 51(18), 3824-3827. doi: 10.1039/C5CC00056D PMID: 25649830
- Balaji, A.; Zhang, J. Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and graphene oxide. Cancer Nanotechnol., 2017, 8(1), 10. doi: 10.1186/s12645-017-0035-z PMID: 29250208
- Abdelbasset, W.K.; Jasim, S.A.; Bokov, D.O.; Oleneva, M.S.; Islamov, A.; Hammid, A.T.; Mustafa, Y.F.; Yasin, G.; Alguno, A.C.; Kianfar, E. Comparison and evaluation of the performance of graphene-based biosensors. Carbon Letters, 2022, 32(4), 927-951. doi: 10.1007/s42823-022-00338-6
- Işın, D.; Eksin, E.; Erdem, A. Graphene-oxide and ionic liquid modified electrodes for electrochemical sensing of breast cancer 1 gene. Biosensors, 2022, 12(2), 95. doi: 10.3390/bios12020095 PMID: 35200355
- Luong, J.H.T.; Vashist, S.K. Immunosensing procedures for carcinoembryonic antigen using graphene and nanocomposites. Biosens. Bioelectron., 2017, 89(Pt 1), 293-304. doi: 10.1016/j.bios.2015.11.053 PMID: 26620098
- Chen, S.L.; Chen, C.Y.; Hsieh, J.C.H.; Yu, Z.Y.; Cheng, S.J.; Hsieh, K.Y.; Yang, J.W.; Kumar, P.V.; Lin, S.F.; Chen, G.Y. Graphene oxide-based biosensors for liquid biopsies in cancer diagnosis. Nanomaterials, 2019, 9(12), 1725. doi: 10.3390/nano9121725 PMID: 31816919
- Qian, W.; Miao, Z.; Zhang, X.J.; Yang, X.T.; Tang, Y.Y.; Tang, Y.Y.; Hu, L.Y.; Li, S.; Zhu, D.; Cheng, H. Functionalized reduced graphene oxide with aptamer macroarray for cancer cell capture and fluorescence detection. Mikrochim. Acta, 2020, 187(7), 407. doi: 10.1007/s00604-020-04402-8 PMID: 32594259
- Papi, M.; Palmieri, V.; Digiacomo, L.; Giulimondi, F.; Palchetti, S.; Ciasca, G.; Perini, G.; Caputo, D.; Cartillone, M.C.; Cascone, C.; Coppola, R.; Capriotti, A.L.; Laganà, A.; Pozzi, D.; Caracciolo, G. Converting the personalized biomolecular corona of graphene oxide nanoflakes into a high-throughput diagnostic test for early cancer detection. Nanoscale, 2019, 11(32), 15339-15346. doi: 10.1039/C9NR01413F PMID: 31386742
- Wu, C.; Li, P.; Fan, N.; Han, J.; Zhang, W.; Zhang, W.; Tang, B. A dual-targeting functionalized graphene film for rapid and highly sensitive fluorescence imaging detection of hepatocellular carcinoma circulating tumor cells. ACS Appl. Mater. Interfaces, 2019, 11(48), 44999-45006. doi: 10.1021/acsami.9b18410 PMID: 31714050
- Geetha Bai, R.; Muthoosamy, K.; Tuvikene, R.; Nay Ming, H.; Manickam, S. Highly sensitive electrochemical biosensor using folic acid-modified reduced graphene oxide for the detection of cancer biomarker. Nanomaterials, 2021, 11(5), 1272. doi: 10.3390/nano11051272 PMID: 34066073
- Mahmoodi, P.; Rezayi, M.; Rasouli, E.; Avan, A.; Gholami, M.; Ghayour Mobarhan, M.; Karimi, E.; Alias, Y. Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples. J. Nanobiotechnol., 2020, 18(1), 11. doi: 10.1186/s12951-020-0577-9 PMID: 31931815
- Shi, S.; Yang, K.; Hong, H.; Valdovinos, H.F.; Nayak, T.R.; Zhang, Y.; Theuer, C.P.; Barnhart, T.E.; Liu, Z.; Cai, W. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials, 2013, 34(12), 3002-3009. doi: 10.1016/j.biomaterials.2013.01.047 PMID: 23374706
- Xu, H.; Fan, M.; Elhissi, A.M.A.; Zhang, Z.; Wan, K.W.; Ahmed, W.; Phoenix, D.A.; Sun, X. PEGylated graphene oxide for tumor-targeted delivery of paclitaxel. Nanomedicine, 2015, 10(8), 1247-1262. doi: 10.2217/nnm.14.233 PMID: 25955123
- Lan, M.Y.; Hsu, Y.B.; Lan, M.C.; Chen, J.P.; Lu, Y.J. Polyethylene glycol-coated graphene oxide loaded with erlotinib as an effective therapeutic agent for treating nasopharyngeal cancer cells. Int. J. Nanomedicine, 2020, 15, 7569-7582. doi: 10.2147/IJN.S265437 PMID: 33116488
- Shuai, C.; Wang, B.; Bin, S.; Peng, S.; Gao, C. TiO 2 -induced in situ reaction in graphene oxide-reinforced az61 biocomposites to enhance the interfacial bonding. ACS Appl. Mater. Interfaces, 2020, 12(20), 23464-23473. doi: 10.1021/acsami.0c04020 PMID: 32345014
- Alibolandi, M.; Mohammadi, M.; Taghdisi, S.M.; Ramezani, M.; Abnous, K. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydr. Polym., 2017, 155, 218-229. doi: 10.1016/j.carbpol.2016.08.046 PMID: 27702507
- Gu, Y.; Guo, Y.; Wang, C.; Xu, J.; Wu, J.; Kirk, T.B.; Ma, D.; Xue, W. A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery. Mater. Sci. Eng. C, 2017, 70(Pt 1), 572-585. doi: 10.1016/j.msec.2016.09.035 PMID: 27770930
- Slekiene, N.; Snitka, V. Impact of graphene oxide functionalized with doxorubicin on viability of mouse hepatoma MH-22A cells. Toxicol. In Vitro, 2020, 65, 104821. doi: 10.1016/j.tiv.2020.104821 PMID: 32151703
- Zhang, Y.M.; Cao, Y.; Yang, Y.; Chen, J.T.; Liu, Y. A small-sized graphene oxide supramolecular assembly for targeted delivery of camptothecin. Chem. Commun., 2014, 50(86), 13066-13069. doi: 10.1039/C4CC04533E PMID: 25222700
- Kansara, V.; Patil, R.; Tripathi, R.; Jha, P.K.; Bahadur, P.; Tiwari, S. Functionalized graphene nanosheets with improved dispersion stability and superior paclitaxel loading capacity. Colloids Surf. B Biointerfaces, 2019, 173, 421-428. doi: 10.1016/j.colsurfb.2018.10.016 PMID: 30321800
- Yang, Y.F.; Meng, F.Y.; Li, X.H.; Wu, N.N.; Deng, Y.H.; Wei, L.Y.; Zeng, X.P. Magnetic graphene oxide-Fe3O4-PANI nanoparticle adsorbed platinum drugs as drug delivery systems for cancer therapy. J. Nanosci. Nanotechnol., 2019, 19(12), 7517-7525. doi: 10.1166/jnn.2019.16768 PMID: 31196255
- Lin, K.C.; Lin, M.W.; Hsu, M.N.; Yu-Chen, G.; Chao, Y.C.; Tuan, H.Y.; Chiang, C.S.; Hu, Y.C. Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis. Theranostics, 2018, 8(9), 2477-2487. doi: 10.7150/thno.24173 PMID: 29721093
- Lu, Y.J.; Lan, Y.H.; Chuang, C.C.; Lu, W.T.; Chan, L.Y.; Hsu, P.W.; Chen, J.P. Injectable thermo-sensitive chitosan hydrogel containing CPT-11-loaded EGFR-targeted graphene oxide and SLP2 shRNA for localized drug/gene delivery in glioblastoma therapy. Int. J. Mol. Sci., 2020, 21(19), 7111. doi: 10.3390/ijms21197111 PMID: 32993166
- Liu, X.; Gao, M.M.; Cheng, Z.; Cai, Z-K.; Yu, L.; Niu, G-M.; Li, J-Y.; Bai, Y.; Zhao, S-Z.; Song, Y-C.; Wang, X-G.; Dong, Y.; Yu, X.; Tao, Z.; Yuan, Z-Y. Stereotactic body radiotherapy compared with video-assisted thoracic surgery after propensity-score matching in elderly patients with pathologically-proven early-stage non-small cell lung cancer. Precis. Radiat. Oncol., 2022, 6(4), 279-288. doi: 10.1002/pro6.1175
- Toomeh, D.; Gadoue, S.M.; Yasmin-Karim, S.; Singh, M.; Shanker, R.; Pal Singh, S.; Kumar, R.; Sajo, E.; Ngwa, W. Minimizing the potential of cancer recurrence and metastasis by the use of graphene oxide nano-flakes released from smart fiducials during image-guided radiation therapy. Phys. Med., 2018, 55, 8-14. doi: 10.1016/j.ejmp.2018.10.001 PMID: 30471823
- Kadkhoda, J.; Tarighatnia, A.; Barar, J.; Aghanejad, A.; Davaran, S. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagn. Photodyn. Ther., 2022, 37, 102697. doi: 10.1016/j.pdpdt.2021.102697 PMID: 34936918
- Ma, M.; Cheng, L.; Zhao, A.; Zhang, H.; Zhang, A. Pluronic-based graphene oxide-methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells. Photodiagn. Photodyn. Ther., 2020, 29, 101640. doi: 10.1016/j.pdpdt.2019.101640 PMID: 31899381
- Das, P.; Mudigunda, S.V.; Darabdhara, G.; Boruah, P.K.; Ghar, S.; Rengan, A.K.; Das, M.R. Biocompatible functionalized AuPd bimetallic nanoparticles decorated on reduced graphene oxide sheets for photothermal therapy of targeted cancer cells. J. Photochem. Photobiol. B, 2020, 212, 112028. doi: 10.1016/j.jphotobiol.2020.112028 PMID: 33010550
- Gulzar, A.; Xu, J.; Yang, D.; Xu, L.; He, F.; Gai, S.; Yang, P. Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Trans., 2018, 47(11), 3931-3939. doi: 10.1039/C7DT04141A PMID: 29459928
- Liu, P.; Xie, X.; Liu, M.; Hu, S.; Ding, J.; Zhou, W. A smart MnO2-doped graphene oxide nanosheet for enhanced chemo-photodynamic combinatorial therapy via simultaneous oxygenation and glutathione depletion. Acta Pharm. Sin. B, 2021, 11(3), 823-834. doi: 10.1016/j.apsb.2020.07.021 PMID: 33777684
- Guo, W.; Chen, Z.; Feng, X.; Shen, G.; Huang, H.; Liang, Y.; Zhao, B.; Li, G.; Hu, Y. Graphene oxide (GO)-based nanosheets with combined chemo/photothermal/photodynamic therapy to overcome gastric cancer (GC) paclitaxel resistance by reducing mitochondria-derived adenosine-triphosphate (ATP). J. Nanobiotechnol., 2021, 19(1), 146. doi: 10.1186/s12951-021-00874-9 PMID: 34011375
- Zeng, W.N.; Yu, Q.P.; Wang, D.; Liu, J.L.; Yang, Q.J.; Zhou, Z.K.; Zeng, Y.P. Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma. J. Nanobiotechnol., 2021, 19(1), 79. doi: 10.1186/s12951-021-00831-6 PMID: 33740998
- Zhao, C.; Song, X.; Liu, Y.; Fu, Y.; Ye, L.; Wang, N.; Wang, F.; Li, L.; Mohammadniaei, M.; Zhang, M.; Zhang, Q.; Liu, J. Synthesis of graphene quantum dots and their applications in drug delivery. J. Nanobiotechnol., 2020, 18(1), 142. doi: 10.1186/s12951-020-00698-z PMID: 33008457
- Vatanparast, M.; Shariatinia, Z. Revealing the role of different nitrogen functionalities in the drug delivery performance of graphene quantum dots: A combined density functional theory and molecular dynamics approach. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(40), 6156-6171. doi: 10.1039/C9TB00971J PMID: 31559403
- Singh, G.; Kaur, H.; Sharma, A.; Singh, J.; Alajangi, H.K.; Kumar, S.; Singla, N.; Kaur, I.P.; Barnwal, R.P. Carbon based nanodots in early diagnosis of cancer. Front Chem., 2021, 9, 669169. doi: 10.3389/fchem.2021.669169 PMID: 34109155
- Cunci, L.; González-Colón, V.; Lee Vargas-Pérez, B.; Ortiz-Santiago, J.; Pagán, M.; Carrion, P.; Cruz, J.; Molina-Ontoria, A.; Martinez, N.; Silva, W.; Echegoyen, L.; Cabrera, C.R. Multicolor fluorescent graphene oxide quantum dots for sensing cancer cell biomarkers. ACS Appl. Nano Mater., 2021, 4(1), 211-219. doi: 10.1021/acsanm.0c02526 PMID: 34142014
- Xu, A.; He, P.; Ye, C.; Liu, Z.; Gu, B.; Gao, B.; Li, Y.; Dong, H.; Chen, D.; Wang, G.; Yang, S.; Ding, G. Polarizing graphene quantum dots toward long-acting intracellular reactive oxygen species evaluation and tumor detection. ACS Appl. Mater. Interfaces, 2020, 12(9), 10781-10790. doi: 10.1021/acsami.9b20434 PMID: 32048821
- Ganganboina, A.B.; Dega, N.K.; Tran, H.L.; Darmonto, W.; Doong, R.A. Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens. Bioelectron., 2021, 181, 113151. doi: 10.1016/j.bios.2021.113151 PMID: 33740543
- Pothipor, C.; Jakmunee, J.; Bamrungsap, S.; Ounnunkad, K. An electrochemical biosensor for simultaneous detection of breast cancer clinically related microRNAs based on a gold nanoparticles/graphene quantum dots/graphene oxide film. Analyst, 2021, 146(12), 4000-4009. doi: 10.1039/D1AN00436K PMID: 34013303
- Zhang, H.; Ba, S.; Yang, Z.; Wang, T.; Lee, J.Y.; Li, T.; Shao, F. Graphene quantum dot-based nanocomposites for diagnosing cancer biomarker ape1 in living cells. ACS Appl. Mater. Interfaces, 2020, 12(12), 13634-13643. doi: 10.1021/acsami.9b21385 PMID: 32129072
- Marko, A.J.; Borah, B.M.; Siters, K.E.; Missert, J.R.; Gupta, A.; Pera, P.; Isaac-Lam, M.F.; Pandey, R.K. Targeted nanoparticles for fluorescence imaging of folate receptor positive tumors. Biomolecules, 2020, 10(12), 1651. doi: 10.3390/biom10121651 PMID: 33317162
- Assaraf, Y.G.; Leamon, C.P.; Reddy, J.A. The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist. Updat., 2014, 17(4-6), 89-95. doi: 10.1016/j.drup.2014.10.002 PMID: 25457975
- Feng, S.; Pan, J.; Li, C.; Zheng, Y. Folic acid-conjugated nitrogen-doped graphene quantum dots as a fluorescent diagnostic material for MCF-7 cells. Nanotechnology, 2020, 31(13), 135701. doi: 10.1088/1361-6528/ab5f7f PMID: 31810072
- Liu, H.; Li, C.; Qian, Y.; Hu, L.; Fang, J.; Tong, W.; Nie, R.; Chen, Q.; Wang, H. Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials, 2020, 232, 119700. doi: 10.1016/j.biomaterials.2019.119700 PMID: 31881379
- Dharmaratne, N.U.; Kaplan, A.R.; Glazer, P.M. Targeting the hypoxic and acidic tumor microenvironment with ph-sensitive peptides. Cells, 2021, 10(3), 541. doi: 10.3390/cells10030541 PMID: 33806273
- Fang, J.; Liu, Y.; Chen, Y.; Ouyang, D.; Yang, G.; Yu, T. Graphene quantum dots-gated hollow mesoporous carbon nanoplatform for targeting drug delivery and synergistic chemo-photothermal therapy. Int. J. Nanomedicine, 2018, 13, 5991-6007. doi: 10.2147/IJN.S175934 PMID: 30323587
- Khodadadei, F.; Safarian, S.; Ghanbari, N. Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an efficient anticancer drug delivery system. Mater. Sci. Eng. C, 2017, 79, 280-285. doi: 10.1016/j.msec.2017.05.049 PMID: 28629019
- Wei, Z.; Yin, X.; Cai, Y.; Xu, W.; Song, C.; Wang, Y.; Zhang, J.; Kang, A.; Wang, Z.; Han, W. Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma. Int. J. Nanomedicine, 2018, 13, 1505-1524. doi: 10.2147/IJN.S156984 PMID: 29559779
- Nasrollahi, F.; Koh, Y.R.; Chen, P.; Varshosaz, J.; Khodadadi, A.A.; Lim, S. Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging. Mater. Sci. Eng. C, 2019, 94, 247-257. doi: 10.1016/j.msec.2018.09.020 PMID: 30423706
- Iannazzo, D.; Pistone, A.; Salamò, M.; Galvagno, S.; Romeo, R.; Giofré, S.V.; Branca, C.; Visalli, G.; Di Pietro, A. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm., 2017, 518(1-2), 185-192. doi: 10.1016/j.ijpharm.2016.12.060 PMID: 28057464
- Nigam Joshi, P.; Agawane, S.; Athalye, M.C.; Jadhav, V.; Sarkar, D.; Prakash, R. Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy. Mater. Sci. Eng. C, 2017, 78, 1203-1211. doi: 10.1016/j.msec.2017.03.176 PMID: 28575959
- Au, T.H.; Nguyen, B.N.; Nguyen, P.H.; Pethe, S.; Vo-Thanh, G.; Vu Thi, T.H. Vinblastine loaded on graphene quantum dots and its anticancer applications. J. Microencapsul., 2022, 39(3), 239-251. doi: 10.1080/02652048.2022.2060361 PMID: 35352611
- Ramedani, A.; Sabzevari, O.; Simchi, A. Hybrid ultrasound-activated nanoparticles based on graphene quantum dots for cancer treatment. Int. J. Pharm., 2022, 629, 122373. doi: 10.1016/j.ijpharm.2022.122373 PMID: 36356790
- Yu, C.X. Radiotherapy of early-stage breast cancer. Precis. Radiat. Oncol., 2023, 7(1), 67-79. doi: 10.1002/pro6.1183
- Esgandari, K.; Mohammadian, M.; Zohdiaghdam, R.; Rastin, S.J.; Alidadi, S.; Behrouzkia, Z. Combined treatment with silver graphene quantum dot, radiation, and 17-AAG induces anticancer effects in breast cancer cells. J. Cell. Physiol., 2021, 236(4), 2817-2828. doi: 10.1002/jcp.30046 PMID: 32901933
- Reagen, S.; Wu, Y.; Sun, D.; Munoz, C.; Oncel, N.; Combs, C.; Zhao, J.X. Development of biodegradable GQDs-hMSNs for fluorescence imaging and dual cancer treatment via photodynamic therapy and drug delivery. Int. J. Mol. Sci., 2022, 23(23), 14931. doi: 10.3390/ijms232314931 PMID: 36499261
- Ostańska, E.; Aebisher, D.; Bartusik-Aebisher, D. The potential of photodynamic therapy in current breast cancer treatment methodologies. Biomed. Pharmacother., 2021, 137, 111302. doi: 10.1016/j.biopha.2021.111302 PMID: 33517188
- Cao, H.; Fang, B.; Liu, J.; Shen, Y.; Shen, J.; Xiang, P.; Zhou, Q.; De Souza, S.C.; Li, D.; Tian, Y.; Luo, L.; Zhang, Z.; Tian, X. Photodynamic therapy directed by three-photon active rigid plane organic photosensitizer. Adv. Healthc. Mater., 2021, 10(7), 2001489. doi: 10.1002/adhm.202001489 PMID: 33336561
- Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed. Pharmacother., 2018, 106, 1098-1107. doi: 10.1016/j.biopha.2018.07.049 PMID: 30119176
- Chen, L.; Liu, D.; Wu, M.; Chau, H.F.; Wang, K.; Fung, Y.H.; Wong, K.L.; Wang, Z.; Wu, F. Photodynamic and photothermal synergistic behavior of triphenylamine-porphyrin nanoparticles for DNA interaction, cellular cytotoxicity and localization. Nanotechnology, 2020, 31(31), 315101. doi: 10.1088/1361-6528/ab86ea PMID: 32252029
- Zou, Z.; Chang, H.; Li, H.; Wang, S. Induction of reactive oxygen species: An emerging approach for cancer therapy. Apoptosis, 2017, 22(11), 1321-1335. doi: 10.1007/s10495-017-1424-9 PMID: 28936716
- Hamblin, M.R.; Abrahamse, H. Factors affecting photodynamic therapy and anti-tumor immune response. Anticancer. Agents Med. Chem., 2020, 21(2), 123-136. doi: 10.2174/1871520620666200318101037 PMID: 32188394
- He, S.; Li, J.; Chen, M.; Deng, L.; Yang, Y.; Zeng, Z.; Xiong, W.; Wu, X. Graphene oxide-template gold nanosheets as highly efficient near-infrared hyperthermia agents for cancer therapy. Int. J. Nanomedicine, 2020, 15, 8451-8463. doi: 10.2147/IJN.S265134 PMID: 33149586
- Neelgund, G.M.; Oki, A.R. Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. J. Colloid Interface Sci., 2016, 484, 135-145. doi: 10.1016/j.jcis.2016.07.078 PMID: 27599382
- Shi, J.; Zhao, Z.; Liu, Z.; Wu, R.; Wang, Y. Ultralow-intensity NIR light triggered on-demand drug release by employing highly emissive UCNP and photocleavable linker with low bond dissociation energy. Int. J. Nanomedicine, 2019, 14, 4017-4028. doi: 10.2147/IJN.S201982 PMID: 31239667
- Han, R.; Tang, K.; Hou, Y.; Yu, J.; Wang, C.; Wang, Y. Ultralow-intensity near infrared light synchronously activated collaborative chemo/photothermal/photodynamic therapy. Biomater. Sci., 2020, 8(2), 607-618. doi: 10.1039/C9BM01607D PMID: 31793930
- Lu, H.; Li, W.; Qiu, P.; Zhang, X.; Qin, J.; Cai, Y.; Lu, X. MnO 2 doped graphene nanosheets for carotid body tumor combination therapy. Nanoscale Adv., 2022, 4(20), 4304-4313. doi: 10.1039/D2NA00086E PMID: 36321141
- Yu, T.; Hu, Y.; Feng, G.; Hu, K. Noninvasive tumor therapy: A graphene-based flexible device as a specific far-infrared emitter for noninvasive tumor therapy. Adv. Ther., 2020, 3(3), 2070005. doi: 10.1002/adtp.202070005
- Shi, J.; Wang, B.; Chen, Z.; Liu, W.; Pan, J.; Hou, L.; Zhang, Z. A multi-functional tumor theranostic nanoplatform for mri guided photothermal-chemotherapy. Pharm. Res., 2016, 33(6), 1472-1485. doi: 10.1007/s11095-016-1891-7 PMID: 26984128
- Khan, H.A.; Lee, Y.K.; Shaik, M.R.; Alrashood, S.T.; Ekhzaimy, A.A. Nanocomposites of nitrogen-doped graphene oxide and manganese oxide for photodynamic therapy and magnetic resonance imaging. Int. J. Mol. Sci., 2022, 23(23), 15087. doi: 10.3390/ijms232315087 PMID: 36499412
- Zhou, C.; Wu, H.; Wang, M.; Huang, C.; Yang, D.; Jia, N. Functionalized graphene oxide/Fe3O4 hybrids for cellular magnetic resonance imaging and fluorescence labeling. Mater. Sci. Eng. C, 2017, 78, 817-825. doi: 10.1016/j.msec.2017.04.139 PMID: 28576054
- Gonzalez-Rodriguez, R.; Campbell, E.; Naumov, A. Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PLoS One, 2019, 14(6), e0217072. doi: 10.1371/journal.pone.0217072 PMID: 31170197
- Yang, Y.; Chen, S.; Li, H.; Yuan, Y.; Zhang, Z.; Xie, J.; Hwang, D.W.; Zhang, A.; Liu, M.; Zhou, X. Engineered paramagnetic graphene quantum dots with enhanced relaxivity for tumor imaging. Nano Lett., 2019, 19(1), 441-448. doi: 10.1021/acs.nanolett.8b04252 PMID: 30560672
- Luo, Y.; Tang, Y.; Liu, T.; Chen, Q.; Zhou, X.; Wang, N.; Ma, M.; Cheng, Y.; Chen, H. Engineering graphene oxide with ultrasmall SPIONs and smart drug release for cancer theranostics. Chem. Commun., 2019, 55(13), 1963-1966. doi: 10.1039/C8CC09185D PMID: 30681672
- Zhang, G.; Du, R.; Qian, J.; Zheng, X.; Tian, X.; Cai, D.; He, J.; Wu, Y.; Huang, W.; Wang, Y.; Zhang, X.; Zhong, K.; Zou, D.; Wu, Z. A tailored nanosheet decorated with a metallized dendrimer for angiography and magnetic resonance imaging-guided combined chemotherapy. Nanoscale, 2018, 10(1), 488-498. doi: 10.1039/C7NR07957E PMID: 29231948
- Cao, J.; An, H.; Huang, X.; Fu, G.; Zhuang, R.; Zhu, L.; Xie, J.; Zhang, F. Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI. Nanoscale, 2016, 8(19), 10152-10159. doi: 10.1039/C6NR02012G PMID: 27121639
- Wang, C.; Ravi, S.; Garapati, U.S.; Das, M.; Howell, M.; Mallela, J.; Alwarappan, S.; Mohapatra, S.S.; Mohapatra, S. Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(35), 4396-4405. doi: 10.1039/c3tb20452a PMID: 24883188
- Son, S.; Kim, J.H.; Wang, X.; Zhang, C.; Yoon, S.A.; Shin, J.; Sharma, A.; Lee, M.H.; Cheng, L.; Wu, J.; Kim, J.S. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev., 2020, 49(11), 3244-3261. doi: 10.1039/C9CS00648F PMID: 32337527
- Costley, D.; Mc Ewan, C.; Fowley, C.; McHale, A.P.; Atchison, J.; Nomikou, N.; Callan, J.F. Treating cancer with sonodynamic therapy: A review. Int. J. Hyperthermia, 2015, 31(2), 107-117. doi: 10.3109/02656736.2014.992484 PMID: 25582025
- Ninomiya, K.; Noda, K.; Ogino, C.; Kuroda, S.; Shimizu, N. Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles: Its application to targeted sonodynamic therapy. Ultrason. Sonochem., 2014, 21(1), 289-294. doi: 10.1016/j.ultsonch.2013.05.005 PMID: 23746399
- Yumita, N.; Iwase, Y.; Umemura, S.I.; Chen, F.S.; Momose, Y. Sonodynamically-induced anticancer effects of polyethylene glycol-modified carbon nano tubes. Anticancer Res., 2020, 40(5), 2549-2557. doi: 10.21873/anticanres.14225 PMID: 32366399
- Milowska, K. Ultrasound--mechanisms of action and application in sonodynamic therapy. Postepy Hig. Med. Dosw., 2007, 61, 338-349.
- Lafond, M.; Yoshizawa, S.; Umemura, S. Sonodynamic therapy: Advances and challenges in clinical translation. J. Ultrasound Med., 2019, 38(3), 567-580. doi: 10.1002/jum.14733 PMID: 30338863
- Sun, H.; Ge, W.; Gao, X.; Wang, S.; Jiang, S.; Hu, Y.; Yu, M.; Hu, S. Apoptosis-promoting effects of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on endometrial cancer. PLoS One, 2015, 10(9), e0137980. doi: 10.1371/journal.pone.0137980 PMID: 26367393
- Liang, S.; Deng, X.; Ma, P.; Cheng, Z.; Lin, J. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv. Mater., 2020, 32(47), 2003214. doi: 10.1002/adma.202003214 PMID: 33064322
- Roberts, J.E. Techniques to improve photodynamic therapy. Photochem. Photobiol., 2020, 96(3), 524-528. doi: 10.1111/php.13223 PMID: 32027382
- Cheng, D.; Wang, X.; Zhou, X.; Li, J. Nanosonosensitizers with ultrasound-induced reactive oxygen species generation for cancer sonodynamic immunotherapy. Front. Bioeng. Biotechnol., 2021, 9, 761218. doi: 10.3389/fbioe.2021.761218 PMID: 34660560
- Huang, J.; Xiao, Z.; An, Y.; Han, S.; Wu, W.; Wang, Y.; Guo, Y.; Shuai, X. Nanodrug with dual-sensitivity to tumor microenvironment for immuno-sonodynamic anti-cancer therapy. Biomaterials, 2021, 269, 120636. doi: 10.1016/j.biomaterials.2020.120636 PMID: 33453632
- Zhang, Q.; Bao, C.; Cai, X.; Jin, L.; Sun, L.; Lang, Y.; Li, L. Sonodynamic therapy-assisted immunotherapy: A novel modality for cancer treatment. Cancer Sci., 2018, 109(5), 1330-1345. doi: 10.1111/cas.13578 PMID: 29575297
- Gu, Z.; Zhu, S.; Yan, L.; Zhao, F.; Zhao, Y. Graphene-based smart platforms for combined cancer therapy. Adv. Mater., 2019, 31(9), 1800662. doi: 10.1002/adma.201800662 PMID: 30039878
- Fusco, L.; Gazzi, A.; Peng, G.; Shin, Y.; Vranic, S.; Bedognetti, D.; Vitale, F.; Yilmazer, A.; Feng, X.; Fadeel, B.; Casiraghi, C.; Delogu, L.G. Graphene and other 2D materials: A multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics, 2020, 10(12), 5435-5488. doi: 10.7150/thno.40068 PMID: 32373222
- Dai, C.; Zhang, S.; Liu, Z.; Wu, R.; Chen, Y. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano, 2017, 11(9), 9467-9480. doi: 10.1021/acsnano.7b05215 PMID: 28829584
- Chen, Y.W.; Liu, T.Y.; Chang, P.H.; Hsu, P.H.; Liu, H.L.; Lin, H.C.; Chen, S.Y. A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale, 2016, 8(25), 12648-12657. doi: 10.1039/C5NR07782F PMID: 26838477
- Lee, H.R.; Kim, D.W.; Jones, V.O.; Choi, Y.; Ferry, V.E.; Geller, M.A.; Azarin, S.M. Sonosensitizer-functionalized graphene nanoribbons for adhesion blocking and sonodynamic ablation of ovarian cancer spheroids. Adv. Healthc. Mater., 2021, 10(13), 2001368. doi: 10.1002/adhm.202001368 PMID: 34050609
- Qin, D.; Zou, Q.; Lei, S.; Wang, W.; Li, Z. Nonlinear dynamics and acoustic emissions of interacting cavitation bubbles in viscoelastic tissues. Ultrason. Sonochem., 2021, 78, 105712. doi: 10.1016/j.ultsonch.2021.105712 PMID: 34391164
- Shen, Z.Y.; Jiang, Y.M.; Zhou, Y.F. High-speed photographic observation of the sonication of a rabbit carotid artery filled with microbubbles by 20-kHz low frequency ultrasound. Ultrason Sonoch., 2018, 40((Pt A)), 980-987. doi: 10.1016/j.ultsonch.2017.09.015 PMID: 28946510
- Kooiman, K.; Roovers, S.; Langeveld, S.A.G.; Kleven, R.T.; Dewitte, H.; OReilly, M.A.; Escoffre, J.M.; Bouakaz, A.; Verweij, M.D.; Hynynen, K.; Lentacker, I.; Stride, E.; Holland, C.K. Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med. Biol., 2020, 46(6), 1296-1325. doi: 10.1016/j.ultrasmedbio.2020.01.002 PMID: 32165014
- Shen, Z.; Shao, J.; Zhang, J.; Qu, W. Ultrasound cavitation enhanced chemotherapy: In vivo research and clinical application. Exp. Biol. Med., 2020, 245(14), 1200-1212. doi: 10.1177/1535370220936150 PMID: 32567346
- Sontakke, A.D.; Purkait, M.K. Fabrication of ultrasound-mediated tunable graphene oxide nanoscrolls. Ultrason. Sonochem., 2020, 63, 104976. doi: 10.1016/j.ultsonch.2020.104976 PMID: 31986329
- Silva, L.I.; Mirabella, D.A.; Pablo Tomba, J.; Riccardi, C.C. Optimizing graphene production in ultrasonic devices. Ultrasonics, 2020, 100, 105989. doi: 10.1016/j.ultras.2019.105989 PMID: 31479970
- Zhao, W.; Li, M.; Qi, Y.; Tao, Y.; Shi, Z.; Liu, Y.; Cheng, J. Ultrasound sonochemical synthesis of amorphous Sb2S3-graphene composites for sodium-ion batteries. J. Colloid Interface Sci., 2021, 586, 404-411. doi: 10.1016/j.jcis.2020.10.104 PMID: 33183754
- tengl, V. Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chemistry, 2012, 18(44), 14047-14054. doi: 10.1002/chem.201201411 PMID: 23015465
- Geetha Bai, R.; Muthoosamy, K.; Shipton, F.N.; Manickam, S. Acoustic cavitation induced generation of stabilizer-free, extremely stable reduced graphene oxide nanodispersion for efficient delivery of paclitaxel in cancer cells. Ultrason. Sonochem., 2017, 36, 129-138. doi: 10.1016/j.ultsonch.2016.11.021 PMID: 28069192
- Gao, H.; Xue, C.; Hu, G.; Zhu, K. Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium. Ultrason. Sonochem., 2017, 37, 120-127. doi: 10.1016/j.ultsonch.2017.01.001 PMID: 28427614
- Zhou, Y.; Yang, K.; Cui, J.; Ye, J.Y.; Deng, C.X. Controlled permeation of cell membrane by single bubble acoustic cavitation. J. Control. Release, 2012, 157(1), 103-111. doi: 10.1016/j.jconrel.2011.09.068 PMID: 21945682
- Lentacker, I.; De Cock, I.; Deckers, R.; De Smedt, S.C.; Moonen, C.T.W. Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms. Adv. Drug Deliv. Rev., 2014, 72, 49-64. doi: 10.1016/j.addr.2013.11.008 PMID: 24270006
- Yang, Y.; Li, Q.; Guo, X.; Tu, J.; Zhang, D. Mechanisms underlying sonoporation: Interaction between microbubbles and cells. Ultrason. Sonochem., 2020, 67, 105096. doi: 10.1016/j.ultsonch.2020.105096 PMID: 32278246
- Daigeler, A.; Chromik, A.M.; Haendschke, K.; Emmelmann, S.; Siepmann, M.; Hensel, K.; Schmitz, G.; Klein-Hitpass, L.; Steinau, H.U.; Lehnhardt, M.; Hauser, J. Synergistic effects of sonoporation and taurolidin/TRAIL on apoptosis in human fibrosarcoma. Ultrasound Med. Biol., 2010, 36(11), 1893-1906. doi: 10.1016/j.ultrasmedbio.2010.08.009 PMID: 20870344
- Shen, Z.Y.; Xia, G.L.; Wu, M.F.; Ji, L.Y.; Li, Y.J. The effects of percutaneous ethanol injection followed by 20-kHz ultrasound and microbubbles on rabbit hepatic tumors. J. Cancer Res. Clin. Oncol., 2016, 142(2), 373-378. doi: 10.1007/s00432-015-2034-y PMID: 26306908
- Zhou, Q.; Shao, S.; Wang, J.; Xu, C.; Xiang, J.; Piao, Y.; Zhou, Z.; Yu, Q.; Tang, J.; Liu, X.; Gan, Z.; Mo, R.; Gu, Z.; Shen, Y. Enzyme-activatable polymerdrug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol., 2019, 14(8), 799-809. doi: 10.1038/s41565-019-0485-z PMID: 31263194
- Rizwanullah, M.; Alam, M.; Harshita; Mir, S.R.; Rizvi, M.M.A.; Amin, S. Polymer-lipid hybrid nanoparticles: A next-generation nanocarrier for targeted treatment of solid tumors. Curr. Pharm. Des., 2020, 26(11), 1206-1215. doi: 10.2174/1381612826666200116150426 PMID: 31951163
- Yu, Z.; Guo, J.; Hu, M.; Gao, Y.; Huang, L. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano, 2020, 14(4), 4816-4828. doi: 10.1021/acsnano.0c00708 PMID: 32188241
- Cao, C.; Wang, Q.; Liu, Y. Lung cancer combination therapy: Doxorubicin and β-elemene co-loaded, pH-sensitive nanostructured lipid carriers. Drug Des. Devel. Ther., 2019, 13, 1087-1098. doi: 10.2147/DDDT.S198003 PMID: 31118562
- Luo, S.; Zhu, Y.; Li, Y.; Chen, L.; Lv, S.; Zhang, Y.; Ge, L.; Zhou, W. Targeted chemotherapy for breast cancer using an intelligent doxorubicin-loaded hexapeptide hydrogel. J. Biomed. Nanotechnol., 2020, 16(6), 842-852. doi: 10.1166/jbn.2020.2935 PMID: 33187580
- Benjanuwattra, J.; Siri-Angkul, N.; Chattipakorn, S.C.; Chattipakorn, N. Doxorubicin and its proarrhythmic effects: A comprehensive review of the evidence from experimental and clinical studies. Pharmacol. Res., 2020, 151, 104542. doi: 10.1016/j.phrs.2019.104542 PMID: 31730804
- Zhang, L.; Qu, X.; Teng, Y.; Shi, J.; Yu, P.; Sun, T.; Wang, J.; Zhu, Z.; Zhang, X.; Zhao, M.; Liu, J.; Jin, B.; Luo, Y.; Teng, Z.; Dong, Y.; Wen, F.; An, Y.; Yuan, C.; Chen, T.; Zhou, L.; Chen, Y.; Zhang, J.; Wang, Z.; Qu, J.; Jin, F.; Zhang, J.; Jin, X.; Xie, X.; Wang, J.; Man, L.; Fu, L.; Liu, Y. Efficacy of thalidomide in preventing delayed nausea and vomiting induced by highly emetogenic chemotherapy: A randomized, multicenter, double-blind, placebo-controlled phase III trial (CLOG1302 study). J. Clin. Oncol., 2017, 35(31), 3558-3565. doi: 10.1200/JCO.2017.72.2538 PMID: 28854065
- Vargel, I.; Erdem, A.; Ertoy, D.; Pinar, A.; Erk, Y.; Altundag, M.K.; Gullu, I. Effects of growth factors on doxorubicin-induced skin necrosis: Documentation of histomorphological alterations and early treatment by GM-CSF and G-CSF. Ann. Plast. Surg., 2002, 49(6), 646-653. doi: 10.1097/00000637-200212000-00015 PMID: 12461449
- Liu, Y.; Qiao, L.; Zhang, S.; Wan, G.; Chen, B.; Zhou, P.; Zhang, N.; Wang, Y. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater., 2018, 66, 310-324. doi: 10.1016/j.actbio.2017.11.010 PMID: 29129789
- Dong, K.; Zhao, Z.Z.; Kang, J.; Lin, L.R.; Chen, W.T.; Liu, J.X.; Wu, X.L.; Lu, T.L. Cinnamaldehyde and doxorubicin co-loaded graphene oxide wrapped mesoporous silica nanoparticles for enhanced MCF-7 cell apoptosis. Int. J. Nanomedicine, 2020, 15, 10285-10304. doi: 10.2147/IJN.S283981 PMID: 33376322
- Zhang, J.; Chen, L.; Shen, B.; Chen, L.; Mo, J.; Feng, J. Dual-sensitive graphene oxide loaded with proapoptotic peptides and anticancer drugs for cancer synergetic therapy. Langmuir, 2019, 35(18), 6120-6128. doi: 10.1021/acs.langmuir.9b00611 PMID: 30983368
- Singh, M.; Gupta, P.; Baronia, R. In vitro cytotoxicity of GO-DOx on FaDu squamous carcinoma cell lines. Int. J. Nanomedicine., 2018, 13, 107-111.
- Fong, Y.; Chen, C.H.; Chen, J.P. Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy. Nanomaterials, 2017, 7(11), 388. doi: 10.3390/nano7110388 PMID: 29135959
- Ziemys, A.; Yokoi, K.; Kojic, M. Capillary collagen as the physical transport barrier in drug delivery to tumor microenvironment. Tissue Barriers, 2015, 3(3), e1037418. doi: 10.1080/21688370.2015.1037418 PMID: 26451342
- Shen, Z.Y.; Shen, B.Q.; Shen, A.J.; Zhu, X.H. Cavitation-enhanced delivery of the nanomaterial graphene oxide-doxorubicin to hepatic tumors in nude mice using 20 khz low-frequency ultrasound and microbubbles. J. Nanomater., 2020, 2020(24), 1-13. doi: 10.1155/2020/3136078
- Liao, C.; Li, Y.; Tjong, S. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci., 2018, 19(11), 3564. doi: 10.3390/ijms19113564 PMID: 30424535
- Zhang, B.; Wei, P.; Zhou, Z. Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Adv. Drug Deliv. Rev., 2016, 105((Pt B)), 145-162.
- Russier, J.; Treossi, E.; Scarsi, A.; Perrozzi, F.; Dumortier, H.; Ottaviano, L.; Meneghetti, M.; Palermo, V.; Bianco, A. Evidencing the mask effect of graphene oxide: A comparative study on primary human and murine phagocytic cells. Nanoscale, 2013, 5(22), 11234-11247. doi: 10.1039/c3nr03543c PMID: 24084792
- Mendes, R.G.; Koch, B.; Bachmatiuk, A.; Ma, X.; Sanchez, S.; Damm, C.; Schmidt, O.G.; Gemming, T.; Eckert, J.; Rümmeli, M.H. A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(12), 2522-2529. doi: 10.1039/C5TB00180C PMID: 32262127
- Wojtoniszak, M.; Chen, X.; Kalenczuk, R.J.; Wajda, A.; Łapczuk, J.; Kurzewski, M.; Drozdzik, M.; Chu, P.K.; Borowiak-Palen, E. Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf. B Biointerfaces, 2012, 89, 79-85. doi: 10.1016/j.colsurfb.2011.08.026 PMID: 21962852
- Matesanz, M.C.; Vila, M.; Feito, M.J.; Linares, J.; Gonçalves, G.; Vallet-Regi, M.; Marques, P.A.A.P.; Portolés, M.T. The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations. Biomaterials, 2013, 34(5), 1562-1569. doi: 10.1016/j.biomaterials.2012.11.001 PMID: 23177613
- Akhavan, O.; Ghaderi, E.; Akhavan, A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials, 2012, 33(32), 8017-8025. doi: 10.1016/j.biomaterials.2012.07.040 PMID: 22863381
- Wu, Y.; Wang, F.; Wang, S.; Ma, J.; Xu, M.; Gao, M.; Liu, R.; Chen, W.; Liu, S. Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages. Nanoscale, 2018, 10(30), 14637-14650. doi: 10.1039/C8NR02798F PMID: 30028471
- Dasgupta, A.; Sarkar, J.; Ghosh, M.; Bhattacharya, A.; Mukherjee, A.; Chattopadhyay, D.; Acharya, K. Green conversion of graphene oxide to graphene nanosheets and its biosafety study. PLoS One, 2017, 12(2), e0171607. doi: 10.1371/journal.pone.0171607 PMID: 28158272
- Palmieri, V.; Perini, G.; De Spirito, M.; Papi, M. Graphene oxide touches blood: In vivo interactions of bio-coronated 2D materials. Nanoscale Horiz., 2019, 4(2), 273-290. doi: 10.1039/C8NH00318A PMID: 32254085
- Ren, H.; Wang, C.; Zhang, J.; Zhou, X.; Xu, D.; Zheng, J.; Guo, S.; Zhang, J. DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano, 2010, 4(12), 7169-7174. doi: 10.1021/nn101696r PMID: 21082807
- Lu, C.J.; Jiang, X.F.; Junaid, M.; Ma, Y.B.; Jia, P.P.; Wang, H.B.; Pei, D.S. Graphene oxide nanosheets induce DNA damage and activate the base excision repair (BER) signaling pathway both in vitro and in vivo. Chemosphere, 2017, 184, 795-805. doi: 10.1016/j.chemosphere.2017.06.049 PMID: 28645083
- Ali-boucetta, H.; Bitounis, D.; Raveendran-Nair, R.; Servant, A.; Van den Bossche, J.; Kostarelos, K. Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity. Adv. Healthc. Mater., 2013, 2(3), 433-441. doi: 10.1002/adhm.201200248 PMID: 23184580
- Singh, S.K.; Singh, M.K.; Kulkarni, P.P.; Sonkar, V.K.; Grácio, J.J.A.; Dash, D. Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano, 2012, 6(3), 2731-2740. doi: 10.1021/nn300172t PMID: 22376049
- Liu, Y.; Luo, Y.; Wu, J.; Wang, Y.; Yang, X.; Yang, R.; Wang, B.; Yang, J.; Zhang, N. Graphene oxide can induce in vitro and in vivo mutagenesis. Sci. Rep., 2013, 3(1), 3469. doi: 10.1038/srep03469 PMID: 24326739
- Ma, J.; Liu, R.; Wang, X.; Liu, Q.; Chen, Y.; Valle, R.P.; Zuo, Y.Y.; Xia, T.; Liu, S. Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals. ACS Nano, 2015, 9(10), 10498-10515. doi: 10.1021/acsnano.5b04751 PMID: 26389709
- Mendonça, M.C.P.; Soares, E.S.; de Jesus, M.B.; Ceragioli, H.J.; Batista, .G.; Nyúl-Tóth, Á.; Molnár, J.; Wilhelm, I.; Maróstica, M.R., Jr; Krizbai, I.; da Cruz-Höfling, M.A. PEGylation of reduced graphene oxide induces toxicity in cells of the bloodbrain barrier: An in vitro and in vivo Study. Mol. Pharm., 2016, 13(11), 3913-3924. doi: 10.1021/acs.molpharmaceut.6b00696 PMID: 27712077
- Amrollahi-Sharifabadi, M.; Koohi, M.K.; Zayerzadeh, E.; Hablolvarid, M.H.; Hassan, J.; Seifalian, A.M. in vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application. Int. J. Nanomedicine, 2018, 13, 4757-4769. doi: 10.2147/IJN.S168731 PMID: 30174424
- Wang, K.; Ruan, J.; Song, H.; Zhang, J.; Wo, Y.; Guo, S.; Cui, D. Biocompatibility of graphene oxide. Nanoscale Res. Lett., 2010, 6(1), 8. doi: 10.1007/s11671-010-9751-6 PMID: 27502632
- Jiang, Li. Blood exposure to graphene oxide may cause anaphylactic death in non-human primates. Nano Taday, 2020, 35(12), 100922.
- Rhazouani, A.; Gamrani, H.; El Achaby, M.; Aziz, K.; Gebrati, L.; Uddin, M.S.; Aziz, F. Synthesis and toxicity of graphene oxide nanoparticles: A literature review of in vitro and in vivo studies. BioMed Res. Int., 2021, 2021, 1-19. doi: 10.1155/2021/5518999 PMID: 34222470
- Shahriari, S.; Sastry, M.; Panjikar, S.; Singh Raman, R.K. Graphene and graphene oxide as a support for biomolecules in the development of biosensors. Nanotechnol. Sci. Appl., 2021, 14, 197-220. doi: 10.2147/NSA.S334487 PMID: 34815666
- Fontana, C.R.; Lerman, M.A.; Patel, N.; Grecco, C.; de Souza Costa, C.A.; Amiji, M.M.; Bagnato, V.S.; Soukos, N.S. Safety assessment of oral photodynamic therapy in rats. Lasers Med. Sci., 2013, 28(2), 479-486. doi: 10.1007/s10103-012-1091-6 PMID: 22467011
- Lucky, S.S.; Muhammad Idris, N.; Li, Z.; Huang, K.; Soo, K.C.; Zhang, Y. Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy. ACS Nano, 2015, 9(1), 191-205. doi: 10.1021/nn503450t PMID: 25564723
- Younis, M.R.; Wang, C.; An, R.; Wang, S.; Younis, M.A.; Li, Z.Q.; Wang, Y.; Ihsan, A.; Ye, D.; Xia, X.H. Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACS Nano, 2019, 13(2), 8b09552. doi: 10.1021/acsnano.8b09552 PMID: 30730695
- Beltrán Hernández, I.; Yu, Y.; Ossendorp, F.; Korbelik, M.; Oliveira, S. Preclinical and clinical evidence of immune responses triggered in oncologic photodynamic therapy: Clinical recommendations. J. Clin. Med., 2020, 9(2), 333. doi: 10.3390/jcm9020333 PMID: 31991650
- Choi, V.; Rajora, M.A.; Zheng, G. Activating drugs with sound: Mechanisms behind sonodynamic therapy and the role of nanomedicine. Bioconjug. Chem., 2020, 31(4), 967-989. doi: 10.1021/acs.bioconjchem.0c00029 PMID: 32129984
- Sviridov, A.P.; Osminkina, L.A.; Kharin, A.Y.; Gongalsky, M.B.; Kargina, J.V.; Kudryavtsev, A.A.; Bezsudnova, Y.I.; Perova, T.S.; Geloen, A.; Lysenko, V.; Timoshenko, V.Y. Cytotoxicity control of silicon nanoparticles by biopolymer coating and ultrasound irradiation for cancer theranostic applications. Nanotechnology, 2017, 28(10), 105102. doi: 10.1088/1361-6528/aa5b7c PMID: 28177935
- Yumita, N.; Umemura, S. Sonodynamic antitumour effect of chloroaluminum phthalocyanine tetrasulfonate on murine solid tumour. J. Pharm. Pharmacol., 2010, 56(1), 85-90. doi: 10.1211/0022357022412 PMID: 14980005
- Canavese, G.; Ancona, A.; Racca, L.; Canta, M.; Dumontel, B.; Barbaresco, F.; Limongi, T.; Cauda, V. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chem. Eng. J., 2018, 340, 155-172. doi: 10.1016/j.cej.2018.01.060 PMID: 30881202
Supplementary files
