Application Research Progress of Nanomaterial Graphene and its Derivative Complexes in Tumor Diagnosis and Therapy


Cite item

Full Text

Abstract

:Functional nanomaterial graphene and its derivatives have attracted considerable attention in many fields because of their unique physical and chemical properties. Most notably, graphene has become a research hotspot in the biomedical field, especially in relation to malignant tumors. In this study, we briefly review relevant research from recent years on graphene and its derivatives in tumor diagnosis and antitumor therapy. The main contents of the study include the graphene-derivative diagnosis of tumors in the early stage, graphene quantum dots, photodynamics, MRI contrast agent, acoustic dynamics, and the effects of ultrasonic cavitation and graphene on tumor therapy. Moreover, the biocompatibility of graphene is briefly described. This review provides a broad overview of the applications of graphene and its derivatives in tumors. Conclusion, graphene and its derivatives play an important role in tumor diagnosis and treatment.

About the authors

Li Cui

Department of Radiology, Affiliated Tumor Hospital of Nantong University

Email: info@benthamscience.net

Lu Fan

Department of Radiology, Affiliated Tumor Hospital of Nantong University

Email: info@benthamscience.net

Zhi Shen

Department of Radiology, Affiliated Tumor Hospital of Nantong University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Chae, S.; Le, T.H.; Park, C.S.; Choi, Y.; Kim, S.; Lee, U.; Heo, E.; Lee, H.; Kim, Y.A.; Kwon, O.S.; Yoon, H. Anomalous restoration of sp 2 hybridization in graphene functionalization. Nanoscale, 2020, 12(25), 13351-13359. doi: 10.1039/D0NR03422C PMID: 32572409
  2. Sidorov, A.N.; Yazdanpanah, M.M.; Jalilian, R.; Ouseph, P.J.; Cohn, R.W.; Sumanasekera, G.U. Electrostatic deposition of graphene. Nanotechnology, 2007, 18(13), 135301. doi: 10.1088/0957-4484/18/13/135301 PMID: 21730375
  3. Seema, H.; Shirinfar, B.; Shi, G.; Youn, I.S.; Ahmed, N. Facile synthesis of a selective biomolecule chemosensor and fabrication of its highly fluorescent graphene complex. J. Phys. Chem. B, 2017, 121(19), 5007-5016. doi: 10.1021/acs.jpcb.7b02888 PMID: 28463493
  4. Goldoni, R.; Farronato, M.; Connelly, S.T.; Tartaglia, G.M.; Yeo, W.H. Recent advances in graphene-based nanobiosensors for salivary biomarker detection. Biosens. Bioelectron., 2021, 171, 112723. doi: 10.1016/j.bios.2020.112723 PMID: 33096432
  5. Meng, Q.; Yu, Y.; Tian, J.; Yang, Z.; Guo, S.; Cai, R.; Han, S.; Liu, T.; Ma, J. Multifunctional, durable and highly conductive graphene/sponge nanocomposites. Nanotechnology, 2020, 31(46), 465502. doi: 10.1088/1361-6528/ab9f73 PMID: 32575085
  6. Zhang, Z.Z.; Song, X.X.; Luo, G.; Su, Z.J.; Wang, K.L.; Cao, G.; Li, H.O.; Xiao, M.; Guo, G.C.; Tian, L.; Deng, G.W.; Guo, G.P. Coherent phonon dynamics in spatially separated graphene mechanical resonators. Proc. Natl. Acad. Sci., 2020, 117(11), 5582-5587. doi: 10.1073/pnas.1916978117 PMID: 32123110
  7. Mahajan, C.R.; Joshi, L.B.; Varma, U.; Naik, J.B.; Chaudhari, V.R.; Mishra, S. Sustainable drug delivery of famotidine using chitosan-functionalized graphene oxide as nanocarrier. Glob. Chall., 2019, 3(10), 1900002. doi: 10.1002/gch2.201900002 PMID: 31592120
  8. Prabowo, B.A.; Purwidyantri, A.; Liu, B.; Lai, H.C.; Liu, K.C. Gold nanoparticle-assisted plasmonic enhancement for DNA detection on a graphene-based portable surface plasmon resonance sensor. Nanotechnology, 2021, 32(9), 095503. doi: 10.1088/1361-6528/abcd62 PMID: 33232941
  9. Nejabat, M.; Charbgoo, F.; Ramezani, M. Graphene as multifunctional delivery platform in cancer therapy. J. Biomed. Mater. Res. A, 2017, 105(8), 2355-2367. doi: 10.1002/jbm.a.36080 PMID: 28371194
  10. Gholivand, K.; Faraghi, M.; Pooyan, M.; Babaee, L.S.; Malekshah, R.E.; Pirastehfar, F.; Vahabirad, M. Anti-cancer activity of new phosphoramide-functionalized graphene oxides: An experimental and theoretical evaluation. Curr. Med. Chem., 2023, 30(30), 3486-3503. doi: 10.2174/0929867330666221027152716 PMID: 36305155
  11. Keramat, A.; Kadkhoda, J.; Farahzadi, R.; Fathi, E.; Davaran, S. The potential of graphene oxide and reduced graphene oxide in diagnosis and treatment of cancer. Curr. Med. Chem., 2022, 29(26), 4529-4546. doi: 10.2174/0929867329666220208092157 PMID: 35135444
  12. Pedrosa, M.; Da Silva, E.S.; Pastrana-Martínez, L.M.; Drazic, G.; Falaras, P.; Faria, J.L.; Figueiredo, J.L.; Silva, A.M.T. Hummers’ and Brodie’s graphene oxides as photocatalysts for phenol degradation. J. Colloid Interface Sci., 2020, 567, 243-255. doi: 10.1016/j.jcis.2020.01.093 PMID: 32062085
  13. Patel, M.A.; Yang, H.; Chiu, P.L.; Mastrogiovanni, D.D.T.; Flach, C.R.; Savaram, K.; Gomez, L.; Hemnarine, A.; Mendelsohn, R.; Garfunkel, E.; Jiang, H.; He, H. Direct production of graphene nanosheets for near infrared photoacoustic imaging. ACS Nano, 2013, 7(9), 8147-8157. doi: 10.1021/nn403429v PMID: 24001023
  14. Peng, L.; Xu, Z.; Liu, Z.; Wei, Y.; Sun, H.; Li, Z.; Zhao, X.; Gao, C. An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun., 2015, 6(1), 5716. doi: 10.1038/ncomms6716 PMID: 25607686
  15. Kim, F.; Luo, J.; Cruz-Silva, R.; Cote, L.J.; Sohn, K.; Huang, J. Self-propagating domino-like reactions in oxidized graphite. Adv. Funct. Mater., 2010, 20(17), 2867-2873. doi: 10.1002/adfm.201000736
  16. Zheng, F.; Xu, W.L.; Jin, H.D.; Zhu, M.Q.; Yuan, W.H.; Hao, X.T.; Ghiggino, K.P. Purified dispersions of graphene in a nonpolar solvent via solvothermal reduction of graphene oxide. Chem. Commun., 2015, 51(18), 3824-3827. doi: 10.1039/C5CC00056D PMID: 25649830
  17. Balaji, A.; Zhang, J. Electrochemical and optical biosensors for early-stage cancer diagnosis by using graphene and graphene oxide. Cancer Nanotechnol., 2017, 8(1), 10. doi: 10.1186/s12645-017-0035-z PMID: 29250208
  18. Abdelbasset, W.K.; Jasim, S.A.; Bokov, D.O.; Oleneva, M.S.; Islamov, A.; Hammid, A.T.; Mustafa, Y.F.; Yasin, G.; Alguno, A.C.; Kianfar, E. Comparison and evaluation of the performance of graphene-based biosensors. Carbon Letters, 2022, 32(4), 927-951. doi: 10.1007/s42823-022-00338-6
  19. Işın, D.; Eksin, E.; Erdem, A. Graphene-oxide and ionic liquid modified electrodes for electrochemical sensing of breast cancer 1 gene. Biosensors, 2022, 12(2), 95. doi: 10.3390/bios12020095 PMID: 35200355
  20. Luong, J.H.T.; Vashist, S.K. Immunosensing procedures for carcinoembryonic antigen using graphene and nanocomposites. Biosens. Bioelectron., 2017, 89(Pt 1), 293-304. doi: 10.1016/j.bios.2015.11.053 PMID: 26620098
  21. Chen, S.L.; Chen, C.Y.; Hsieh, J.C.H.; Yu, Z.Y.; Cheng, S.J.; Hsieh, K.Y.; Yang, J.W.; Kumar, P.V.; Lin, S.F.; Chen, G.Y. Graphene oxide-based biosensors for liquid biopsies in cancer diagnosis. Nanomaterials, 2019, 9(12), 1725. doi: 10.3390/nano9121725 PMID: 31816919
  22. Qian, W.; Miao, Z.; Zhang, X.J.; Yang, X.T.; Tang, Y.Y.; Tang, Y.Y.; Hu, L.Y.; Li, S.; Zhu, D.; Cheng, H. Functionalized reduced graphene oxide with aptamer macroarray for cancer cell capture and fluorescence detection. Mikrochim. Acta, 2020, 187(7), 407. doi: 10.1007/s00604-020-04402-8 PMID: 32594259
  23. Papi, M.; Palmieri, V.; Digiacomo, L.; Giulimondi, F.; Palchetti, S.; Ciasca, G.; Perini, G.; Caputo, D.; Cartillone, M.C.; Cascone, C.; Coppola, R.; Capriotti, A.L.; Laganà, A.; Pozzi, D.; Caracciolo, G. Converting the personalized biomolecular corona of graphene oxide nanoflakes into a high-throughput diagnostic test for early cancer detection. Nanoscale, 2019, 11(32), 15339-15346. doi: 10.1039/C9NR01413F PMID: 31386742
  24. Wu, C.; Li, P.; Fan, N.; Han, J.; Zhang, W.; Zhang, W.; Tang, B. A dual-targeting functionalized graphene film for rapid and highly sensitive fluorescence imaging detection of hepatocellular carcinoma circulating tumor cells. ACS Appl. Mater. Interfaces, 2019, 11(48), 44999-45006. doi: 10.1021/acsami.9b18410 PMID: 31714050
  25. Geetha Bai, R.; Muthoosamy, K.; Tuvikene, R.; Nay Ming, H.; Manickam, S. Highly sensitive electrochemical biosensor using folic acid-modified reduced graphene oxide for the detection of cancer biomarker. Nanomaterials, 2021, 11(5), 1272. doi: 10.3390/nano11051272 PMID: 34066073
  26. Mahmoodi, P.; Rezayi, M.; Rasouli, E.; Avan, A.; Gholami, M.; Ghayour Mobarhan, M.; Karimi, E.; Alias, Y. Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples. J. Nanobiotechnol., 2020, 18(1), 11. doi: 10.1186/s12951-020-0577-9 PMID: 31931815
  27. Shi, S.; Yang, K.; Hong, H.; Valdovinos, H.F.; Nayak, T.R.; Zhang, Y.; Theuer, C.P.; Barnhart, T.E.; Liu, Z.; Cai, W. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials, 2013, 34(12), 3002-3009. doi: 10.1016/j.biomaterials.2013.01.047 PMID: 23374706
  28. Xu, H.; Fan, M.; Elhissi, A.M.A.; Zhang, Z.; Wan, K.W.; Ahmed, W.; Phoenix, D.A.; Sun, X. PEGylated graphene oxide for tumor-targeted delivery of paclitaxel. Nanomedicine, 2015, 10(8), 1247-1262. doi: 10.2217/nnm.14.233 PMID: 25955123
  29. Lan, M.Y.; Hsu, Y.B.; Lan, M.C.; Chen, J.P.; Lu, Y.J. Polyethylene glycol-coated graphene oxide loaded with erlotinib as an effective therapeutic agent for treating nasopharyngeal cancer cells. Int. J. Nanomedicine, 2020, 15, 7569-7582. doi: 10.2147/IJN.S265437 PMID: 33116488
  30. Shuai, C.; Wang, B.; Bin, S.; Peng, S.; Gao, C. TiO 2 -induced in situ reaction in graphene oxide-reinforced az61 biocomposites to enhance the interfacial bonding. ACS Appl. Mater. Interfaces, 2020, 12(20), 23464-23473. doi: 10.1021/acsami.0c04020 PMID: 32345014
  31. Alibolandi, M.; Mohammadi, M.; Taghdisi, S.M.; Ramezani, M.; Abnous, K. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydr. Polym., 2017, 155, 218-229. doi: 10.1016/j.carbpol.2016.08.046 PMID: 27702507
  32. Gu, Y.; Guo, Y.; Wang, C.; Xu, J.; Wu, J.; Kirk, T.B.; Ma, D.; Xue, W. A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery. Mater. Sci. Eng. C, 2017, 70(Pt 1), 572-585. doi: 10.1016/j.msec.2016.09.035 PMID: 27770930
  33. Slekiene, N.; Snitka, V. Impact of graphene oxide functionalized with doxorubicin on viability of mouse hepatoma MH-22A cells. Toxicol. In Vitro, 2020, 65, 104821. doi: 10.1016/j.tiv.2020.104821 PMID: 32151703
  34. Zhang, Y.M.; Cao, Y.; Yang, Y.; Chen, J.T.; Liu, Y. A small-sized graphene oxide supramolecular assembly for targeted delivery of camptothecin. Chem. Commun., 2014, 50(86), 13066-13069. doi: 10.1039/C4CC04533E PMID: 25222700
  35. Kansara, V.; Patil, R.; Tripathi, R.; Jha, P.K.; Bahadur, P.; Tiwari, S. Functionalized graphene nanosheets with improved dispersion stability and superior paclitaxel loading capacity. Colloids Surf. B Biointerfaces, 2019, 173, 421-428. doi: 10.1016/j.colsurfb.2018.10.016 PMID: 30321800
  36. Yang, Y.F.; Meng, F.Y.; Li, X.H.; Wu, N.N.; Deng, Y.H.; Wei, L.Y.; Zeng, X.P. Magnetic graphene oxide-Fe3O4-PANI nanoparticle adsorbed platinum drugs as drug delivery systems for cancer therapy. J. Nanosci. Nanotechnol., 2019, 19(12), 7517-7525. doi: 10.1166/jnn.2019.16768 PMID: 31196255
  37. Lin, K.C.; Lin, M.W.; Hsu, M.N.; Yu-Chen, G.; Chao, Y.C.; Tuan, H.Y.; Chiang, C.S.; Hu, Y.C. Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis. Theranostics, 2018, 8(9), 2477-2487. doi: 10.7150/thno.24173 PMID: 29721093
  38. Lu, Y.J.; Lan, Y.H.; Chuang, C.C.; Lu, W.T.; Chan, L.Y.; Hsu, P.W.; Chen, J.P. Injectable thermo-sensitive chitosan hydrogel containing CPT-11-loaded EGFR-targeted graphene oxide and SLP2 shRNA for localized drug/gene delivery in glioblastoma therapy. Int. J. Mol. Sci., 2020, 21(19), 7111. doi: 10.3390/ijms21197111 PMID: 32993166
  39. Liu, X.; Gao, M.M.; Cheng, Z.; Cai, Z-K.; Yu, L.; Niu, G-M.; Li, J-Y.; Bai, Y.; Zhao, S-Z.; Song, Y-C.; Wang, X-G.; Dong, Y.; Yu, X.; Tao, Z.; Yuan, Z-Y. Stereotactic body radiotherapy compared with video-assisted thoracic surgery after propensity-score matching in elderly patients with pathologically-proven early-stage non-small cell lung cancer. Precis. Radiat. Oncol., 2022, 6(4), 279-288. doi: 10.1002/pro6.1175
  40. Toomeh, D.; Gadoue, S.M.; Yasmin-Karim, S.; Singh, M.; Shanker, R.; Pal Singh, S.; Kumar, R.; Sajo, E.; Ngwa, W. Minimizing the potential of cancer recurrence and metastasis by the use of graphene oxide nano-flakes released from smart fiducials during image-guided radiation therapy. Phys. Med., 2018, 55, 8-14. doi: 10.1016/j.ejmp.2018.10.001 PMID: 30471823
  41. Kadkhoda, J.; Tarighatnia, A.; Barar, J.; Aghanejad, A.; Davaran, S. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagn. Photodyn. Ther., 2022, 37, 102697. doi: 10.1016/j.pdpdt.2021.102697 PMID: 34936918
  42. Ma, M.; Cheng, L.; Zhao, A.; Zhang, H.; Zhang, A. Pluronic-based graphene oxide-methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells. Photodiagn. Photodyn. Ther., 2020, 29, 101640. doi: 10.1016/j.pdpdt.2019.101640 PMID: 31899381
  43. Das, P.; Mudigunda, S.V.; Darabdhara, G.; Boruah, P.K.; Ghar, S.; Rengan, A.K.; Das, M.R. Biocompatible functionalized AuPd bimetallic nanoparticles decorated on reduced graphene oxide sheets for photothermal therapy of targeted cancer cells. J. Photochem. Photobiol. B, 2020, 212, 112028. doi: 10.1016/j.jphotobiol.2020.112028 PMID: 33010550
  44. Gulzar, A.; Xu, J.; Yang, D.; Xu, L.; He, F.; Gai, S.; Yang, P. Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Trans., 2018, 47(11), 3931-3939. doi: 10.1039/C7DT04141A PMID: 29459928
  45. Liu, P.; Xie, X.; Liu, M.; Hu, S.; Ding, J.; Zhou, W. A smart MnO2-doped graphene oxide nanosheet for enhanced chemo-photodynamic combinatorial therapy via simultaneous oxygenation and glutathione depletion. Acta Pharm. Sin. B, 2021, 11(3), 823-834. doi: 10.1016/j.apsb.2020.07.021 PMID: 33777684
  46. Guo, W.; Chen, Z.; Feng, X.; Shen, G.; Huang, H.; Liang, Y.; Zhao, B.; Li, G.; Hu, Y. Graphene oxide (GO)-based nanosheets with combined chemo/photothermal/photodynamic therapy to overcome gastric cancer (GC) paclitaxel resistance by reducing mitochondria-derived adenosine-triphosphate (ATP). J. Nanobiotechnol., 2021, 19(1), 146. doi: 10.1186/s12951-021-00874-9 PMID: 34011375
  47. Zeng, W.N.; Yu, Q.P.; Wang, D.; Liu, J.L.; Yang, Q.J.; Zhou, Z.K.; Zeng, Y.P. Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma. J. Nanobiotechnol., 2021, 19(1), 79. doi: 10.1186/s12951-021-00831-6 PMID: 33740998
  48. Zhao, C.; Song, X.; Liu, Y.; Fu, Y.; Ye, L.; Wang, N.; Wang, F.; Li, L.; Mohammadniaei, M.; Zhang, M.; Zhang, Q.; Liu, J. Synthesis of graphene quantum dots and their applications in drug delivery. J. Nanobiotechnol., 2020, 18(1), 142. doi: 10.1186/s12951-020-00698-z PMID: 33008457
  49. Vatanparast, M.; Shariatinia, Z. Revealing the role of different nitrogen functionalities in the drug delivery performance of graphene quantum dots: A combined density functional theory and molecular dynamics approach. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(40), 6156-6171. doi: 10.1039/C9TB00971J PMID: 31559403
  50. Singh, G.; Kaur, H.; Sharma, A.; Singh, J.; Alajangi, H.K.; Kumar, S.; Singla, N.; Kaur, I.P.; Barnwal, R.P. Carbon based nanodots in early diagnosis of cancer. Front Chem., 2021, 9, 669169. doi: 10.3389/fchem.2021.669169 PMID: 34109155
  51. Cunci, L.; González-Colón, V.; Lee Vargas-Pérez, B.; Ortiz-Santiago, J.; Pagán, M.; Carrion, P.; Cruz, J.; Molina-Ontoria, A.; Martinez, N.; Silva, W.; Echegoyen, L.; Cabrera, C.R. Multicolor fluorescent graphene oxide quantum dots for sensing cancer cell biomarkers. ACS Appl. Nano Mater., 2021, 4(1), 211-219. doi: 10.1021/acsanm.0c02526 PMID: 34142014
  52. Xu, A.; He, P.; Ye, C.; Liu, Z.; Gu, B.; Gao, B.; Li, Y.; Dong, H.; Chen, D.; Wang, G.; Yang, S.; Ding, G. Polarizing graphene quantum dots toward long-acting intracellular reactive oxygen species evaluation and tumor detection. ACS Appl. Mater. Interfaces, 2020, 12(9), 10781-10790. doi: 10.1021/acsami.9b20434 PMID: 32048821
  53. Ganganboina, A.B.; Dega, N.K.; Tran, H.L.; Darmonto, W.; Doong, R.A. Application of sulfur-doped graphene quantum dots@gold-carbon nanosphere for electrical pulse-induced impedimetric detection of glioma cells. Biosens. Bioelectron., 2021, 181, 113151. doi: 10.1016/j.bios.2021.113151 PMID: 33740543
  54. Pothipor, C.; Jakmunee, J.; Bamrungsap, S.; Ounnunkad, K. An electrochemical biosensor for simultaneous detection of breast cancer clinically related microRNAs based on a gold nanoparticles/graphene quantum dots/graphene oxide film. Analyst, 2021, 146(12), 4000-4009. doi: 10.1039/D1AN00436K PMID: 34013303
  55. Zhang, H.; Ba, S.; Yang, Z.; Wang, T.; Lee, J.Y.; Li, T.; Shao, F. Graphene quantum dot-based nanocomposites for diagnosing cancer biomarker ape1 in living cells. ACS Appl. Mater. Interfaces, 2020, 12(12), 13634-13643. doi: 10.1021/acsami.9b21385 PMID: 32129072
  56. Marko, A.J.; Borah, B.M.; Siters, K.E.; Missert, J.R.; Gupta, A.; Pera, P.; Isaac-Lam, M.F.; Pandey, R.K. Targeted nanoparticles for fluorescence imaging of folate receptor positive tumors. Biomolecules, 2020, 10(12), 1651. doi: 10.3390/biom10121651 PMID: 33317162
  57. Assaraf, Y.G.; Leamon, C.P.; Reddy, J.A. The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist. Updat., 2014, 17(4-6), 89-95. doi: 10.1016/j.drup.2014.10.002 PMID: 25457975
  58. Feng, S.; Pan, J.; Li, C.; Zheng, Y. Folic acid-conjugated nitrogen-doped graphene quantum dots as a fluorescent diagnostic material for MCF-7 cells. Nanotechnology, 2020, 31(13), 135701. doi: 10.1088/1361-6528/ab5f7f PMID: 31810072
  59. Liu, H.; Li, C.; Qian, Y.; Hu, L.; Fang, J.; Tong, W.; Nie, R.; Chen, Q.; Wang, H. Magnetic-induced graphene quantum dots for imaging-guided photothermal therapy in the second near-infrared window. Biomaterials, 2020, 232, 119700. doi: 10.1016/j.biomaterials.2019.119700 PMID: 31881379
  60. Dharmaratne, N.U.; Kaplan, A.R.; Glazer, P.M. Targeting the hypoxic and acidic tumor microenvironment with ph-sensitive peptides. Cells, 2021, 10(3), 541. doi: 10.3390/cells10030541 PMID: 33806273
  61. Fang, J.; Liu, Y.; Chen, Y.; Ouyang, D.; Yang, G.; Yu, T. Graphene quantum dots-gated hollow mesoporous carbon nanoplatform for targeting drug delivery and synergistic chemo-photothermal therapy. Int. J. Nanomedicine, 2018, 13, 5991-6007. doi: 10.2147/IJN.S175934 PMID: 30323587
  62. Khodadadei, F.; Safarian, S.; Ghanbari, N. Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an efficient anticancer drug delivery system. Mater. Sci. Eng. C, 2017, 79, 280-285. doi: 10.1016/j.msec.2017.05.049 PMID: 28629019
  63. Wei, Z.; Yin, X.; Cai, Y.; Xu, W.; Song, C.; Wang, Y.; Zhang, J.; Kang, A.; Wang, Z.; Han, W. Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma. Int. J. Nanomedicine, 2018, 13, 1505-1524. doi: 10.2147/IJN.S156984 PMID: 29559779
  64. Nasrollahi, F.; Koh, Y.R.; Chen, P.; Varshosaz, J.; Khodadadi, A.A.; Lim, S. Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging. Mater. Sci. Eng. C, 2019, 94, 247-257. doi: 10.1016/j.msec.2018.09.020 PMID: 30423706
  65. Iannazzo, D.; Pistone, A.; Salamò, M.; Galvagno, S.; Romeo, R.; Giofré, S.V.; Branca, C.; Visalli, G.; Di Pietro, A. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm., 2017, 518(1-2), 185-192. doi: 10.1016/j.ijpharm.2016.12.060 PMID: 28057464
  66. Nigam Joshi, P.; Agawane, S.; Athalye, M.C.; Jadhav, V.; Sarkar, D.; Prakash, R. Multifunctional inulin tethered silver-graphene quantum dots nanotheranostic module for pancreatic cancer therapy. Mater. Sci. Eng. C, 2017, 78, 1203-1211. doi: 10.1016/j.msec.2017.03.176 PMID: 28575959
  67. Au, T.H.; Nguyen, B.N.; Nguyen, P.H.; Pethe, S.; Vo-Thanh, G.; Vu Thi, T.H. Vinblastine loaded on graphene quantum dots and its anticancer applications. J. Microencapsul., 2022, 39(3), 239-251. doi: 10.1080/02652048.2022.2060361 PMID: 35352611
  68. Ramedani, A.; Sabzevari, O.; Simchi, A. Hybrid ultrasound-activated nanoparticles based on graphene quantum dots for cancer treatment. Int. J. Pharm., 2022, 629, 122373. doi: 10.1016/j.ijpharm.2022.122373 PMID: 36356790
  69. Yu, C.X. Radiotherapy of early-stage breast cancer. Precis. Radiat. Oncol., 2023, 7(1), 67-79. doi: 10.1002/pro6.1183
  70. Esgandari, K.; Mohammadian, M.; Zohdiaghdam, R.; Rastin, S.J.; Alidadi, S.; Behrouzkia, Z. Combined treatment with silver graphene quantum dot, radiation, and 17-AAG induces anticancer effects in breast cancer cells. J. Cell. Physiol., 2021, 236(4), 2817-2828. doi: 10.1002/jcp.30046 PMID: 32901933
  71. Reagen, S.; Wu, Y.; Sun, D.; Munoz, C.; Oncel, N.; Combs, C.; Zhao, J.X. Development of biodegradable GQDs-hMSNs for fluorescence imaging and dual cancer treatment via photodynamic therapy and drug delivery. Int. J. Mol. Sci., 2022, 23(23), 14931. doi: 10.3390/ijms232314931 PMID: 36499261
  72. Ostańska, E.; Aebisher, D.; Bartusik-Aebisher, D. The potential of photodynamic therapy in current breast cancer treatment methodologies. Biomed. Pharmacother., 2021, 137, 111302. doi: 10.1016/j.biopha.2021.111302 PMID: 33517188
  73. Cao, H.; Fang, B.; Liu, J.; Shen, Y.; Shen, J.; Xiang, P.; Zhou, Q.; De Souza, S.C.; Li, D.; Tian, Y.; Luo, L.; Zhang, Z.; Tian, X. Photodynamic therapy directed by three-photon active rigid plane organic photosensitizer. Adv. Healthc. Mater., 2021, 10(7), 2001489. doi: 10.1002/adhm.202001489 PMID: 33336561
  74. Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed. Pharmacother., 2018, 106, 1098-1107. doi: 10.1016/j.biopha.2018.07.049 PMID: 30119176
  75. Chen, L.; Liu, D.; Wu, M.; Chau, H.F.; Wang, K.; Fung, Y.H.; Wong, K.L.; Wang, Z.; Wu, F. Photodynamic and photothermal synergistic behavior of triphenylamine-porphyrin nanoparticles for DNA interaction, cellular cytotoxicity and localization. Nanotechnology, 2020, 31(31), 315101. doi: 10.1088/1361-6528/ab86ea PMID: 32252029
  76. Zou, Z.; Chang, H.; Li, H.; Wang, S. Induction of reactive oxygen species: An emerging approach for cancer therapy. Apoptosis, 2017, 22(11), 1321-1335. doi: 10.1007/s10495-017-1424-9 PMID: 28936716
  77. Hamblin, M.R.; Abrahamse, H. Factors affecting photodynamic therapy and anti-tumor immune response. Anticancer. Agents Med. Chem., 2020, 21(2), 123-136. doi: 10.2174/1871520620666200318101037 PMID: 32188394
  78. He, S.; Li, J.; Chen, M.; Deng, L.; Yang, Y.; Zeng, Z.; Xiong, W.; Wu, X. Graphene oxide-template gold nanosheets as highly efficient near-infrared hyperthermia agents for cancer therapy. Int. J. Nanomedicine, 2020, 15, 8451-8463. doi: 10.2147/IJN.S265134 PMID: 33149586
  79. Neelgund, G.M.; Oki, A.R. Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. J. Colloid Interface Sci., 2016, 484, 135-145. doi: 10.1016/j.jcis.2016.07.078 PMID: 27599382
  80. Shi, J.; Zhao, Z.; Liu, Z.; Wu, R.; Wang, Y. Ultralow-intensity NIR light triggered on-demand drug release by employing highly emissive UCNP and photocleavable linker with low bond dissociation energy. Int. J. Nanomedicine, 2019, 14, 4017-4028. doi: 10.2147/IJN.S201982 PMID: 31239667
  81. Han, R.; Tang, K.; Hou, Y.; Yu, J.; Wang, C.; Wang, Y. Ultralow-intensity near infrared light synchronously activated collaborative chemo/photothermal/photodynamic therapy. Biomater. Sci., 2020, 8(2), 607-618. doi: 10.1039/C9BM01607D PMID: 31793930
  82. Lu, H.; Li, W.; Qiu, P.; Zhang, X.; Qin, J.; Cai, Y.; Lu, X. MnO 2 doped graphene nanosheets for carotid body tumor combination therapy. Nanoscale Adv., 2022, 4(20), 4304-4313. doi: 10.1039/D2NA00086E PMID: 36321141
  83. Yu, T.; Hu, Y.; Feng, G.; Hu, K. Noninvasive tumor therapy: A graphene-based flexible device as a specific far-infrared emitter for noninvasive tumor therapy. Adv. Ther., 2020, 3(3), 2070005. doi: 10.1002/adtp.202070005
  84. Shi, J.; Wang, B.; Chen, Z.; Liu, W.; Pan, J.; Hou, L.; Zhang, Z. A multi-functional tumor theranostic nanoplatform for mri guided photothermal-chemotherapy. Pharm. Res., 2016, 33(6), 1472-1485. doi: 10.1007/s11095-016-1891-7 PMID: 26984128
  85. Khan, H.A.; Lee, Y.K.; Shaik, M.R.; Alrashood, S.T.; Ekhzaimy, A.A. Nanocomposites of nitrogen-doped graphene oxide and manganese oxide for photodynamic therapy and magnetic resonance imaging. Int. J. Mol. Sci., 2022, 23(23), 15087. doi: 10.3390/ijms232315087 PMID: 36499412
  86. Zhou, C.; Wu, H.; Wang, M.; Huang, C.; Yang, D.; Jia, N. Functionalized graphene oxide/Fe3O4 hybrids for cellular magnetic resonance imaging and fluorescence labeling. Mater. Sci. Eng. C, 2017, 78, 817-825. doi: 10.1016/j.msec.2017.04.139 PMID: 28576054
  87. Gonzalez-Rodriguez, R.; Campbell, E.; Naumov, A. Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PLoS One, 2019, 14(6), e0217072. doi: 10.1371/journal.pone.0217072 PMID: 31170197
  88. Yang, Y.; Chen, S.; Li, H.; Yuan, Y.; Zhang, Z.; Xie, J.; Hwang, D.W.; Zhang, A.; Liu, M.; Zhou, X. Engineered paramagnetic graphene quantum dots with enhanced relaxivity for tumor imaging. Nano Lett., 2019, 19(1), 441-448. doi: 10.1021/acs.nanolett.8b04252 PMID: 30560672
  89. Luo, Y.; Tang, Y.; Liu, T.; Chen, Q.; Zhou, X.; Wang, N.; Ma, M.; Cheng, Y.; Chen, H. Engineering graphene oxide with ultrasmall SPIONs and smart drug release for cancer theranostics. Chem. Commun., 2019, 55(13), 1963-1966. doi: 10.1039/C8CC09185D PMID: 30681672
  90. Zhang, G.; Du, R.; Qian, J.; Zheng, X.; Tian, X.; Cai, D.; He, J.; Wu, Y.; Huang, W.; Wang, Y.; Zhang, X.; Zhong, K.; Zou, D.; Wu, Z. A tailored nanosheet decorated with a metallized dendrimer for angiography and magnetic resonance imaging-guided combined chemotherapy. Nanoscale, 2018, 10(1), 488-498. doi: 10.1039/C7NR07957E PMID: 29231948
  91. Cao, J.; An, H.; Huang, X.; Fu, G.; Zhuang, R.; Zhu, L.; Xie, J.; Zhang, F. Monitoring of the tumor response to nano-graphene oxide-mediated photothermal/photodynamic therapy by diffusion-weighted and BOLD MRI. Nanoscale, 2016, 8(19), 10152-10159. doi: 10.1039/C6NR02012G PMID: 27121639
  92. Wang, C.; Ravi, S.; Garapati, U.S.; Das, M.; Howell, M.; Mallela, J.; Alwarappan, S.; Mohapatra, S.S.; Mohapatra, S. Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(35), 4396-4405. doi: 10.1039/c3tb20452a PMID: 24883188
  93. Son, S.; Kim, J.H.; Wang, X.; Zhang, C.; Yoon, S.A.; Shin, J.; Sharma, A.; Lee, M.H.; Cheng, L.; Wu, J.; Kim, J.S. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev., 2020, 49(11), 3244-3261. doi: 10.1039/C9CS00648F PMID: 32337527
  94. Costley, D.; Mc Ewan, C.; Fowley, C.; McHale, A.P.; Atchison, J.; Nomikou, N.; Callan, J.F. Treating cancer with sonodynamic therapy: A review. Int. J. Hyperthermia, 2015, 31(2), 107-117. doi: 10.3109/02656736.2014.992484 PMID: 25582025
  95. Ninomiya, K.; Noda, K.; Ogino, C.; Kuroda, S.; Shimizu, N. Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles: Its application to targeted sonodynamic therapy. Ultrason. Sonochem., 2014, 21(1), 289-294. doi: 10.1016/j.ultsonch.2013.05.005 PMID: 23746399
  96. Yumita, N.; Iwase, Y.; Umemura, S.I.; Chen, F.S.; Momose, Y. Sonodynamically-induced anticancer effects of polyethylene glycol-modified carbon nano tubes. Anticancer Res., 2020, 40(5), 2549-2557. doi: 10.21873/anticanres.14225 PMID: 32366399
  97. Milowska, K. Ultrasound--mechanisms of action and application in sonodynamic therapy. Postepy Hig. Med. Dosw., 2007, 61, 338-349.
  98. Lafond, M.; Yoshizawa, S.; Umemura, S. Sonodynamic therapy: Advances and challenges in clinical translation. J. Ultrasound Med., 2019, 38(3), 567-580. doi: 10.1002/jum.14733 PMID: 30338863
  99. Sun, H.; Ge, W.; Gao, X.; Wang, S.; Jiang, S.; Hu, Y.; Yu, M.; Hu, S. Apoptosis-promoting effects of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on endometrial cancer. PLoS One, 2015, 10(9), e0137980. doi: 10.1371/journal.pone.0137980 PMID: 26367393
  100. Liang, S.; Deng, X.; Ma, P.; Cheng, Z.; Lin, J. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv. Mater., 2020, 32(47), 2003214. doi: 10.1002/adma.202003214 PMID: 33064322
  101. Roberts, J.E. Techniques to improve photodynamic therapy. Photochem. Photobiol., 2020, 96(3), 524-528. doi: 10.1111/php.13223 PMID: 32027382
  102. Cheng, D.; Wang, X.; Zhou, X.; Li, J. Nanosonosensitizers with ultrasound-induced reactive oxygen species generation for cancer sonodynamic immunotherapy. Front. Bioeng. Biotechnol., 2021, 9, 761218. doi: 10.3389/fbioe.2021.761218 PMID: 34660560
  103. Huang, J.; Xiao, Z.; An, Y.; Han, S.; Wu, W.; Wang, Y.; Guo, Y.; Shuai, X. Nanodrug with dual-sensitivity to tumor microenvironment for immuno-sonodynamic anti-cancer therapy. Biomaterials, 2021, 269, 120636. doi: 10.1016/j.biomaterials.2020.120636 PMID: 33453632
  104. Zhang, Q.; Bao, C.; Cai, X.; Jin, L.; Sun, L.; Lang, Y.; Li, L. Sonodynamic therapy-assisted immunotherapy: A novel modality for cancer treatment. Cancer Sci., 2018, 109(5), 1330-1345. doi: 10.1111/cas.13578 PMID: 29575297
  105. Gu, Z.; Zhu, S.; Yan, L.; Zhao, F.; Zhao, Y. Graphene-based smart platforms for combined cancer therapy. Adv. Mater., 2019, 31(9), 1800662. doi: 10.1002/adma.201800662 PMID: 30039878
  106. Fusco, L.; Gazzi, A.; Peng, G.; Shin, Y.; Vranic, S.; Bedognetti, D.; Vitale, F.; Yilmazer, A.; Feng, X.; Fadeel, B.; Casiraghi, C.; Delogu, L.G. Graphene and other 2D materials: A multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics, 2020, 10(12), 5435-5488. doi: 10.7150/thno.40068 PMID: 32373222
  107. Dai, C.; Zhang, S.; Liu, Z.; Wu, R.; Chen, Y. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano, 2017, 11(9), 9467-9480. doi: 10.1021/acsnano.7b05215 PMID: 28829584
  108. Chen, Y.W.; Liu, T.Y.; Chang, P.H.; Hsu, P.H.; Liu, H.L.; Lin, H.C.; Chen, S.Y. A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale, 2016, 8(25), 12648-12657. doi: 10.1039/C5NR07782F PMID: 26838477
  109. Lee, H.R.; Kim, D.W.; Jones, V.O.; Choi, Y.; Ferry, V.E.; Geller, M.A.; Azarin, S.M. Sonosensitizer-functionalized graphene nanoribbons for adhesion blocking and sonodynamic ablation of ovarian cancer spheroids. Adv. Healthc. Mater., 2021, 10(13), 2001368. doi: 10.1002/adhm.202001368 PMID: 34050609
  110. Qin, D.; Zou, Q.; Lei, S.; Wang, W.; Li, Z. Nonlinear dynamics and acoustic emissions of interacting cavitation bubbles in viscoelastic tissues. Ultrason. Sonochem., 2021, 78, 105712. doi: 10.1016/j.ultsonch.2021.105712 PMID: 34391164
  111. Shen, Z.Y.; Jiang, Y.M.; Zhou, Y.F. High-speed photographic observation of the sonication of a rabbit carotid artery filled with microbubbles by 20-kHz low frequency ultrasound. Ultrason Sonoch., 2018, 40((Pt A)), 980-987. doi: 10.1016/j.ultsonch.2017.09.015 PMID: 28946510
  112. Kooiman, K.; Roovers, S.; Langeveld, S.A.G.; Kleven, R.T.; Dewitte, H.; O’Reilly, M.A.; Escoffre, J.M.; Bouakaz, A.; Verweij, M.D.; Hynynen, K.; Lentacker, I.; Stride, E.; Holland, C.K. Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med. Biol., 2020, 46(6), 1296-1325. doi: 10.1016/j.ultrasmedbio.2020.01.002 PMID: 32165014
  113. Shen, Z.; Shao, J.; Zhang, J.; Qu, W. Ultrasound cavitation enhanced chemotherapy: In vivo research and clinical application. Exp. Biol. Med., 2020, 245(14), 1200-1212. doi: 10.1177/1535370220936150 PMID: 32567346
  114. Sontakke, A.D.; Purkait, M.K. Fabrication of ultrasound-mediated tunable graphene oxide nanoscrolls. Ultrason. Sonochem., 2020, 63, 104976. doi: 10.1016/j.ultsonch.2020.104976 PMID: 31986329
  115. Silva, L.I.; Mirabella, D.A.; Pablo Tomba, J.; Riccardi, C.C. Optimizing graphene production in ultrasonic devices. Ultrasonics, 2020, 100, 105989. doi: 10.1016/j.ultras.2019.105989 PMID: 31479970
  116. Zhao, W.; Li, M.; Qi, Y.; Tao, Y.; Shi, Z.; Liu, Y.; Cheng, J. Ultrasound sonochemical synthesis of amorphous Sb2S3-graphene composites for sodium-ion batteries. J. Colloid Interface Sci., 2021, 586, 404-411. doi: 10.1016/j.jcis.2020.10.104 PMID: 33183754
  117. Štengl, V. Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chemistry, 2012, 18(44), 14047-14054. doi: 10.1002/chem.201201411 PMID: 23015465
  118. Geetha Bai, R.; Muthoosamy, K.; Shipton, F.N.; Manickam, S. Acoustic cavitation induced generation of stabilizer-free, extremely stable reduced graphene oxide nanodispersion for efficient delivery of paclitaxel in cancer cells. Ultrason. Sonochem., 2017, 36, 129-138. doi: 10.1016/j.ultsonch.2016.11.021 PMID: 28069192
  119. Gao, H.; Xue, C.; Hu, G.; Zhu, K. Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium. Ultrason. Sonochem., 2017, 37, 120-127. doi: 10.1016/j.ultsonch.2017.01.001 PMID: 28427614
  120. Zhou, Y.; Yang, K.; Cui, J.; Ye, J.Y.; Deng, C.X. Controlled permeation of cell membrane by single bubble acoustic cavitation. J. Control. Release, 2012, 157(1), 103-111. doi: 10.1016/j.jconrel.2011.09.068 PMID: 21945682
  121. Lentacker, I.; De Cock, I.; Deckers, R.; De Smedt, S.C.; Moonen, C.T.W. Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms. Adv. Drug Deliv. Rev., 2014, 72, 49-64. doi: 10.1016/j.addr.2013.11.008 PMID: 24270006
  122. Yang, Y.; Li, Q.; Guo, X.; Tu, J.; Zhang, D. Mechanisms underlying sonoporation: Interaction between microbubbles and cells. Ultrason. Sonochem., 2020, 67, 105096. doi: 10.1016/j.ultsonch.2020.105096 PMID: 32278246
  123. Daigeler, A.; Chromik, A.M.; Haendschke, K.; Emmelmann, S.; Siepmann, M.; Hensel, K.; Schmitz, G.; Klein-Hitpass, L.; Steinau, H.U.; Lehnhardt, M.; Hauser, J. Synergistic effects of sonoporation and taurolidin/TRAIL on apoptosis in human fibrosarcoma. Ultrasound Med. Biol., 2010, 36(11), 1893-1906. doi: 10.1016/j.ultrasmedbio.2010.08.009 PMID: 20870344
  124. Shen, Z.Y.; Xia, G.L.; Wu, M.F.; Ji, L.Y.; Li, Y.J. The effects of percutaneous ethanol injection followed by 20-kHz ultrasound and microbubbles on rabbit hepatic tumors. J. Cancer Res. Clin. Oncol., 2016, 142(2), 373-378. doi: 10.1007/s00432-015-2034-y PMID: 26306908
  125. Zhou, Q.; Shao, S.; Wang, J.; Xu, C.; Xiang, J.; Piao, Y.; Zhou, Z.; Yu, Q.; Tang, J.; Liu, X.; Gan, Z.; Mo, R.; Gu, Z.; Shen, Y. Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol., 2019, 14(8), 799-809. doi: 10.1038/s41565-019-0485-z PMID: 31263194
  126. Rizwanullah, M.; Alam, M.; Harshita; Mir, S.R.; Rizvi, M.M.A.; Amin, S. Polymer-lipid hybrid nanoparticles: A next-generation nanocarrier for targeted treatment of solid tumors. Curr. Pharm. Des., 2020, 26(11), 1206-1215. doi: 10.2174/1381612826666200116150426 PMID: 31951163
  127. Yu, Z.; Guo, J.; Hu, M.; Gao, Y.; Huang, L. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano, 2020, 14(4), 4816-4828. doi: 10.1021/acsnano.0c00708 PMID: 32188241
  128. Cao, C.; Wang, Q.; Liu, Y. Lung cancer combination therapy: Doxorubicin and β-elemene co-loaded, pH-sensitive nanostructured lipid carriers. Drug Des. Devel. Ther., 2019, 13, 1087-1098. doi: 10.2147/DDDT.S198003 PMID: 31118562
  129. Luo, S.; Zhu, Y.; Li, Y.; Chen, L.; Lv, S.; Zhang, Y.; Ge, L.; Zhou, W. Targeted chemotherapy for breast cancer using an intelligent doxorubicin-loaded hexapeptide hydrogel. J. Biomed. Nanotechnol., 2020, 16(6), 842-852. doi: 10.1166/jbn.2020.2935 PMID: 33187580
  130. Benjanuwattra, J.; Siri-Angkul, N.; Chattipakorn, S.C.; Chattipakorn, N. Doxorubicin and its proarrhythmic effects: A comprehensive review of the evidence from experimental and clinical studies. Pharmacol. Res., 2020, 151, 104542. doi: 10.1016/j.phrs.2019.104542 PMID: 31730804
  131. Zhang, L.; Qu, X.; Teng, Y.; Shi, J.; Yu, P.; Sun, T.; Wang, J.; Zhu, Z.; Zhang, X.; Zhao, M.; Liu, J.; Jin, B.; Luo, Y.; Teng, Z.; Dong, Y.; Wen, F.; An, Y.; Yuan, C.; Chen, T.; Zhou, L.; Chen, Y.; Zhang, J.; Wang, Z.; Qu, J.; Jin, F.; Zhang, J.; Jin, X.; Xie, X.; Wang, J.; Man, L.; Fu, L.; Liu, Y. Efficacy of thalidomide in preventing delayed nausea and vomiting induced by highly emetogenic chemotherapy: A randomized, multicenter, double-blind, placebo-controlled phase III trial (CLOG1302 study). J. Clin. Oncol., 2017, 35(31), 3558-3565. doi: 10.1200/JCO.2017.72.2538 PMID: 28854065
  132. Vargel, I.; Erdem, A.; Ertoy, D.; Pinar, A.; Erk, Y.; Altundag, M.K.; Gullu, I. Effects of growth factors on doxorubicin-induced skin necrosis: Documentation of histomorphological alterations and early treatment by GM-CSF and G-CSF. Ann. Plast. Surg., 2002, 49(6), 646-653. doi: 10.1097/00000637-200212000-00015 PMID: 12461449
  133. Liu, Y.; Qiao, L.; Zhang, S.; Wan, G.; Chen, B.; Zhou, P.; Zhang, N.; Wang, Y. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater., 2018, 66, 310-324. doi: 10.1016/j.actbio.2017.11.010 PMID: 29129789
  134. Dong, K.; Zhao, Z.Z.; Kang, J.; Lin, L.R.; Chen, W.T.; Liu, J.X.; Wu, X.L.; Lu, T.L. Cinnamaldehyde and doxorubicin co-loaded graphene oxide wrapped mesoporous silica nanoparticles for enhanced MCF-7 cell apoptosis. Int. J. Nanomedicine, 2020, 15, 10285-10304. doi: 10.2147/IJN.S283981 PMID: 33376322
  135. Zhang, J.; Chen, L.; Shen, B.; Chen, L.; Mo, J.; Feng, J. Dual-sensitive graphene oxide loaded with proapoptotic peptides and anticancer drugs for cancer synergetic therapy. Langmuir, 2019, 35(18), 6120-6128. doi: 10.1021/acs.langmuir.9b00611 PMID: 30983368
  136. Singh, M.; Gupta, P.; Baronia, R. In vitro cytotoxicity of GO-DOx on FaDu squamous carcinoma cell lines. Int. J. Nanomedicine., 2018, 13, 107-111.
  137. Fong, Y.; Chen, C.H.; Chen, J.P. Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy. Nanomaterials, 2017, 7(11), 388. doi: 10.3390/nano7110388 PMID: 29135959
  138. Ziemys, A.; Yokoi, K.; Kojic, M. Capillary collagen as the physical transport barrier in drug delivery to tumor microenvironment. Tissue Barriers, 2015, 3(3), e1037418. doi: 10.1080/21688370.2015.1037418 PMID: 26451342
  139. Shen, Z.Y.; Shen, B.Q.; Shen, A.J.; Zhu, X.H. Cavitation-enhanced delivery of the nanomaterial graphene oxide-doxorubicin to hepatic tumors in nude mice using 20 khz low-frequency ultrasound and microbubbles. J. Nanomater., 2020, 2020(24), 1-13. doi: 10.1155/2020/3136078
  140. Liao, C.; Li, Y.; Tjong, S. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci., 2018, 19(11), 3564. doi: 10.3390/ijms19113564 PMID: 30424535
  141. Zhang, B.; Wei, P.; Zhou, Z. Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Adv. Drug Deliv. Rev., 2016, 105((Pt B)), 145-162.
  142. Russier, J.; Treossi, E.; Scarsi, A.; Perrozzi, F.; Dumortier, H.; Ottaviano, L.; Meneghetti, M.; Palermo, V.; Bianco, A. Evidencing the mask effect of graphene oxide: A comparative study on primary human and murine phagocytic cells. Nanoscale, 2013, 5(22), 11234-11247. doi: 10.1039/c3nr03543c PMID: 24084792
  143. Mendes, R.G.; Koch, B.; Bachmatiuk, A.; Ma, X.; Sanchez, S.; Damm, C.; Schmidt, O.G.; Gemming, T.; Eckert, J.; Rümmeli, M.H. A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(12), 2522-2529. doi: 10.1039/C5TB00180C PMID: 32262127
  144. Wojtoniszak, M.; Chen, X.; Kalenczuk, R.J.; Wajda, A.; Łapczuk, J.; Kurzewski, M.; Drozdzik, M.; Chu, P.K.; Borowiak-Palen, E. Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf. B Biointerfaces, 2012, 89, 79-85. doi: 10.1016/j.colsurfb.2011.08.026 PMID: 21962852
  145. Matesanz, M.C.; Vila, M.; Feito, M.J.; Linares, J.; Gonçalves, G.; Vallet-Regi, M.; Marques, P.A.A.P.; Portolés, M.T. The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations. Biomaterials, 2013, 34(5), 1562-1569. doi: 10.1016/j.biomaterials.2012.11.001 PMID: 23177613
  146. Akhavan, O.; Ghaderi, E.; Akhavan, A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials, 2012, 33(32), 8017-8025. doi: 10.1016/j.biomaterials.2012.07.040 PMID: 22863381
  147. Wu, Y.; Wang, F.; Wang, S.; Ma, J.; Xu, M.; Gao, M.; Liu, R.; Chen, W.; Liu, S. Reduction of graphene oxide alters its cyto-compatibility towards primary and immortalized macrophages. Nanoscale, 2018, 10(30), 14637-14650. doi: 10.1039/C8NR02798F PMID: 30028471
  148. Dasgupta, A.; Sarkar, J.; Ghosh, M.; Bhattacharya, A.; Mukherjee, A.; Chattopadhyay, D.; Acharya, K. Green conversion of graphene oxide to graphene nanosheets and its biosafety study. PLoS One, 2017, 12(2), e0171607. doi: 10.1371/journal.pone.0171607 PMID: 28158272
  149. Palmieri, V.; Perini, G.; De Spirito, M.; Papi, M. Graphene oxide touches blood: In vivo interactions of bio-coronated 2D materials. Nanoscale Horiz., 2019, 4(2), 273-290. doi: 10.1039/C8NH00318A PMID: 32254085
  150. Ren, H.; Wang, C.; Zhang, J.; Zhou, X.; Xu, D.; Zheng, J.; Guo, S.; Zhang, J. DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano, 2010, 4(12), 7169-7174. doi: 10.1021/nn101696r PMID: 21082807
  151. Lu, C.J.; Jiang, X.F.; Junaid, M.; Ma, Y.B.; Jia, P.P.; Wang, H.B.; Pei, D.S. Graphene oxide nanosheets induce DNA damage and activate the base excision repair (BER) signaling pathway both in vitro and in vivo. Chemosphere, 2017, 184, 795-805. doi: 10.1016/j.chemosphere.2017.06.049 PMID: 28645083
  152. Ali-boucetta, H.; Bitounis, D.; Raveendran-Nair, R.; Servant, A.; Van den Bossche, J.; Kostarelos, K. Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity. Adv. Healthc. Mater., 2013, 2(3), 433-441. doi: 10.1002/adhm.201200248 PMID: 23184580
  153. Singh, S.K.; Singh, M.K.; Kulkarni, P.P.; Sonkar, V.K.; Grácio, J.J.A.; Dash, D. Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano, 2012, 6(3), 2731-2740. doi: 10.1021/nn300172t PMID: 22376049
  154. Liu, Y.; Luo, Y.; Wu, J.; Wang, Y.; Yang, X.; Yang, R.; Wang, B.; Yang, J.; Zhang, N. Graphene oxide can induce in vitro and in vivo mutagenesis. Sci. Rep., 2013, 3(1), 3469. doi: 10.1038/srep03469 PMID: 24326739
  155. Ma, J.; Liu, R.; Wang, X.; Liu, Q.; Chen, Y.; Valle, R.P.; Zuo, Y.Y.; Xia, T.; Liu, S. Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals. ACS Nano, 2015, 9(10), 10498-10515. doi: 10.1021/acsnano.5b04751 PMID: 26389709
  156. Mendonça, M.C.P.; Soares, E.S.; de Jesus, M.B.; Ceragioli, H.J.; Batista, .G.; Nyúl-Tóth, Á.; Molnár, J.; Wilhelm, I.; Maróstica, M.R., Jr; Krizbai, I.; da Cruz-Höfling, M.A. PEGylation of reduced graphene oxide induces toxicity in cells of the blood–brain barrier: An in vitro and in vivo Study. Mol. Pharm., 2016, 13(11), 3913-3924. doi: 10.1021/acs.molpharmaceut.6b00696 PMID: 27712077
  157. Amrollahi-Sharifabadi, M.; Koohi, M.K.; Zayerzadeh, E.; Hablolvarid, M.H.; Hassan, J.; Seifalian, A.M. in vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application. Int. J. Nanomedicine, 2018, 13, 4757-4769. doi: 10.2147/IJN.S168731 PMID: 30174424
  158. Wang, K.; Ruan, J.; Song, H.; Zhang, J.; Wo, Y.; Guo, S.; Cui, D. Biocompatibility of graphene oxide. Nanoscale Res. Lett., 2010, 6(1), 8. doi: 10.1007/s11671-010-9751-6 PMID: 27502632
  159. Jiang, Li. Blood exposure to graphene oxide may cause anaphylactic death in non-human primates. Nano Taday, 2020, 35(12), 100922.
  160. Rhazouani, A.; Gamrani, H.; El Achaby, M.; Aziz, K.; Gebrati, L.; Uddin, M.S.; Aziz, F. Synthesis and toxicity of graphene oxide nanoparticles: A literature review of in vitro and in vivo studies. BioMed Res. Int., 2021, 2021, 1-19. doi: 10.1155/2021/5518999 PMID: 34222470
  161. Shahriari, S.; Sastry, M.; Panjikar, S.; Singh Raman, R.K. Graphene and graphene oxide as a support for biomolecules in the development of biosensors. Nanotechnol. Sci. Appl., 2021, 14, 197-220. doi: 10.2147/NSA.S334487 PMID: 34815666
  162. Fontana, C.R.; Lerman, M.A.; Patel, N.; Grecco, C.; de Souza Costa, C.A.; Amiji, M.M.; Bagnato, V.S.; Soukos, N.S. Safety assessment of oral photodynamic therapy in rats. Lasers Med. Sci., 2013, 28(2), 479-486. doi: 10.1007/s10103-012-1091-6 PMID: 22467011
  163. Lucky, S.S.; Muhammad Idris, N.; Li, Z.; Huang, K.; Soo, K.C.; Zhang, Y. Titania coated upconversion nanoparticles for near-infrared light triggered photodynamic therapy. ACS Nano, 2015, 9(1), 191-205. doi: 10.1021/nn503450t PMID: 25564723
  164. Younis, M.R.; Wang, C.; An, R.; Wang, S.; Younis, M.A.; Li, Z.Q.; Wang, Y.; Ihsan, A.; Ye, D.; Xia, X.H. Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACS Nano, 2019, 13(2), 8b09552. doi: 10.1021/acsnano.8b09552 PMID: 30730695
  165. Beltrán Hernández, I.; Yu, Y.; Ossendorp, F.; Korbelik, M.; Oliveira, S. Preclinical and clinical evidence of immune responses triggered in oncologic photodynamic therapy: Clinical recommendations. J. Clin. Med., 2020, 9(2), 333. doi: 10.3390/jcm9020333 PMID: 31991650
  166. Choi, V.; Rajora, M.A.; Zheng, G. Activating drugs with sound: Mechanisms behind sonodynamic therapy and the role of nanomedicine. Bioconjug. Chem., 2020, 31(4), 967-989. doi: 10.1021/acs.bioconjchem.0c00029 PMID: 32129984
  167. Sviridov, A.P.; Osminkina, L.A.; Kharin, A.Y.; Gongalsky, M.B.; Kargina, J.V.; Kudryavtsev, A.A.; Bezsudnova, Y.I.; Perova, T.S.; Geloen, A.; Lysenko, V.; Timoshenko, V.Y. Cytotoxicity control of silicon nanoparticles by biopolymer coating and ultrasound irradiation for cancer theranostic applications. Nanotechnology, 2017, 28(10), 105102. doi: 10.1088/1361-6528/aa5b7c PMID: 28177935
  168. Yumita, N.; Umemura, S. Sonodynamic antitumour effect of chloroaluminum phthalocyanine tetrasulfonate on murine solid tumour. J. Pharm. Pharmacol., 2010, 56(1), 85-90. doi: 10.1211/0022357022412 PMID: 14980005
  169. Canavese, G.; Ancona, A.; Racca, L.; Canta, M.; Dumontel, B.; Barbaresco, F.; Limongi, T.; Cauda, V. Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chem. Eng. J., 2018, 340, 155-172. doi: 10.1016/j.cej.2018.01.060 PMID: 30881202

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers