Synthesis and Anti-gastric Cancer Activity by Targeting FGFR1 Pathway of Novel Asymmetric Bis-chalcone Compounds


Cite item

Full Text

Abstract

Background:Bis-chalcone compounds with symmetrical structures, either isolated from natural products or chemically synthesized, have multiple pharmacological activities. Asymmetric Bis-chalcone compounds have not been reported before, which might be attributed to the synthetic challenges involved, and it remains unknown whether these compounds possess any potential pharmacological activities.

Aims:The aim of this study is to investigate the synthesis route of asymmetric bis-chalcone compounds and identify potential candidates with efficient anti-tumor activity.

Methods:The two-step structural optimization of the bis-chalcone compounds was carried out sequentially, guided by the screening of the compounds for their growth inhibitory activity against gastric cancer cells by MTT assay. The QSAR model of compounds was established through random forest (RF) algorithm. The activities of the optimal compound J3 on growth inhibition, apoptosis, and apoptosis-inducing protein expression in gastric cancer cells were investigated sequentially by colony formation assay, flow cytometry, and western blotting. Further, the inhibitory effects of J3 on the FGFR1 signaling pathway were explored by Western Blotting, shRNA, and MTT assays. Finally, the in vivo anti-tumor activity and mechanism of J3 were studied through nude mice xenograft assay, western blotting.

Results:27 asymmetric bis-chalcone compounds, including two types (N and J) were sequentially designed and synthesized. Some N-class compounds have good inhibitory activity on the growth of gastric cancer cells. The vast majority of J-class compounds optimized on the basis of N3 exhibit excellent inhibitory activity on gastric cancer cell growth. We established a QSAR model (R2 = 0.851627) by applying random forest algorithms. The optimal compound J3, which had better activity, concentration-dependently inhibited the formation of gastric cancer cell colonies and led to cell apoptosis by inducing the expression of the pro-apoptotic protein cleaved PARP in a dose-dependent manner. J3 may exert anti-gastric cancer effects by inhibiting the activation of FGFR1/ERK pathway. Moreover, at a dose of 10 mg/kg/day, J3 inhibited tumor growth in nude mice by nearly 70% in vivo with no significant toxic effect on body weight and organs.

Conclusion:In summary, this study outlines a viable method for the synthesis of novel asymmetric bischalcone compounds. Furthermore, the compound J3 demonstrates substantial promise as a potential candidate for an anti-tumor drug.

About the authors

Chunhui Nian

, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University

Email: info@benthamscience.net

Xin Gan

School of Pharmaceutical Sciences, Wenzhou Medical University

Email: info@benthamscience.net

Qunpeng Liu

College of Chemistry and Materials Engineering, Wenzhou University

Email: info@benthamscience.net

Yuna Wu

The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University

Email: info@benthamscience.net

Miaomiao Kong

, The 1st affiliated hospital of Wenzhou Medical University

Email: info@benthamscience.net

Peiqin Zhang

School of Pharmaceutical Sciences, Wenzhou Medical University

Email: info@benthamscience.net

Mingming Jin

School of Pharmaceutical Sciences, Wenzhou Medical University

Email: info@benthamscience.net

Zhaojun Dong

School of Pharmaceutical Sciences, Wenzhou Medical University

Email: info@benthamscience.net

Wulan Li

, The 1st affiliated hospital of Wenzhou Medical University

Email: info@benthamscience.net

Ledan Wang

Wenzhou, Zhejiang, 325000, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University

Email: info@benthamscience.net

Wenfei He

School of Pharmaceutlcal sdences, Wenzhou Medical University

Author for correspondence.
Email: info@benthamscience.net

Xiaokun Li

School of Pharmaceutical Sciences, Wenzhou Medical University

Author for correspondence.
Email: info@benthamscience.net

Jianzhang Wu

, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132. doi: 10.3322/caac.21338 PMID: 26808342
  2. Morgan, E.; Arnold, M.; Camargo, M.C.; Gini, A.; Kunzmann, A.T.; Matsuda, T.; Meheus, F.; Verhoeven, R.H.A.; Vignat, J.; Laversanne, M.; Ferlay, J.; Soerjomataram, I. The current and future incidence and mortality of gastric cancer in 185 countries, 2020-40: A population-based modelling study. EClinical.Med., 2022, 47, 101404. doi: 10.1016/j.eclinm.2022.101404 PMID: 35497064
  3. Patel, T.H.; Cecchini, M. Targeted therapies in advanced gastric cancer. Curr. Treat. Options Oncol., 2020, 21(9), 70. doi: 10.1007/s11864-020-00774-4 PMID: 32725377
  4. Park, S.; Nam, C.M.; Kim, S.G.; Mun, J.E.; Rha, S.Y.; Chung, H.C. Comparative efficacy and tolerability of third-line treatments for advanced gastric cancer: A systematic review with Bayesian network meta-analysis. Eur. J. Cancer, 2021, 144, 49-60. doi: 10.1016/j.ejca.2020.10.030 PMID: 33338727
  5. Shiga, T.; Hiraide, M. Cardiotoxicities of 5-fluorouracil and other fluoropyrimidines. Curr. Treat. Options Oncol., 2020, 21(4), 27. doi: 10.1007/s11864-020-0719-1 PMID: 32266582
  6. Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans., 2018, 47(19), 6645-6653. doi: 10.1039/C8DT00838H PMID: 29632935
  7. Chen, X.Y.; Wang, J.Q.; Yang, Y.; Li, J.; Chen, Z.S. Natural product as substrates of ABC transporters: A review. Rec. Pat. Antican. Drug. Discov., 2021, 16(2), 222-238. doi: 10.2174/22123970MTE01Mzcvy PMID: 33602076
  8. Zhao, Y.; Zheng, Z.; Zhang, M.; Wang, Y.; Hu, R.; Lin, W.; Huang, C.; Xu, C.; Wu, J.; Deng, H. Design, synthesis, and evaluation of mono- carbonyl analogues of curcumin (MCACs) as potential antioxidants against periodontitis. J. Periodontal Res., 2021, 56(4), 656-666. doi: 10.1111/jre.12862 PMID: 33604902
  9. Chen, J.; Zheng, Z.W.; Li, M.Q.; Cao, C.K.; Zhou, X.L.; Wang, B.Z.; Gan, X.; Huang, Z.C.; Liu, Y.G.; Huang, W.T.; Liang, F.; Chen, K.Y.; Zhao, Y.L.; Wang, X.; Wu, J.Z.; Lin, L. Design, synthesis and evaluation of curcumin analogues as novel potential Parkinson disease agents by suppressing ER stress via AKT. Bioorg. Chem., 2023, 136, 106543. doi: 10.1016/j.bioorg.2023.106543 PMID: 37119784
  10. Wu, J.; Li, J.; Cai, Y.; Pan, Y.; Ye, F.; Zhang, Y.; Zhao, Y.; Yang, S.; Li, X.; Liang, G. Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. J. Med. Chem., 2011, 54(23), 8110-8123. doi: 10.1021/jm200946h PMID: 21988173
  11. Wang, J.; Huang, L.; Cheng, C.; Li, G.; Xie, J.; Shen, M.; Chen, Q.; Li, W.; He, W.; Qiu, P.; Wu, J. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm. Sin. B, 2019, 9(2), 335-350. doi: 10.1016/j.apsb.2019.01.003 PMID: 30972281
  12. Jiang, L.; Liu, B.; Hou, S.; Su, T.; Fan, Q.; Alyafeai, E.; Tang, Y.; Wu, M.; Liu, X.; Li, J.; Hu, Y.; Li, W.; Zheng, Z.; Liu, Y.; Wu, J. Discovery and evaluation of chalcone derivatives as novel potential anti-Toxoplasma gondii agents. Eur. J. Med. Chem., 2022, 234, 114244. doi: 10.1016/j.ejmech.2022.114244 PMID: 35278752
  13. Liu, W.; He, M.; Li, Y.; Peng, Z.; Wang, G. A review on synthetic chalcone derivatives as tubulin polymerisation inhibitors. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 9-38. doi: 10.1080/14756366.2021.1976772 PMID: 34894980
  14. Dorababu, A.; Vijayalaxmi, S.; Sanjeevamurthy, R.; Vidya, L.; Prasannakumar, R.; Raghavendra, M.M. Identification of quinoline-chalcones and heterocyclic chalcone-appended quinolines as broad-spectrum pharmacological agents. Bioorg. Chem., 2020, 104419. doi: 10.1016/j.bioorg.2020
  15. Wei, T.; Zheng, Z.; Wei, X.; Liu, Y.; Li, W.; Fang, B.; Yun, D.; Dong, Z.; Yi, B.; Li, W.; Wu, X.; Chen, D.; Chen, L.; Wu, J. Rational design, synthesis, and pharmacological characterisation of dicarbonyl curcuminoid analogues with improved stability against lung cancer via ROS and ER stress mediated cell apoptosis and pyroptosis. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 2357-2369. doi: 10.1080/14756366.2022.2116015 PMID: 36039017
  16. Reddy, M.V.B.; Shen, Y.C.; Yang, J.S.; Hwang, T.L.; Bastow, K.F.; Qian, K.; Lee, K.H.; Wu, T.S. New bichalcone analogs as NF-κB inhibitors and as cytotoxic agents inducing Fas/CD95-dependent apoptosis. Bioorg. Med. Chem., 2011, 19(6), 1895-1906. doi: 10.1016/j.bmc.2011.02.004 PMID: 21377368
  17. Winter, E.; Devantier Neuenfeldt, P.; Chiaradia-Delatorre, L.D.; Gauthier, C.; Yunes, R.A.; Nunes, R.J.; Creczynski- Pasa, T.B.; Di Pietro, A. Symmetric bis-chalcones as a new type of breast cancer resistance protein inhibitors with a mechanism different from that of chromones. J. Med. Chem., 2014, 57(7), 2930-2941. doi: 10.1021/jm401879z PMID: 24611893
  18. Polo, E.; Ibarra-Arellano, N.; Prent-Peñaloza, L.; Morales-Bayuelo, A.; Henao, J.; Galdámez, A.; Gutiérrez, M. Ultrasound-assisted synthesis of novel chalcone, heterochalcone and bis-chalcone derivatives and the evaluation of their antioxidant properties and as acetylcholinesterase inhibitors. Bioorg. Chem., 2019, 90, 103034. doi: 10.1016/j.bioorg.2019.103034 PMID: 31280015
  19. Sansalone, L.; Veliz, E.; Myrthil, N.; Stathias, V.; Walters, W.; Torrens, I.; Schürer, S.; Vanni, S.; Leblanc, R.; Graham, R. Novel Curcumin Inspired bis-chalcone promotes endoplasmic reticulum stress and glioblastoma neurosphere cell death. Cancers, 2019, 11(3), 357. doi: 10.3390/cancers11030357 PMID: 30871215
  20. Li, Z.; Tian, M.; Ma, J.; Xia, S.; Lv, X.; Xia, P.; Xu, X.; Jiang, Y.; Wang, J.; Li, Z. Synthesis and biological evaluation of bis-chalcone conjugates containing lysine linker as potential anticancer agents. J. Mol. Struct., 2023, 1288, 135785. doi: 10.1016/j.molstruc.2023.135785
  21. Yang, J.; Mu, W.W.; Liu, G.Y. Synthesis and evaluation of the anticancer activity of bischalcone analogs in human lung carcinoma (A549) cell line. Eur. J. Pharmacol., 2020, 888, 173396. doi: 10.1016/j.ejphar.2020.173396 PMID: 32798508
  22. Burmaoglu, S.; Gobek, A.; Aydin, B.O.; Yurtoglu, E.; Aydin, B.N.; Ozkat, G.Y.; Hepokur, C.; Ozek, N.S.; Aysin, F.; Altundas, R.; Algul, O. Design, synthesis and biological evaluation of novel bischalcone derivatives as potential anticancer agents. Bioorg. Chem., 2021, 111, 104882. doi: 10.1016/j.bioorg.2021.104882 PMID: 33839582
  23. Luppi, G.; Cozzi, P.G.; Monari, M.; Kaptein, B.; Broxterman, Q.B.; Tomasini, C. Dipeptide-catalyzed asymmetric aldol condensation of acetone with (N-alkylated) isatins. J. Org. Chem., 2005, 70(18), 7418-7421. doi: 10.1021/jo050257l PMID: 16122267
  24. Xu, X.Y.; Tang, Z.; Wang, Y.Z.; Luo, S.W.; Cun, L.F.; Gong, L.Z. Asymmetric organocatalytic direct aldol reactions of ketones with alpha-keto acids and their application to the synthesis of 2-hydroxy-gamma-butyrolactones. J. Org. Chem., 2007, 72(26), 9905-9913. doi: 10.1021/jo701868t PMID: 18004868
  25. Wu, J.; Du, X.; Li, W.; Zhou, Y.; Bai, E.; Kang, Y.; Chen, Q.; Fu, W.; Yun, D.; Xu, Q.; Qiu, P.; Jin, R.; Cai, Y.; Liang, G. A novel non-ATP competitive FGFR1 inhibitor with therapeutic potential on gastric cancer through inhibition of cell proliferation, survival and migration. Apoptosis, 2017, 22(6), 852-864. doi: 10.1007/s10495-017-1361-7 PMID: 28315172
  26. Wilcken, R.; Zimmermann, M.O.; Lange, A.; Joerger, A.C.; Boeckler, F.M. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. J. Med. Chem., 2013, 56(4), 1363-1388. doi: 10.1021/jm3012068 PMID: 23145854
  27. Margiotta, E.; van der Lubbe, S.C.C.; de Azevedo Santos, L.; Paragi, G.; Moro, S.; Bickelhaupt, F.M.; Fonseca Guerra, C. Halogen bonds in ligand–protein systems: Molecular orbital theory for drug design. J. Chem. Inf. Model., 2020, 60(3), 1317-1328. doi: 10.1021/acs.jcim.9b00946 PMID: 32003997
  28. Ludovico, G.S.; Barros, I.H.S.; Sallum, L.O.; Lima, R.S.; Valverde, C.; Camargo, A.J.; Baseia, B.; Napolitano, H.B. A new isostructural halogenated chalcone with optical properties. J. Mol. Model., 2021, 27(2), 52. doi: 10.1007/s00894-021-04673-9 PMID: 33502611
  29. Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem., 2015, 58(21), 8315-8359. doi: 10.1021/acs.jmedchem.5b00258 PMID: 26200936
  30. Fang, W.Y.; Ravindar, L.; Rakesh, K.P.; Manukumar, H.M.; Shantharam, C.S.; Alharbi, N.S.; Qin, H.L. Synthetic approaches and pharmaceutical applications of chloro- containing molecules for drug discovery: A critical review. Eur. J. Med. Chem., 2019, 173, 117-153. doi: 10.1016/j.ejmech.2019.03.063 PMID: 30995567
  31. Ludewig, H.; Molyneux, S.; Ferrinho, S.; Guo, K.; Lynch, R.; Gkotsi, D.S.; Goss, R.J.M. Halogenases: Structures and functions. Curr. Opin. Struct. Biol., 2020, 65, 51-60. doi: 10.1016/j.sbi.2020.05.012 PMID: 32619660
  32. Rehuman, N.A.; Oh, J.M.; Nath, L.R.; Khames, A.; Abdelgawad, M.A.; Gambacorta, N.; Nicolotti, O.; Jat, R.K.; Kim, H.; Mathew, B. Halogenated coumarin–chalcones as multifunctional monoamine oxidase-B and butyrylcholinesterase inhibitors. ACS Omega, 2021, 6(42), 28182-28193. doi: 10.1021/acsomega.1c04252 PMID: 34723016
  33. Zhu, M.; Wang, J.; Xie, J.; Chen, L.; Wei, X.; Jiang, X.; Bao, M.; Qiu, Y.; Chen, Q.; Li, W.; Jiang, C.; Zhou, X.; Jiang, L.; Qiu, P.; Wu, J. Design, synthesis, and evaluation of chalcone analogues incorporate α,β-Unsaturated ketone functionality as anti-lung cancer agents via evoking ROS to induce pyroptosis. Eur. J. Med. Chem., 2018, 157, 1395-1405. doi: 10.1016/j.ejmech.2018.08.072 PMID: 30196062
  34. Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci., 2003, 43(6), 1947-1958. doi: 10.1021/ci034160g PMID: 14632445
  35. Mohamed, S.M.; Abou-Ghadir, O.M.F.; El-Mokhtar, M.A.; Aboraia, A.S.; Abdel-Aal, A.B.M. Fatty acid conjugated chalcones as tubulin polymerization inhibitors: Design, synthesis, QSAR, and apoptotic and antiproliferative activity. J. Nat. Prod., 2023, 86(5), 1150-1158. doi: 10.1021/acs.jnatprod.2c00793 PMID: 37098901
  36. Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging, 2016, 8(4), 603-619. doi: 10.18632/aging.100934 PMID: 27019364
  37. Qian, S.; Wei, Z.; Yang, W.; Huang, J.; Yang, Y.; Wang, J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol., 2022, 12, 985363. doi: 10.3389/fonc.2022.985363 PMID: 36313628
  38. Turner, N.; Grose, R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer, 2010, 10(2), 116-129. doi: 10.1038/nrc2780 PMID: 20094046
  39. Liang, G.; Liu, Z.; Wu, J.; Cai, Y.; Li, X. Anticancer molecules targeting fibroblast growth factor receptors. Trends Pharmacol. Sci., 2012, 33(10), 531-541. doi: 10.1016/j.tips.2012.07.001 PMID: 22884522
  40. Ying, S.; Du, X.; Fu, W.; Yun, D.; Chen, L.; Cai, Y.; Xu, Q.; Wu, J.; Li, W.; Liang, G. Synthesis, biological evaluation, QSAR and molecular dynamics simulation studies of potential fibroblast growth factor receptor 1 inhibitors for the treatment of gastric cancer. Eur. J. Med. Chem., 2017, 127, 885-899. doi: 10.1016/j.ejmech.2016.10.066 PMID: 27829519
  41. Yin, F.; Zhao, R.; Gorja, D.R.; Fu, X.; Lu, N.; Huang, H.; Xu, B.; Chen, H.; Shim, J.H.; Liu, K.; Li, Z.; Laster, K.V.; Dong, Z.; Lee, M.H. Novel dual inhibitor for targeting PIM1 and FGFR1 kinases inhibits colorectal cancer growth in vitro and patient-derived xenografts in vivo. Acta Pharm. Sin. B, 2022, 12(11), 4122-4137. doi: 10.1016/j.apsb.2022.07.005 PMID: 36386480
  42. Sharma, U.K.; Mohanakrishnan, D.; Sharma, N.; Equbal, D.; Sahal, D.; Sinha, A.K. Facile synthesis of vanillin-based novel bischalcones identifies one that induces apoptosis and displays synergy with Artemisinin in killing chloroquine resistant Plasmodium falciparum. Eur. J. Med. Chem., 2018, 155, 623-638. doi: 10.1016/j.ejmech.2018.06.025 PMID: 29929118
  43. Cai, C.Y.; Rao, L.; Rao, Y.; Guo, J.X.; Xiao, Z.Z.; Cao, J.Y.; Huang, Z.S.; Wang, B. Analogues of xanthones-Chalcones and bis-chalcones as α-glucosidase inhibitors and anti-diabetes candidates. Eur. J. Med. Chem., 2017, 130, 51-59. doi: 10.1016/j.ejmech.2017.02.007 PMID: 28242551
  44. Jiang, B.; Han, F.; Lü, M.H.; Wang, Z.P.; Liu, W.; Zhang, Y.X.; Xu, J.; Li, R.J. Bis-chalcone polyphenols with potential preventive and therapeutic effects on PD: Design, synthesis and in vitro disaggregation activity against α-synuclein oligomers and fibrils. Eur. J. Med. Chem., 2022, 239, 114529. doi: 10.1016/j.ejmech.2022.114529 PMID: 35728509

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers