Herbal Substances with Antiviral Effects: Features and Prospects for the Treatment of Viral Diseases with Emphasis on Pro-Inflammatory Cytokines
- Authors: Bjørklund G.1, Lysiuk R.2, Semenova Y.3, Lenchyk L.4, Dub N.5, Doşa M.6, Hangan T.6
-
Affiliations:
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM)
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University
- School of Medicine, Nazarbayev University
- , National University of Pharmacy
- , Andrei Krupynskyi Lviv Medical Academy
- Faculty of Medicine, Ovidius University of Constanta
- Issue: Vol 31, No 4 (2024)
- Pages: 393-409
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645119
- DOI: https://doi.org/10.2174/0929867330666230125121758
- ID: 645119
Cite item
Full Text
Abstract
Viral diseases have a significant impact on human health, and three novel coronaviruses (CoV) have emerged during the 21st century. In this review, we have emphasized the potential of herbal substances with antiviral effects. Our investigation focused on the features and prospects of viral disease treatment, with a particular emphasis on proinflammatory cytokines. We conducted comprehensive searches of various databases, including Science Direct, CABI Direct, Web of Science, PubMed, and Scopus. Cytokine storm mechanisms play a crucial role in inducing a pro-inflammatory response by triggering the expression of cytokines and chemokines. This response leads to the recruitment of leukocytes and promotes antiviral effects, forming the first line of defense against viruses. Numerous studies have investigated the use of herbal medicine candidates as immunomodulators or antivirals. However, cytokine-storm-targeted therapy is recommended for patients with acute respiratory distress syndrome caused by SARS-CoV to survive severe pulmonary failure. Our reviews have demonstrated that herbal formulations could serve as alternative medicines and significantly reduce complicated viral infections. Furthermore, they hold promising potential as specific antiviral agents in experimental animal models.
About the authors
Geir Bjørklund
Department of Research, Council for Nutritional and Environmental Medicine (CONEM)
Author for correspondence.
Email: info@benthamscience.net
Roman Lysiuk
Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University
Email: info@benthamscience.net
Yuliya Semenova
School of Medicine, Nazarbayev University
Email: info@benthamscience.net
Larysa Lenchyk
, National University of Pharmacy
Email: info@benthamscience.net
Natalia Dub
, Andrei Krupynskyi Lviv Medical Academy
Email: info@benthamscience.net
Monica Doşa
Faculty of Medicine, Ovidius University of Constanta
Email: info@benthamscience.net
Tony Hangan
Faculty of Medicine, Ovidius University of Constanta
Author for correspondence.
Email: info@benthamscience.net
References
- Cao, X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol., 2020, 20(5), 269-270. doi: 10.1038/s41577-020-0308-3 PMID: 32273594
- Dhama, K.; Sharun, K.; Tiwari, R.; Dadar, M.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum. Vaccin. Immunother., 2020, 16(6), 1232-1238. doi: 10.1080/21645515.2020.1735227 PMID: 32186952
- Malik, Y.S.; Sircar, S.; Bhat, S.; Sharun, K.; Dhama, K.; Dadar, M.; Tiwari, R.; Chaicumpa, W. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Vet. Q., 2020, 40(1), 68-76. doi: 10.1080/01652176.2020.1727993 PMID: 32036774
- Chau, V.Q.; Oliveros, E.; Mahmood, K.; Singhvi, A.; Lala, A.; Moss, N.; Gidwani, U.; Mancini, D.M.; Pinney, S.P.; Parikh, A. The imperfect cytokine storm. JACC. Case Rep., 2020, 2(9), 1315-1320. doi: 10.1016/j.jaccas.2020.04.001 PMID: 32292915
- Leung, W.K.; To, K.; Chan, P.K.S.; Chan, H.L.Y.; Wu, A.K.L.; Lee, N.; Yuen, K.Y.; Sung, J.J.Y. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology, 2003, 125(4), 1011-1017. doi: 10.1016/j.gastro.2003.08.001 PMID: 14517783
- Su, H.; Yao, S.; Zhao, W.; Li, M.; Liu, J.; Shang, W.; Xie, H.; Ke, C.; Hu, H.; Gao, M.; Yu, K.; Liu, H.; Shen, J.; Tang, W.; Zhang, L.; Xiao, G.; Ni, L.; Wang, D.; Zuo, J.; Jiang, H.; Bai, F.; Wu, Y.; Ye, Y.; Xu, Y. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin., 2020, 41(9), 1167-1177. doi: 10.1038/s41401-020-0483-6 PMID: 32737471
- He, W.; Han, H.; Wang, W.; Gao, B. Anti-influenza virus effect of aqueous extracts from dandelion. Virol. J., 2011, 8(1), 538. doi: 10.1186/1743-422X-8-538 PMID: 22168277
- Tang, B.S.F.; Chan, K.; Cheng, V.C.C.; Woo, P.C.Y.; Lau, S.K.P.; Lam, C.C.K.; Chan, T.; Wu, A.K.L.; Hung, I.F.N.; Leung, S.; Yuen, K. Comparative host gene transcription by microarray analysis early after infection of the Huh7 cell line by severe acute respiratory syndrome coronavirus and human coronavirus 229E. J. Virol., 2005, 79(10), 6180-6193. doi: 10.1128/JVI.79.10.6180-6193.2005 PMID: 15858003
- Fung, S.Y.; Yuen, K.S.; Ye, Z.W.; Chan, C.P.; Jin, D.Y. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerg. Microbes Infect., 2020, 9(1), 558-570. doi: 10.1080/22221751.2020.1736644 PMID: 32172672
- Silveira, D.; Prieto-Garcia, J.M.; Boylan, F.; Estrada, O.; Fonseca-Bazzo, Y.M.; Jamal, C.M.; Magalhães, P.O.; Pereira, E.O.; Tomczyk, M.; Heinrich, M. COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Front. Pharmacol., 2020, 11, 581840. doi: 10.3389/fphar.2020.581840 PMID: 33071794
- Darif, D.; Hammi, I.; Kihel, A.; El Idrissi Saik, I.; Guessous, F.; Akarid, K. The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong? Microb. Pathog., 2021, 153, 104799. doi: 10.1016/j.micpath.2021.104799 PMID: 33609650
- Moradian, N.; Gouravani, M.; Salehi, M.A.; Heidari, A.; Shafeghat, M.; Hamblin, M.R.; Rezaei, N. Cytokine release syndrome: inhibition of pro-inflammatory cytokines as a solution for reducing COVID-19 mortality. Eur. Cytokine Netw., 2020, 31(3), 81-93. doi: 10.1684/ecn.2020.0451 PMID: 33361013
- Wang, F.; Nie, J.; Wang, H.; Zhao, Q.; Xiong, Y.; Deng, L.; Song, S.; Ma, Z.; Mo, P.; Zhang, Y. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J. Infect. Dis., 2020, 221(11), 1762-1769. doi: 10.1093/infdis/jiaa150 PMID: 32227123
- Mogensen, T.H.; Paludan, S.R. Molecular pathways in virus-induced cytokine production. Microbiol. Mol. Biol. Rev., 2001, 65(1), 131-150. doi: 10.1128/MMBR.65.1.131-150.2001 PMID: 11238989
- Chen, Y.; Cao, J.; Zhang, X. The role of cytokine PF4 in the antiviral immune response of shrimp. PLoS One, 2016, 11(9), e0162954. doi: 10.1371/journal.pone.0162954 PMID: 27631372
- Salazar-Mather, T.; Hokeness, K. Cytokine and chemokine networks: pathways to antiviral defense. Chemokines Viral Infect., 2006, 303, 29-46.
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J.; Collaboration, H. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034. doi: 10.1016/S0140-6736(20)30628-0 PMID: 32192578
- Tisoncik, J.R.; Korth, M.J.; Simmons, C.P.; Farrar, J.; Martin, T.R.; Katze, M.G. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev., 2012, 76(1), 16-32. doi: 10.1128/MMBR.05015-11 PMID: 22390970
- Zhang, Y.; Yu, L.; Tang, L.; Zhu, M.; Jin, Y.; Wang, Z.; Li, L. A promising anti-cytokine-storm targeted therapy for COVID-19: the artificial-liver blood-purification system. Engineering (Beijing), 2021, 7(1), 11-13. doi: 10.1016/j.eng.2020.03.006 PMID: 32292628
- Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. 2020. COVID-19 infection: The perspectives on immune responses. Cell Death Differ., 2020, 27, 14511454.
- Bahun, M.; Jukić, M.; Oblak, D.; Kranjc, L.; Bajc, G.; Butala, M.; Bozovičar, K.; Bratkovič, T.; Podlipnik, Č.; Poklar Ulrih, N. Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols. Food Chem., 2022, 373(Pt B), 131594. doi: 10.1016/j.foodchem.2021.131594 PMID: 34838409
- Tang, X.D.; Ji, T.T.; Dong, J.R.; Feng, H.; Chen, F.Q.; Chen, X.; Zhao, H.Y.; Chen, D.K.; Ma, W.T. Pathogenesis and treatment of cytokine storm induced by infectious diseases. Int. J. Mol. Sci., 2021, 22(23), 13009. doi: 10.3390/ijms222313009 PMID: 34884813
- Liu, Q.; Zhou, Y.; Yang, Z. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell. Mol. Immunol., 2016, 13(1), 3-10. doi: 10.1038/cmi.2015.74 PMID: 26189369
- Schwager, J.; Richard, N.; Fowler, A.; Seifert, N.; Raederstorff, D. Carnosol and related substances modulate chemokine and cytokine production in macrophages and chondrocytes. Molecules, 2016, 21(4), 465. doi: 10.3390/molecules21040465 PMID: 27070563
- Petric, D. Cytokine storm in COVID-19. Mol. Biol., 2020. Available from: https://www.researchgate.net/publication/340463773_Cytokine_storm_in_COVID-19
- Tovey, M.G.; Meritet, J.F.; Guymarho, J.; Maury, C. Mucosal cytokine therapy: marked antiviral and antitumor activity. J. Interferon Cytokine Res., 1999, 19(8), 911-921. doi: 10.1089/107999099313451 PMID: 10476938
- Pandolfi, S.; Chirumbolo, S.; Ricevuti, G.; Valdenassi, L.; Bjørklund, G.; Lysiuk, R.; Doşa, M.D.; Lenchyk, L.; Fazio, S. Home pharmacological therapy in early COVID-19 to prevent hospitalization and reduce mortality. Time for a suitable proposal. Basic Clin. Pharmacol. Toxicol., 2022, 130(2), 225-239. doi: 10.1111/bcpt.13650 PMID: 34811895
- Runfeng, L.; Yunlong, H.; Jicheng, H.; Weiqi, P.; Qinhai, M.; Yongxia, S.; Chufang, L.; Jin, Z.; Zhenhua, J.; Haiming, J.; Kui, Z.; Shuxiang, H.; Jun, D.; Xiaobo, L.; Xiaotao, H.; Lin, W.; Nanshan, Z.; Zifeng, Y. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol. Res., 2020, 156, 104761. doi: 10.1016/j.phrs.2020.104761 PMID: 32205232
- Aanouz, I.; Belhassan, A.; El-Khatabi, K.; Lakhlifi, T.; El-ldrissi, M.; Bouachrine, M. Moroccan medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. J. Biomol. Struct. Dyn., 2021, 39(8), 2971-2979. doi: 10.1080/07391102.2020.1758790 PMID: 32306860
- Wang, X.; Liu, Z. Prevention and treatment of viral respiratory infections by traditional Chinese herbs. Chin. Med. J. (Engl.), 2014, 127(7), 1344-1350. PMID: 24709192
- Chen, W.; Lim, C.E.D.; Kang, H.J.; Liu, J. Chinese herbal medicines for the treatment of type A H1N1 influenza: a systematic review of randomized controlled trials. PLoS One, 2011, 6(12), e28093. doi: 10.1371/journal.pone.0028093 PMID: 22164232
- Li, Y.; Liu, X.; Guo, L.; Li, J.; Zhong, D.; Zhang, Y.; Clarke, M.; Jin, R. Traditional Chinese herbal medicine for treating novel coronavirus (COVID-19) pneumonia: protocol for a systematic review and meta-analysis. Syst. Rev., 2020, 9(1), 75. doi: 10.1186/s13643-020-01343-4 PMID: 32268923
- Zhou, L.; Wang, J.; Xie, R.; Pakhale, S.; Krewski, D.; Cameron, D.W.; Wen, S.W. The effects of traditional Chinese medicine as an auxiliary treatment for COVID-19: a systematic review and meta-analysis. J. Altern. Complement. Med., 2021, 27(3), 225-237. doi: 10.1089/acm.2020.0310 PMID: 33252246
- Liu, Q.; Lu, L.; Hua, M.; Xu, Y.; Xiong, H.; Hou, W.; Yang, Z. Jiawei-Yupingfeng-Tang, a Chinese herbal formula, inhibits respiratory viral infections in vitro and in vivo. J. Ethnopharmacol., 2013, 150(2), 521-528. doi: 10.1016/j.jep.2013.08.056 PMID: 24051026
- Akram, M.; Tahir, I.M.; Shah, S.M.A.; Mahmood, Z.; Altaf, A.; Ahmad, K.; Munir, N.; Daniyal, M.; Nasir, S.; Mehboob, H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother. Res., 2018, 32(5), 811-822. doi: 10.1002/ptr.6024 PMID: 29356205
- Dong, Z.; Lu, X.; Tong, X.; Dong, Y.; Tang, L.; Liu, M. Forsythiae fructus: A review on its phytochemistry, quality control, pharmacology and pharmacokinetics. Molecules, 2017, 22(9), 1466. doi: 10.3390/molecules22091466 PMID: 28869577
- Cheng, Y.; Liang, X.; Feng, L.; Liu, D.; Qin, M.; Liu, S.; Liu, G.; Dong, M. Effects of phillyrin and forsythoside A on rat cytochrome P450 activities in vivo and in vitro. Xenobiotica, 2017, 47(4), 297-303. doi: 10.1080/00498254.2016.1193262 PMID: 27310729
- Liu, X.; Zhang, M.; He, L.; Li, Y. Chinese herbs combined with Western medicine for severe acute respiratory syndrome (SARS). Cochrane Database Syst. Rev., 2012, 10(10), CD004882.
- Luo, H.; Tang, Q.; Shang, Y.; Liang, S.; Yang, M.; Robinson, N.; Liu, J. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin. J. Integr. Med., 2020, 26(4), 243-250. doi: 10.1007/s11655-020-3192-6 PMID: 32065348
- Tong, T.; Hu, H.; Zhou, J.; Deng, S.; Zhang, X.; Tang, W.; Fang, L.; Xiao, S.; Liang, J. Glycyrrhizic-acid-based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small, 2020, 16(13), 1906206. doi: 10.1002/smll.201906206 PMID: 32077621
- Kadioglu, O.; Saeed, M.; Greten, H.J.; Efferth, T. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput. Biol. Med., 2021, 133, 104359. doi: 10.1016/j.compbiomed.2021.104359 PMID: 33845270
- Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Naguyen, T.T.H.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947. doi: 10.1016/j.bmc.2010.09.035 PMID: 20934345
- Lau, K.M.; Lee, K.M.; Koon, C.M.; Cheung, C.S.F.; Lau, C.P.; Ho, H.M.; Lee, M.Y.H.; Au, S.W.N.; Cheng, C.H.K.; Lau, C.B.S.; Tsui, S.K.W.; Wan, D.C.C.; Waye, M.M.Y.; Wong, K.B.; Wong, C.K.; Lam, C.W.K.; Leung, P.C.; Fung, K.P. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J. Ethnopharmacol., 2008, 118(1), 79-85. doi: 10.1016/j.jep.2008.03.018 PMID: 18479853
- Li, T.; Liu, L.; Wu, H.; Chen, S.; Zhu, Q.; Gao, H.; Yu, X.; Wang, Y.; Su, W.; Yao, X.; Peng, T. Anti-herpes simplex virus type 1 activity of Houttuynoid A, a flavonoid from Houttuynia cordata Thunb. Antiviral Res., 2017, 144, 273-280. doi: 10.1016/j.antiviral.2017.06.010 PMID: 28629987
- Chen, S.D.; Gao, H.; Zhu, Q.C.; Wang, Y.Q.; Li, T.; Mu, Z.Q.; Wu, H.L.; Peng, T.; Yao, X.S.; Houttuynoids, A-E. Houttuynoids A-E, anti-herpes simplex virus active flavonoids with novel skeletons from Houttuynia cordata. Org. Lett., 2012, 14(7), 1772-1775. doi: 10.1021/ol300017m PMID: 22414220
- Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D.L. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42. doi: 10.1016/j.antiviral.2005.07.002 PMID: 16115693
- Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054. doi: 10.1016/j.bmcl.2012.04.081 PMID: 22578462
- Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol., 2006, 33(7), 612-616. doi: 10.1111/j.1440-1681.2006.04415.x PMID: 16789928
- Chiang, L.C.; Ng, L.T.; Cheng, P.W.; Chiang, W.; Lin, C.C. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin. Exp. Pharmacol. Physiol., 2005, 32(10), 811-816. doi: 10.1111/j.1440-1681.2005.04270.x PMID: 16173941
- Chiang, L-C.; Ng, L.T.; Liu, L-T.; Shieh, D.E.; Lin, C-C. Cytotoxicity and anti-hepatitis B virus activities of saikosaponins from Bupleurum species. Planta Med., 2003, 69(8), 705-709. doi: 10.1055/s-2003-42797 PMID: 14531019
- Cheng, P.W.; Chiang, L.C.; Yen, M.H.; Lin, C.C. Bupleurum kaoi inhibits Coxsackie B virus type 1 infection of CCFS-1 cells by induction of type I interferons expression. Food Chem. Toxicol., 2007, 45(1), 24-31. doi: 10.1016/j.fct.2006.06.007 PMID: 17052829
- Chang, J.S.; Wang, K.C.; Liu, H.W.; Chen, M.C.; Chiang, L.C.; Lin, C.C. Sho-saiko-to (Xiao-Chai-Hu-Tang) and crude saikosaponins inhibit hepatitis B virus in a stable HBV-producing cell line. Am. J. Chin. Med., 2007, 35(2), 341-351. doi: 10.1142/S0192415X07004862 PMID: 17436373
- Choi, H.J.; Lim, C.H.; Song, J.H.; Baek, S.H.; Kwon, D.H. Antiviral activity of raoulic acid from Raoulia australis against Picornaviruses. Phytomedicine, 2009, 16(1), 35-39. doi: 10.1016/j.phymed.2008.10.012 PMID: 19097770
- Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; AbuBakar, S. Novel antiviral activity of baicalein against dengue virus. BMC Complement. Altern. Med., 2012, 12(1), 214. doi: 10.1186/1472-6882-12-214 PMID: 23140177
- Li, S.; Chen, C.; Zhang, H.; Guo, H.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.; Yu, J.; Xiao, P.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23. doi: 10.1016/j.antiviral.2005.02.007 PMID: 15885816
- Lin, L.T.; Chen, T.Y.; Lin, S.C.; Chung, C.Y.; Lin, T.C.; Wang, G.H.; Anderson, R.; Lin, C.C.; Richardson, C.D. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol., 2013, 13(1), 187. doi: 10.1186/1471-2180-13-187 PMID: 23924316
- Lin, L.T.; Chen, T.Y.; Chung, C.Y.; Noyce, R.S.; Grindley, T.B.; McCormick, C.; Lin, T.C.; Wang, G.H.; Lin, C.C.; Richardson, C.D. Hydrolyzable tannins (chebulagic acid and punicalagin) target viral glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. J. Virol., 2011, 85(9), 4386-4398. doi: 10.1128/JVI.01492-10 PMID: 21307190
- Koishi, A.C.; Zanello, P.R.; Bianco, É.M.; Bordignon, J.; Nunes Duarte dos Santos, C. Screening of Dengue virus antiviral activity of marine seaweeds by an in situ enzyme-linked immunosorbent assay. PLoS One, 2012, 7(12), e51089. doi: 10.1371/journal.pone.0051089 PMID: 23227238
- Zandi, K.; Teoh, B.T.; Sam, S.S.; Wong, P.F.; Mustafa, M.R.; AbuBakar, S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol. J., 2011, 8(1), 560. doi: 10.1186/1743-422X-8-560 PMID: 22201648
- Ho, H.Y.; Cheng, M.L.; Weng, S.F.; Leu, Y.L.; Chiu, D.T.Y. Antiviral effect of epigallocatechin gallate on enterovirus 71. J. Agric. Food Chem., 2009, 57(14), 6140-6147. doi: 10.1021/jf901128u PMID: 19537794
- Ciesek, S.; von Hahn, T.; Colpitts, C.C.; Schang, L.M.; Friesland, M.; Steinmann, J.; Manns, M.P.; Ott, M.; Wedemeyer, H.; Meuleman, P.; Pietschmann, T.; Steinmann, E. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology, 2011, 54(6), 1947-1955. doi: 10.1002/hep.24610 PMID: 21837753
- Choi, H.J.; Song, J.H.; Park, K.S.; Baek, S.H. In vitro anti-enterovirus 71 activity of gallic acid from Woodfordia fruticosa flowers. Lett. Appl. Microbiol., 2010, 50(4), 438-440. doi: 10.1111/j.1472-765X.2010.02805.x PMID: 20149083
- Jiang, Z.Y.; Liu, W.F.; Zhang, X.M.; Luo, J.; Ma, Y.B.; Chen, J.J. Anti-HBV active constituents from Piper longum. Bioorg. Med. Chem. Lett., 2013, 23(7), 2123-2127. doi: 10.1016/j.bmcl.2013.01.118 PMID: 23434420
- Mouler Rechtman, M.; Har-Noy, O.; Bar-Yishay, I.; Fishman, S.; Adamovich, Y.; Shaul, Y.; Halpern, Z.; Shlomai, A. Curcumin inhibits hepatitis B virus via down-regulation of the metabolic coactivator PGC-1α. FEBS Lett., 2010, 584(11), 2485-2490. doi: 10.1016/j.febslet.2010.04.067 PMID: 20434445
- Kim, K.; Kim, K.H.; Kim, H.Y.; Cho, H.K.; Sakamoto, N.; Cheong, J. Curcumin inhibits hepatitis C virus replication via suppressing the Akt-SREBP-1 pathway. FEBS Lett., 2010, 584(4), 707-712. doi: 10.1016/j.febslet.2009.12.019 PMID: 20026048
- Colpitts, C.C.; Schang, L.M. A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans. J. Virol., 2014, 88(14), 7806-7817. doi: 10.1128/JVI.00896-14 PMID: 24789779
- Zeng, F.L.; Xiang, Y.F.; Liang, Z.R.; Wang, X.; Huang, D.; Zhu, S.N.; Li, M.M.; Yang, D.P.; Wang, D.M.; Wang, Y.F. Anti-hepatitis B virus effects of dehydrocheilanthifoline from Corydalis saxicola. Am. J. Chin. Med., 2013, 41(1), 119-130. doi: 10.1142/S0192415X13500092 PMID: 23336511
- Chang, J.; Liu, H.; Wang, K.; Chen, M.; Chiang, L.; Hua, Y.; Lin, C. Ethanol extract of Polygonum cuspidatum inhibits hepatitis B virus in a stable HBV-producing cell line. Antiviral Res., 2005, 66(1), 29-34. doi: 10.1016/j.antiviral.2004.12.006 PMID: 15781129
- Hao, B.J.; Wu, Y.H.; Wang, J.G.; Hu, S.Q.; Keil, D.J.; Hu, H.J.; Lou, J.D.; Zhao, Y. Hepatoprotective and antiviral properties of isochlorogenic acid A from Laggera alata against hepatitis B virus infection. J. Ethnopharmacol., 2012, 144(1), 190-194. doi: 10.1016/j.jep.2012.09.003 PMID: 22982394
- Polyak, S.J.; Morishima, C.; Lohmann, V.; Pal, S.; Lee, D.Y.W.; Liu, Y.; Graf, T.N.; Oberlies, N.H. Identification of hepatoprotective flavonolignans from silymarin. Proc. Natl. Acad. Sci. USA, 2010, 107(13), 5995-5999. doi: 10.1073/pnas.0914009107 PMID: 20231449
- Polyak, S.J.; Morishima, C.; Shuhart, M.C.; Wang, C.C.; Liu, Y.; Lee, D.Y.W. Inhibition of T-cell inflammatory cytokines, hepatocyte NF-kappaB signaling, and HCV infection by standardized Silymarin. Gastroenterology, 2007, 132(5), 1925-1936. doi: 10.1053/j.gastro.2007.02.038 PMID: 17484885
- Meuleman, P.; Albecka, A.; Belouzard, S.; Vercauteren, K.; Verhoye, L.; Wychowski, C.; Leroux-Roels, G.; Palmer, K.E.; Dubuisson, J. Griffithsin has antiviral activity against hepatitis C virus. Antimicrob. Agents Chemother., 2011, 55(11), 5159-5167. doi: 10.1128/AAC.00633-11 PMID: 21896910
- Haid, S.; Novodomská, A.; Gentzsch, J.; Grethe, C.; Geuenich, S.; Bankwitz, D.; Chhatwal, P.; Jannack, B.; Hennebelle, T.; Bailleul, F. A plant-derived flavonoid inhibits entry of all HCV genotypes into human hepatocytes. Gastroenterology, 2012, 143(1), 213-222. e215. doi: 10.1053/j.gastro.2012.03.036
- Tamura, S.; Yang, G.M.; Yasueda, N.; Matsuura, Y.; Komoda, Y.; Murakami, N.; Tellimagrandin, I. HCV invasion inhibitor from Rosae rugosae Flos. Bioorg. Med. Chem. Lett., 2010, 20(5), 1598-1600. doi: 10.1016/j.bmcl.2010.01.084 PMID: 20144544
- Gescher, K.; Kühn, J.; Hafezi, W.; Louis, A.; Derksen, A.; Deters, A.; Lorentzen, E.; Hensel, A. Inhibition of viral adsorption and penetration by an aqueous extract from Rhododendron ferrugineum L. as antiviral principle against herpes simplex virus type-1. Fitoterapia, 2011, 82(3), 408-413. doi: 10.1016/j.fitote.2010.11.022 PMID: 21129454
- Danaher, R.J.; Wang, C.; Dai, J.; Mumper, R.J.; Miller, C.S. Antiviral effects of blackberry extract against herpes simplex virus type 1. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2011, 112(3), e31-e35. doi: 10.1016/j.tripleo.2011.04.007 PMID: 21827957
- Cheng, H.Y.; Yang, C.M.; Lin, T.C.; Shieh, D.E.; Lin, C.C. ent-Epiafzelechin-(4α→8)-epiafzelechin extracted from Cassia javanica inhibits herpes simplex virus type 2 replication. J. Med. Microbiol., 2006, 55(2), 201-206. doi: 10.1099/jmm.0.46110-0 PMID: 16434713
- Cheng, H.-Y.; Yang, C.-M.; Lin, T.-C.; Lin, L.-T.; Chiang, L.-C.; Lin, C.-C. Excoecarianin, isolated from Phyllanthus urinaria Linnea, inhibits herpes simplex virus type 2 infection through inactivation of viral particles. Evid. Based Complement. Alternat. Med., 2011, 2011
- Yang, C.M.; Cheng, H.Y.; Lin, T.C.; Chiang, L.C.; Lin, C.C. The in vitro activity of geraniin and 1,3,4,6-tetra-O-galloyl-β-d-glucose isolated from Phyllanthus urinaria against herpes simplex virus type 1 and type 2 infection. J. Ethnopharmacol., 2007, 110(3), 555-558. doi: 10.1016/j.jep.2006.09.039 PMID: 17113739
- Yang, C.M.; Cheng, H.Y.; Lin, T.C.; Chiang, L.C.; Lin, C.C. Hippomanin a from acetone extract of Phyllanthus urinaria inhibited HSV-2 but not HSV-1 infection in vitro. Phytother. Res., 2007, 21(12), 1182-1186. doi: 10.1002/ptr.2232 PMID: 17661333
- Bertol, J.W.; Rigotto, C.; de Pádua, R.M.; Kreis, W.; Barardi, C.R.M.; Braga, F.C.; Simões, C.M.O. Antiherpes activity of glucoevatromonoside, a cardenolide isolated from a Brazilian cultivar of Digitalis lanata. Antiviral Res., 2011, 92(1), 73-80. doi: 10.1016/j.antiviral.2011.06.015 PMID: 21763352
- Cheng, H.Y.; Huang, H.H.; Yang, C.M.; Lin, L.T.; Lin, C.C. The in vitro anti-herpes simplex virus type-1 and type-2 activity of Long Dan Xie Gan Tan, a prescription of traditional Chinese medicine. Chemotherapy, 2008, 54(2), 77-83. doi: 10.1159/000119705 PMID: 18332627
- Cheng, H.Y.; Lin, L.T.; Huang, H.H.; Yang, C.M.; Lin, C.C.; Hao Tang, Y.C. Yin Chen Hao Tang, a Chinese prescription, inhibits both herpes simplex virus type-1 and type-2 infections in vitro. Antiviral Res., 2008, 77(1), 14-19. doi: 10.1016/j.antiviral.2007.08.012 PMID: 17931713
- Lubbe, A.; Seibert, I.; Klimkait, T.; van der Kooy, F. Ethnopharmacology in overdrive: The remarkable anti-HIV activity of Artemisia annua. J. Ethnopharmacol., 2012, 141(3), 854-859. doi: 10.1016/j.jep.2012.03.024 PMID: 22465592
- Petrera, E.; Coto, C.E. Therapeutic effect of meliacine, an antiviral derived from Melia azedarach L., in mice genital herpetic infection. Phytother. Res., 2009, 23(12), 1771-1777. doi: 10.1002/ptr.2850 PMID: 19441066
- Gescher, K.; Kühn, J.; Lorentzen, E.; Hafezi, W.; Derksen, A.; Deters, A.; Hensel, A. Proanthocyanidin-enriched extract from Myrothamnus flabellifolia. exerts antiviral activity against herpes simplex virus type 1 by inhibition of viral adsorption and penetration. J. Ethnopharmacol., 2011, 134(2), 468-474. doi: 10.1016/j.jep.2010.12.038 PMID: 21211557
- Kudo, E.; Taura, M.; Matsuda, K.; Shimamoto, M.; Kariya, R.; Goto, H.; Hattori, S.; Kimura, S.; Okada, S. Inhibition of HIV-1 replication by a tricyclic coumarin GUT-70 in acutely and chronically infected cells. Bioorg. Med. Chem. Lett., 2013, 23(3), 606-609. doi: 10.1016/j.bmcl.2012.12.034 PMID: 23290051
- Dao, T.T.; Nguyen, P.H.; Lee, H.S.; Kim, E.; Park, J.; Lim, S.I.; Oh, W.K. Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorg. Med. Chem. Lett., 2011, 21(1), 294-298. doi: 10.1016/j.bmcl.2010.11.016 PMID: 21123068
- Krawitz, C.; Mraheil, M.A.; Stein, M.; Imirzalioglu, C.; Domann, E.; Pleschka, S.; Hain, T. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complement. Altern. Med., 2011, 11(1), 16. doi: 10.1186/1472-6882-11-16 PMID: 21352539
- Theisen, L.L.; Muller, C.P. EPs® 7630 (Umckaloabo®), an extract from Pelargonium sidoides roots, exerts anti-influenza virus activity in vitro and in vivo. Antiviral Res., 2012, 94(2), 147-156. doi: 10.1016/j.antiviral.2012.03.006 PMID: 22475498
- Jeong, H.J.; Kim, Y.M.; Kim, J.H.; Kim, J.Y.; Park, J.Y.; Park, S.J.; Ryu, Y.B.; Lee, W.S. Homoisoflavonoids from Caesalpinia sappan displaying viral neuraminidases inhibition. Biol. Pharm. Bull., 2012, 35(5), 786-790. doi: 10.1248/bpb.35.786 PMID: 22687418
- Ma, S.G.; Gao, R.M.; Li, Y.H.; Jiang, J.D.; Gong, N.B.; Li, L.; Lü, Y.; Tang, W.Z.; Liu, Y.B.; Qu, J.; Lü, H.N.; Li, Y.; Yu, S.S. Antiviral spirooliganones A and B with unprecedented skeletons from the roots of Illicium oligandrum. Org. Lett., 2013, 15(17), 4450-4453. doi: 10.1021/ol401992s PMID: 23937631
- Dao, T.T.; Dang, T.T.; Nguyen, P.H.; Kim, E.; Thuong, P.T.; Oh, W.K. Xanthones from Polygala karensium inhibit neuraminidases from influenza A viruses. Bioorg. Med. Chem. Lett., 2012, 22(11), 3688-3692. doi: 10.1016/j.bmcl.2012.04.028 PMID: 22552195
- Huang, S.P.; Shieh, G.J.; Lee, L.; Teng, H.J.; Kao, S.T.; Lin, J.G. Inhibition effect of shengma-gegen-tang on measles virus in Vero cells and human peripheral blood mononuclear cells. Am. J. Chin. Med., 1997, 25(1), 89-96. doi: 10.1142/S0192415X97000123 PMID: 9167001
- Wang, K.C.; Chang, J.S.; Chiang, L.C.; Lin, C.C. Sheng-Ma-Ge-Gen-Tang (Shoma-kakkon-to) inhibited cytopathic effect of human respiratory syncytial virus in cell lines of human respiratory tract. J. Ethnopharmacol., 2011, 135(2), 538-544. doi: 10.1016/j.jep.2011.03.058 PMID: 21463671
- Lin, Y.M.; Flavin, M.T.; Schure, R.; Chen, F.C.; Sidwell, R.; Barnard, D.I.; Huffmann, J.H.; Kern, E.R. Antiviral activities of biflavonoids. Planta Med., 1999, 65(2), 120-125. doi: 10.1055/s-1999-13971 PMID: 10193201
- Hayashi, T.; Hayashi, K.; Maeda, M.; Kojima, I. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J. Nat. Prod., 1996, 59(1), 83-87. doi: 10.1021/np960017o PMID: 8984158
- Olila, D.; Olwa-Odyek; Opuda-Asibo, J. Screening extracts of Zanthoxylum chalybeum and Warburgia ugandensis for activity against measles virus (Swartz and Edmonston strains) in vitro. Afr. Health Sci., 2002, 2(1), 2-10. PMID: 12789108
- Parker, M.E.; Chabot, S.; Ward, B.J.; Johns, T. Traditional dietary additives of the Maasai are antiviral against the measles virus. J. Ethnopharmacol., 2007, 114(2), 146-152. doi: 10.1016/j.jep.2007.06.011 PMID: 17870263
- Wang, K.C.; Chang, J.S.; Chiang, L.C.; Lin, C.C. Cimicifuga foetida L. inhibited human respiratory syncytial virus in HEp-2 and A549 cell lines. Am. J. Chin. Med., 2012, 40(1), 151-162. doi: 10.1142/S0192415X12500127 PMID: 22298455
- Wang, Y.; Chen, M.; Zhang, J.; Zhang, X.L.; Huang, X.J.; Wu, X.; Zhang, Q.W.; Li, Y.L.; Ye, W.C. Flavone C-glycosides from the leaves of Lophatherum gracile and their in vitro antiviral activity. Planta Med., 2012, 78(1), 46-51. doi: 10.1055/s-0031-1280128 PMID: 21870321
- Zang, N.; Xie, X.; Deng, Y.; Wu, S.; Wang, L.; Peng, C.; Li, S.; Ni, K.; Luo, Y.; Liu, E. Resveratrol-mediated gamma interferon reduction prevents airway inflammation and airway hyperresponsiveness in respiratory syncytial virus-infected immunocompromised mice. J. Virol., 2011, 85(24), 13061-13068. doi: 10.1128/JVI.05869-11 PMID: 21937650
- Oesch, F.; Oesch-Bartlomowicz, B.; Efferth, T. Toxicity as prime selection criterion among SARS-active herbal medications. Phytomedicine, 2021, 85, 153476. doi: 10.1016/j.phymed.2021.153476 PMID: 33593628
- Yu, R.; Chen, L.; Lan, R.; Shen, R.; Li, P. Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. Int. J. Antimicrob. Agents, 2020, 56(2), 106012. doi: 10.1016/j.ijantimicag.2020.106012 PMID: 32389723
- Thabti, I.; Albert, Q.; Philippot, S.; Dupire, F.; Westerhuis, B.; Fontanay, S.; Risler, A.; Kassab, T.; Elfalleh, W.; Aferchichi, A.; Varbanov, M. Advances on antiviral activity of Morus spp. plant extracts: human coronavirus and virus-related respiratory tract infections in the spotlight. Molecules, 2020, 25(8), 1876. doi: 10.3390/molecules25081876 PMID: 32325742
- Ming, K.; Chen, Y.; Yao, F.; Shi, J.; Yang, J.; Du, H.; Wang, X.; Wang, Y.; Liu, J. Phosphorylated Codonopsis pilosula polysaccharide could inhibit the virulence of duck hepatitis A virus compared with Codonopsis pilosula polysaccharide. Int. J. Biol. Macromol., 2017, 94(Pt A), 28-35. doi: 10.1016/j.ijbiomac.2016.10.002 PMID: 27713010
- Wang, Y.; Jung, Y.J.; Kim, K.H.; Kwon, Y.; Kim, Y.J.; Zhang, Z.; Kang, H.S.; Wang, B.Z.; Quan, F.S.; Kang, S.M. Antiviral activity of fermented ginseng extracts against a broad range of influenza viruses. Viruses, 2018, 10(9), 471. doi: 10.3390/v10090471 PMID: 30200514
Supplementary files
