Research Status, Synthesis and Clinical Application of Antiepileptic Drugs
- Authors: Wang S.1, Zhao M.1, Zhao P.1, Zhang W.1, Rao G.1
-
Affiliations:
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biolog, Zhejiang University of Technolog
- Issue: Vol 31, No 4 (2024)
- Pages: 410-452
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645120
- DOI: https://doi.org/10.2174/0929867330666230117160632
- ID: 645120
Cite item
Full Text
Abstract
According to the 2017 ILAE's official definition, epilepsy is a slow brain dis-ease state characterized by recurrent episodes. Due to information released by ILAE in 2017, it can be divided into four types, including focal epilepsy, generalized epilepsy, combined generalized, and focal epilepsy, and unknown epilepsy. Since 1989, 24 new an-tiepileptic drugs have been approved to treat different types of epilepsy. Besides, there are a variety of antiepileptic medications under clinical monitoring. These novel antiepileptic drugs have plenty of advantages. Over the past 33 years, there have been many antiepilep-tic drugs on the mearket, but no one has been found that can completely cure epilepsy. In this paper, the mentioned drugs were classified according to their targets, and the essential information, and clinical studies of each drug were described. The structure-activity rela-tionship of different chemical structures was summarized. This paper provides help for the follow-up research on epilepsy drugs.
About the authors
Si-Jie Wang
College of Pharmaceutical Science, Institute of Drug Development & Chemical Biolog, Zhejiang University of Technolog
Email: info@benthamscience.net
Min-Yan Zhao
College of Pharmaceutical Science, Institute of Drug Development & Chemical Biolog, Zhejiang University of Technolog
Email: info@benthamscience.net
Peng-Cheng Zhao
College of Pharmaceutical Science, Institute of Drug Development & Chemical Biolog, Zhejiang University of Technolog
Email: info@benthamscience.net
Wen Zhang
College of Pharmaceutical Science, Institute of Drug Development & Chemical Biolog, Zhejiang University of Technolog
Email: info@benthamscience.net
Guo-Wu Rao
College of Pharmaceutical Science, Institute of Drug Development & Chemical Biolog, Zhejiang University of Technolog
Author for correspondence.
Email: info@benthamscience.net
References
- Krauss, G.L.; Klein, P.; Brandt, C.; Lee, S.K.; Milanov, I.; Milovanovic, M.; Steinhoff, B.J.; Kamin, M. Safety and efficacy of adjunctive cenobamate (YKP3089) in patients with uncontrolled focal seizures: a multicentre, double-blind, randomised, placebo-controlled, dose-response trial. Lancet Neurol., 2020, 19(1), 38-48. doi: 10.1016/S1474-4422(19)30399-0 PMID: 31734103
- Ruffolo, G.; Di Bonaventura, C.; Cifelli, P.; Roseti, C.; Fattouch, J.; Morano, A.; Limatola, C.; Aronica, E.; Palma, E.; Giallonardo, A.T. A novel action of lacosamide on GABAA currents sets the ground for a synergic interaction with levetiracetam in treatment of epilepsy. Neurobiol. Dis., 2018, 115, 59-68. doi: 10.1016/j.nbd.2018.03.015 PMID: 29621596
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; Nordli, D.R.; Perucca, E.; Tomson, T.; Wiebe, S.; Zhang, Y.H.; Zuberi, S.M. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(4), 512-521. doi: 10.1111/epi.13709 PMID: 28276062
- DAntuono, M.; Köhling, R.; Ricalzone, S.; Gotman, J.; Biagini, G.; Avoli, M. Antiepileptic drugs abolish ictal but not interictal epileptiform discharges in vitro. Epilepsia, 2010, 51(3), 423-431. doi: 10.1111/j.1528-1167.2009.02273.x PMID: 19694791
- Lattanzi, S.; Zaccara, G.; Giovannelli, F.; Grillo, E.; Nardone, R.; Silvestrini, M.; Trinka, E.; Brigo, F. Antiepileptic monotherapy in newly diagnosed focal epilepsy. A network meta-analysis. Acta Neurol. Scand., 2019, 139(1), 33-41. doi: 10.1111/ane.13025 PMID: 30194755
- Betjemann, J.P.; Lowenstein, D.H. Status epilepticus in adults. Lancet Neurol., 2015, 14(6), 615-624. doi: 10.1016/S1474-4422(15)00042-3 PMID: 25908090
- Bialer, M.; White, H.S. Key factors in the discovery and development of new antiepileptic drugs. Nat. Rev. Drug Discov., 2010, 9(1), 68-82. doi: 10.1038/nrd2997 PMID: 20043029
- Löscher, W.; Klitgaard, H.; Twyman, R.E.; Schmidt, D. New avenues for anti-epileptic drug discovery and development. Nat. Rev. Drug Discov., 2013, 12(10), 757-776. doi: 10.1038/nrd4126 PMID: 24052047
- Brodie, M.J.; Besag, F.; Ettinger, A.B.; Mula, M.; Gobbi, G.; Comai, S.; Aldenkamp, A.P.; Steinhoff, B.J. Epilepsy, antiepileptic drugs, and aggression: An evidence-based review. Pharmacol. Rev., 2016, 68(3), 563-602. doi: 10.1124/pr.115.012021 PMID: 27255267
- Greenfield, L.J. Jr Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure, 2013, 22(8), 589-600. doi: 10.1016/j.seizure.2013.04.015 PMID: 23683707
- Kaufman, K.R.; Lepore, F.E.; Keyser, B.J. Visual fields and tiagabine: a quandary. Seizure, 2001, 10(7), 525-529. doi: 10.1053/seiz.2001.0543 PMID: 11749112
- Boada, C.M.; Grossman, S.N.; Grzeskowiak, C.L. Proceedings of the 2020 epilepsy foundation pipeline conference: emerging drugs and devices. Epilepsy. Behav., 2021, 125, 15. doi: 10.1016/j.yebeh.2021.108364
- Wirrell, E.C.; Laux, L.; Franz, D.N.; Sullivan, J.; Saneto, R.P.; Morse, R.P.; Devinsky, O.; Chugani, H.; Hernandez, A.; Hamiwka, L.; Mikati, M.A.; Valencia, I.; Le Guern, M.E.; Chancharme, L.; de Menezes, M.S. Stiripentol in Dravet syndrome: Results of a retrospective U.S. study. Epilepsia, 2013, 54(9), 1595-1604. doi: 10.1111/epi.12303 PMID: 23848835
- Xiao, B.; Long, H. The present status and prospect of antiepileptic drugs. Chin. J. Neurol., 2021, 54(1), 5-8.
- Wallace, S.J. Newer antiepileptic drugs: advantages and disadvantages. Brain Dev., 2001, 23(5), 277-283. doi: 10.1016/S0387-7604(01)00230-3 PMID: 11504596
- Faught, E.; Wilder, B.J.; Ramsay, R.E.; Reife, R.A.; Kramer, L.D.; Pledger, G.W.; Karim, R.M. Topiramate placebo-controlled dose-ranging trial in refractory partial epilepsy using 200-, 400-, and 600-mg daily dosages. Neurology, 1996, 46(6), 1684-1690. doi: 10.1212/WNL.46.6.1684 PMID: 8649570
- Mudigoudar, B.; Weatherspoon, S.; Wheless, J.W. Emerging antiepileptic drugs for severe pediatric epilepsies. Semin. Pediatr. Neurol., 2016, 23(2), 167-179. doi: 10.1016/j.spen.2016.06.003 PMID: 27544474
- Biagini, G.; Rustichelli, C.; Curia, G.; Vinet, J.; Lucchi, C.; Pugnaghi, M.; Meletti, S. Neurosteroids and epileptogenesis. J. Neuroendocrinol., 2013, 25(11), 980-990. doi: 10.1111/jne.12063 PMID: 23763517
- Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Twelfth Eilat Conference (EILAT XII). Epilepsy Res., 2015, 111, 85-141. doi: 10.1016/j.eplepsyres.2015.01.001 PMID: 25769377
- Berg, A.T.; Berkovic, S.F.; Brodie, M.J.; Buchhalter, J.; Cross, J.H.; van Emde Boas, W.; Engel, J.; French, J.; Glauser, T.A.; Mathern, G.W.; Moshé, S.L.; Nordli, D.; Plouin, P.; Scheffer, I.E. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia, 2010, 51(4), 676-685. doi: 10.1111/j.1528-1167.2010.02522.x PMID: 20196795
- Martinez Botella, G.; Salituro, F.G.; Harrison, B.L.; Beresis, R.T.; Bai, Z.; Shen, K.; Belfort, G.M.; Loya, C.M.; Ackley, M.A.; Grossman, S.J.; Hoffmann, E.; Jia, S.; Wang, J.; Doherty, J.J.; Robichaud, A.J. Neuroactive steroids. 1. Positive allosteric modulators of the (γ-aminobutyric acid) A receptor: Structureactivity relationships of heterocyclic substitution at C-21. J. Med. Chem., 2015, 58(8), 3500-3511. doi: 10.1021/acs.jmedchem.5b00032 PMID: 25799373
- Nabbout, R.; Chiron, C. Stiripentol: An example of antiepileptic drug development in childhood epilepsies. Eur. J. Paediatr. Neurol., 2012, 16(Suppl. 1), S13-S17. doi: 10.1016/j.ejpn.2012.04.009 PMID: 22695038
- Upasani, R.B.; Yang, K.C.; Acosta-Burruel, M.; Konkoy, C.S.; McLellan, J.A.; Woodward, R.M.; Lan, N.C.; Carter, R.B.; Hawkinson, J.E. 3α-Hydroxy-3β-(phenylethynyl)-5β-pregnan-20-ones: Synthesis and pharmacological activity of neuroactive steroids with high affinity for GABAA receptors. J. Med. Chem., 1997, 40(1), 73-84. doi: 10.1021/jm9605344 PMID: 9016330
- Rosati, A.; Boncristiano, A.; Doccini, V.; Pugi, A.; Pisano, T.; Lenge, M.; De Masi, S.; Guerrini, R. Long‐term efficacy of add‐on stiripentol treatment in children, adolescents, and young adults with refractory epilepsies: A single center prospective observational study. Epilepsia, 2019, 60(11), 2255-2262. doi: 10.1111/epi.16363 PMID: 31630399
- Perucca, E.; Brodie, M.J.; Kwan, P.; Tomson, T. 30 years of second-generation antiseizure medications: impact and future perspectives. Lancet Neurol., 2020, 19(6), 544-556. doi: 10.1016/S1474-4422(20)30035-1 PMID: 32109411
- Grosenbaugh, D.K.; Mott, D.D. Stiripentol is anticonvulsant by potentiating GABAergic transmission in a model of benzodiazepine-refractory status epilepticus. Neuropharmacology, 2013, 67, 136-143. doi: 10.1016/j.neuropharm.2012.11.002 PMID: 23168114
- Fisher, J.L. The anti-convulsant stiripentol acts directly on the GABAA receptor as a positive allosteric modulator. Neuropharmacology, 2009, 56(1), 190-197. doi: 10.1016/j.neuropharm.2008.06.004 PMID: 18585399
- Quilichini, P.P.; Chiron, C.; Ben-Ari, Y.; Gozlan, H. Stiripentol, a putative antiepileptic drug, enhances the duration of opening of GABAA receptor channels. Epilepsia, 2006, 47(4), 704-716. doi: 10.1111/j.1528-1167.2006.00497.x PMID: 16650136
- Duan, P.; Li, S.; Ai, N.; Hu, L.; Welsh, W.J.; You, G. Potent inhibitors of human organic anion transporters 1 and 3 from clinical drug libraries: discovery and molecular characterization. Mol. Pharm., 2012, 9(11), 3340-3346. doi: 10.1021/mp300365t PMID: 22973893
- Aboul-Enein, M.N.; El-Azzouny, A.A.; Attia, M.I.; Maklad, Y.A.; Amin, K.M.; Abdel-Rehim, M.; El-Behairy, M.F. Design and synthesis of novel stiripentol analogues as potential anticonvulsants. Eur. J. Med. Chem., 2012, 47(1), 360-369. doi: 10.1016/j.ejmech.2011.11.004 PMID: 22118828
- David, S.; Blaise, B.; Bruce, C.V.C. Spectroscopic identification, structural features, Hirshfeld surface analysis and molecular docking studies on stiripentol: An orphan antiepileptic drug. J. Mol. Struct., 2018, 13(6), 612-632. doi: 10.1016/j.molstruc.2018.11.088
- Chiron, C. Stiripentol. Neurotherapeutics, 2007, 4(1), 123-125. doi: 10.1016/j.nurt.2006.10.001 PMID: 17199026
- Chiron, C.; Marchand, M.C.; Tran, A.; Rey, E.; dAthis, P.; Vincent, J.; Dulac, O.; Pons, G. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. Lancet, 2000, 356(9242), 1638-1642. doi: 10.1016/S0140-6736(00)03157-3 PMID: 11089822
- Sada, N.; Lee, S.; Katsu, T.; Otsuki, T.; Inoue, T. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science, 2015, 347(6228), 1362-1367. doi: 10.1126/science.aaa1299 PMID: 25792327
- Dodrill, C.B.; Arnett, J.L.; Sommerville, K.W.; Sussman, N.M. Effects of differing dosages of vigabatrin (Sabril) on cognitive abilities and quality of life in epilepsy. Epilepsia, 1995, 36(2), 164-173. doi: 10.1111/j.1528-1157.1995.tb00976.x PMID: 7821274
- Bialer, M. Chemical properties of antiepileptic drugs (AEDs). Adv. Drug Deliv. Rev., 2012, 64(10), 887-895. doi: 10.1016/j.addr.2011.11.006 PMID: 22210279
- Mandal, V.; Andrews, A.; Tirol, F. Ketamine use in a newborn with hemimegalencephaly and super-refractory status epilepticus: A case report. Invest. Med., 2022, 70(4), 1022.
- Bellusci, M.; Trivisano, M.; de Palma, L.; Pietrafusa, N.; Vigevano, F.; Specchio, N. Vigabatrin efficacy in GPR56-associated polymicrogyria: The role of GABAA receptor pathway. Epilepsia, 2016, 57(8), 1337-1338. doi: 10.1111/epi.13453 PMID: 27485378
- Walters, D.C.; Arning, E.; Bottiglieri, T.; Jansen, E.E.W.; Salomons, G.S.; Brown, M.N.; Schmidt, M.A.; Ainslie, G.R.; Roullet, J.B.; Gibson, K.M. Metabolomic analyses of vigabatrin (VGB)-treated mice: GABA-transaminase inhibition significantly alters amino acid profiles in murine neural and non-neural tissues. Neurochem. Int., 2019, 125, 151-162. doi: 10.1016/j.neuint.2019.02.015 PMID: 30822440
- Choi, S.; Silverman, R.B. Inactivation and inhibition of gamma-aminobutyric acid aminotransferase by conformationally restricted vigabatrin analogues. J. Med. Chem., 2002, 45(20), 4531-4539. doi: 10.1021/jm020134i PMID: 12238932
- Trost, B.M.; Lemoine, R.C. An asymmetric synthesis of vigabatrin. Tetrahedron Lett., 1996, 37(51), 9161-9164. doi: 10.1016/S0040-4039(96)02148-X
- Sills, G.J.; Butler, E.; Thompson, G.G.; Brodie, M.J. Vigabatrin and tiagabine are pharmacologically different drugs. A pre-clinical study. Seizure, 1999, 8(7), 404-411. doi: 10.1053/seiz.1999.0326 PMID: 10600581
- Richens, A.; Chadwick, D.W.; Duncan, J.S.; Dam, M.; Gram, L.; Mikkelsen, M.; Morrow, J.; Mengel, H.; Shu, V.; McKelvy, J.F.; Pierce, M.W. Adjunctive treatment of partial seizures with tiagabine: A placebo-controlled trial. Epilepsy Res., 1995, 21(1), 37-42. doi: 10.1016/0920-1211(95)00006-V PMID: 7641674
- Fritz, N.; Glogau, S.; Hoffmann, J.; Rademacher, M.; Elger, C.E.; Helmstaedter, C. Efficacy and cognitive side effects of tiagabine and topiramate in patients with epilepsy. Epilepsy Behav., 2005, 6(3), 373-381. doi: 10.1016/j.yebeh.2005.01.002 PMID: 15820346
- Uldall, P.; Bulteau, C.; Pedersen, S.A.; Dulac, O.; Lyby, K. Tiagabine adjunctive therapy in children with refractory epilepsy: a single-blind dose escalating study. Epilepsy Res., 2000, 42(2-3), 159-168. doi: 10.1016/S0920-1211(00)00173-X PMID: 11074188
- Schmidt, D.; Gram, L.; Brodie, M.; Krämer, G.; Perucca, E.; Kälviäinen, R.; Elger, C.E. Tiagabine in the treatment of epilepsy - a clinical review with a guide for the prescribing physician. Epilepsy Res., 2000, 41(3), 245-251. doi: 10.1016/S0920-1211(00)00149-2 PMID: 10962215
- Al-Otaibi, F. An overview of structurally diversified anticonvulsant agents. Acta Pharm., 2019, 69(3), 321-344. doi: 10.2478/acph-2019-0023 PMID: 31259739
- Lee, E.C.; Chorghade, M.S.; Petersen, H. Efficient syntheses of regioisomers of tiagabine. Abstr. Pap. Am. Chem. Soc., 1995, 209, 43.
- Singh, B.K.; White-Scott, S. Role of topiramate in adults with intractable epilepsy, mental retardation, and developmental disabilities. Seizure, 2002, 11(1), 47-50. doi: 10.1053/seiz.2001.0571 PMID: 11888260
- de Araujo Filho, G.M.; Pascalicchio, T.F.; Lin, K.; Sousa, P.S.; Yacubian, E.M.T. Neuropsychiatric profiles of patients with juvenile myoclonic epilepsy treated with valproate or topiramate. Epilepsy Behav., 2006, 8(3), 606-609. doi: 10.1016/j.yebeh.2006.01.016 PMID: 16504593
- Brandt, C.; Lahr, D.; May, T.W. Cognitive adverse events of topiramate in patients with epilepsy and intellectual disability. Epilepsy Behav., 2015, 45, 261-264. doi: 10.1016/j.yebeh.2014.12.043 PMID: 25843340
- Hernández-Díaz, S.; Smith, C.R.; Shen, A.; Mittendorf, R.; Hauser, W.A.; Yerby, M.; Holmes, L.B. Comparative safety of antiepileptic drugs during pregnancy. Neurology, 2012, 78(21), 1692-1699. doi: 10.1212/WNL.0b013e3182574f39 PMID: 22551726
- Baker, G.A.; Currie, N.G.T.; Light, M.J.; Schneiderman, J.H. The effects of adjunctive topiramate therapy on seizure severity and health-related quality of life in patients with refractory epilepsy-a Canadian study. Seizure, 2002, 11(1), 6-15. doi: 10.1053/seiz.2001.0581 PMID: 11888254
- Perucca, E. A pharmacological and clinical review on topiramate, a new antiepileptic drug. Pharmacol. Res., 1997, 35(4), 241-256. doi: 10.1006/phrs.1997.0124 PMID: 9264038
- Mula, M. Topiramate and cognitive impairment: evidence and clinical implications. Ther. Adv. Drug Saf., 2012, 3(6), 279-289. doi: 10.1177/2042098612455357 PMID: 25083242
- Kudin, A.P.; Debska-Vielhaber, G.; Vielhaber, S.; Elger, C.E.; Kunz, W.S. The mechanism of neuroprotection by topiramate in an animal model of epilepsy. Epilepsia, 2004, 45(12), 1478-1487. doi: 10.1111/j.0013-9580.2004.13504.x PMID: 15571505
- Saeidian, H.; Abdoli, M. The first general protocol for N -monoalkylation of sulfamate esters: benign synthesis of N -alkyl Topiramate (anticonvulsant drug) derivatives. J. Sulfur Chem., 2015, 36(5), 463-470. doi: 10.1080/17415993.2015.1069294
- Reife, R.; Pledger, G.; Wu, S.C. Topiramate as add-on therapy: pooled analysis of randomized controlled trials in adults. Epilepsia, 2000, 41(s1), 66-71. doi: 10.1111/j.1528-1157.2000.tb02175.x PMID: 10768304
- Marcotte, D. Use of topiramate, a new anti-epileptic as a mood stabilizer. J. Affect. Disord., 1998, 50(2-3), 245-251. doi: 10.1016/S0165-0327(98)00110-4 PMID: 9858083
- Shank, R.P.; Maryanoff, B.E. Molecular pharmacodynamics, clinical therapeutics, and pharmacokinetics of topiramate. CNS Neurosci. Ther., 2008, 14(2), 120-142. doi: 10.1111/j.1527-3458.2008.00041.x PMID: 18482025
- Stephen, L.J.; Sills, G.J.; Brodie, M.J. Topiramate in refractory epilepsy: a prospective observational study. Epilepsia, 2000, 41(8), 977-980. doi: 10.1111/j.1528-1157.2000.tb00282.x PMID: 10961624
- Lazarini-Lopes, W.; Do Val-da Silva, R.A.; da Silva-Júnior, R.M.P.; Leite, J.P.; Garcia-Cairasco, N. The anticonvulsant effects of cannabidiol in experimental models of epileptic seizures: From behavior and mechanisms to clinical insights. Neurosci. Biobehav. Rev., 2020, 111, 166-182. doi: 10.1016/j.neubiorev.2020.01.014 PMID: 31954723
- Leo, A.; Russo, E.; Elia, M. Cannabidiol and epilepsy: Rationale and therapeutic potential. Pharmacol. Res., 2016, 107, 85-92. doi: 10.1016/j.phrs.2016.03.005 PMID: 26976797
- Tamir, I.; Mechoulam, R.; Meyer, A.Y. Cannabidiol and phenytoin: a structural comparison. J. Med. Chem., 1980, 23(2), 220-223. doi: 10.1021/jm00176a022 PMID: 7359539
- Lago-Fernandez, A.; Redondo, V.; Hernandez-Folgado, L. New methods for the synthesis of cannabidiol derivatives. In: Cannabinoids and Their Receptors; REGGIO, P.H., Ed.; Elsevier Academic Press Inc.: San Diego, 2017; pp. 237-257.
- Thiele, E.A.; Marsh, E.D.; French, J.A.; Mazurkiewicz-Beldzinska, M.; Benbadis, S.R.; Joshi, C.; Lyons, P.D.; Taylor, A.; Roberts, C.; Sommerville, K.; Gunning, B.; Gawlowicz, J.; Lisewski, P.; Mazurkiewicz Beldzinska, M.; Mitosek Szewczyk, K.; Steinborn, B.; Zolnowska, M.; Hughes, E.; McLellan, A.; Benbadis, S.; Ciliberto, M.; Clark, G.; Dlugos, D.; Filloux, F.; Flamini, R.; French, J.; Frost, M.; Haut, S.; Joshi, C.; Kapoor, S.; Kessler, S.; Laux, L.; Lyons, P.; Marsh, E.; Moore, D.; Morse, R.; Nagaraddi, V.; Rosenfeld, W.; Seltzer, L.; Shellhaas, R.; Sullivan, J.; Thiele, E.; Thio, L.L.; Wang, D.; Wilfong, A. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet, 2018, 391(10125), 1085-1096. doi: 10.1016/S0140-6736(18)30136-3 PMID: 29395273
- Groeneveld, G.J.; Martin, J.H. Parasitic pharmacology: A plausible mechanism of action for cannabidiol. Br. J. Clin. Pharmacol., 2020, 86(2), 189-191. doi: 10.1111/bcp.14028 PMID: 31290177
- Devinsky, O.; Patel, A.D.; Thiele, E.A.; Wong, M.H.; Appleton, R.; Harden, C.L.; Greenwood, S.; Morrison, G.; Sommerville, K. Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. Neurology, 2018, 90(14), e1204-e1211. doi: 10.1212/WNL.0000000000005254 PMID: 29540584
- Devinsky, O.; Marsh, E.; Friedman, D. Cannabidiol in patients with treatment-resistant epilepsy Authors reply. Lancet Neurol., 2016, 15(6), 545-546. doi: 10.1016/S1474-4422(16)00120-4 PMID: 27302119
- Devinsky, O.; Marsh, E.; Friedman, D.; Thiele, E.; Laux, L.; Sullivan, J.; Miller, I.; Flamini, R.; Wilfong, A.; Filloux, F.; Wong, M.; Tilton, N.; Bruno, P.; Bluvstein, J.; Hedlund, J.; Kamens, R.; Maclean, J.; Nangia, S.; Singhal, N.S.; Wilson, C.A.; Patel, A.; Cilio, M.R. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol., 2016, 15(3), 270-278. doi: 10.1016/S1474-4422(15)00379-8 PMID: 26724101
- Costa, A.M.; Senn, L.; Anceschi, L.; Brighenti, V.; Pellati, F.; Biagini, G. Antiseizure effects of fully characterized non-psychoactive Cannabis sativa L. extracts in the repeated 6-Hz corneal stimulation test. Pharmaceuticals (Basel), 2021, 14(12), 1259. doi: 10.3390/ph14121259 PMID: 34959660
- Senn, L.; Cannazza, G.; Biagini, G. Receptors and channels possibly mediating the effects of phytocannabinoids on seizures and epilepsy. Pharmaceuticals (Basel), 2020, 13(8), 174. doi: 10.3390/ph13080174 PMID: 32751761
- Cerne, R.; Lippa, A.; Poe, M.M.; Smith, J.L.; Jin, X.; Ping, X.; Golani, L.K.; Cook, J.M.; Witkin, J.M. GABAkines Advances in the discovery, development, and commercialization of positive allosteric modulators of GABAA receptors. Pharmacol. Ther., 2022, 234, 108035. doi: 10.1016/j.pharmthera.2021.108035 PMID: 34793859
- Aida, V.; Niedzielko, T.L.; Szaflarski, J.P.; Floyd, C.L. Acute administration of perampanel, an AMPA receptor antagonist, reduces cognitive impairments after traumatic brain injury in rats. Exp. Neurol., 2020, 327, 113222. doi: 10.1016/j.expneurol.2020.113222 PMID: 32027929
- Lee, S.M.; Asress, S.; Hales, C.M.; Gearing, M.; Vizcarra, J.C.; Fournier, C.N.; Gutman, D.A.; Chin, L.S.; Li, L.; Glass, J.D. TDP-43 cytoplasmic inclusion formation is disrupted in C9orf72-associated amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Brain Commun., 2019, 1(1), fcz014. doi: 10.1093/braincomms/fcz014 PMID: 31633109
- Tremblay, G.; Howard, D.; Tsong, W.; Patel, V.; De Rosendo, J. Cost-effectiveness of perampanel for the treatment of primary generalized tonic-clonic seizures (PGTCS) in epilepsy: A Spanish perspective. Epilepsy Behav., 2018, 86, 108-115. doi: 10.1016/j.yebeh.2018.06.002 PMID: 30001911
- Raedler, L. A. Fycompa (Perampanel hydrate) receives expanded indication for primary generalized tonic-clonic seizures Am. Health Drug Benefits, 2016, 9(Spec Feature), 88.
- Chang, F.M.; Fan, P.C.; Weng, W.C.; Chang, C.H.; Lee, W.T. The efficacy of perampanel in young children with drug-resistant epilepsy. Seizure, 2020, 75, 82-86. doi: 10.1016/j.seizure.2019.12.024 PMID: 31901668
- French, J.A.; Krauss, G.L.; Biton, V.; Squillacote, D.; Yang, H.; Laurenza, A.; Kumar, D.; Rogawski, M.A. Adjunctive perampanel for refractory partial-onset seizures: Randomized phase III study 304. Neurology, 2012, 79(6), 589-596. doi: 10.1212/WNL.0b013e3182635735 PMID: 22843280
- McGee, J.H.; Erikson, D.J.; Galbreath, C.; Willigan, D.A.; Sofia, R.D. Acute, subchronic, and chronic toxicity studies with felbamate, 2-phenyl-1,3-propanediol dicarbamate. Toxicol. Sci., 1998, 45(2), 225-232. doi: 10.1093/toxsci/45.2.225 PMID: 9848129
- Mazzocchetti, P.; Mancini, A.; Sciaccaluga, M.; Megaro, A.; Bellingacci, L.; Di Filippo, M.; Cesarini, E.N.; Romoli, M.; Carrano, N.; Gardoni, F.; Tozzi, A.; Calabresi, P.; Costa, C. Low doses of Perampanel protect striatal and hippocampal neurons against in vitro ischemia by reversing the ischemia-induced alteration of AMPA receptor subunit composition. Neurobiol. Dis., 2020, 140, 104848. doi: 10.1016/j.nbd.2020.104848 PMID: 32222474
- Hibi, S.; Ueno, K.; Nagato, S.; Kawano, K.; Ito, K.; Norimine, Y.; Takenaka, O.; Hanada, T.; Yonaga, M. Discovery of 2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydro-pyridin-3-yl)benzonitrile (perampanel): A novel, noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropa-noic acid (AMPA) receptor antagonist. J. Med. Chem., 2012, 55(23), 10584-10600. doi: 10.1021/jm301268u PMID: 23181587
- Marom, E.; Rubnov, S. Process and intermediates for the preparation of perampanel. US Patent US10111867, 2018.
- Sullivan, B.J.; Ammanuel, S.; Kipnis, P.A.; Araki, Y.; Huganir, R.L.; Kadam, S.D. Low-dose perampanel rescues cortical gamma dysregulation associated with parvalbumin interneuron glua2 upregulation in epileptic Syngap1+/− mice. Biol. Psychiatry, 2020, 87(9), 829-842. doi: 10.1016/j.biopsych.2019.12.025 PMID: 32107006
- Brigo, F.; Lattanzi, S.; Rohracher, A. Perampanel in the treatment of status epilepticus: a systematic review of the literature. Epilepsia, 2018, 59(S120), S. doi: 10.1016/j.yebeh.2018.07.004
- Galati, C.; Pironti, E.; Cucinotta, F. Perampanel treatment in drug-resistant focal epilepsy with de novo mutation CACNA1H: characteristics and clinical outcome. Eur. Neuropsychopharmacol., 2017, 27, S1110-S.
- Pistovcakova, J.; Makatsori, A.; Sulcova, A.; Jezova, D. Felbamate reduces hormone release and locomotor hypoactivity induced by repeated stress of social defeat in mice. Eur. Neuropsychopharmacol., 2005, 15(2), 153-158. doi: 10.1016/j.euroneuro.2004.08.007 PMID: 15695059
- Avanzini, G.; Canger, R.; Dalla Bernardina, B.; Vigevano, F. Felbamate in therapy-resistant epilepsy: an Italian experience. Epilepsy Res., 1996, 25(3), 249-255. doi: 10.1016/S0920-1211(96)00070-8 PMID: 8956923
- Contin, M.; Balboni, M.; Callegati, E.; Candela, C.; Albani, F.; Riva, R.; Baruzzi, A. Simultaneous liquid chromatographic determination of lamotrigine, oxcarbazepine monohydroxy derivative and felbamate in plasma of patients with epilepsy. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 828(1-2), 113-117. doi: 10.1016/j.jchromb.2005.09.009 PMID: 16182617
- Brodie, M.; Pellock, J. Taming the brain storms: felbamate updated. Lancet, 1995, 346(8980), 918-919. doi: 10.1016/S0140-6736(95)91550-8 PMID: 7564721
- Luszczki, J.J.; Andres-Mach, M.M.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J. Levetiracetam and felbamate interact both pharmacodynamically and pharmacokinetically: an isobolographic analysis in the mouse maximal electroshock model. Epilepsia, 2007, 48(4), 806-815. doi: 10.1111/j.1528-1167.2006.00964.x PMID: 17284299
- Ketter, T.A.; Malow, B.A.; Flamini, R.; Ko, D.; White, S.R.; Post, R.M.; Theodore, W.H. Felbamate monotherapy has stimulant-like effects in patients with epilepsy. Epilepsy Res., 1996, 23(2), 129-137. doi: 10.1016/0920-1211(95)00089-5 PMID: 8964274
- Hen, N.; Bialer, M.; Yagen, B. Syntheses and evaluation of anticonvulsant activity of novel branched alkyl carbamates. J. Med. Chem., 2012, 55(6), 2835-2845. doi: 10.1021/jm201751x PMID: 22339381
- Peña-López, M.; Neumann, H.; Beller, M. Iron-catalyzed reaction of urea with alcohols and amines: a safe alternative for the synthesis of primary carbamates. ChemSusChem, 2016, 9(16), 2233-2238. doi: 10.1002/cssc.201600587 PMID: 27403875
- Ebert, U.; Reissmüller, E.; Löscher, W. The new antiepileptic drugs lamotrigine and felbamate are effective in phenytoin-resistant kindled rats. Neuropharmacology, 2000, 39(10), 1893-1903. doi: 10.1016/S0028-3908(00)00039-3 PMID: 10884570
- Hussain, S.A.; Asilnejad, B.; Heesch, J.; Navarro, M.; Ji, M.; Shrey, D.W.; Rajaraman, R.R.; Sankar, R. Felbamate in the treatment of refractory epileptic spasms. Epilepsy Res., 2020, 161, 106284. doi: 10.1016/j.eplepsyres.2020.106284 PMID: 32058261
- Mazarati, A.M.; Baldwin, R.A.; Sofia, R.D.; Wasterain, C.G. Felbamate in experimental model of status epilepticus. Epilepsia, 2000, 41(2), 123-127. doi: 10.1111/j.1528-1157.2000.tb00130.x PMID: 10691107
- Pal, R.; Singh, K.; Khan, S.A.; Chawla, P.; Kumar, B.; Akhtar, M.J. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur. J. Med. Chem., 2021, 226, 113890. doi: 10.1016/j.ejmech.2021.113890 PMID: 34628237
- Bialer, M.; Johannessen, S.I.; Koepp, M.J.; Levy, R.H.; Perucca, E.; Perucca, P.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the fifteenth eilat conference on new antiepileptic drugs and devices (EILAT XV). II. Drugs in more advanced clinical development. Epilepsia, 2020, 61(11), 2365-2385. doi: 10.1111/epi.16726 PMID: 33165915
- Lechuga, L.; Franz, D.N. Everolimus as adjunctive therapy for tuberous sclerosis complex-associated partial-onset seizures. Expert Rev. Neurother., 2019, 19(10), 913-925. doi: 10.1080/14737175.2019.1635457 PMID: 31335226
- Samueli, S.; Abraham, K.; Dressler, A.; Gröppel, G.; Mühlebner-Fahrngruber, A.; Scholl, T.; Kasprian, G.; Laccone, F.; Feucht, M. Efficacy and safety of Everolimus in children with TSC - associated epilepsy Pilot data from an open single-center prospective study. Orphanet J. Rare Dis., 2016, 11(1), 145. doi: 10.1186/s13023-016-0530-z PMID: 27809914
- Krueger, D.A.; Wilfong, A.A.; Holland-Bouley, K.; Anderson, A.E.; Agricola, K.; Tudor, C.; Mays, M.; Lopez, C.M.; Kim, M.O.; Franz, D.N. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann. Neurol., 2013, 74(5), 679-687. doi: 10.1002/ana.23960 PMID: 23798472
- Kuhn, B.; Jacobsen, W.; Christians, U.; Benet, L.Z.; Kollman, P.A. Metabolism of sirolimus and its derivative everolimus by cytochrome P450 3A4: insights from docking, molecular dynamics, and quantum chemical calculations. J. Med. Chem., 2001, 44(12), 2027-2034. doi: 10.1021/jm010079y PMID: 11384247
- Supurgibekov, M. B.; Shestakov, A. N.; Sharkov, D. E. New method for producing everolimus. RU2716714-C1,
- Fronza, G.; Fuganti, C.; Grasselli, P.; Mele, A. The mode of bakers yeast transformation of 3-chloropropiophenone and related ketones. Synthesis of (2S)-2-2Hpropiophenone, (R)-fluoxetine, and (R)- and (S)-fenfluramine. J. Org. Chem., 1991, 56(21), 6019-6023. doi: 10.1021/jo00021a011
- Thijs, R.D.; Surges, R.; OBrien, T.J.; Sander, J.W. Epilepsy in adults. Lancet, 2019, 393(10172), 689-701. doi: 10.1016/S0140-6736(18)32596-0 PMID: 30686584
- Fuller, R.W.; Snoddy, H.D.; Clemens, J.A.; Molloy, B.B. Effect of norfenfluramine and two structural analogues on brain 5-hydroxyindoles and serum prolactin in rats. J. Pharm. Pharmacol., 2011, 34(7), 449-450. doi: 10.1111/j.2042-7158.1982.tb04755.x PMID: 6181246
- Goument, B.; Duhamel, L.; Mauge, R. Asymmetric syntheses of (S)-fenfluramine using sharpless epoxidation methods. Tetrahedron, 1994, 50(1), 171-188. doi: 10.1016/S0040-4020(01)80743-2
- Tu, W.; Qian, S. Anti-epileptic effect of 16-O-acetyldigitoxigenin via suppressing mTOR signaling pathway. Cell. Mol. Biol., 2019, 65(5), 59-63. doi: 10.14715/cmb/2019.65.5.10 PMID: 31304908
- Brandt, C.; Hillmann, P.; Noack, A.; Römermann, K.; Öhler, L.A.; Rageot, D.; Beaufils, F.; Melone, A.; Sele, A.M.; Wymann, M.P.; Fabbro, D.; Löscher, W. The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology, 2018, 140, 107-120. doi: 10.1016/j.neuropharm.2018.08.002 PMID: 30081001
- Nakamura, M.; Cho, J.H.; Shin, H.; Jang, I.S. Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons. Eur. J. Pharmacol., 2019, 855, 175-182. doi: 10.1016/j.ejphar.2019.05.007 PMID: 31063770
- Sills, G. The mechanisms of action of gabapentin and pregabalin. Curr. Opin. Pharmacol., 2006, 6(1), 108-113. doi: 10.1016/j.coph.2005.11.003 PMID: 16376147
- Mantegazza, M.; Curia, G.; Biagini, G.; Ragsdale, D.S.; Avoli, M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol., 2010, 9(4), 413-424. doi: 10.1016/S1474-4422(10)70059-4 PMID: 20298965
- Kim, D.Y.; Moon, J.; Shin, Y.W.; Lee, S.T.; Jung, K.H.; Park, K.I.; Jung, K.Y.; Kim, M.; Lee, S.; Yu, K.S.; Jang, I.J.; Song, K.; Chu, K.; Lee, S. Usefulness of saliva for perampanel therapeutic drug monitoring. Epilepsia, 2020, 61(6), 1120-1128. doi: 10.1111/epi.16513 PMID: 32378757
- Park, S.; Lee, H.; Jung, D. Long-term cognitive effects of oxcarbazepine monotherapy in epilepsy patients. J. Neurol. Sci., 2005, 238, S138-S.
- Ide, M.; Kato, T.; Nakata, M.; Saito, K.; Yoshida, T.; Awaya, T.; Heike, T. A granulocytosis associated with rufinamide: A case report. Brain Dev., 2015, 37(8), 825-828. doi: 10.1016/j.braindev.2014.12.010 PMID: 25619447
- Spina, E.; Pisani, F.; de Leon, J. Clinically significant pharmacokinetic drug interactions of antiepileptic drugs with new antidepressants and new antipsychotics. Pharmacol. Res., 2016, 106, 72-86. doi: 10.1016/j.phrs.2016.02.014 PMID: 26896788
- Franco, V.; Gatti, G.; Mazzucchelli, I.; Marchiselli, R.; Fattore, C.; Rota, P.; Galimberti, C.A.; Capovilla, G.; Beccaria, F.; De Giorgis, V.; Johannessen Landmark, C.; Perucca, E. Relationship between saliva and plasma rufinamide concentrations in patients with epilepsy. Epilepsia, 2020, 61(7), e79-e84. doi: 10.1111/epi.16584 PMID: 32562438
- Bootsma, H.P.R.; Vos, A.M.; Hulsman, J.; Lambrechts, D.; Leenen, L.; Majoie, M.; Savelkoul, M.; Schellekens, A.; Aldenkamp, A.P. Lamotrigine in clinical practice: Long-term experience in patients with refractory epilepsy referred to a tertiary epilepsy center. Epilepsy Behav., 2008, 12(2), 262-268. doi: 10.1016/j.yebeh.2007.10.004 PMID: 18093878
- Brodie, M.J.; Richens, A.; Yuen, A.W.C. Double-blind comparison of lamotrigine and carbamazepine in newly diagnosed epilepsy. Lancet, 1995, 345(8948), 476-479. doi: 10.1016/S0140-6736(95)90581-2 PMID: 7710545
- Brodie, M.J. Zonisamide as adjunctive therapy for refractory partial seizures. Epilepsy Res., 2006, 68(Suppl. 2), S11-S16. doi: 10.1016/j.eplepsyres.2005.11.005 PMID: 16316744
- Glauser, T.; Ben-Menachem, E.; Bourgeois, B.; Cnaan, A.; Guerreiro, C.; Kälviäinen, R.; Mattson, R.; French, J.A.; Perucca, E.; Tomson, T. Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia, 2013, 54(3), 551-563. doi: 10.1111/epi.12074 PMID: 23350722
- Rocamora, R.; Peltola, J.; Assenza, G.; McMurray, R.; Villanueva, V. Safety, tolerability and effectiveness of transition to eslicarbazepine acetate from carbamazepine or oxcarbazepine in clinical practice. Seizure, 2020, 75, 121-128. doi: 10.1016/j.seizure.2019.12.022 PMID: 31981862
- Weissinger, F.; Losch, F.; Winter, Y.; Brecht, S.; Lendemans, D.; Kockelmann, E. Effectiveness of eslicarbazepine acetate in dependency of baseline anticonvulsant therapy: Results from a German prospective multicenter clinical practice study. Epilepsy Behav., 2019, 101(Pt A), 106574. doi: 10.1016/j.yebeh.2019.106574 PMID: 31678808
- Kirkham, F.; Auvin, S.; Moreira, J.; Gama, H.; Falcão, A.C.; Rocha, J.F.; Soares-da-Silva, P. Efficacy and safety of eslicarbazepine acetate as adjunctive therapy for refractory focal-onset seizures in children: A double-blind, randomized, placebo-controlled, parallel-group, multicenter, phase-III clinical trial. Epilepsy Behav., 2020, 105, 106962. doi: 10.1016/j.yebeh.2020.106962 PMID: 32151803
- Villanueva, V.; Bermejo, P.; Montoya, J.; Massot-Tarrús, A.; Galiano, M.L.; Toledo, M.; Rodriguez-Uranga, J.J.; Bertol, V.; Mauri, J.Á.; Poza, J.J.; Bonet, M.; Castro-Vilanova, M.D.; Ruiz-Giménez, J.; López-González, F.J.; Rodríguez-Osorio, X.; Tortosa-Conesa, D.; Ojeda, J.; Giner, P.; Garcés, M.; Alvarez, B.M.; Quiroga-Subirana, P.; Esteve, P.; Baiges, J.J.; Hampel, K. MONOZEB: Long-term observational study of eslicarbazepine acetate monotherapy. Epilepsy Behav., 2019, 97, 51-59. doi: 10.1016/j.yebeh.2019.05.003 PMID: 31181429
- Verrotti, A.; Loiacono, G.; Rossi, A.; Zaccara, G. Eslicarbazepine acetate: An update on efficacy and safety in epilepsy. Epilepsy Res., 2014, 108(1), 1-10. doi: 10.1016/j.eplepsyres.2013.10.005 PMID: 24225327
- Unverferth, K.; Engel, J.; Höfgen, N.; Rostock, A.; Günther, R.; Lankau, H.J.; Menzer, M.; Rolfs, A.; Liebscher, J.; Müller, B.; Hofmann, H.J. Synthesis, anticonvulsant activity, and structure-activity relationships of sodium channel blocking 3-aminopyrroles. J. Med. Chem., 1998, 41(1), 63-73. doi: 10.1021/jm970327j PMID: 9438023
- Ravinder, B.; Rajeshwar Reddy, S.; Sridhar, M.; Murali Mohan, M.; Srinivas, K.; Panasa Reddy, A.; Bandichhor, R. An efficient synthesis for eslicarbazepine acetate, oxcarbazepine, and carbamazepine. Tetrahedron Lett., 2013, 54(22), 2841-2844. doi: 10.1016/j.tetlet.2013.03.089
- Chang, R.S.; Lui, H.K.K.; Lui, H.T.C.; Leung, C.Y.W.; Leung, Y.H.I.; Wang, Y.O. Efficacy upon 12-weeks after achievement of maximal dose and tolerability of lacosamide as an adjunctive therapy in epilepsy: Real world clinical experience. J. Neurol. Sci., 2020, 409, 116601. doi: 10.1016/j.jns.2019.116601 PMID: 31801052
- Ben-Menachem, E.; Grebe, H.P.; Terada, K.; Jensen, L.; Li, T.; De Backer, M.; Steiniger-Brach, B.; Gasalla, T.; Brock, M.; Biton, V. Long‐term safety and efficacy of lacosamide and controlled‐release carbamazepine monotherapy in patients with newly diagnosed epilepsy. Epilepsia, 2019, 60(12), 2437-2447. doi: 10.1111/epi.16381 PMID: 31755090
- Curia, G.; Biagini, G.; Perucca, E.; Avoli, M. Lacosamide. CNS Drugs, 2009, 23(7), 555-568. doi: 10.2165/00023210-200923070-00002 PMID: 19552484
- Lattanzi, S.; Cagnetti, C.; Foschi, N.; Provinciali, L.; Silvestrini, M. Lacosamide monotherapy for partial onset seizures. Seizure, 2015, 27, 71-74. doi: 10.1016/j.seizure.2015.03.003 PMID: 25891931
- King, A.M.; Salomé, C.; Salomé-Grosjean, E.; De Ryck, M.; Kaminski, R.; Valade, A.; Stables, J.P.; Kohn, H. Primary amino acid derivatives: substitution of the 4′-N′-benzylamide site in (R)-N′-benzyl 2-amino-3-methyl-butanamide, (R)-N′-benzyl 2-amino-3,3-dimethylbut-anamide, and (R)-N′-benzyl 2-amino-3-methoxypropiona-mide provides potent anticonvulsants with pain-attenuating properties. J. Med. Chem., 2011, 54(19), 6417-6431. doi: 10.1021/jm200759t PMID: 21861463
- Gavatha, M.; Ioannou, I.; Papavasiliou, A.S. Efficacy and tolerability of oral lacosamide as adjunctive therapy in pediatric patients with pharmacoresistant focal epilepsy. Epilepsy Behav., 2011, 20(4), 691-693. doi: 10.1016/j.yebeh.2011.02.005 PMID: 21406334
- Morieux, P.; Salomé, C.; Park, K.D.; Stables, J.P.; Kohn, H. The structure-activity relationship of the 3-oxy site in the anticonvulsant (R)-N-benzyl 2-acetamido-3-methoxypro-pionamide. J. Med. Chem., 2010, 53(15), 5716-5726. doi: 10.1021/jm100508m PMID: 20614888
- Chen, M.D.; Yang, A.J.; Li, Z.; Hu, F-F.; Yang, J-T.; Gao, S-H.; Zhang, F-L.; Zhao, C-J. Concise synthesis of lacosamide with high chiral purity. ACS Omega, 2019, 4(4), 6546-6550. doi: 10.1021/acsomega.8b02564
- Helmstaedter, C.; Witt, J.A. The longer-term cognitive effects of adjunctive antiepileptic treatment with lacosamide in comparison with lamotrigine and topiramate in a naturalistic outpatient setting. Epilepsy Behav., 2013, 26(2), 182-187. doi: 10.1016/j.yebeh.2012.11.052 PMID: 23318473
- Olson, H.E.; Loddenkemper, T.; Vendrame, M.; Poduri, A.; Takeoka, M.; Bergin, A.M.; Libenson, M.H.; Duffy, F.H.; Rotenberg, A.; Coulter, D.; Bourgeois, B.F.; Kothare, S.V. Rufinamide for the treatment of epileptic spasms. Epilepsy Behav., 2011, 20(2), 344-348. doi: 10.1016/j.yebeh.2010.11.023 PMID: 21233024
- Alsaad, A.M.S.; Koren, G. Exposure to rufinamide and risks of CNS adverse events in drug-resistant epilepsy: a meta-analysis of randomized, placebo-controlled trials. Br. J. Clin. Pharmacol., 2014, 78(6), 1264-1271. doi: 10.1111/bcp.12479 PMID: 25132372
- Deeks, E.D.; Scott, L.J. Rufinamide. CNS Drugs, 2006, 20(9), 751-760. doi: 10.2165/00023210-200620090-00007 PMID: 16953653
- Gáll, Z.; Vancea, S.; Szilágyi, T.; Gáll, O.; Kolcsár, M. Dose-dependent pharmacokinetics and brain penetration of rufinamide following intravenous and oral administration to rats. Eur. J. Pharm. Sci., 2015, 68, 106-113. doi: 10.1016/j.ejps.2014.12.012 PMID: 25530452
- Yıldız, E.P.; Hızlı, Z.; Bektaş, G.; Ulak-Özkan, M.; Tatlı, B.; Aydınlı, N.; Çalışkan, M.; Özmen, M. Efficacy of rufinamide in childhood refractory epilepsy. Turk. J. Pediatr., 2018, 60(3), 238-243. doi: 10.24953/turkjped.2018.03.002 PMID: 30511535
- Chen, B.H.; Ahn, J.H.; Park, J.H.; Song, M.; Kim, H.; Lee, T.K.; Lee, J.C.; Kim, Y.M.; Hwang, I.K.; Kim, D.W.; Lee, C.H.; Yan, B.C.; Kang, I.J.; Won, M.H. Rufinamide, an antiepileptic drug, improves cognition and increases neurogenesis in the aged gerbil hippocampal dentate gyrus via increasing expressions of IGF-1, IGF-1R and p -CREB. Chem. Biol. Interact., 2018, 286, 71-77. doi: 10.1016/j.cbi.2018.03.007 PMID: 29548728
- Zhang, P.; Russell, M.G.; Jamison, T.F. Continuous flow total synthesis of rufinamide. Org. Process Res. Dev., 2014, 18(11), 1567-1570. doi: 10.1021/op500166n
- Sirven, J.I.; Noe, K.; Hoerth, M.; Drazkowski, J. Antiepileptic drugs 2012: recent advances and trends. Mayo Clin. Proc., 2012, 87(9), 879-889. doi: 10.1016/j.mayocp.2012.05.019 PMID: 22958992
- Gilchrist, J.; Dutton, S.; Diaz-Bustamante, M.; McPherson, A.; Olivares, N.; Kalia, J.; Escayg, A.; Bosmans, F. Nav1.1 modulation by a novel triazole compound attenuates epileptic seizures in rodents. ACS Chem. Biol., 2014, 9(5), 1204-1212. doi: 10.1021/cb500108p PMID: 24635129
- Mudd, W.H.; Stevens, E.P. An efficient synthesis of rufinamide, an antiepileptic drug. Tetrahedron Lett., 2010, 51(24), 3229-3231. doi: 10.1016/j.tetlet.2010.04.060
- Besag, F.M.C.; Dulac, O.; Alving, J.; Mullens, E.L. Long-term safety and efficacy of lamotrigine (Lamictal®) in paediatric patients with epilepsy. Seizure, 1997, 6(1), 51-56. doi: 10.1016/S1059-1311(97)80053-2 PMID: 9061824
- Machado, R.A.; García, V.F.; Astencio, A.G.; Cuartas, V.B. Efficacy and tolerability of lamotrigine in Juvenile Myoclonic Epilepsy in adults: A prospective, unblinded randomized controlled trial. Seizure, 2013, 22(10), 846-855. doi: 10.1016/j.seizure.2013.07.006 PMID: 23916525
- Paraskevas, G.P.; Triantafyllou, N.I.; Kapaki, E.; Limpitaki, G.; Petropoulou, O.; Vassilopoulos, D. Add-on lamotrigine treatment and plasma glutamate levels in epilepsy: Relation to treatment response. Epilepsy Res., 2006, 70(2-3), 184-189. doi: 10.1016/j.eplepsyres.2006.05.004 PMID: 16762531
- Grover, G.; Nath, R.; Bhatia, R.; Akhtar, M.J. Synthetic and therapeutic perspectives of nitrogen containing heterocycles as anti-convulsants. Bioorg. Med. Chem., 2020, 28(15), 115585. doi: 10.1016/j.bmc.2020.115585 PMID: 32631563
- Leitch, D.C.; John, M.P.; Slavin, P.A.; Searle, A.D. An evaluation of multiple catalytic systems for the cyanation of 2,3-dichlorobenzoyl chloride: application to the synthesis of lamotrigine. Org. Process Res. Dev., 2017, 21(11), 1815-1821. doi: 10.1021/acs.oprd.7b00262
- Tang, L.; Ge, L.; Wu, W.; Yang, X.; Rui, P.; Wu, Y.; Yu, W.; Wang, X. Lamotrigine versus valproic acid monotherapy for generalised epilepsy: A meta-analysis of comparative studies. Seizure, 2017, 51, 95-101. doi: 10.1016/j.seizure.2017.08.001 PMID: 28826049
- Kaminow, L.; Schimschock, J.R.; Hammer, A.E.; Vuong, A. Lamotrigine monotherapy compared with carbamazepine, phenytoin, or valproate monotherapy in patients with epilepsy. Epilepsy Behav., 2003, 4(6), 659-666. doi: 10.1016/j.yebeh.2003.08.033 PMID: 14698699
- Brodie, M.J. Zonisamide clinical trials: European experience. Seizure, 2004, 13(Suppl. 1), S66-S70. doi: 10.1016/j.seizure.2004.04.010 PMID: 15511696
- Baulac, M. Introduction to zonisamide. Epilepsy Res., 2006, 68(Suppl. 2), S3-S9. doi: 10.1016/j.eplepsyres.2005.11.004 PMID: 16413170
- Borowicz, K.K.; Luszczki, J.J.; Sobieszek, G.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J. Interactions between zonisamide and conventional antiepileptic drugs in the mouse maximal electroshock test model. Eur. Neuropsychopharmacol., 2007, 17(4), 265-272. doi: 10.1016/j.euroneuro.2006.06.008 PMID: 16876388
- Naddaka, V.; Klopfer, E.; Saeed, S. Derivatives of 1,2-benzisoxazole-3-methane sulfonic acid as novel intermediates for the synthesis of zonisamide. US Patent US07745471, 2010.
- Besag, F.M.C.; Vasey, M.J.; Sharma, A.N.; Lam, I.C.H. Efficacy and safety of lamotrigine in the treatment of bipolar disorder across the lifespan: a systematic review. Ther. Adv. Psychopharmacol., 2021, 11, 20451253211045870. doi: 10.1177/20451253211045870 PMID: 34646439
- Baker, E.M.; Thompson, C.H.; Hawkins, N.A.; Wagnon, J.L.; Wengert, E.R.; Patel, M.K.; George, A.L., Jr; Meisler, M.H.; Kearney, J.A. The novel sodium channel modulator GS-458967 (GS967) is an effective treatment in a mouse model of SCN8A encephalopathy. Epilepsia, 2018, 59(6), 1166-1176. doi: 10.1111/epi.14196 PMID: 29782051
- Ma, R. A new SV2A ligand for epilepsy. Cell, 2016, 167(3), 587. doi: 10.1016/j.cell.2016.09.057
- Rashid, M.; Rajan, A.K.; Chhabra, M.; Kashyap, A. Levetiracetam and cutaneous adverse reactions: A systematic review of descriptive studies. Seizure, 2020, 75, 101-109. doi: 10.1016/j.seizure.2020.01.002 PMID: 31931437
- Steinhoff, B.J.; Christensen, J.; Doherty, C.P.; Majoie, M.; De Backer, M.; Hellot, S.; Leunikava, I.; Leach, J.P. Effectiveness and tolerability of adjunctive brivaracetam in patients with focal seizures: Second interim analysis of 6-month data from a prospective observational study in Europe. Epilepsy Res., 2020, 165, 106329. doi: 10.1016/j.eplepsyres.2020.106329 PMID: 32623096
- Dudra-Jastrzebska, M.; Andres-Mach, M.M.; Sielski, M.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J.; Luszczki, J.J. Pharmacodynamic and pharmacokinetic interaction profiles of levetiracetam in combination with gabapentin, tiagabine and vigabatrin in the mouse pentylenetetrazole-induced seizure model: An isobolographic analysis. Eur. J. Pharmacol., 2009, 605(1-3), 87-94. doi: 10.1016/j.ejphar.2008.12.046 PMID: 19168049
- Morgan, O.; Medenwald, B. Safety and tolerability of rapid administration undiluted levetiracetam. Neurocrit. Care, 2020, 32(1), 131-134. doi: 10.1007/s12028-019-00708-5 PMID: 30919301
- Sourbron, J.; Chan, H.; Wammes-van der Heijden, E.A.; Klarenbeek, P.; Wijnen, B.F.M.; de Haan, G.J.; van der Kuy, H.; Evers, S.; Majoie, M. Review on the relevance of therapeutic drug monitoring of levetiracetam. Seizure, 2018, 62, 131-135. doi: 10.1016/j.seizure.2018.09.004 PMID: 30237016
- Dalziel, S.R.; Borland, M.L.; Furyk, J.; Bonisch, M.; Neutze, J.; Donath, S.; Francis, K.L.; Sharpe, C.; Harvey, A.S.; Davidson, A.; Craig, S.; Phillips, N.; George, S.; Rao, A.; Cheng, N.; Zhang, M.; Kochar, A.; Brabyn, C.; Oakley, E.; Babl, F.E. Levetiracetam versus phenytoin for second-line treatment of convulsive status epilepticus in children (ConSEPT): an open-label, multicentre, randomised controlled trial. Lancet, 2019, 393(10186), 2135-2145. doi: 10.1016/S0140-6736(19)30722-6 PMID: 31005386
- Costa, A.M.; Lucchi, C.; Malkoç, A.; Rustichelli, C.; Biagini, G. Relationship between delta rhythm, seizure occurrence and allopregnanolone hippocampal levels in epileptic rats exposed to the rebound effect. Pharmaceuticals (Basel), 2021, 14(2), 127. doi: 10.3390/ph14020127 PMID: 33561937
- Steinhoff, B.J.; Staack, A.M. Levetiracetam and brivaracetam: a review of evidence from clinical trials and clinical experience. Ther. Adv. Neurol. Disord., 2019, 12, 1756286419873518. doi: 10.1177/1756286419873518 PMID: 31523280
- Fonseca, E.; Guzmán, L.; Quintana, M.; Abraira, L.; Santamarina, E.; Salas-Puig, X.; Toledo, M. Efficacy, retention, and safety of brivaracetam in adult patients with genetic generalized epilepsy. Epilepsy Behav., 2020, 102, 106657. doi: 10.1016/j.yebeh.2019.106657 PMID: 31731108
- Nissenkorn, A.; Tzadok, M.; Bar-Yosef, O.; Ben-Zeev, B. Treatment with brivaracetam in children The experience of a pediatric epilepsy center. Epilepsy Behav., 2019, 101(Pt A), 106541. doi: 10.1016/j.yebeh.2019.106541 PMID: 31698260
- Rosenstiel, P. Brivaracetam (UCB 34714). Neurotherapeutics, 2007, 4(1), 84-87. doi: 10.1016/j.nurt.2006.11.004 PMID: 17199019
- Kenda, B.M.; Matagne, A.C.; Talaga, P.E.; Pasau, P.M.; Differding, E.; Lallemand, B.I.; Frycia, A.M.; Moureau, F.G.; Klitgaard, H.V.; Gillard, M.R.; Fuks, B.; Michel, P. Discovery of 4-substituted pyrrolidone butanamides as new agents with significant antiepileptic activity. J. Med. Chem., 2004, 47(3), 530-549. doi: 10.1021/jm030913e PMID: 14736235
- Chavan, S.P.; Kawale, S.A.; Chavan, P.N. Formal synthesis of brivaracetam: A key to construct the pyrrolidone scaffold using Pd-catalyzed oxidative cyclization and ring-closing metathesis reaction. Tetrahedron Lett., 2019, 60(46), 151249. doi: 10.1016/j.tetlet.2019.151249
- Lyttle, M.D.; Rainford, N.E.A.; Gamble, C.; Messahel, S.; Humphreys, A.; Hickey, H.; Woolfall, K.; Roper, L.; Noblet, J.; Lee, E.D.; Potter, S.; Tate, P.; Iyer, A.; Evans, V.; Appleton, R.E.; Pereira, M.; Hardwick, S.; Messahel, S.; Noblet, J.; Lee, E.D.; Greenwood-Bibby, R.; Buchanan, M.; Lewis, L.; Hughes, S.; Hartshorn, S.; Rogers, L.; Hopkins, J.; Lyttle, M.D.; Fernandez, D.; Potter, S.; Lavigne-Smith, H.R.; Moulsdale, P.; Smith, A.; Bingham, T.; Ross, J.; Ramsey, N.; Hacking, J.; Mullen, N.; Corrigan, P.P.; Prudhoe, S.; Faza, H.; Robinson, G.; Sunley, R.C.; Smith, C.J.; Unsworth, V.; Criddle, J.; Laque, M.; Sheedy, A.B.; Anderson, M.; Bell, K.; Devine, K.; Scott, A.; Kumar, R.; Armstrong, S.; Sutherland, E.; Cantle, F.; Helyer, S.; Riozzi, P.; Cotton, H.; Downes, A.J.; Mollard, H.; Roland, D.; Hay, F.; Gough, C.; Finucane, S.; Bevan, C.; Ramsay, R.; Walton, E.; Maney, J-A.; Dalzell, E.; Millar, M.; Howells, R.J.; Appelboam, A.; Mackle, D.; Small, J.; Neil, A.; Choudhery, V.; MacLeod, S.; Browning, J.; ONeill, T.; Grahamslaw, J.; Parikh, A.; Skene, I.; Thomas, R.; Potier de la Morandiere, K.; Wilson, J.L.; Danziger, D.; Burke, D.; Ramlakhan, S.; Evans, J.; Morcombe, J.; Gormley, S.; Barling, J.M.; Cathie, K.; Bayreuther, J.; Ensom, R.; Iqbal, Y.; Rounding, S.; Mulligan, J.; Bell, C.; McLellan, S.; Leighton, S.; Sajjanhar, T.; Nyirenda, M.; Crome, L.; Williamson, N.; Alcock, A.; Edwards, S.; Morgan, J.; Powell, C.V.E.; Ramesh, C.A.; Kamal-Uddin, S.; Linney, M.; Vamvakiti, K.; Floyd, S.; Hobden, G. Levetiracetam versus phenytoin for second-line treatment of paediatric convulsive status epilepticus (EcLiPSE): a multicentre, open-label, randomised trial. Lancet, 2019, 393(10186), 2125-2134. doi: 10.1016/S0140-6736(19)30724-X
- Reed, R.C.; Rosenfeld, W.E.; Lippmann, S.M.; Eijkemans, R.M.J.C.; Kasteleijn-Nolst Trenité, D.G.A. Rapidity of cns effect on photoparoxysmal response for brivaracetam vs. levetiracetam: a randomized, double-blind, crossover trial in photosensitive epilepsy patients. CNS Drugs, 2020, 34(10), 1075-1086. doi: 10.1007/s40263-020-00761-1 PMID: 32949370
- Sitges, M.; Guarneros, A.; Nekrassov, V. Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrigine, topiramate and vinpocetine on the presynaptic Ca2+ channel-mediated release of 3Hglutamate: Comparison with the Na+ channel-mediated release. Neuropharmacology, 2007, 53(7), 854-862. doi: 10.1016/j.neuropharm.2007.08.016 PMID: 17904592
- Hamandi, K.; Sander, J.W. Pregabalin: A new antiepileptic drug for refractory epilepsy. Seizure, 2006, 15(2), 73-78. doi: 10.1016/j.seizure.2005.11.005 PMID: 16413993
- Yüksel, M.; Sarıkaya, R.; Bostanci, N. Genotoxic evaluation of antiepileptic drugs by Drosophila somatic mutation and recombination test. Food Chem. Toxicol., 2010, 48(10), 2682-2687. doi: 10.1016/j.fct.2010.06.040 PMID: 20600525
- Yu, J.; Wang, D.S.; Bonin, R.P.; Penna, A.; Alavian-Ghavanini, A.; Zurek, A.A.; Rauw, G.; Baker, G.B.; Orser, B.A. Gabapentin increases expression of δ subunit-containing GABAA receptors. EBioMedicine, 2019, 42, 203-213. doi: 10.1016/j.ebiom.2019.03.008 PMID: 30878595
- François, J.; Germe, K.; Ferrandon, A.; Koning, E.; Nehlig, A. Carisbamate has powerful disease-modifying effects in the lithium-pilocarpine model of temporal lobe epilepsy. Neuropharmacology, 2011, 61(1-2), 313-328. doi: 10.1016/j.neuropharm.2011.04.018 PMID: 21539848
- Derry, S.; Bell, R.F.; Straube, S.; Wiffen, P.J.; Aldington, D.; Moore, R.A. Pregabalin for neuropathic pain in adults. Cochrane Libr., 2019, 1(1), CD007076. doi: 10.1002/14651858.CD007076.pub3 PMID: 30673120
- Ishitani, H.; Kanai, K.; Saito, Y.; Tsubogo, T.; Kobayashi, S. Synthesis of (±)-pregabalin by utilizing a three-step sequential-flow system with heterogeneous catalysts. Eur. J. Org. Chem., 2017, 2017(44), 6491-6494. doi: 10.1002/ejoc.201700998
- Nieoczym, D. Socała, K.; Łuszczki, J.J.; Czuczwar, S.J.; Wlaź P. Sildenafil influences the anticonvulsant activity of vigabatrin and gabapentin in the timed pentylenetetrazole infusion test in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 39(1), 129-135. doi: 10.1016/j.pnpbp.2012.05.020 PMID: 22683320
- Desai, A.; Kherallah, Y.; Szabo, C.; Marawar, R. Gabapentin or pregabalin induced myoclonus: A case series and literature review. J. Clin. Neurosci., 2019, 61, 225-234. doi: 10.1016/j.jocn.2018.09.019 PMID: 30381161
- Mallesha, L.; Mohana, K.N.; Veeresh, B. Synthesis and biological activities of Schiff bases of gabapentin with different aldehydes and ketones: a structureactivity relationship study. Med. Chem. Res., 2012, 21(1), 1-9. doi: 10.1007/s00044-010-9498-8
- Xue, Y.P.; Zhong, H.J.; Zou, S.P.; Zheng, Y-G. Efficient chemoenzymatic synthesis of gabapentin by control of immobilized biocatalyst activity in a stirred bioreactor. Biochem. Eng. J., 2017, 125, 190-195. doi: 10.1016/j.bej.2017.06.008
- Galdames, D.; Aguilera, L.; Faure, E. New antiepileptic drugs for refractory epilepsy in adults - role of gabapentin. Rev. Med. Chil., 1995, 123(4), 500-508. PMID: 8525196
- French, J.A.; Kanner, A.M.; Bautista, J.; Abou-Khalil, B.; Browne, T.; Harden, C.L.; Theodore, W.H.; Bazil, C.; Stern, J.; Schachter, S.C.; Bergen, D.; Hirtz, D.; Montouris, G.D.; Nespeca, M.; Gidal, B.; Marks, W.J., Jr; Turk, W.R.; Fischer, J.H.; Bourgeois, B.; Wilner, A.; Faught, R.E., Jr; Sachdeo, R.C.; Beydoun, A.; Glauser, T.A. Efficacy and tolerability of the new antiepileptic drugs II: treatment of refractory epilepsy: report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology, 2004, 62(8), 1261-1273. doi: 10.1212/01.WNL.0000123695.22623.32 PMID: 15111660
- Placidi, F.; Mattia, D.; Romigi, A.; Bassetti, M.A.; Spanedda, F.; Marciani, M.G. Gabapentin-induced modulation of interictal epileptiform activity related to different vigilance levels. Clin. Neurophysiol., 2000, 111(9), 1637-1642. doi: 10.1016/S1388-2457(00)00365-5 PMID: 10964076
- Walker, M.C.; Patsalos, P.N. Clinical pharmacokinetics of new antiepileptic drugs. Pharmacol. Ther., 1995, 67(3), 351-384. doi: 10.1016/0163-7258(95)00021-6 PMID: 8577822
- Wulff, H.; Castle, N.A.; Pardo, L.A. Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug Discov., 2009, 8(12), 982-1001. doi: 10.1038/nrd2983 PMID: 19949402
- Brodie, M.J.; French, J.A.; McDonald, S.A.; Lee, W.J.; Adams, B.; Scott, A.; Nohria, V.; DeRossett, S. Adjunctive use of ezogabine/retigabine with either traditional sodium channel blocking antiepileptic drugs (AEDs) or AEDs with other mechanisms of action: Evaluation of efficacy and tolerability. Epilepsy Res., 2014, 108(5), 989-994. doi: 10.1016/j.eplepsyres.2014.03.008 PMID: 24726452
- Wehner, T.; Chinnasami, S.; Novy, J.; Bell, G.S.; Duncan, J.S.; Sander, J.W. Long term retention of retigabine in a cohort of people with drug resistant epilepsy. Seizure, 2014, 23(10), 878-881. doi: 10.1016/j.seizure.2014.08.001 PMID: 25175006
- Kanner, A.M.; Ashman, E.; Gloss, D.; Harden, C.; Bourgeois, B.; Bautista, J.F.; Abou-Khalil, B.; Burakgazi-Dalkilic, E.; Park, E.L.; Stern, J.; Hirtz, D.; Nespeca, M.; Gidal, B.; Faught, E.; French, J. Practice guideline update summary: Efficacy and tolerability of the new antiepileptic drugs I: Treatment of new-onset epilepsy. Epilepsy Curr., 2018, 18(4), 260-268. doi: 10.5698/1535-7597.18.4.260 PMID: 30254527
- Davar, D.; Beumer, J.H.; Hamieh, L.; Tawbi, H. Role of PARP inhibitors in cancer biology and therapy. Curr. Med. Chem., 2012, 19(23), 3907-3921. doi: 10.2174/092986712802002464 PMID: 22788767
- Plummer, R. Perspective on the pipeline of drugs being developed with modulation of DNA damage as a target. Clin. Cancer Res., 2010, 16(18), 4527-4531. doi: 10.1158/1078-0432.CCR-10-0984 PMID: 20823148
- Mathias, S.V.; Abou-Khalil, B.W. Ezogabine skin discoloration is reversible after discontinuation. Epilepsy Behav. Case Rep., 2017, 7, 61-63. doi: 10.1016/j.ebcr.2017.01.001 PMID: 28417066
- Meador, K.J.; Brashear, H.R.; Wiegand, F.; Zannikos, P.; Novak, G. Cognitive effects of carisbamate in randomized, placebo-controlled, healthy-volunteer, multidose studies. Epilepsy Behav., 2011, 22(2), 324-330. doi: 10.1016/j.yebeh.2011.07.006 PMID: 21849260
- Ragueneau-Majlessi, I.; Levy, R.; Solanki, B. Pharmacokinetics, safety, and tolerability of the new antiepileptic drug carisbamate (RWJ333369) in elderly adults. Epilepsia, 2007, 48, 326. doi: 10.1016/j.eplepsyres.2007.12.013
- Deshpande, L.S.; Nagarkatti, N.; Sombati, S.; DeLorenzo, R.J. The novel antiepileptic drug carisbamate (RWJ 333369) is effective in inhibiting spontaneous recurrent seizure discharges and blocking sustained repetitive firing in cultured hippocampal neurons. Epilepsy Res., 2008, 79(2-3), 158-165. doi: 10.1016/j.eplepsyres.2008.01.002 PMID: 18353614
- Arnold, S. Cenobamate: new hope for treatment-resistant epilepsy. Lancet Neurol., 2020, 19(1), 23-24. doi: 10.1016/S1474-4422(19)30434-X PMID: 31734104
- Krauss, G.L.; Klein, P.; Brandt, C.; Lee, S.K.; Milanov, I.; Milovanovic, M.; Steinhoff, B.J.; Kamin, M. Safety of adjunctive treatment with cenobamate in patients with uncontrolled focal seizures Authors reply. Lancet Neurol., 2020, 19(4), 288-289. doi: 10.1016/S1474-4422(20)30077-6 PMID: 32199090
- Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Tenth Eilat Conference (EILAT X). Epilepsy Res., 2010, 92(2-3), 89-124. doi: 10.1016/j.eplepsyres.2010.09.001 PMID: 20970964
- Tompson, D.J.; Crean, C.S.; Reeve, R.; Berry, N.S. Efficacy and tolerability exposure-response relationship of retigabine (ezogabine) immediate-release tablets in patients with partial-onset seizures. Clin. Ther., 2013, 35(8), 1174-1185.e4. doi: 10.1016/j.clinthera.2013.06.012 PMID: 23916044
- Noe, F.M.; Polascheck, N.; Frigerio, F.; Bankstahl, M.; Ravizza, T.; Marchini, S.; Beltrame, L.; Banderó, C.R.; Löscher, W.; Vezzani, A. Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol. Dis., 2013, 59, 183-193. doi: 10.1016/j.nbd.2013.07.015 PMID: 23938763
- Wang, D.D.; Englot, D.J.; Garcia, P.A.; Lawton, M.T.; Young, W.L. Minocycline- and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy Behav., 2012, 24(3), 314-318. doi: 10.1016/j.yebeh.2012.03.035 PMID: 22579030
- Marques-Carneiro, J.; Nehlig, A.; Cassel, J.C.; Castro-Neto, E.; Litzahn, J.; Pereira de Vasconcelos, A.; Naffah-Mazacoratti, M.; Fernandes, M. Neurochemical changes and c-fos mapping in the brain after carisbamate treatment of rats subjected to lithiumpilocarpine-induced status epilepticus. Pharmaceuticals (Basel), 2017, 10(4), 85. doi: 10.3390/ph10040085 PMID: 29104261
- Dong, G.R.; Li, Q.R.; Woo, S.H.; Kim, I.S.; Jung, Y.H. One-pot conversion of trimethylsilyl ethers into urethanes using chlorosulfonyl isocyanate: Application to the synthesis of a novel neuromodulator carisbamate. Arch. Pharm. Res., 2008, 31(11), 1393-1398. doi: 10.1007/s12272-001-2122-1 PMID: 19023534
- Kim, D.Y.; Zhang, F.X.; Nakanishi, S.T.; Mettler, T.; Cho, I.H.; Ahn, Y.; Hiess, F.; Chen, L.; Sullivan, P.G.; Chen, S.R.W.; Zamponi, G.W.; Rho, J.M. Carisbamate blockade of T-type voltage-gated calcium channels. Epilepsia, 2017, 58(4), 617-626. doi: 10.1111/epi.13710 PMID: 28230232
- Yuan, S.; Yu, B.; Liu, H.M. New drug approvals for 2019: Synthesis and clinical applications. Eur. J. Med. Chem., 2020, 205, 112667. doi: 10.1016/j.ejmech.2020.112667 PMID: 32911308
- Sharma, R.; Nakamura, M.; Neupane, C.; Jeon, B.H.; Shin, H.; Melnick, S.M.; Glenn, K.J.; Jang, I.S.; Park, J.B. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur. J. Pharmacol., 2020, 879, 173117. doi: 10.1016/j.ejphar.2020.173117 PMID: 32325146
- Damar, U.; Gersner, R.; Johnstone, J.T.; Schachter, S.; Rotenberg, A.; Huperzine, A. A promising anticonvulsant, disease modifying, and memory enhancing treatment option in Alzheimers disease. Med. Hypotheses, 2017, 99, 57-62. doi: 10.1016/j.mehy.2016.12.006 PMID: 28110700
- Damar, U.; Gersner, R.; Johnstone, J.T.; Schachter, S.; Rotenberg, A. Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research. Expert Rev. Neurother., 2016, 16(6), 671-680. doi: 10.1080/14737175.2016.1175303 PMID: 27086593
- Ferreira, A.; Rodrigues, M.; Fortuna, A.; Falcão, A.; Alves, G. Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochem. Rev., 2016, 15(1), 51-85. doi: 10.1007/s11101-014-9384-y
- Haudrechy, A.; Chassaing, C.; Riche, C.; Langlois, Y. A formal synthesis of (+)-huperzine A. Tetrahedron, 2000, 56(20), 3181-3187. doi: 10.1016/S0040-4020(00)00227-1
- Gersner, R.; Ekstein, D.; Dhamne, S.C.; Schachter, S.C.; Rotenberg, A. Huperzine A prophylaxis against pentylenetetrazole-induced seizures in rats is associated with increased cortical inhibition. Epilepsy Res., 2015, 117, 97-103. doi: 10.1016/j.eplepsyres.2015.08.012 PMID: 26432930
- Alcalá, M.M.; Vivas, N.M.; Hospital, S.; Camps, P.; Muñoz-Torrero, D.; Badia, A. Characterisation of the anticholinesterase activity of two new tacrinehuperzine A hybrids. Neuropharmacology, 2003, 44(6), 749-755. doi: 10.1016/S0028-3908(03)00071-6 PMID: 12681373
- Koenig, J.B.; Cantu, D.; Low, C.; Sommer, M.; Noubary, F.; Croker, D.; Whalen, M.; Kong, D.; Dulla, C.G. Glycolytic inhibitor 2-deoxyglucose prevents cortical hyperexcitability after traumatic brain injury. JCI Insight, 2019, 4(11), e126506. doi: 10.1172/jci.insight.126506 PMID: 31038473
- Sills, G.J.; Rogawski, M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology, 2020, 168, 107966. doi: 10.1016/j.neuropharm.2020.107966 PMID: 32120063
Supplementary files
