Research Status, Synthesis and Clinical Application of Antiepileptic Drugs


Cite item

Full Text

Abstract

According to the 2017 ILAE's official definition, epilepsy is a slow brain dis-ease state characterized by recurrent episodes. Due to information released by ILAE in 2017, it can be divided into four types, including focal epilepsy, generalized epilepsy, combined generalized, and focal epilepsy, and unknown epilepsy. Since 1989, 24 new an-tiepileptic drugs have been approved to treat different types of epilepsy. Besides, there are a variety of antiepileptic medications under clinical monitoring. These novel antiepileptic drugs have plenty of advantages. Over the past 33 years, there have been many antiepilep-tic drugs on the mearket, but no one has been found that can completely cure epilepsy. In this paper, the mentioned drugs were classified according to their targets, and the essential information, and clinical studies of each drug were described. The structure-activity rela-tionship of different chemical structures was summarized. This paper provides help for the follow-up research on epilepsy drugs.

About the authors

Si-Jie Wang

College of Pharmaceutical Science, Institute of Drug Development & Chemical Biolog, Zhejiang University of Technolog

Email: info@benthamscience.net

Min-Yan Zhao

College of Pharmaceutical Science, Institute of Drug Development & Chemical Biolog, Zhejiang University of Technolog

Email: info@benthamscience.net

Peng-Cheng Zhao

College of Pharmaceutical Science, Institute of Drug Development & Chemical Biolog, Zhejiang University of Technolog

Email: info@benthamscience.net

Wen Zhang

College of Pharmaceutical Science, Institute of Drug Development & Chemical Biolog, Zhejiang University of Technolog

Email: info@benthamscience.net

Guo-Wu Rao

College of Pharmaceutical Science, Institute of Drug Development & Chemical Biolog, Zhejiang University of Technolog

Author for correspondence.
Email: info@benthamscience.net

References

  1. Krauss, G.L.; Klein, P.; Brandt, C.; Lee, S.K.; Milanov, I.; Milovanovic, M.; Steinhoff, B.J.; Kamin, M. Safety and efficacy of adjunctive cenobamate (YKP3089) in patients with uncontrolled focal seizures: a multicentre, double-blind, randomised, placebo-controlled, dose-response trial. Lancet Neurol., 2020, 19(1), 38-48. doi: 10.1016/S1474-4422(19)30399-0 PMID: 31734103
  2. Ruffolo, G.; Di Bonaventura, C.; Cifelli, P.; Roseti, C.; Fattouch, J.; Morano, A.; Limatola, C.; Aronica, E.; Palma, E.; Giallonardo, A.T. A novel action of lacosamide on GABAA currents sets the ground for a synergic interaction with levetiracetam in treatment of epilepsy. Neurobiol. Dis., 2018, 115, 59-68. doi: 10.1016/j.nbd.2018.03.015 PMID: 29621596
  3. Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; Nordli, D.R.; Perucca, E.; Tomson, T.; Wiebe, S.; Zhang, Y.H.; Zuberi, S.M. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia, 2017, 58(4), 512-521. doi: 10.1111/epi.13709 PMID: 28276062
  4. D’Antuono, M.; Köhling, R.; Ricalzone, S.; Gotman, J.; Biagini, G.; Avoli, M. Antiepileptic drugs abolish ictal but not interictal epileptiform discharges in vitro. Epilepsia, 2010, 51(3), 423-431. doi: 10.1111/j.1528-1167.2009.02273.x PMID: 19694791
  5. Lattanzi, S.; Zaccara, G.; Giovannelli, F.; Grillo, E.; Nardone, R.; Silvestrini, M.; Trinka, E.; Brigo, F. Antiepileptic monotherapy in newly diagnosed focal epilepsy. A network meta-analysis. Acta Neurol. Scand., 2019, 139(1), 33-41. doi: 10.1111/ane.13025 PMID: 30194755
  6. Betjemann, J.P.; Lowenstein, D.H. Status epilepticus in adults. Lancet Neurol., 2015, 14(6), 615-624. doi: 10.1016/S1474-4422(15)00042-3 PMID: 25908090
  7. Bialer, M.; White, H.S. Key factors in the discovery and development of new antiepileptic drugs. Nat. Rev. Drug Discov., 2010, 9(1), 68-82. doi: 10.1038/nrd2997 PMID: 20043029
  8. Löscher, W.; Klitgaard, H.; Twyman, R.E.; Schmidt, D. New avenues for anti-epileptic drug discovery and development. Nat. Rev. Drug Discov., 2013, 12(10), 757-776. doi: 10.1038/nrd4126 PMID: 24052047
  9. Brodie, M.J.; Besag, F.; Ettinger, A.B.; Mula, M.; Gobbi, G.; Comai, S.; Aldenkamp, A.P.; Steinhoff, B.J. Epilepsy, antiepileptic drugs, and aggression: An evidence-based review. Pharmacol. Rev., 2016, 68(3), 563-602. doi: 10.1124/pr.115.012021 PMID: 27255267
  10. Greenfield, L.J. Jr Molecular mechanisms of antiseizure drug activity at GABAA receptors. Seizure, 2013, 22(8), 589-600. doi: 10.1016/j.seizure.2013.04.015 PMID: 23683707
  11. Kaufman, K.R.; Lepore, F.E.; Keyser, B.J. Visual fields and tiagabine: a quandary. Seizure, 2001, 10(7), 525-529. doi: 10.1053/seiz.2001.0543 PMID: 11749112
  12. Boada, C.M.; Grossman, S.N.; Grzeskowiak, C.L. Proceedings of the 2020 epilepsy foundation pipeline conference: emerging drugs and devices. Epilepsy. Behav., 2021, 125, 15. doi: 10.1016/j.yebeh.2021.108364
  13. Wirrell, E.C.; Laux, L.; Franz, D.N.; Sullivan, J.; Saneto, R.P.; Morse, R.P.; Devinsky, O.; Chugani, H.; Hernandez, A.; Hamiwka, L.; Mikati, M.A.; Valencia, I.; Le Guern, M.E.; Chancharme, L.; de Menezes, M.S. Stiripentol in Dravet syndrome: Results of a retrospective U.S. study. Epilepsia, 2013, 54(9), 1595-1604. doi: 10.1111/epi.12303 PMID: 23848835
  14. Xiao, B.; Long, H. The present status and prospect of antiepileptic drugs. Chin. J. Neurol., 2021, 54(1), 5-8.
  15. Wallace, S.J. Newer antiepileptic drugs: advantages and disadvantages. Brain Dev., 2001, 23(5), 277-283. doi: 10.1016/S0387-7604(01)00230-3 PMID: 11504596
  16. Faught, E.; Wilder, B.J.; Ramsay, R.E.; Reife, R.A.; Kramer, L.D.; Pledger, G.W.; Karim, R.M. Topiramate placebo-controlled dose-ranging trial in refractory partial epilepsy using 200-, 400-, and 600-mg daily dosages. Neurology, 1996, 46(6), 1684-1690. doi: 10.1212/WNL.46.6.1684 PMID: 8649570
  17. Mudigoudar, B.; Weatherspoon, S.; Wheless, J.W. Emerging antiepileptic drugs for severe pediatric epilepsies. Semin. Pediatr. Neurol., 2016, 23(2), 167-179. doi: 10.1016/j.spen.2016.06.003 PMID: 27544474
  18. Biagini, G.; Rustichelli, C.; Curia, G.; Vinet, J.; Lucchi, C.; Pugnaghi, M.; Meletti, S. Neurosteroids and epileptogenesis. J. Neuroendocrinol., 2013, 25(11), 980-990. doi: 10.1111/jne.12063 PMID: 23763517
  19. Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Twelfth Eilat Conference (EILAT XII). Epilepsy Res., 2015, 111, 85-141. doi: 10.1016/j.eplepsyres.2015.01.001 PMID: 25769377
  20. Berg, A.T.; Berkovic, S.F.; Brodie, M.J.; Buchhalter, J.; Cross, J.H.; van Emde Boas, W.; Engel, J.; French, J.; Glauser, T.A.; Mathern, G.W.; Moshé, S.L.; Nordli, D.; Plouin, P.; Scheffer, I.E. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia, 2010, 51(4), 676-685. doi: 10.1111/j.1528-1167.2010.02522.x PMID: 20196795
  21. Martinez Botella, G.; Salituro, F.G.; Harrison, B.L.; Beresis, R.T.; Bai, Z.; Shen, K.; Belfort, G.M.; Loya, C.M.; Ackley, M.A.; Grossman, S.J.; Hoffmann, E.; Jia, S.; Wang, J.; Doherty, J.J.; Robichaud, A.J. Neuroactive steroids. 1. Positive allosteric modulators of the (γ-aminobutyric acid) A receptor: Structure–activity relationships of heterocyclic substitution at C-21. J. Med. Chem., 2015, 58(8), 3500-3511. doi: 10.1021/acs.jmedchem.5b00032 PMID: 25799373
  22. Nabbout, R.; Chiron, C. Stiripentol: An example of antiepileptic drug development in childhood epilepsies. Eur. J. Paediatr. Neurol., 2012, 16(Suppl. 1), S13-S17. doi: 10.1016/j.ejpn.2012.04.009 PMID: 22695038
  23. Upasani, R.B.; Yang, K.C.; Acosta-Burruel, M.; Konkoy, C.S.; McLellan, J.A.; Woodward, R.M.; Lan, N.C.; Carter, R.B.; Hawkinson, J.E. 3α-Hydroxy-3β-(phenylethynyl)-5β-pregnan-20-ones: Synthesis and pharmacological activity of neuroactive steroids with high affinity for GABAA receptors. J. Med. Chem., 1997, 40(1), 73-84. doi: 10.1021/jm9605344 PMID: 9016330
  24. Rosati, A.; Boncristiano, A.; Doccini, V.; Pugi, A.; Pisano, T.; Lenge, M.; De Masi, S.; Guerrini, R. Long‐term efficacy of add‐on stiripentol treatment in children, adolescents, and young adults with refractory epilepsies: A single center prospective observational study. Epilepsia, 2019, 60(11), 2255-2262. doi: 10.1111/epi.16363 PMID: 31630399
  25. Perucca, E.; Brodie, M.J.; Kwan, P.; Tomson, T. 30 years of second-generation antiseizure medications: impact and future perspectives. Lancet Neurol., 2020, 19(6), 544-556. doi: 10.1016/S1474-4422(20)30035-1 PMID: 32109411
  26. Grosenbaugh, D.K.; Mott, D.D. Stiripentol is anticonvulsant by potentiating GABAergic transmission in a model of benzodiazepine-refractory status epilepticus. Neuropharmacology, 2013, 67, 136-143. doi: 10.1016/j.neuropharm.2012.11.002 PMID: 23168114
  27. Fisher, J.L. The anti-convulsant stiripentol acts directly on the GABAA receptor as a positive allosteric modulator. Neuropharmacology, 2009, 56(1), 190-197. doi: 10.1016/j.neuropharm.2008.06.004 PMID: 18585399
  28. Quilichini, P.P.; Chiron, C.; Ben-Ari, Y.; Gozlan, H. Stiripentol, a putative antiepileptic drug, enhances the duration of opening of GABAA receptor channels. Epilepsia, 2006, 47(4), 704-716. doi: 10.1111/j.1528-1167.2006.00497.x PMID: 16650136
  29. Duan, P.; Li, S.; Ai, N.; Hu, L.; Welsh, W.J.; You, G. Potent inhibitors of human organic anion transporters 1 and 3 from clinical drug libraries: discovery and molecular characterization. Mol. Pharm., 2012, 9(11), 3340-3346. doi: 10.1021/mp300365t PMID: 22973893
  30. Aboul-Enein, M.N.; El-Azzouny, A.A.; Attia, M.I.; Maklad, Y.A.; Amin, K.M.; Abdel-Rehim, M.; El-Behairy, M.F. Design and synthesis of novel stiripentol analogues as potential anticonvulsants. Eur. J. Med. Chem., 2012, 47(1), 360-369. doi: 10.1016/j.ejmech.2011.11.004 PMID: 22118828
  31. David, S.; Blaise, B.; Bruce, C.V.C. Spectroscopic identification, structural features, Hirshfeld surface analysis and molecular docking studies on stiripentol: An orphan antiepileptic drug. J. Mol. Struct., 2018, 13(6), 612-632. doi: 10.1016/j.molstruc.2018.11.088
  32. Chiron, C. Stiripentol. Neurotherapeutics, 2007, 4(1), 123-125. doi: 10.1016/j.nurt.2006.10.001 PMID: 17199026
  33. Chiron, C.; Marchand, M.C.; Tran, A.; Rey, E.; d’Athis, P.; Vincent, J.; Dulac, O.; Pons, G. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. Lancet, 2000, 356(9242), 1638-1642. doi: 10.1016/S0140-6736(00)03157-3 PMID: 11089822
  34. Sada, N.; Lee, S.; Katsu, T.; Otsuki, T.; Inoue, T. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science, 2015, 347(6228), 1362-1367. doi: 10.1126/science.aaa1299 PMID: 25792327
  35. Dodrill, C.B.; Arnett, J.L.; Sommerville, K.W.; Sussman, N.M. Effects of differing dosages of vigabatrin (Sabril) on cognitive abilities and quality of life in epilepsy. Epilepsia, 1995, 36(2), 164-173. doi: 10.1111/j.1528-1157.1995.tb00976.x PMID: 7821274
  36. Bialer, M. Chemical properties of antiepileptic drugs (AEDs). Adv. Drug Deliv. Rev., 2012, 64(10), 887-895. doi: 10.1016/j.addr.2011.11.006 PMID: 22210279
  37. Mandal, V.; Andrews, A.; Tirol, F. Ketamine use in a newborn with hemimegalencephaly and super-refractory status epilepticus: A case report. Invest. Med., 2022, 70(4), 1022.
  38. Bellusci, M.; Trivisano, M.; de Palma, L.; Pietrafusa, N.; Vigevano, F.; Specchio, N. Vigabatrin efficacy in GPR56-associated polymicrogyria: The role of GABAA receptor pathway. Epilepsia, 2016, 57(8), 1337-1338. doi: 10.1111/epi.13453 PMID: 27485378
  39. Walters, D.C.; Arning, E.; Bottiglieri, T.; Jansen, E.E.W.; Salomons, G.S.; Brown, M.N.; Schmidt, M.A.; Ainslie, G.R.; Roullet, J.B.; Gibson, K.M. Metabolomic analyses of vigabatrin (VGB)-treated mice: GABA-transaminase inhibition significantly alters amino acid profiles in murine neural and non-neural tissues. Neurochem. Int., 2019, 125, 151-162. doi: 10.1016/j.neuint.2019.02.015 PMID: 30822440
  40. Choi, S.; Silverman, R.B. Inactivation and inhibition of gamma-aminobutyric acid aminotransferase by conformationally restricted vigabatrin analogues. J. Med. Chem., 2002, 45(20), 4531-4539. doi: 10.1021/jm020134i PMID: 12238932
  41. Trost, B.M.; Lemoine, R.C. An asymmetric synthesis of vigabatrin. Tetrahedron Lett., 1996, 37(51), 9161-9164. doi: 10.1016/S0040-4039(96)02148-X
  42. Sills, G.J.; Butler, E.; Thompson, G.G.; Brodie, M.J. Vigabatrin and tiagabine are pharmacologically different drugs. A pre-clinical study. Seizure, 1999, 8(7), 404-411. doi: 10.1053/seiz.1999.0326 PMID: 10600581
  43. Richens, A.; Chadwick, D.W.; Duncan, J.S.; Dam, M.; Gram, L.; Mikkelsen, M.; Morrow, J.; Mengel, H.; Shu, V.; McKelvy, J.F.; Pierce, M.W. Adjunctive treatment of partial seizures with tiagabine: A placebo-controlled trial. Epilepsy Res., 1995, 21(1), 37-42. doi: 10.1016/0920-1211(95)00006-V PMID: 7641674
  44. Fritz, N.; Glogau, S.; Hoffmann, J.; Rademacher, M.; Elger, C.E.; Helmstaedter, C. Efficacy and cognitive side effects of tiagabine and topiramate in patients with epilepsy. Epilepsy Behav., 2005, 6(3), 373-381. doi: 10.1016/j.yebeh.2005.01.002 PMID: 15820346
  45. Uldall, P.; Bulteau, C.; Pedersen, S.A.; Dulac, O.; Lyby, K. Tiagabine adjunctive therapy in children with refractory epilepsy: a single-blind dose escalating study. Epilepsy Res., 2000, 42(2-3), 159-168. doi: 10.1016/S0920-1211(00)00173-X PMID: 11074188
  46. Schmidt, D.; Gram, L.; Brodie, M.; Krämer, G.; Perucca, E.; Kälviäinen, R.; Elger, C.E. Tiagabine in the treatment of epilepsy - a clinical review with a guide for the prescribing physician. Epilepsy Res., 2000, 41(3), 245-251. doi: 10.1016/S0920-1211(00)00149-2 PMID: 10962215
  47. Al-Otaibi, F. An overview of structurally diversified anticonvulsant agents. Acta Pharm., 2019, 69(3), 321-344. doi: 10.2478/acph-2019-0023 PMID: 31259739
  48. Lee, E.C.; Chorghade, M.S.; Petersen, H. Efficient syntheses of regioisomers of tiagabine. Abstr. Pap. Am. Chem. Soc., 1995, 209, 43.
  49. Singh, B.K.; White-Scott, S. Role of topiramate in adults with intractable epilepsy, mental retardation, and developmental disabilities. Seizure, 2002, 11(1), 47-50. doi: 10.1053/seiz.2001.0571 PMID: 11888260
  50. de Araujo Filho, G.M.; Pascalicchio, T.F.; Lin, K.; Sousa, P.S.; Yacubian, E.M.T. Neuropsychiatric profiles of patients with juvenile myoclonic epilepsy treated with valproate or topiramate. Epilepsy Behav., 2006, 8(3), 606-609. doi: 10.1016/j.yebeh.2006.01.016 PMID: 16504593
  51. Brandt, C.; Lahr, D.; May, T.W. Cognitive adverse events of topiramate in patients with epilepsy and intellectual disability. Epilepsy Behav., 2015, 45, 261-264. doi: 10.1016/j.yebeh.2014.12.043 PMID: 25843340
  52. Hernández-Díaz, S.; Smith, C.R.; Shen, A.; Mittendorf, R.; Hauser, W.A.; Yerby, M.; Holmes, L.B. Comparative safety of antiepileptic drugs during pregnancy. Neurology, 2012, 78(21), 1692-1699. doi: 10.1212/WNL.0b013e3182574f39 PMID: 22551726
  53. Baker, G.A.; Currie, N.G.T.; Light, M.J.; Schneiderman, J.H. The effects of adjunctive topiramate therapy on seizure severity and health-related quality of life in patients with refractory epilepsy-a Canadian study. Seizure, 2002, 11(1), 6-15. doi: 10.1053/seiz.2001.0581 PMID: 11888254
  54. Perucca, E. A pharmacological and clinical review on topiramate, a new antiepileptic drug. Pharmacol. Res., 1997, 35(4), 241-256. doi: 10.1006/phrs.1997.0124 PMID: 9264038
  55. Mula, M. Topiramate and cognitive impairment: evidence and clinical implications. Ther. Adv. Drug Saf., 2012, 3(6), 279-289. doi: 10.1177/2042098612455357 PMID: 25083242
  56. Kudin, A.P.; Debska-Vielhaber, G.; Vielhaber, S.; Elger, C.E.; Kunz, W.S. The mechanism of neuroprotection by topiramate in an animal model of epilepsy. Epilepsia, 2004, 45(12), 1478-1487. doi: 10.1111/j.0013-9580.2004.13504.x PMID: 15571505
  57. Saeidian, H.; Abdoli, M. The first general protocol for N -monoalkylation of sulfamate esters: benign synthesis of N -alkyl Topiramate (anticonvulsant drug) derivatives. J. Sulfur Chem., 2015, 36(5), 463-470. doi: 10.1080/17415993.2015.1069294
  58. Reife, R.; Pledger, G.; Wu, S.C. Topiramate as add-on therapy: pooled analysis of randomized controlled trials in adults. Epilepsia, 2000, 41(s1), 66-71. doi: 10.1111/j.1528-1157.2000.tb02175.x PMID: 10768304
  59. Marcotte, D. Use of topiramate, a new anti-epileptic as a mood stabilizer. J. Affect. Disord., 1998, 50(2-3), 245-251. doi: 10.1016/S0165-0327(98)00110-4 PMID: 9858083
  60. Shank, R.P.; Maryanoff, B.E. Molecular pharmacodynamics, clinical therapeutics, and pharmacokinetics of topiramate. CNS Neurosci. Ther., 2008, 14(2), 120-142. doi: 10.1111/j.1527-3458.2008.00041.x PMID: 18482025
  61. Stephen, L.J.; Sills, G.J.; Brodie, M.J. Topiramate in refractory epilepsy: a prospective observational study. Epilepsia, 2000, 41(8), 977-980. doi: 10.1111/j.1528-1157.2000.tb00282.x PMID: 10961624
  62. Lazarini-Lopes, W.; Do Val-da Silva, R.A.; da Silva-Júnior, R.M.P.; Leite, J.P.; Garcia-Cairasco, N. The anticonvulsant effects of cannabidiol in experimental models of epileptic seizures: From behavior and mechanisms to clinical insights. Neurosci. Biobehav. Rev., 2020, 111, 166-182. doi: 10.1016/j.neubiorev.2020.01.014 PMID: 31954723
  63. Leo, A.; Russo, E.; Elia, M. Cannabidiol and epilepsy: Rationale and therapeutic potential. Pharmacol. Res., 2016, 107, 85-92. doi: 10.1016/j.phrs.2016.03.005 PMID: 26976797
  64. Tamir, I.; Mechoulam, R.; Meyer, A.Y. Cannabidiol and phenytoin: a structural comparison. J. Med. Chem., 1980, 23(2), 220-223. doi: 10.1021/jm00176a022 PMID: 7359539
  65. Lago-Fernandez, A.; Redondo, V.; Hernandez-Folgado, L. New methods for the synthesis of cannabidiol derivatives. In: Cannabinoids and Their Receptors; REGGIO, P.H., Ed.; Elsevier Academic Press Inc.: San Diego, 2017; pp. 237-257.
  66. Thiele, E.A.; Marsh, E.D.; French, J.A.; Mazurkiewicz-Beldzinska, M.; Benbadis, S.R.; Joshi, C.; Lyons, P.D.; Taylor, A.; Roberts, C.; Sommerville, K.; Gunning, B.; Gawlowicz, J.; Lisewski, P.; Mazurkiewicz Beldzinska, M.; Mitosek Szewczyk, K.; Steinborn, B.; Zolnowska, M.; Hughes, E.; McLellan, A.; Benbadis, S.; Ciliberto, M.; Clark, G.; Dlugos, D.; Filloux, F.; Flamini, R.; French, J.; Frost, M.; Haut, S.; Joshi, C.; Kapoor, S.; Kessler, S.; Laux, L.; Lyons, P.; Marsh, E.; Moore, D.; Morse, R.; Nagaraddi, V.; Rosenfeld, W.; Seltzer, L.; Shellhaas, R.; Sullivan, J.; Thiele, E.; Thio, L.L.; Wang, D.; Wilfong, A. Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet, 2018, 391(10125), 1085-1096. doi: 10.1016/S0140-6736(18)30136-3 PMID: 29395273
  67. Groeneveld, G.J.; Martin, J.H. Parasitic pharmacology: A plausible mechanism of action for cannabidiol. Br. J. Clin. Pharmacol., 2020, 86(2), 189-191. doi: 10.1111/bcp.14028 PMID: 31290177
  68. Devinsky, O.; Patel, A.D.; Thiele, E.A.; Wong, M.H.; Appleton, R.; Harden, C.L.; Greenwood, S.; Morrison, G.; Sommerville, K. Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. Neurology, 2018, 90(14), e1204-e1211. doi: 10.1212/WNL.0000000000005254 PMID: 29540584
  69. Devinsky, O.; Marsh, E.; Friedman, D. Cannabidiol in patients with treatment-resistant epilepsy – Authors’ reply. Lancet Neurol., 2016, 15(6), 545-546. doi: 10.1016/S1474-4422(16)00120-4 PMID: 27302119
  70. Devinsky, O.; Marsh, E.; Friedman, D.; Thiele, E.; Laux, L.; Sullivan, J.; Miller, I.; Flamini, R.; Wilfong, A.; Filloux, F.; Wong, M.; Tilton, N.; Bruno, P.; Bluvstein, J.; Hedlund, J.; Kamens, R.; Maclean, J.; Nangia, S.; Singhal, N.S.; Wilson, C.A.; Patel, A.; Cilio, M.R. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol., 2016, 15(3), 270-278. doi: 10.1016/S1474-4422(15)00379-8 PMID: 26724101
  71. Costa, A.M.; Senn, L.; Anceschi, L.; Brighenti, V.; Pellati, F.; Biagini, G. Antiseizure effects of fully characterized non-psychoactive Cannabis sativa L. extracts in the repeated 6-Hz corneal stimulation test. Pharmaceuticals (Basel), 2021, 14(12), 1259. doi: 10.3390/ph14121259 PMID: 34959660
  72. Senn, L.; Cannazza, G.; Biagini, G. Receptors and channels possibly mediating the effects of phytocannabinoids on seizures and epilepsy. Pharmaceuticals (Basel), 2020, 13(8), 174. doi: 10.3390/ph13080174 PMID: 32751761
  73. Cerne, R.; Lippa, A.; Poe, M.M.; Smith, J.L.; Jin, X.; Ping, X.; Golani, L.K.; Cook, J.M.; Witkin, J.M. GABAkines – Advances in the discovery, development, and commercialization of positive allosteric modulators of GABAA receptors. Pharmacol. Ther., 2022, 234, 108035. doi: 10.1016/j.pharmthera.2021.108035 PMID: 34793859
  74. Aida, V.; Niedzielko, T.L.; Szaflarski, J.P.; Floyd, C.L. Acute administration of perampanel, an AMPA receptor antagonist, reduces cognitive impairments after traumatic brain injury in rats. Exp. Neurol., 2020, 327, 113222. doi: 10.1016/j.expneurol.2020.113222 PMID: 32027929
  75. Lee, S.M.; Asress, S.; Hales, C.M.; Gearing, M.; Vizcarra, J.C.; Fournier, C.N.; Gutman, D.A.; Chin, L.S.; Li, L.; Glass, J.D. TDP-43 cytoplasmic inclusion formation is disrupted in C9orf72-associated amyotrophic lateral sclerosis/frontotemporal lobar degeneration. Brain Commun., 2019, 1(1), fcz014. doi: 10.1093/braincomms/fcz014 PMID: 31633109
  76. Tremblay, G.; Howard, D.; Tsong, W.; Patel, V.; De Rosendo, J. Cost-effectiveness of perampanel for the treatment of primary generalized tonic-clonic seizures (PGTCS) in epilepsy: A Spanish perspective. Epilepsy Behav., 2018, 86, 108-115. doi: 10.1016/j.yebeh.2018.06.002 PMID: 30001911
  77. Raedler, L. A. Fycompa (Perampanel hydrate) receives expanded indication for primary generalized tonic-clonic seizures Am. Health Drug Benefits, 2016, 9(Spec Feature), 88.
  78. Chang, F.M.; Fan, P.C.; Weng, W.C.; Chang, C.H.; Lee, W.T. The efficacy of perampanel in young children with drug-resistant epilepsy. Seizure, 2020, 75, 82-86. doi: 10.1016/j.seizure.2019.12.024 PMID: 31901668
  79. French, J.A.; Krauss, G.L.; Biton, V.; Squillacote, D.; Yang, H.; Laurenza, A.; Kumar, D.; Rogawski, M.A. Adjunctive perampanel for refractory partial-onset seizures: Randomized phase III study 304. Neurology, 2012, 79(6), 589-596. doi: 10.1212/WNL.0b013e3182635735 PMID: 22843280
  80. McGee, J.H.; Erikson, D.J.; Galbreath, C.; Willigan, D.A.; Sofia, R.D. Acute, subchronic, and chronic toxicity studies with felbamate, 2-phenyl-1,3-propanediol dicarbamate. Toxicol. Sci., 1998, 45(2), 225-232. doi: 10.1093/toxsci/45.2.225 PMID: 9848129
  81. Mazzocchetti, P.; Mancini, A.; Sciaccaluga, M.; Megaro, A.; Bellingacci, L.; Di Filippo, M.; Cesarini, E.N.; Romoli, M.; Carrano, N.; Gardoni, F.; Tozzi, A.; Calabresi, P.; Costa, C. Low doses of Perampanel protect striatal and hippocampal neurons against in vitro ischemia by reversing the ischemia-induced alteration of AMPA receptor subunit composition. Neurobiol. Dis., 2020, 140, 104848. doi: 10.1016/j.nbd.2020.104848 PMID: 32222474
  82. Hibi, S.; Ueno, K.; Nagato, S.; Kawano, K.; Ito, K.; Norimine, Y.; Takenaka, O.; Hanada, T.; Yonaga, M. Discovery of 2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydro-pyridin-3-yl)benzonitrile (perampanel): A novel, noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropa-noic acid (AMPA) receptor antagonist. J. Med. Chem., 2012, 55(23), 10584-10600. doi: 10.1021/jm301268u PMID: 23181587
  83. Marom, E.; Rubnov, S. Process and intermediates for the preparation of perampanel. US Patent US10111867, 2018.
  84. Sullivan, B.J.; Ammanuel, S.; Kipnis, P.A.; Araki, Y.; Huganir, R.L.; Kadam, S.D. Low-dose perampanel rescues cortical gamma dysregulation associated with parvalbumin interneuron glua2 upregulation in epileptic Syngap1+/− mice. Biol. Psychiatry, 2020, 87(9), 829-842. doi: 10.1016/j.biopsych.2019.12.025 PMID: 32107006
  85. Brigo, F.; Lattanzi, S.; Rohracher, A. Perampanel in the treatment of status epilepticus: a systematic review of the literature. Epilepsia, 2018, 59(S120), S. doi: 10.1016/j.yebeh.2018.07.004
  86. Galati, C.; Pironti, E.; Cucinotta, F. Perampanel treatment in drug-resistant focal epilepsy with de novo mutation CACNA1H: characteristics and clinical outcome. Eur. Neuropsychopharmacol., 2017, 27, S1110-S.
  87. Pistovcakova, J.; Makatsori, A.; Sulcova, A.; Jezova, D. Felbamate reduces hormone release and locomotor hypoactivity induced by repeated stress of social defeat in mice. Eur. Neuropsychopharmacol., 2005, 15(2), 153-158. doi: 10.1016/j.euroneuro.2004.08.007 PMID: 15695059
  88. Avanzini, G.; Canger, R.; Dalla Bernardina, B.; Vigevano, F. Felbamate in therapy-resistant epilepsy: an Italian experience. Epilepsy Res., 1996, 25(3), 249-255. doi: 10.1016/S0920-1211(96)00070-8 PMID: 8956923
  89. Contin, M.; Balboni, M.; Callegati, E.; Candela, C.; Albani, F.; Riva, R.; Baruzzi, A. Simultaneous liquid chromatographic determination of lamotrigine, oxcarbazepine monohydroxy derivative and felbamate in plasma of patients with epilepsy. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 828(1-2), 113-117. doi: 10.1016/j.jchromb.2005.09.009 PMID: 16182617
  90. Brodie, M.; Pellock, J. Taming the brain storms: felbamate updated. Lancet, 1995, 346(8980), 918-919. doi: 10.1016/S0140-6736(95)91550-8 PMID: 7564721
  91. Luszczki, J.J.; Andres-Mach, M.M.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J. Levetiracetam and felbamate interact both pharmacodynamically and pharmacokinetically: an isobolographic analysis in the mouse maximal electroshock model. Epilepsia, 2007, 48(4), 806-815. doi: 10.1111/j.1528-1167.2006.00964.x PMID: 17284299
  92. Ketter, T.A.; Malow, B.A.; Flamini, R.; Ko, D.; White, S.R.; Post, R.M.; Theodore, W.H. Felbamate monotherapy has stimulant-like effects in patients with epilepsy. Epilepsy Res., 1996, 23(2), 129-137. doi: 10.1016/0920-1211(95)00089-5 PMID: 8964274
  93. Hen, N.; Bialer, M.; Yagen, B. Syntheses and evaluation of anticonvulsant activity of novel branched alkyl carbamates. J. Med. Chem., 2012, 55(6), 2835-2845. doi: 10.1021/jm201751x PMID: 22339381
  94. Peña-López, M.; Neumann, H.; Beller, M. Iron-catalyzed reaction of urea with alcohols and amines: a safe alternative for the synthesis of primary carbamates. ChemSusChem, 2016, 9(16), 2233-2238. doi: 10.1002/cssc.201600587 PMID: 27403875
  95. Ebert, U.; Reissmüller, E.; Löscher, W. The new antiepileptic drugs lamotrigine and felbamate are effective in phenytoin-resistant kindled rats. Neuropharmacology, 2000, 39(10), 1893-1903. doi: 10.1016/S0028-3908(00)00039-3 PMID: 10884570
  96. Hussain, S.A.; Asilnejad, B.; Heesch, J.; Navarro, M.; Ji, M.; Shrey, D.W.; Rajaraman, R.R.; Sankar, R. Felbamate in the treatment of refractory epileptic spasms. Epilepsy Res., 2020, 161, 106284. doi: 10.1016/j.eplepsyres.2020.106284 PMID: 32058261
  97. Mazarati, A.M.; Baldwin, R.A.; Sofia, R.D.; Wasterain, C.G. Felbamate in experimental model of status epilepticus. Epilepsia, 2000, 41(2), 123-127. doi: 10.1111/j.1528-1157.2000.tb00130.x PMID: 10691107
  98. Pal, R.; Singh, K.; Khan, S.A.; Chawla, P.; Kumar, B.; Akhtar, M.J. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur. J. Med. Chem., 2021, 226, 113890. doi: 10.1016/j.ejmech.2021.113890 PMID: 34628237
  99. Bialer, M.; Johannessen, S.I.; Koepp, M.J.; Levy, R.H.; Perucca, E.; Perucca, P.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the fifteenth eilat conference on new antiepileptic drugs and devices (EILAT XV). II. Drugs in more advanced clinical development. Epilepsia, 2020, 61(11), 2365-2385. doi: 10.1111/epi.16726 PMID: 33165915
  100. Lechuga, L.; Franz, D.N. Everolimus as adjunctive therapy for tuberous sclerosis complex-associated partial-onset seizures. Expert Rev. Neurother., 2019, 19(10), 913-925. doi: 10.1080/14737175.2019.1635457 PMID: 31335226
  101. Samueli, S.; Abraham, K.; Dressler, A.; Gröppel, G.; Mühlebner-Fahrngruber, A.; Scholl, T.; Kasprian, G.; Laccone, F.; Feucht, M. Efficacy and safety of Everolimus in children with TSC - associated epilepsy – Pilot data from an open single-center prospective study. Orphanet J. Rare Dis., 2016, 11(1), 145. doi: 10.1186/s13023-016-0530-z PMID: 27809914
  102. Krueger, D.A.; Wilfong, A.A.; Holland-Bouley, K.; Anderson, A.E.; Agricola, K.; Tudor, C.; Mays, M.; Lopez, C.M.; Kim, M.O.; Franz, D.N. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann. Neurol., 2013, 74(5), 679-687. doi: 10.1002/ana.23960 PMID: 23798472
  103. Kuhn, B.; Jacobsen, W.; Christians, U.; Benet, L.Z.; Kollman, P.A. Metabolism of sirolimus and its derivative everolimus by cytochrome P450 3A4: insights from docking, molecular dynamics, and quantum chemical calculations. J. Med. Chem., 2001, 44(12), 2027-2034. doi: 10.1021/jm010079y PMID: 11384247
  104. Supurgibekov, M. B.; Shestakov, A. N.; Sharkov, D. E. New method for producing everolimus. RU2716714-C1,
  105. Fronza, G.; Fuganti, C.; Grasselli, P.; Mele, A. The mode of bakers’ yeast transformation of 3-chloropropiophenone and related ketones. Synthesis of (2S)-2-2Hpropiophenone, (R)-fluoxetine, and (R)- and (S)-fenfluramine. J. Org. Chem., 1991, 56(21), 6019-6023. doi: 10.1021/jo00021a011
  106. Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in adults. Lancet, 2019, 393(10172), 689-701. doi: 10.1016/S0140-6736(18)32596-0 PMID: 30686584
  107. Fuller, R.W.; Snoddy, H.D.; Clemens, J.A.; Molloy, B.B. Effect of norfenfluramine and two structural analogues on brain 5-hydroxyindoles and serum prolactin in rats. J. Pharm. Pharmacol., 2011, 34(7), 449-450. doi: 10.1111/j.2042-7158.1982.tb04755.x PMID: 6181246
  108. Goument, B.; Duhamel, L.; Mauge, R. Asymmetric syntheses of (S)-fenfluramine using sharpless epoxidation methods. Tetrahedron, 1994, 50(1), 171-188. doi: 10.1016/S0040-4020(01)80743-2
  109. Tu, W.; Qian, S. Anti-epileptic effect of 16-O-acetyldigitoxigenin via suppressing mTOR signaling pathway. Cell. Mol. Biol., 2019, 65(5), 59-63. doi: 10.14715/cmb/2019.65.5.10 PMID: 31304908
  110. Brandt, C.; Hillmann, P.; Noack, A.; Römermann, K.; Öhler, L.A.; Rageot, D.; Beaufils, F.; Melone, A.; Sele, A.M.; Wymann, M.P.; Fabbro, D.; Löscher, W. The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology, 2018, 140, 107-120. doi: 10.1016/j.neuropharm.2018.08.002 PMID: 30081001
  111. Nakamura, M.; Cho, J.H.; Shin, H.; Jang, I.S. Effects of cenobamate (YKP3089), a newly developed anti-epileptic drug, on voltage-gated sodium channels in rat hippocampal CA3 neurons. Eur. J. Pharmacol., 2019, 855, 175-182. doi: 10.1016/j.ejphar.2019.05.007 PMID: 31063770
  112. Sills, G. The mechanisms of action of gabapentin and pregabalin. Curr. Opin. Pharmacol., 2006, 6(1), 108-113. doi: 10.1016/j.coph.2005.11.003 PMID: 16376147
  113. Mantegazza, M.; Curia, G.; Biagini, G.; Ragsdale, D.S.; Avoli, M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol., 2010, 9(4), 413-424. doi: 10.1016/S1474-4422(10)70059-4 PMID: 20298965
  114. Kim, D.Y.; Moon, J.; Shin, Y.W.; Lee, S.T.; Jung, K.H.; Park, K.I.; Jung, K.Y.; Kim, M.; Lee, S.; Yu, K.S.; Jang, I.J.; Song, K.; Chu, K.; Lee, S. Usefulness of saliva for perampanel therapeutic drug monitoring. Epilepsia, 2020, 61(6), 1120-1128. doi: 10.1111/epi.16513 PMID: 32378757
  115. Park, S.; Lee, H.; Jung, D. Long-term cognitive effects of oxcarbazepine monotherapy in epilepsy patients. J. Neurol. Sci., 2005, 238, S138-S.
  116. Ide, M.; Kato, T.; Nakata, M.; Saito, K.; Yoshida, T.; Awaya, T.; Heike, T. A granulocytosis associated with rufinamide: A case report. Brain Dev., 2015, 37(8), 825-828. doi: 10.1016/j.braindev.2014.12.010 PMID: 25619447
  117. Spina, E.; Pisani, F.; de Leon, J. Clinically significant pharmacokinetic drug interactions of antiepileptic drugs with new antidepressants and new antipsychotics. Pharmacol. Res., 2016, 106, 72-86. doi: 10.1016/j.phrs.2016.02.014 PMID: 26896788
  118. Franco, V.; Gatti, G.; Mazzucchelli, I.; Marchiselli, R.; Fattore, C.; Rota, P.; Galimberti, C.A.; Capovilla, G.; Beccaria, F.; De Giorgis, V.; Johannessen Landmark, C.; Perucca, E. Relationship between saliva and plasma rufinamide concentrations in patients with epilepsy. Epilepsia, 2020, 61(7), e79-e84. doi: 10.1111/epi.16584 PMID: 32562438
  119. Bootsma, H.P.R.; Vos, A.M.; Hulsman, J.; Lambrechts, D.; Leenen, L.; Majoie, M.; Savelkoul, M.; Schellekens, A.; Aldenkamp, A.P. Lamotrigine in clinical practice: Long-term experience in patients with refractory epilepsy referred to a tertiary epilepsy center. Epilepsy Behav., 2008, 12(2), 262-268. doi: 10.1016/j.yebeh.2007.10.004 PMID: 18093878
  120. Brodie, M.J.; Richens, A.; Yuen, A.W.C. Double-blind comparison of lamotrigine and carbamazepine in newly diagnosed epilepsy. Lancet, 1995, 345(8948), 476-479. doi: 10.1016/S0140-6736(95)90581-2 PMID: 7710545
  121. Brodie, M.J. Zonisamide as adjunctive therapy for refractory partial seizures. Epilepsy Res., 2006, 68(Suppl. 2), S11-S16. doi: 10.1016/j.eplepsyres.2005.11.005 PMID: 16316744
  122. Glauser, T.; Ben-Menachem, E.; Bourgeois, B.; Cnaan, A.; Guerreiro, C.; Kälviäinen, R.; Mattson, R.; French, J.A.; Perucca, E.; Tomson, T. Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia, 2013, 54(3), 551-563. doi: 10.1111/epi.12074 PMID: 23350722
  123. Rocamora, R.; Peltola, J.; Assenza, G.; McMurray, R.; Villanueva, V. Safety, tolerability and effectiveness of transition to eslicarbazepine acetate from carbamazepine or oxcarbazepine in clinical practice. Seizure, 2020, 75, 121-128. doi: 10.1016/j.seizure.2019.12.022 PMID: 31981862
  124. Weissinger, F.; Losch, F.; Winter, Y.; Brecht, S.; Lendemans, D.; Kockelmann, E. Effectiveness of eslicarbazepine acetate in dependency of baseline anticonvulsant therapy: Results from a German prospective multicenter clinical practice study. Epilepsy Behav., 2019, 101(Pt A), 106574. doi: 10.1016/j.yebeh.2019.106574 PMID: 31678808
  125. Kirkham, F.; Auvin, S.; Moreira, J.; Gama, H.; Falcão, A.C.; Rocha, J.F.; Soares-da-Silva, P. Efficacy and safety of eslicarbazepine acetate as adjunctive therapy for refractory focal-onset seizures in children: A double-blind, randomized, placebo-controlled, parallel-group, multicenter, phase-III clinical trial. Epilepsy Behav., 2020, 105, 106962. doi: 10.1016/j.yebeh.2020.106962 PMID: 32151803
  126. Villanueva, V.; Bermejo, P.; Montoya, J.; Massot-Tarrús, A.; Galiano, M.L.; Toledo, M.; Rodriguez-Uranga, J.J.; Bertol, V.; Mauri, J.Á.; Poza, J.J.; Bonet, M.; Castro-Vilanova, M.D.; Ruiz-Giménez, J.; López-González, F.J.; Rodríguez-Osorio, X.; Tortosa-Conesa, D.; Ojeda, J.; Giner, P.; Garcés, M.; Alvarez, B.M.; Quiroga-Subirana, P.; Esteve, P.; Baiges, J.J.; Hampel, K. MONOZEB: Long-term observational study of eslicarbazepine acetate monotherapy. Epilepsy Behav., 2019, 97, 51-59. doi: 10.1016/j.yebeh.2019.05.003 PMID: 31181429
  127. Verrotti, A.; Loiacono, G.; Rossi, A.; Zaccara, G. Eslicarbazepine acetate: An update on efficacy and safety in epilepsy. Epilepsy Res., 2014, 108(1), 1-10. doi: 10.1016/j.eplepsyres.2013.10.005 PMID: 24225327
  128. Unverferth, K.; Engel, J.; Höfgen, N.; Rostock, A.; Günther, R.; Lankau, H.J.; Menzer, M.; Rolfs, A.; Liebscher, J.; Müller, B.; Hofmann, H.J. Synthesis, anticonvulsant activity, and structure-activity relationships of sodium channel blocking 3-aminopyrroles. J. Med. Chem., 1998, 41(1), 63-73. doi: 10.1021/jm970327j PMID: 9438023
  129. Ravinder, B.; Rajeshwar Reddy, S.; Sridhar, M.; Murali Mohan, M.; Srinivas, K.; Panasa Reddy, A.; Bandichhor, R. An efficient synthesis for eslicarbazepine acetate, oxcarbazepine, and carbamazepine. Tetrahedron Lett., 2013, 54(22), 2841-2844. doi: 10.1016/j.tetlet.2013.03.089
  130. Chang, R.S.; Lui, H.K.K.; Lui, H.T.C.; Leung, C.Y.W.; Leung, Y.H.I.; Wang, Y.O. Efficacy upon 12-weeks after achievement of maximal dose and tolerability of lacosamide as an adjunctive therapy in epilepsy: Real world clinical experience. J. Neurol. Sci., 2020, 409, 116601. doi: 10.1016/j.jns.2019.116601 PMID: 31801052
  131. Ben-Menachem, E.; Grebe, H.P.; Terada, K.; Jensen, L.; Li, T.; De Backer, M.; Steiniger-Brach, B.; Gasalla, T.; Brock, M.; Biton, V. Long‐term safety and efficacy of lacosamide and controlled‐release carbamazepine monotherapy in patients with newly diagnosed epilepsy. Epilepsia, 2019, 60(12), 2437-2447. doi: 10.1111/epi.16381 PMID: 31755090
  132. Curia, G.; Biagini, G.; Perucca, E.; Avoli, M. Lacosamide. CNS Drugs, 2009, 23(7), 555-568. doi: 10.2165/00023210-200923070-00002 PMID: 19552484
  133. Lattanzi, S.; Cagnetti, C.; Foschi, N.; Provinciali, L.; Silvestrini, M. Lacosamide monotherapy for partial onset seizures. Seizure, 2015, 27, 71-74. doi: 10.1016/j.seizure.2015.03.003 PMID: 25891931
  134. King, A.M.; Salomé, C.; Salomé-Grosjean, E.; De Ryck, M.; Kaminski, R.; Valade, A.; Stables, J.P.; Kohn, H. Primary amino acid derivatives: substitution of the 4′-N′-benzylamide site in (R)-N′-benzyl 2-amino-3-methyl-butanamide, (R)-N′-benzyl 2-amino-3,3-dimethylbut-anamide, and (R)-N′-benzyl 2-amino-3-methoxypropiona-mide provides potent anticonvulsants with pain-attenuating properties. J. Med. Chem., 2011, 54(19), 6417-6431. doi: 10.1021/jm200759t PMID: 21861463
  135. Gavatha, M.; Ioannou, I.; Papavasiliou, A.S. Efficacy and tolerability of oral lacosamide as adjunctive therapy in pediatric patients with pharmacoresistant focal epilepsy. Epilepsy Behav., 2011, 20(4), 691-693. doi: 10.1016/j.yebeh.2011.02.005 PMID: 21406334
  136. Morieux, P.; Salomé, C.; Park, K.D.; Stables, J.P.; Kohn, H. The structure-activity relationship of the 3-oxy site in the anticonvulsant (R)-N-benzyl 2-acetamido-3-methoxypro-pionamide. J. Med. Chem., 2010, 53(15), 5716-5726. doi: 10.1021/jm100508m PMID: 20614888
  137. Chen, M.D.; Yang, A.J.; Li, Z.; Hu, F-F.; Yang, J-T.; Gao, S-H.; Zhang, F-L.; Zhao, C-J. Concise synthesis of lacosamide with high chiral purity. ACS Omega, 2019, 4(4), 6546-6550. doi: 10.1021/acsomega.8b02564
  138. Helmstaedter, C.; Witt, J.A. The longer-term cognitive effects of adjunctive antiepileptic treatment with lacosamide in comparison with lamotrigine and topiramate in a naturalistic outpatient setting. Epilepsy Behav., 2013, 26(2), 182-187. doi: 10.1016/j.yebeh.2012.11.052 PMID: 23318473
  139. Olson, H.E.; Loddenkemper, T.; Vendrame, M.; Poduri, A.; Takeoka, M.; Bergin, A.M.; Libenson, M.H.; Duffy, F.H.; Rotenberg, A.; Coulter, D.; Bourgeois, B.F.; Kothare, S.V. Rufinamide for the treatment of epileptic spasms. Epilepsy Behav., 2011, 20(2), 344-348. doi: 10.1016/j.yebeh.2010.11.023 PMID: 21233024
  140. Alsaad, A.M.S.; Koren, G. Exposure to rufinamide and risks of CNS adverse events in drug-resistant epilepsy: a meta-analysis of randomized, placebo-controlled trials. Br. J. Clin. Pharmacol., 2014, 78(6), 1264-1271. doi: 10.1111/bcp.12479 PMID: 25132372
  141. Deeks, E.D.; Scott, L.J. Rufinamide. CNS Drugs, 2006, 20(9), 751-760. doi: 10.2165/00023210-200620090-00007 PMID: 16953653
  142. Gáll, Z.; Vancea, S.; Szilágyi, T.; Gáll, O.; Kolcsár, M. Dose-dependent pharmacokinetics and brain penetration of rufinamide following intravenous and oral administration to rats. Eur. J. Pharm. Sci., 2015, 68, 106-113. doi: 10.1016/j.ejps.2014.12.012 PMID: 25530452
  143. Yıldız, E.P.; Hızlı, Z.; Bektaş, G.; Ulak-Özkan, M.; Tatlı, B.; Aydınlı, N.; Çalışkan, M.; Özmen, M. Efficacy of rufinamide in childhood refractory epilepsy. Turk. J. Pediatr., 2018, 60(3), 238-243. doi: 10.24953/turkjped.2018.03.002 PMID: 30511535
  144. Chen, B.H.; Ahn, J.H.; Park, J.H.; Song, M.; Kim, H.; Lee, T.K.; Lee, J.C.; Kim, Y.M.; Hwang, I.K.; Kim, D.W.; Lee, C.H.; Yan, B.C.; Kang, I.J.; Won, M.H. Rufinamide, an antiepileptic drug, improves cognition and increases neurogenesis in the aged gerbil hippocampal dentate gyrus via increasing expressions of IGF-1, IGF-1R and p -CREB. Chem. Biol. Interact., 2018, 286, 71-77. doi: 10.1016/j.cbi.2018.03.007 PMID: 29548728
  145. Zhang, P.; Russell, M.G.; Jamison, T.F. Continuous flow total synthesis of rufinamide. Org. Process Res. Dev., 2014, 18(11), 1567-1570. doi: 10.1021/op500166n
  146. Sirven, J.I.; Noe, K.; Hoerth, M.; Drazkowski, J. Antiepileptic drugs 2012: recent advances and trends. Mayo Clin. Proc., 2012, 87(9), 879-889. doi: 10.1016/j.mayocp.2012.05.019 PMID: 22958992
  147. Gilchrist, J.; Dutton, S.; Diaz-Bustamante, M.; McPherson, A.; Olivares, N.; Kalia, J.; Escayg, A.; Bosmans, F. Nav1.1 modulation by a novel triazole compound attenuates epileptic seizures in rodents. ACS Chem. Biol., 2014, 9(5), 1204-1212. doi: 10.1021/cb500108p PMID: 24635129
  148. Mudd, W.H.; Stevens, E.P. An efficient synthesis of rufinamide, an antiepileptic drug. Tetrahedron Lett., 2010, 51(24), 3229-3231. doi: 10.1016/j.tetlet.2010.04.060
  149. Besag, F.M.C.; Dulac, O.; Alving, J.; Mullens, E.L. Long-term safety and efficacy of lamotrigine (Lamictal®) in paediatric patients with epilepsy. Seizure, 1997, 6(1), 51-56. doi: 10.1016/S1059-1311(97)80053-2 PMID: 9061824
  150. Machado, R.A.; García, V.F.; Astencio, A.G.; Cuartas, V.B. Efficacy and tolerability of lamotrigine in Juvenile Myoclonic Epilepsy in adults: A prospective, unblinded randomized controlled trial. Seizure, 2013, 22(10), 846-855. doi: 10.1016/j.seizure.2013.07.006 PMID: 23916525
  151. Paraskevas, G.P.; Triantafyllou, N.I.; Kapaki, E.; Limpitaki, G.; Petropoulou, O.; Vassilopoulos, D. Add-on lamotrigine treatment and plasma glutamate levels in epilepsy: Relation to treatment response. Epilepsy Res., 2006, 70(2-3), 184-189. doi: 10.1016/j.eplepsyres.2006.05.004 PMID: 16762531
  152. Grover, G.; Nath, R.; Bhatia, R.; Akhtar, M.J. Synthetic and therapeutic perspectives of nitrogen containing heterocycles as anti-convulsants. Bioorg. Med. Chem., 2020, 28(15), 115585. doi: 10.1016/j.bmc.2020.115585 PMID: 32631563
  153. Leitch, D.C.; John, M.P.; Slavin, P.A.; Searle, A.D. An evaluation of multiple catalytic systems for the cyanation of 2,3-dichlorobenzoyl chloride: application to the synthesis of lamotrigine. Org. Process Res. Dev., 2017, 21(11), 1815-1821. doi: 10.1021/acs.oprd.7b00262
  154. Tang, L.; Ge, L.; Wu, W.; Yang, X.; Rui, P.; Wu, Y.; Yu, W.; Wang, X. Lamotrigine versus valproic acid monotherapy for generalised epilepsy: A meta-analysis of comparative studies. Seizure, 2017, 51, 95-101. doi: 10.1016/j.seizure.2017.08.001 PMID: 28826049
  155. Kaminow, L.; Schimschock, J.R.; Hammer, A.E.; Vuong, A. Lamotrigine monotherapy compared with carbamazepine, phenytoin, or valproate monotherapy in patients with epilepsy. Epilepsy Behav., 2003, 4(6), 659-666. doi: 10.1016/j.yebeh.2003.08.033 PMID: 14698699
  156. Brodie, M.J. Zonisamide clinical trials: European experience. Seizure, 2004, 13(Suppl. 1), S66-S70. doi: 10.1016/j.seizure.2004.04.010 PMID: 15511696
  157. Baulac, M. Introduction to zonisamide. Epilepsy Res., 2006, 68(Suppl. 2), S3-S9. doi: 10.1016/j.eplepsyres.2005.11.004 PMID: 16413170
  158. Borowicz, K.K.; Luszczki, J.J.; Sobieszek, G.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J. Interactions between zonisamide and conventional antiepileptic drugs in the mouse maximal electroshock test model. Eur. Neuropsychopharmacol., 2007, 17(4), 265-272. doi: 10.1016/j.euroneuro.2006.06.008 PMID: 16876388
  159. Naddaka, V.; Klopfer, E.; Saeed, S. Derivatives of 1,2-benzisoxazole-3-methane sulfonic acid as novel intermediates for the synthesis of zonisamide. US Patent US07745471, 2010.
  160. Besag, F.M.C.; Vasey, M.J.; Sharma, A.N.; Lam, I.C.H. Efficacy and safety of lamotrigine in the treatment of bipolar disorder across the lifespan: a systematic review. Ther. Adv. Psychopharmacol., 2021, 11, 20451253211045870. doi: 10.1177/20451253211045870 PMID: 34646439
  161. Baker, E.M.; Thompson, C.H.; Hawkins, N.A.; Wagnon, J.L.; Wengert, E.R.; Patel, M.K.; George, A.L., Jr; Meisler, M.H.; Kearney, J.A. The novel sodium channel modulator GS-458967 (GS967) is an effective treatment in a mouse model of SCN8A encephalopathy. Epilepsia, 2018, 59(6), 1166-1176. doi: 10.1111/epi.14196 PMID: 29782051
  162. Ma, R. A new SV2A ligand for epilepsy. Cell, 2016, 167(3), 587. doi: 10.1016/j.cell.2016.09.057
  163. Rashid, M.; Rajan, A.K.; Chhabra, M.; Kashyap, A. Levetiracetam and cutaneous adverse reactions: A systematic review of descriptive studies. Seizure, 2020, 75, 101-109. doi: 10.1016/j.seizure.2020.01.002 PMID: 31931437
  164. Steinhoff, B.J.; Christensen, J.; Doherty, C.P.; Majoie, M.; De Backer, M.; Hellot, S.; Leunikava, I.; Leach, J.P. Effectiveness and tolerability of adjunctive brivaracetam in patients with focal seizures: Second interim analysis of 6-month data from a prospective observational study in Europe. Epilepsy Res., 2020, 165, 106329. doi: 10.1016/j.eplepsyres.2020.106329 PMID: 32623096
  165. Dudra-Jastrzebska, M.; Andres-Mach, M.M.; Sielski, M.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J.; Luszczki, J.J. Pharmacodynamic and pharmacokinetic interaction profiles of levetiracetam in combination with gabapentin, tiagabine and vigabatrin in the mouse pentylenetetrazole-induced seizure model: An isobolographic analysis. Eur. J. Pharmacol., 2009, 605(1-3), 87-94. doi: 10.1016/j.ejphar.2008.12.046 PMID: 19168049
  166. Morgan, O.; Medenwald, B. Safety and tolerability of rapid administration undiluted levetiracetam. Neurocrit. Care, 2020, 32(1), 131-134. doi: 10.1007/s12028-019-00708-5 PMID: 30919301
  167. Sourbron, J.; Chan, H.; Wammes-van der Heijden, E.A.; Klarenbeek, P.; Wijnen, B.F.M.; de Haan, G.J.; van der Kuy, H.; Evers, S.; Majoie, M. Review on the relevance of therapeutic drug monitoring of levetiracetam. Seizure, 2018, 62, 131-135. doi: 10.1016/j.seizure.2018.09.004 PMID: 30237016
  168. Dalziel, S.R.; Borland, M.L.; Furyk, J.; Bonisch, M.; Neutze, J.; Donath, S.; Francis, K.L.; Sharpe, C.; Harvey, A.S.; Davidson, A.; Craig, S.; Phillips, N.; George, S.; Rao, A.; Cheng, N.; Zhang, M.; Kochar, A.; Brabyn, C.; Oakley, E.; Babl, F.E. Levetiracetam versus phenytoin for second-line treatment of convulsive status epilepticus in children (ConSEPT): an open-label, multicentre, randomised controlled trial. Lancet, 2019, 393(10186), 2135-2145. doi: 10.1016/S0140-6736(19)30722-6 PMID: 31005386
  169. Costa, A.M.; Lucchi, C.; Malkoç, A.; Rustichelli, C.; Biagini, G. Relationship between delta rhythm, seizure occurrence and allopregnanolone hippocampal levels in epileptic rats exposed to the rebound effect. Pharmaceuticals (Basel), 2021, 14(2), 127. doi: 10.3390/ph14020127 PMID: 33561937
  170. Steinhoff, B.J.; Staack, A.M. Levetiracetam and brivaracetam: a review of evidence from clinical trials and clinical experience. Ther. Adv. Neurol. Disord., 2019, 12, 1756286419873518. doi: 10.1177/1756286419873518 PMID: 31523280
  171. Fonseca, E.; Guzmán, L.; Quintana, M.; Abraira, L.; Santamarina, E.; Salas-Puig, X.; Toledo, M. Efficacy, retention, and safety of brivaracetam in adult patients with genetic generalized epilepsy. Epilepsy Behav., 2020, 102, 106657. doi: 10.1016/j.yebeh.2019.106657 PMID: 31731108
  172. Nissenkorn, A.; Tzadok, M.; Bar-Yosef, O.; Ben-Zeev, B. Treatment with brivaracetam in children – The experience of a pediatric epilepsy center. Epilepsy Behav., 2019, 101(Pt A), 106541. doi: 10.1016/j.yebeh.2019.106541 PMID: 31698260
  173. Rosenstiel, P. Brivaracetam (UCB 34714). Neurotherapeutics, 2007, 4(1), 84-87. doi: 10.1016/j.nurt.2006.11.004 PMID: 17199019
  174. Kenda, B.M.; Matagne, A.C.; Talaga, P.E.; Pasau, P.M.; Differding, E.; Lallemand, B.I.; Frycia, A.M.; Moureau, F.G.; Klitgaard, H.V.; Gillard, M.R.; Fuks, B.; Michel, P. Discovery of 4-substituted pyrrolidone butanamides as new agents with significant antiepileptic activity. J. Med. Chem., 2004, 47(3), 530-549. doi: 10.1021/jm030913e PMID: 14736235
  175. Chavan, S.P.; Kawale, S.A.; Chavan, P.N. Formal synthesis of brivaracetam: A key to construct the pyrrolidone scaffold using Pd-catalyzed oxidative cyclization and ring-closing metathesis reaction. Tetrahedron Lett., 2019, 60(46), 151249. doi: 10.1016/j.tetlet.2019.151249
  176. Lyttle, M.D.; Rainford, N.E.A.; Gamble, C.; Messahel, S.; Humphreys, A.; Hickey, H.; Woolfall, K.; Roper, L.; Noblet, J.; Lee, E.D.; Potter, S.; Tate, P.; Iyer, A.; Evans, V.; Appleton, R.E.; Pereira, M.; Hardwick, S.; Messahel, S.; Noblet, J.; Lee, E.D.; Greenwood-Bibby, R.; Buchanan, M.; Lewis, L.; Hughes, S.; Hartshorn, S.; Rogers, L.; Hopkins, J.; Lyttle, M.D.; Fernandez, D.; Potter, S.; Lavigne-Smith, H.R.; Moulsdale, P.; Smith, A.; Bingham, T.; Ross, J.; Ramsey, N.; Hacking, J.; Mullen, N.; Corrigan, P.P.; Prudhoe, S.; Faza, H.; Robinson, G.; Sunley, R.C.; Smith, C.J.; Unsworth, V.; Criddle, J.; Laque, M.; Sheedy, A.B.; Anderson, M.; Bell, K.; Devine, K.; Scott, A.; Kumar, R.; Armstrong, S.; Sutherland, E.; Cantle, F.; Helyer, S.; Riozzi, P.; Cotton, H.; Downes, A.J.; Mollard, H.; Roland, D.; Hay, F.; Gough, C.; Finucane, S.; Bevan, C.; Ramsay, R.; Walton, E.; Maney, J-A.; Dalzell, E.; Millar, M.; Howells, R.J.; Appelboam, A.; Mackle, D.; Small, J.; Neil, A.; Choudhery, V.; MacLeod, S.; Browning, J.; O’Neill, T.; Grahamslaw, J.; Parikh, A.; Skene, I.; Thomas, R.; Potier de la Morandiere, K.; Wilson, J.L.; Danziger, D.; Burke, D.; Ramlakhan, S.; Evans, J.; Morcombe, J.; Gormley, S.; Barling, J.M.; Cathie, K.; Bayreuther, J.; Ensom, R.; Iqbal, Y.; Rounding, S.; Mulligan, J.; Bell, C.; McLellan, S.; Leighton, S.; Sajjanhar, T.; Nyirenda, M.; Crome, L.; Williamson, N.; Alcock, A.; Edwards, S.; Morgan, J.; Powell, C.V.E.; Ramesh, C.A.; Kamal-Uddin, S.; Linney, M.; Vamvakiti, K.; Floyd, S.; Hobden, G. Levetiracetam versus phenytoin for second-line treatment of paediatric convulsive status epilepticus (EcLiPSE): a multicentre, open-label, randomised trial. Lancet, 2019, 393(10186), 2125-2134. doi: 10.1016/S0140-6736(19)30724-X
  177. Reed, R.C.; Rosenfeld, W.E.; Lippmann, S.M.; Eijkemans, R.M.J.C.; Kasteleijn-Nolst Trenité, D.G.A. Rapidity of cns effect on photoparoxysmal response for brivaracetam vs. levetiracetam: a randomized, double-blind, crossover trial in photosensitive epilepsy patients. CNS Drugs, 2020, 34(10), 1075-1086. doi: 10.1007/s40263-020-00761-1 PMID: 32949370
  178. Sitges, M.; Guarneros, A.; Nekrassov, V. Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrigine, topiramate and vinpocetine on the presynaptic Ca2+ channel-mediated release of 3Hglutamate: Comparison with the Na+ channel-mediated release. Neuropharmacology, 2007, 53(7), 854-862. doi: 10.1016/j.neuropharm.2007.08.016 PMID: 17904592
  179. Hamandi, K.; Sander, J.W. Pregabalin: A new antiepileptic drug for refractory epilepsy. Seizure, 2006, 15(2), 73-78. doi: 10.1016/j.seizure.2005.11.005 PMID: 16413993
  180. Yüksel, M.; Sarıkaya, R.; Bostanci, N. Genotoxic evaluation of antiepileptic drugs by Drosophila somatic mutation and recombination test. Food Chem. Toxicol., 2010, 48(10), 2682-2687. doi: 10.1016/j.fct.2010.06.040 PMID: 20600525
  181. Yu, J.; Wang, D.S.; Bonin, R.P.; Penna, A.; Alavian-Ghavanini, A.; Zurek, A.A.; Rauw, G.; Baker, G.B.; Orser, B.A. Gabapentin increases expression of δ subunit-containing GABAA receptors. EBioMedicine, 2019, 42, 203-213. doi: 10.1016/j.ebiom.2019.03.008 PMID: 30878595
  182. François, J.; Germe, K.; Ferrandon, A.; Koning, E.; Nehlig, A. Carisbamate has powerful disease-modifying effects in the lithium-pilocarpine model of temporal lobe epilepsy. Neuropharmacology, 2011, 61(1-2), 313-328. doi: 10.1016/j.neuropharm.2011.04.018 PMID: 21539848
  183. Derry, S.; Bell, R.F.; Straube, S.; Wiffen, P.J.; Aldington, D.; Moore, R.A. Pregabalin for neuropathic pain in adults. Cochrane Libr., 2019, 1(1), CD007076. doi: 10.1002/14651858.CD007076.pub3 PMID: 30673120
  184. Ishitani, H.; Kanai, K.; Saito, Y.; Tsubogo, T.; Kobayashi, S. Synthesis of (±)-pregabalin by utilizing a three-step sequential-flow system with heterogeneous catalysts. Eur. J. Org. Chem., 2017, 2017(44), 6491-6494. doi: 10.1002/ejoc.201700998
  185. Nieoczym, D. Socała, K.; Łuszczki, J.J.; Czuczwar, S.J.; Wlaź P. Sildenafil influences the anticonvulsant activity of vigabatrin and gabapentin in the timed pentylenetetrazole infusion test in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 39(1), 129-135. doi: 10.1016/j.pnpbp.2012.05.020 PMID: 22683320
  186. Desai, A.; Kherallah, Y.; Szabo, C.; Marawar, R. Gabapentin or pregabalin induced myoclonus: A case series and literature review. J. Clin. Neurosci., 2019, 61, 225-234. doi: 10.1016/j.jocn.2018.09.019 PMID: 30381161
  187. Mallesha, L.; Mohana, K.N.; Veeresh, B. Synthesis and biological activities of Schiff bases of gabapentin with different aldehydes and ketones: a structure–activity relationship study. Med. Chem. Res., 2012, 21(1), 1-9. doi: 10.1007/s00044-010-9498-8
  188. Xue, Y.P.; Zhong, H.J.; Zou, S.P.; Zheng, Y-G. Efficient chemoenzymatic synthesis of gabapentin by control of immobilized biocatalyst activity in a stirred bioreactor. Biochem. Eng. J., 2017, 125, 190-195. doi: 10.1016/j.bej.2017.06.008
  189. Galdames, D.; Aguilera, L.; Faure, E. New antiepileptic drugs for refractory epilepsy in adults - role of gabapentin. Rev. Med. Chil., 1995, 123(4), 500-508. PMID: 8525196
  190. French, J.A.; Kanner, A.M.; Bautista, J.; Abou-Khalil, B.; Browne, T.; Harden, C.L.; Theodore, W.H.; Bazil, C.; Stern, J.; Schachter, S.C.; Bergen, D.; Hirtz, D.; Montouris, G.D.; Nespeca, M.; Gidal, B.; Marks, W.J., Jr; Turk, W.R.; Fischer, J.H.; Bourgeois, B.; Wilner, A.; Faught, R.E., Jr; Sachdeo, R.C.; Beydoun, A.; Glauser, T.A. Efficacy and tolerability of the new antiepileptic drugs II: treatment of refractory epilepsy: report of the Therapeutics and Technology Assessment Subcommittee and Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology, 2004, 62(8), 1261-1273. doi: 10.1212/01.WNL.0000123695.22623.32 PMID: 15111660
  191. Placidi, F.; Mattia, D.; Romigi, A.; Bassetti, M.A.; Spanedda, F.; Marciani, M.G. Gabapentin-induced modulation of interictal epileptiform activity related to different vigilance levels. Clin. Neurophysiol., 2000, 111(9), 1637-1642. doi: 10.1016/S1388-2457(00)00365-5 PMID: 10964076
  192. Walker, M.C.; Patsalos, P.N. Clinical pharmacokinetics of new antiepileptic drugs. Pharmacol. Ther., 1995, 67(3), 351-384. doi: 10.1016/0163-7258(95)00021-6 PMID: 8577822
  193. Wulff, H.; Castle, N.A.; Pardo, L.A. Voltage-gated potassium channels as therapeutic targets. Nat. Rev. Drug Discov., 2009, 8(12), 982-1001. doi: 10.1038/nrd2983 PMID: 19949402
  194. Brodie, M.J.; French, J.A.; McDonald, S.A.; Lee, W.J.; Adams, B.; Scott, A.; Nohria, V.; DeRossett, S. Adjunctive use of ezogabine/retigabine with either traditional sodium channel blocking antiepileptic drugs (AEDs) or AEDs with other mechanisms of action: Evaluation of efficacy and tolerability. Epilepsy Res., 2014, 108(5), 989-994. doi: 10.1016/j.eplepsyres.2014.03.008 PMID: 24726452
  195. Wehner, T.; Chinnasami, S.; Novy, J.; Bell, G.S.; Duncan, J.S.; Sander, J.W. Long term retention of retigabine in a cohort of people with drug resistant epilepsy. Seizure, 2014, 23(10), 878-881. doi: 10.1016/j.seizure.2014.08.001 PMID: 25175006
  196. Kanner, A.M.; Ashman, E.; Gloss, D.; Harden, C.; Bourgeois, B.; Bautista, J.F.; Abou-Khalil, B.; Burakgazi-Dalkilic, E.; Park, E.L.; Stern, J.; Hirtz, D.; Nespeca, M.; Gidal, B.; Faught, E.; French, J. Practice guideline update summary: Efficacy and tolerability of the new antiepileptic drugs I: Treatment of new-onset epilepsy. Epilepsy Curr., 2018, 18(4), 260-268. doi: 10.5698/1535-7597.18.4.260 PMID: 30254527
  197. Davar, D.; Beumer, J.H.; Hamieh, L.; Tawbi, H. Role of PARP inhibitors in cancer biology and therapy. Curr. Med. Chem., 2012, 19(23), 3907-3921. doi: 10.2174/092986712802002464 PMID: 22788767
  198. Plummer, R. Perspective on the pipeline of drugs being developed with modulation of DNA damage as a target. Clin. Cancer Res., 2010, 16(18), 4527-4531. doi: 10.1158/1078-0432.CCR-10-0984 PMID: 20823148
  199. Mathias, S.V.; Abou-Khalil, B.W. Ezogabine skin discoloration is reversible after discontinuation. Epilepsy Behav. Case Rep., 2017, 7, 61-63. doi: 10.1016/j.ebcr.2017.01.001 PMID: 28417066
  200. Meador, K.J.; Brashear, H.R.; Wiegand, F.; Zannikos, P.; Novak, G. Cognitive effects of carisbamate in randomized, placebo-controlled, healthy-volunteer, multidose studies. Epilepsy Behav., 2011, 22(2), 324-330. doi: 10.1016/j.yebeh.2011.07.006 PMID: 21849260
  201. Ragueneau-Majlessi, I.; Levy, R.; Solanki, B. Pharmacokinetics, safety, and tolerability of the new antiepileptic drug carisbamate (RWJ333369) in elderly adults. Epilepsia, 2007, 48, 326. doi: 10.1016/j.eplepsyres.2007.12.013
  202. Deshpande, L.S.; Nagarkatti, N.; Sombati, S.; DeLorenzo, R.J. The novel antiepileptic drug carisbamate (RWJ 333369) is effective in inhibiting spontaneous recurrent seizure discharges and blocking sustained repetitive firing in cultured hippocampal neurons. Epilepsy Res., 2008, 79(2-3), 158-165. doi: 10.1016/j.eplepsyres.2008.01.002 PMID: 18353614
  203. Arnold, S. Cenobamate: new hope for treatment-resistant epilepsy. Lancet Neurol., 2020, 19(1), 23-24. doi: 10.1016/S1474-4422(19)30434-X PMID: 31734104
  204. Krauss, G.L.; Klein, P.; Brandt, C.; Lee, S.K.; Milanov, I.; Milovanovic, M.; Steinhoff, B.J.; Kamin, M. Safety of adjunctive treatment with cenobamate in patients with uncontrolled focal seizures – Authors’ reply. Lancet Neurol., 2020, 19(4), 288-289. doi: 10.1016/S1474-4422(20)30077-6 PMID: 32199090
  205. Bialer, M.; Johannessen, S.I.; Levy, R.H.; Perucca, E.; Tomson, T.; White, H.S. Progress report on new antiepileptic drugs: A summary of the Tenth Eilat Conference (EILAT X). Epilepsy Res., 2010, 92(2-3), 89-124. doi: 10.1016/j.eplepsyres.2010.09.001 PMID: 20970964
  206. Tompson, D.J.; Crean, C.S.; Reeve, R.; Berry, N.S. Efficacy and tolerability exposure-response relationship of retigabine (ezogabine) immediate-release tablets in patients with partial-onset seizures. Clin. Ther., 2013, 35(8), 1174-1185.e4. doi: 10.1016/j.clinthera.2013.06.012 PMID: 23916044
  207. Noe, F.M.; Polascheck, N.; Frigerio, F.; Bankstahl, M.; Ravizza, T.; Marchini, S.; Beltrame, L.; Banderó, C.R.; Löscher, W.; Vezzani, A. Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol. Dis., 2013, 59, 183-193. doi: 10.1016/j.nbd.2013.07.015 PMID: 23938763
  208. Wang, D.D.; Englot, D.J.; Garcia, P.A.; Lawton, M.T.; Young, W.L. Minocycline- and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy Behav., 2012, 24(3), 314-318. doi: 10.1016/j.yebeh.2012.03.035 PMID: 22579030
  209. Marques-Carneiro, J.; Nehlig, A.; Cassel, J.C.; Castro-Neto, E.; Litzahn, J.; Pereira de Vasconcelos, A.; Naffah-Mazacoratti, M.; Fernandes, M. Neurochemical changes and c-fos mapping in the brain after carisbamate treatment of rats subjected to lithium–pilocarpine-induced status epilepticus. Pharmaceuticals (Basel), 2017, 10(4), 85. doi: 10.3390/ph10040085 PMID: 29104261
  210. Dong, G.R.; Li, Q.R.; Woo, S.H.; Kim, I.S.; Jung, Y.H. One-pot conversion of trimethylsilyl ethers into urethanes using chlorosulfonyl isocyanate: Application to the synthesis of a novel neuromodulator carisbamate. Arch. Pharm. Res., 2008, 31(11), 1393-1398. doi: 10.1007/s12272-001-2122-1 PMID: 19023534
  211. Kim, D.Y.; Zhang, F.X.; Nakanishi, S.T.; Mettler, T.; Cho, I.H.; Ahn, Y.; Hiess, F.; Chen, L.; Sullivan, P.G.; Chen, S.R.W.; Zamponi, G.W.; Rho, J.M. Carisbamate blockade of T-type voltage-gated calcium channels. Epilepsia, 2017, 58(4), 617-626. doi: 10.1111/epi.13710 PMID: 28230232
  212. Yuan, S.; Yu, B.; Liu, H.M. New drug approvals for 2019: Synthesis and clinical applications. Eur. J. Med. Chem., 2020, 205, 112667. doi: 10.1016/j.ejmech.2020.112667 PMID: 32911308
  213. Sharma, R.; Nakamura, M.; Neupane, C.; Jeon, B.H.; Shin, H.; Melnick, S.M.; Glenn, K.J.; Jang, I.S.; Park, J.B. Positive allosteric modulation of GABAA receptors by a novel antiepileptic drug cenobamate. Eur. J. Pharmacol., 2020, 879, 173117. doi: 10.1016/j.ejphar.2020.173117 PMID: 32325146
  214. Damar, U.; Gersner, R.; Johnstone, J.T.; Schachter, S.; Rotenberg, A.; Huperzine, A. A promising anticonvulsant, disease modifying, and memory enhancing treatment option in Alzheimer’s disease. Med. Hypotheses, 2017, 99, 57-62. doi: 10.1016/j.mehy.2016.12.006 PMID: 28110700
  215. Damar, U.; Gersner, R.; Johnstone, J.T.; Schachter, S.; Rotenberg, A. Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research. Expert Rev. Neurother., 2016, 16(6), 671-680. doi: 10.1080/14737175.2016.1175303 PMID: 27086593
  216. Ferreira, A.; Rodrigues, M.; Fortuna, A.; Falcão, A.; Alves, G. Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochem. Rev., 2016, 15(1), 51-85. doi: 10.1007/s11101-014-9384-y
  217. Haudrechy, A.; Chassaing, C.; Riche, C.; Langlois, Y. A formal synthesis of (+)-huperzine A. Tetrahedron, 2000, 56(20), 3181-3187. doi: 10.1016/S0040-4020(00)00227-1
  218. Gersner, R.; Ekstein, D.; Dhamne, S.C.; Schachter, S.C.; Rotenberg, A. Huperzine A prophylaxis against pentylenetetrazole-induced seizures in rats is associated with increased cortical inhibition. Epilepsy Res., 2015, 117, 97-103. doi: 10.1016/j.eplepsyres.2015.08.012 PMID: 26432930
  219. Alcalá, M.M.; Vivas, N.M.; Hospital, S.; Camps, P.; Muñoz-Torrero, D.; Badia, A. Characterisation of the anticholinesterase activity of two new tacrine–huperzine A hybrids. Neuropharmacology, 2003, 44(6), 749-755. doi: 10.1016/S0028-3908(03)00071-6 PMID: 12681373
  220. Koenig, J.B.; Cantu, D.; Low, C.; Sommer, M.; Noubary, F.; Croker, D.; Whalen, M.; Kong, D.; Dulla, C.G. Glycolytic inhibitor 2-deoxyglucose prevents cortical hyperexcitability after traumatic brain injury. JCI Insight, 2019, 4(11), e126506. doi: 10.1172/jci.insight.126506 PMID: 31038473
  221. Sills, G.J.; Rogawski, M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology, 2020, 168, 107966. doi: 10.1016/j.neuropharm.2020.107966 PMID: 32120063

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers