Artificial Intelligence Application for Anti-tumor Drug Synergy Prediction


Cite item

Full Text

Abstract

:Currently, the main therapeutic methods for cancer include surgery, radiation therapy, and chemotherapy. However, chemotherapy still plays an important role in tumor therapy. Due to the variety of pathogenic factors, the development process of tumors is complex and regulated by many factors, and the treatment of a single drug is easy to cause the human body to produce a drug-resistant phenotype to specific drugs and eventually leads to treatment failure. In the process of clinical tumor treatment, the combination of multiple drugs can produce stronger anti-tumor effects by regulating multiple mechanisms and can reduce the problem of tumor drug resistance while reducing the toxic side effects of drugs. Therefore, it is still a great challenge to construct an efficient and accurate screening method that can systematically consider the synergistic anti- tumor effects of multiple drugs. However, anti-tumor drug synergy prediction is of importance in improving cancer treatment outcomes. However, identifying effective drug combinations remains a complex and challenging task. This review provides a comprehensive overview of cancer drug synergy therapy and the application of artificial intelligence (AI) techniques in cancer drug synergy prediction. In addition, we discuss the challenges and perspectives associated with deep learning approaches. In conclusion, the review of the AI techniques' application in cancer drug synergy prediction can further advance our understanding of cancer drug synergy and provide more effective treatment plans and reasonable drug use strategies for clinical guidance.

About the authors

Zheng Peng

Department of Clinical Laboratory, Liuzhou Traditional Chinese Medical Hospital

Email: info@benthamscience.net

Yanling Ding

Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital

Email: info@benthamscience.net

Pengfei Zhang

Department of Pulmonary and Critical Care Medicine, Liuzhou Traditional Chinese Medical Hospital

Email: info@benthamscience.net

Xiaolan Lv

Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital

Email: info@benthamscience.net

Zepeng Li

Department of Infectious Disease, Liuzhou Traditional Chinese Medical Hospital

Author for correspondence.
Email: info@benthamscience.net

Xiaoling Zhou

Department of Gastroenterology, Liuzhou Traditional Chinese Medical Hospital

Author for correspondence.
Email: info@benthamscience.net

Shigao Huang

Department of Radiation Oncology, Xijing Hospital,, Fourth Military Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
  2. Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Artificial intelligence in the diagnosis of COVID-19: Challenges and perspectives. Int. J. Biol. Sci., 2021, 17(6), 1581-1587. doi: 10.7150/ijbs.58855 PMID: 33907522
  3. Huang, S.; Yang, J.; Shen, N.; Xu, Q.; Zhao, Q. Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective. Semin. Cancer Biol., 2023, 89, 30-37. doi: 10.1016/j.semcancer.2023.01.006 PMID: 36682439
  4. Yue, H.; Yu, Q.; Liu, C.; Huang, Y.; Jiang, Z.; Shao, C.; Zhang, H.; Ma, B.; Wang, Y.; Xie, G.; Zhang, H.; Li, X.; Kang, N.; Meng, X.; Huang, S.; Xu, D.; Lei, J.; Huang, H.; Yang, J.; Ji, J.; Pan, H.; Zou, S.; Ju, S.; Qi, X. Machine learning-based CT radiomics method for predicting hospital stay in patients with pneumonia associated with SARS-CoV-2 infection: A multicenter study. Ann. Transl. Med., 2020, 8(14), 859. doi: 10.21037/atm-20-3026 PMID: 32793703
  5. Zhang, J.; Huang, S.; Xu, Y.; Wu, J. Diagnostic accuracy of artificial intelligence based on imaging data for preoperative prediction of microvascular invasion in hepatocellular carcinoma: A systematic review and meta-analysis. Front. Oncol., 2022, 12, 763842. doi: 10.3389/fonc.2022.763842 PMID: 35280776
  6. Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett., 2020, 471, 61-71. doi: 10.1016/j.canlet.2019.12.007 PMID: 31830558
  7. Preuer, K.; Lewis, R.P.I.; Hochreiter, S.; Bender, A.; Bulusu, K.C.; Klambauer, G. DeepSynergy: Predicting anti-cancer drug synergy with Deep Learning. Bioinformatics, 2018, 34(9), 1538-1546. doi: 10.1093/bioinformatics/btx806 PMID: 29253077
  8. Pein, F.; Pinkerton, R.; Berthaud, P.; Jones, P.K.; Dick, G.; Vassal, G. Dose finding study of oral PSC 833 combined with weekly intravenous etoposide in children with relapsed or refractory solid tumours. Eur. J. Cancer, 2007, 43(14), 2074-2081. doi: 10.1016/j.ejca.2007.07.003 PMID: 17716890
  9. Dziadziuszko, R.; Cabanas, G.E.; Rojas, K.; Chelstowska, M.; Blaszkowska, M.; Dudziak, R.; Rzymski, T.; Angelosanto, N.; Littlewood, P.; Nogai, H.; Boni, V.; Lugowska, I. Phase I/II trial of RVU120, a CDK8/CDK19 inhibitor in patients with relapsed/refractory metastatic or advanced solid tumors. Eur. J. Cancer, 2022, 174, S23-S23. doi: 10.1016/S0959-8049(22)00865-6
  10. Macy, M.; Cash, T.; Pinto, N.; Pressey, J.G.; Szalontay, L.; Furman, W.L.; Bukowinski, A.; Foster, J.H.; Friedman, G.K.; HaDuong, J.; Fox, E.; Weigel, B.J.; Grevel, J.; Huang, F.; Phelps, C.; Childs, B.H.; Chung, J.; Chaturvedi, S.; Schulz, A.; DuBois, S.G. Phase I dose-escalation study of the pan-PI3 K inhibitor copanlisib in children and adolescents with relapsed/refractory solid tumors. Eur. J. Cancer, 2022, 174, S28-S29. doi: 10.1016/S0959-8049(22)00878-4
  11. Nagao, K.; Maeda, M.; Mañucat, N.B.; Ueda, K. Cyclosporine A and PSC833 inhibit ABCA1 function via direct binding. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2013, 1831(2), 398-406. doi: 10.1016/j.bbalip.2012.11.002 PMID: 23153588
  12. Awada, A.; Cortés, J.; Martín, M.; Aftimos, P.; Oliveira, M.; Tarruella, L.S.; Espie, M.; Lardelli, P.; Extremera, S.; García, F.E.M.; Delaloge, S. Phase 2 study of trabectedin in patients with hormone receptor–positive, HER-2–negative, advanced breast carcinoma according to expression of xeroderma pigmentosum G gene. Clin. Breast Cancer, 2016, 16(5), 364-371. doi: 10.1016/j.clbc.2016.05.005 PMID: 27266804
  13. Liu, Y.Y.; Han, T.Y.; Giuliano, A.E.; Hansen, N.; Cabot, M.C. Uncoupling ceramide glycosylation by transfection of glucosylceramide synthase antisense reverses adriamycin resistance. J. Biol. Chem., 2000, 275(10), 7138-7143. doi: 10.1074/jbc.275.10.7138 PMID: 10702281
  14. van Vlerken, L.E.; Duan, Z.; Seiden, M.V.; Amiji, M.M. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res., 2007, 67(10), 4843-4850. doi: 10.1158/0008-5472.CAN-06-1648 PMID: 17510414
  15. Maheshwari, R.; Tekade, M.; Gondaliya, P.; Kalia, K.; D’Emanuele, A.; Tekade, R.K. Recent advances in exosome-based nanovehicles as RNA interference therapeutic carriers. Nanomedicine, 2017, 12(21), 2653-2675. doi: 10.2217/nnm-2017-0210 PMID: 28960165
  16. Mizrahy, S.; Halevy, H.I.; Dammes, N.; Milo, L.D.; Peer, D. Current progress in non-viral RNAi-based delivery strategies to lymphocytes. Mol. Ther., 2017, 25(7), 1491-1500. doi: 10.1016/j.ymthe.2017.03.001 PMID: 28392163
  17. Weinstein, S.; Toker, I.A.; Emmanuel, R.; Ramishetti, S.; Hazan-Halevy, I.; Rosenblum, D.; Goldsmith, M.; Abraham, A.; Benjamini, O.; Bairey, O.; Raanani, P.; Nagler, A.; Lieberman, J.; Peer, D. Harnessing RNAi-based nanomedicines for therapeutic gene silencing in B-cell malignancies. Proc. Natl. Acad. Sci., 2016, 113(1), E16-E22. doi: 10.1073/pnas.1519273113 PMID: 26699502
  18. Meng, H.; Liong, M.; Xia, T.; Li, Z.; Ji, Z.; Zink, J.I.; Nel, A.E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano, 2010, 4(8), 4539-4550. doi: 10.1021/nn100690m PMID: 20731437
  19. Wu, D.D.; Salah, Y.A.; Ngowi, E.E.; Zhang, Y.X.; Khattak, S.; Khan, N.H.; Wang, Y.; Li, T.; Guo, Z.H.; Wang, Y.M.; Ji, X.Y. Nanotechnology prospects in brain therapeutics concerning gene-targeting and nose-to-brain administration. iScience, 2023, 26(8), 107321. doi: 10.1016/j.isci.2023.107321 PMID: 37554468
  20. Qiu, C.; Wu, Y.; Guo, Q.; Shi, Q.; Zhang, J.; Meng, Y.; Xia, F.; Wang, J. Preparation and application of calcium phosphate nanocarriers in drug delivery. Mater. Today Bio, 2022, 17, 100501. doi: 10.1016/j.mtbio.2022.100501 PMID: 36466957
  21. Wang, Y.; Hou, M.; Duan, S.; Zhao, Z.; Wu, X.; Chen, Y.; Yin, L. Macrophage-targeting gene silencing orchestrates myocardial microenvironment remodeling toward the anti-inflammatory treatment of ischemia-reperfusion (IR) injury. Bioact. Mater., 2022, 17, 320-333. doi: 10.1016/j.bioactmat.2022.01.026 PMID: 35386446
  22. Zou, S.; Cao, N.; Cheng, D.; Zheng, R.; Wang, J.; Zhu, K.; Shuai, X. Enhanced apoptosis of ovarian cancer cells via nanocarrier-mediated codelivery of siRNA and doxorubicin. Int. J. Nanomedicine, 2012, 7, 3823-3835. PMID: 22888237
  23. Liu, W.; Li, S.Y.; Huang, X.E.; Cui, J.J.; Zhao, T.; Zhang, H. Inhibition of tumor growth in vitro by a combination of extracts from Rosa roxburghii Tratt and Fagopyrum cymosum. Asian Pac. J. Cancer Prev., 2012, 13(5), 2409-2414. doi: 10.7314/APJCP.2012.13.5.2409 PMID: 22901230
  24. Deng, S.; Hu, B.; An, H.M.; Du, Q.; Xu, L.; Shen, K.P.; Shi, X.F.; Wei, M.M.; Wu, Y. Teng-Long-Bu-Zhong-Tang, a chinese herbal formula, enhances anticancer effects of 5-fluorouracil in CT26 colon carcinoma. BMC Complement. Altern. Med., 2013, 13(1), 128. doi: 10.1186/1472-6882-13-128 PMID: 23758730
  25. Gou, H.; Wong, C.C.; Chen, H.; Shang, H.; Su, H.; Zhai, J.; Liu, W.; Liu, W.; Sun, D.; Wang, X.; Yu, J. TRIP6 disrupts tight junctions to promote metastasis and drug resistance and is a therapeutic target in colorectal cancer. Cancer Lett., 2023, 578, 216438. doi: 10.1016/j.canlet.2023.216438 PMID: 37827326
  26. Beretta, G.L. Ferroptosis-induced cardiotoxicity and antitumor drugs. Curr. Med. Chem., 2023, 31 doi: 10.2174/0929867331666230719124453 PMID: 37469161
  27. Chen, L.; Qing, B.L.; Zheng, M.Y. Prediction of effective drug combinations by chemical interaction, protein interaction and target enrichment of KEGG pathways. Biomed Res Int, 2013, 2013, 723780. doi: 10.1155/2013/723780
  28. Dorman, S.N.; Baranova, K.; Knoll, J.H.M.; Urquhart, B.L.; Mariani, G.; Carcangiu, M.L.; Rogan, P.K. Genomic signatures for paclitaxel and gemcitabine resistance in breast cancer derived by machine learning. Mol. Oncol., 2016, 10(1), 85-100. doi: 10.1016/j.molonc.2015.07.006 PMID: 26372358
  29. Ghaisani, F.D.; Wasito, I.; Faturrahman, M.; Mufidah, R. Prognosis cancer prediction model using deep belief network approach. J. Theor. Appl. Inf. Technol., 2017, 95(20), 5369-5378.
  30. Wang, L.; You, Z.H.; Chen, X.; Xia, S.X.; Liu, F.; Yan, X.; Zhou, Y.; Song, K.J. A computational-based method for predicting drug-target interactions by using stacked autoencoder deep neural network. J. Comput. Biol., 2018, 25(3), 361-373. doi: 10.1089/cmb.2017.0135 PMID: 28891684
  31. Gönen, M. Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics, 2012, 28(18), 2304-2310. doi: 10.1093/bioinformatics/bts360 PMID: 22730431
  32. Binatlı, O.C.; Gönen, M. MOKPE: Drug–target interaction prediction via manifold optimization based kernel preserving embedding. BMC Bioinformatics, 2023, 24(1), 276. doi: 10.1186/s12859-023-05401-1 PMID: 37407927
  33. Kuenzi, B.M.; Park, J.; Fong, S.H.; Sanchez, K.S.; Lee, J.; Kreisberg, J.F.; Ma, J.; Ideker, T. Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell, 2020, 38(5), 672-684.e6. doi: 10.1016/j.ccell.2020.09.014 PMID: 33096023
  34. Tsigelny, I.F. Artificial intelligence in drug combination therapy. Brief. Bioinform., 2019, 20(4), 1434-1448. doi: 10.1093/bib/bby004 PMID: 29438494
  35. Ding, P.; Luo, J.; Liang, C.; Xiao, Q.; Cao, B.; Li, G. Discovering synergistic drug combination from a computational perspective. Curr. Top. Med. Chem., 2018, 18(12), 965-974. doi: 10.2174/1568026618666180330141804 PMID: 29600766
  36. Torkamannia, A.; Omidi, Y.; Ferdousi, R. A review of machine learning approaches for drug synergy prediction in cancer. Brief. Bioinform., 2022, 23(3), bbac075. doi: 10.1093/bib/bbac075 PMID: 35323854
  37. Chen, W.; Liu, X.; Zhang, S.; Chen, S. Artificial intelligence for drug discovery: Resources, methods, and applications. Mol. Ther. Nucleic Acids, 2023, 31, 691-702. doi: 10.1016/j.omtn.2023.02.019 PMID: 36923950
  38. Sumathi, S.; Suganya, K.; Swathi, K.; Sudha, B.; Poornima, A.; Varghese, C.A.; Aswathy, R. A review on deep learning-driven drug discovery: Strategies, tools and applications. Curr. Pharm. Des., 2023, 29(13), 1013-1025. doi: 10.2174/1381612829666230412084137 PMID: 37055908
  39. Wu, L.; Gao, J.; Zhang, Y.; Sui, B.; Wen, Y.; Wu, Q.; Liu, K.; He, S.; Bo, X. A hybrid deep forest-based method for predicting synergistic drug combinations. Cell Rep. Methods, 2023, 3(2), 100411. doi: 10.1016/j.crmeth.2023.100411 PMID: 36936075
  40. Murumägi, A.; Ungureanu, D.; Khan, S.; Arjama, M.; Välimäki, K.; Ianevski, A.; Ianevski, P.; Bergström, R.; Dini, A.; Kanerva, A.; Korander, K.R.; Tapper, J.; Lassus, H.; Loukovaara, M.; Mägi, A.; Hirasawa, A.; Aoki, D.; Pietiäinen, V.; Pellinen, T.; Bützow, R.; Aittokallio, T.; Kallioniemi, O. Drug response profiles in patient-derived cancer cells across histological subtypes of ovarian cancer: Real-time therapy tailoring for a patient with low-grade serous carcinoma. Br. J. Cancer, 2023, 128(4), 678-690. doi: 10.1038/s41416-022-02067-z PMID: 36476658
  41. Shah, P.A.; Sambandam, V.; Fernandez, A.M.; Zhao, H.; Mazumdar, T.; Shen, L.; Wang, Q.; Ahmed, K.M.; Ghosh, S.; Frederick, M.J.; Wang, J.; Johnson, F.M. Sustained aurora kinase B expression confers resistance to PI3K inhibition in head and neck squamous cell carcinoma. Cancer Res., 2022, 82(23), 4444-4456. doi: 10.1158/0008-5472.CAN-22-1175 PMID: 36169922
  42. Forslund, S.K.; Chakaroun, R.; Zimmermann-Kogadeeva, M.; Markó, L.; Wisnewsky, A.J.; Nielsen, T.; Silva, M.L.; Schmidt, T.S.B.; Falony, G.; Silva, V.S.; Adriouch, S.; Alves, R.J.; Assmann, K.; Bastard, J.P.; Birkner, T.; Caesar, R.; Chilloux, J.; Coelho, L.P.; Fezeu, L.; Galleron, N.; Helft, G.; Isnard, R.; Ji, B.; Kuhn, M.; Le Chatelier, E.; Myridakis, A.; Olsson, L.; Pons, N.; Prifti, E.; Quinquis, B.; Roume, H.; Salem, J.E.; Sokolovska, N.; Tremaroli, V.; Colomer, V.M.; Lewinter, C.; Søndertoft, N.B.; Pedersen, H.K.; Hansen, T.H.; Amouyal, C.; Galijatovic, A.E.A.; Andreelli, F.; Barthelemy, O.; Batisse, J-P.; Belda, E.; Berland, M.; Bittar, R.; Blottière, H.; Bosquet, F.; Boubrit, R.; Bourron, O.; Camus, M.; Cassuto, D.; Ciangura, C.; Collet, J-P.; Dao, M-C.; Djebbar, M.; Doré, A.; Engelbrechtsen, L.; Fellahi, S.; Fromentin, S.; Galan, P.; Gauguier, D.; Giral, P.; Hartemann, A.; Hartmann, B.; Holst, J.J.; Hornbak, M.; Hoyles, L.; Hulot, J-S.; Jaqueminet, S.; Jørgensen, N.R.; Julienne, H.; Justesen, J.; Kammer, J.; Krarup, N.; Kerneis, M.; Khemis, J.; Kozlowski, R.; Lejard, V.; Levenez, F.; Lucas-Martini, L.; Massey, R.; Martinez-Gili, L.; Maziers, N.; Medina-Stamminger, J.; Montalescot, G.; Moute, S.; Neves, A.L.; Olanipekun, M.; Le Pavin, L.P.; Poitou, C.; Pousset, F.; Pouzoulet, L.; Martinez, R.A.; Rouault, C.; Silvain, J.; Svendstrup, M.; Swartz, T.; Vanduyvenboden, T.; Vatier, C.; Walther, S.; Gøtze, J.P.; Køber, L.; Vestergaard, H.; Hansen, T.; Zucker, J-D.; Hercberg, S.; Oppert, J-M.; Letunic, I.; Nielsen, J.; Bäckhed, F.; Ehrlich, S.D.; Dumas, M-E.; Raes, J.; Pedersen, O.; Clément, K.; Stumvoll, M.; Bork, P. Combinatorial, additive and dose-dependent drug– microbiome associations. Nature, 2021, 600(7889), 500-505. doi: 10.1038/s41586-021-04177-9 PMID: 34880489
  43. Jin, W.; Stokes, J.M.; Eastman, R.T.; Itkin, Z.; Zakharov, A.V.; Collins, J.J.; Jaakkola, T.S.; Barzilay, R. Deep learning identifies synergistic drug combinations for treating COVID-19. Proc. Natl. Acad. Sci., 2021, 118(39), e2105070118. doi: 10.1073/pnas.2105070118 PMID: 34526388
  44. Ding, Y.Y.; Kim, H.; Madden, K.; Loftus, J.P.; Chen, G.M.; Allen, D.H.; Zhang, R.; Xu, J.; Chen, C.H.; Hu, Y.; Tasian, S.K.; Tan, K. Network analysis reveals synergistic genetic dependencies for rational combination therapy in philadelphia chromosome-like acute lymphoblastic leukemia. Clin. Cancer Res., 2021, 27(18), 5109-5122. doi: 10.1158/1078-0432.CCR-21-0553 PMID: 34210682
  45. Jacquelot, N.; Seillet, C.; Wang, M.; Pizzolla, A.; Liao, Y.; Hediyeh-zadeh, S.; Grisaru-Tal, S.; Louis, C.; Huang, Q.; Schreuder, J.; Guimaraes, S.F.F.; de Graaf, C.A.; Thia, K.; Macdonald, S.; Camilleri, M.; Luong, K.; Zhang, S.; Chopin, M.; Hauer, M.T.; Nutt, S.L.; Umansky, V.; Ciric, B.; Groom, J.R.; Foster, P.S.; Hansbro, P.M.; McKenzie, A.N.J.; Gray, D.H.D.; Behren, A.; Cebon, J.; Vivier, E.; Wicks, I.P.; Trapani, J.A.; Munitz, A.; Davis, M.J.; Shi, W.; Neeson, P.J.; Belz, G.T. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nat. Immunol., 2021, 22(7), 851-864. doi: 10.1038/s41590-021-00943-z PMID: 34099918
  46. McConnell, M.J.; Galiano, M.A.J. Designing multi-antigen vaccines against Acinetobacter baumannii using systemic approaches. Front. Immunol., 2021, 12, 666742. doi: 10.3389/fimmu.2021.666742 PMID: 33936107
  47. Gomes, A.L.V.; Wee, L.J.K.; Khan, A.M.; Gil, L.H.V.G.; Marques, E.T.A., Jr; Calzavara-Silva, C.E.; Tan, T.W. Classification of dengue fever patients based on gene expression data using support vector machines. PLoS One, 2010, 5(6), e11267. doi: 10.1371/journal.pone.0011267 PMID: 20585645
  48. Mudali, D.; Teune, L.K.; Renken, R.J.; Leenders, K.L.; Roerdink, J.B.T.M. Classification of Parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features. Comput. Math. Methods Med., 2015, 2015, 1-10. doi: 10.1155/2015/136921 PMID: 25918550
  49. Su, P.; Wu, X.; Li, C.; Yan, C.; An, Y.; Liu, S. A versatile method for quantitative analysis of total iron content in iron ore using laser-induced breakdown spectroscopy. Appl. Spectrosc., 2023, 77(2), 140-150. doi: 10.1177/00037028221141102 PMID: 36348501
  50. Pellisé, F.; Burriel, S.M.; Smith, J.S.; Haddad, S.; Kelly, M.P.; Casademunt, V.A.; Grueso, S.P.F.J.; Bess, S.; Gum, J.L.; Burton, D.C.; Acaroğlu, E.; Kleinstück, F.; Lafage, V.; Obeid, I.; Schwab, F.; Shaffrey, C.I.; Alanay, A.; Ames, C. Development and validation of risk stratification models for adult spinal deformity surgery. J. Neurosurg. Spine, 2019, 1-13. doi: 10.3171/2019.3.SPINE181452 PMID: 31252385
  51. Yan, F.J.; Chen, X.H.; Quan, X.Q.; Wang, L.L.; Wei, X.Y.; Zhu, J.L. Development and validation of an interpretable machine learning model-Predicting mild cognitive impairment in a high-risk stroke population. Front. Aging Neurosci., 2023, 15, 1180351. doi: 10.3389/fnagi.2023.1180351 PMID: 37396650
  52. Liu, Q.; Zhang, M.; He, Y.; Zhang, L.; Zou, J.; Yan, Y.; Guo, Y. Predicting the risk of incident type 2 diabetes mellitus in chinese elderly using machine learning techniques. J. Pers. Med., 2022, 12(6), 905. doi: 10.3390/jpm12060905 PMID: 35743691
  53. Guan, X.; Zhang, B.; Fu, M.; Li, M.; Yuan, X.; Zhu, Y.; Peng, J.; Guo, H.; Lu, Y. Clinical and inflammatory features based machine learning model for fatal risk prediction of hospitalized COVID-19 patients: results from a retrospective cohort study. Ann. Med., 2021, 53(1), 257-266. doi: 10.1080/07853890.2020.1868564 PMID: 33410720
  54. Zhang, W.; Jiang, H.; Huang, P.; Wu, G.; Wang, Q.; Luan, X.; Zhang, H.; Yu, D.; Wang, H.; Lu, D.; Wang, H.; An, H.; Liu, S.; Zhang, W. Dracorhodin targeting CMPK2 attenuates inflammation: A novel approach to sepsis therapy. Clin. Transl. Med., 2023, 13(10), e1449. doi: 10.1002/ctm2.1449 PMID: 37859535
  55. Loscalzo, J. Molecular interaction networks and drug development: Novel approach to drug target identification and drug repositioning. FASEB J., 2023, 37(1), e22660. doi: 10.1096/fj.202201683R PMID: 36468661
  56. Lu, S.; Sun, X.; Zhou, Z.; Tang, H.; Xiao, R.; Lv, Q.; Wang, B.; Qu, J.; Yu, J.; Sun, F.; Deng, Z.; Tian, Y.; Li, C.; Yang, Z.; Yang, P.; Rao, B. Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation. Front. Immunol., 2023, 14, 1235575. doi: 10.3389/fimmu.2023.1235575 PMID: 37799727
  57. Xu, F.; Meng, Q.; Wu, F.; Wang, Y.; Yang, W.; Tong, Y.; Liu, L.; Chen, X. Identification of warning transition points from hepatitis B to hepatocellular carcinoma based on mutation accumulation for the early diagnosis and potential drug treatment of HBV-HCC. Oxid. Med. Cell. Longev., 2022, 2022, 1-29. doi: 10.1155/2022/3472179 PMID: 36105485
  58. Du, L.; Du, D.H.; Chen, B.; Ding, Y.; Zhang, T.; Xiao, W. Anti-inflammatory activity of Sanjie Zhentong capsule assessed by network pharmacology analysis of adenomyosis treatment. Drug Des. Devel. Ther., 2020, 14, 697-713. doi: 10.2147/DDDT.S228721 PMID: 32109994
  59. Oslin, D.W.; Lynch, K.G.; Shih, M.C.; Ingram, E.P.; Wray, L.O.; Chapman, S.R.; Kranzler, H.R.; Gelernter, J.; Pyne, J.M.; Stone, A.; DuVall, S.L.; Lehmann, L.S.; Thase, M.E.; Aslam, M.; Batki, S.L.; Bjork, J.M.; Blow, F.C.; Brenner, L.A.; Chen, P.; Desai, S.; Dieperink, E.W.; Fears, S.C.; Fuller, M.A.; Goodman, C.S.; Graham, D.P.; Haas, G.L.; Hamner, M.B.; Helstrom, A.W.; Hurley, R.A.; Icardi, M.S.; Jurjus, G.J.; Kilbourne, A.M.; Kreyenbuhl, J.; Lache, D.J.; Lieske, S.P.; Lynch, J.A.; Meyer, L.J.; Montalvo, C.; Muralidhar, S.; Ostacher, M.J.; Paschall, G.Y.; Pfeiffer, P.N.; Prieto, S.; Przygodzki, R.M.; Ranganathan, M.; Rodriguez-Suarez, M.M.; Roggenkamp, H.; Schichman, S.A.; Schneeweis, J.S.; Simonetti, J.A.; Steinhauer, S.R.; Suppes, T.; Umbert, M.A.; Vassy, J.L.; Voora, D.; Wiechers, I.R.; Wood, A.E. Effect of pharmacogenomic testing for drug-gene interactions on medication selection and remission of symptoms in major depressive disorder. JAMA, 2022, 328(2), 151-161. doi: 10.1001/jama.2022.9805 PMID: 35819423
  60. Naranbhai, V.; Viard, M.; Dean, M.; Groha, S.; Braun, D.A.; Labaki, C.; Shukla, S.A.; Yuki, Y.; Shah, P.; Chin, K.; Wind-Rotolo, M.; Mu, X.J.; Robbins, P.B.; Gusev, A.; Choueiri, T.K.; Gulley, J.L.; Carrington, M. HLA-A*03 and response to immune checkpoint blockade in cancer: An epidemiological biomarker study. Lancet Oncol., 2022, 23(1), 172-184. doi: 10.1016/S1470-2045(21)00582-9 PMID: 34895481
  61. Díaz-Gil, L.; Brasó-Maristany, F.; Locatelli, C.; Centa, A.; Győrffy, B.; Ocaña, A.; Prat, A.; Pandiella, A. Modelling hypersensitivity to trastuzumab defines biomarkers of response in HER2 positive breast cancer. J. Exp. Clin. Cancer Res., 2021, 40(1), 313. doi: 10.1186/s13046-021-02098-z PMID: 34620206
  62. Sun, Y.; Gao, Y.; Chen, J.; Huang, L.; Deng, P.; Chen, J.; Chai, K.X.Y.; Hong, J.H.; Chan, J.Y.; He, H.; Wang, Y.; Cheah, D.; Lim, J.Q.; Chia, B.K.H.; Huang, D.; Liu, L.; Liu, S.; Wang, X.; Teng, Y.; Pang, D.; Grigoropoulos, N.F.; Teh, B.T.; Yu, Q.; Lim, S.T.; Li, W.; Ong, C.K.; Huang, H.; Tan, J. CREBBP cooperates with the cell cycle machinery to attenuate chidamide sensitivity in relapsed/refractory diffuse large B-cell lymphoma. Cancer Lett., 2021, 521, 268-280. doi: 10.1016/j.canlet.2021.09.002 PMID: 34481935
  63. Li, H.; Lin, W.P.; Zhang, Z.N.; Sun, Z.J. Tailoring biomaterials for monitoring and evoking tertiary lymphoid structures. Acta Biomater., 2023, 172, 1-15. doi: 10.1016/j.actbio.2023.09.028 PMID: 37739247
  64. Nardi, F.; Perurena, N.; Schade, A.E.; Li, Z.H.; Ngo, K.; Ivanova, E.V.; Saldanha, A.; Li, C.; Gokhale, P.C.; Hata, A.N.; Barbie, D.A.; Paweletz, C.P.; Jänne, P.A.; Cichowski, K. Cotargeting a MYC/eIF4A-survival axis improves the efficacy of KRAS inhibitors in lung cancer. J. Clin. Invest., 2023, 133(16), e167651. doi: 10.1172/JCI167651 PMID: 37384411
  65. Luo, K.; Qian, Z.; Jiang, Y.; Lv, D.; Zhu, K.; Shao, J.; Hu, Y.; Lv, C.; Huang, Q.; Gao, Y.; Jin, S.; Shang, D. Characterization of the metabolic alteration-modulated tumor microenvironment mediated by TP53 mutation and hypoxia. Comput. Biol. Med., 2023, 163, 107078. doi: 10.1016/j.compbiomed.2023.107078 PMID: 37356294
  66. Wang, J.; Yang, H.; Zheng, D.; Sun, Y.; An, L.; Li, G.; Zhao, Z. Integrating network pharmacology and pharmacological evaluation to reveal the therapeutic effects and potential mechanism of S-allylmercapto-N-acetylcysteine on acute respiratory distress syndrome. Int. Immunopharmacol., 2023, 121, 110516. doi: 10.1016/j.intimp.2023.110516 PMID: 37369159
  67. Zhang, M.; Zhang, X.; Pei, J.; Guo, B.; Zhang, G.; Li, M.; Huang, L. Identification of phytochemical compounds of Fagopyrum dibotrys and their targets by metabolomics, network pharmacology and molecular docking studies. Heliyon, 2023, 9(3), e14029. doi: 10.1016/j.heliyon.2023.e14029 PMID: 36911881
  68. Tang, S.; Chen, S.; Tan, X.; Xu, M.; Xu, X. Network pharmacology prediction and molecular docking-based strategy to explore the pharmacodynamic substances and mechanism of "Mung Bean" against bacterial infection. Drug Dev. Ind. Pharm., 2022, 48(2), 58-68. doi: 10.1080/03639045.2022.2094399 PMID: 35786126
  69. Ding, Z.; Zhong, R.; Yang, Y.; Xia, T.; Wang, W.; Wang, Y.; Xing, N.; Luo, Y.; Li, S.; Shang, L.; Shu, Z. Systems pharmacology reveals the mechanism of activity of Ge-Gen-Qin-Lian decoction against LPS-induced acute lung injury: A novel strategy for exploring active components and effective mechanism of TCM formulae. Pharmacol. Res., 2020, 156, 104759. doi: 10.1016/j.phrs.2020.104759 PMID: 32200026
  70. Huang, L.; Li, F.; Sheng, J.; Xia, X.; Ma, J.; Zhan, M.; Wong, S.T.C. DrugComboRanker: Drug combination discovery based on target network analysis. Bioinformatics, 2014, 30(12), i228-i236. doi: 10.1093/bioinformatics/btu278 PMID: 24931988
  71. Kelvin, J.M.; Chimenti, M.L.; Zhang, D.Y.; Williams, E.K.; Moore, S.G.; Humber, G.M.; Baxter, T.A.; Birnbaum, L.A.; Qui, M.; Zecca, H.; Thapa, A.; Jain, J.; Jui, N.T.; Wang, X.; Fu, H.; Du, Y.; Kemp, M.L.; Lam, W.A.; Graham, D.K.; DeRyckere, D.; Dreaden, E.C. Development of constitutively synergistic nanoformulations to enhance chemosensitivity in T-cell leukemia. J. Control. Release, 2023, 361, 470-482. doi: 10.1016/j.jconrel.2023.07.045 PMID: 37543290
  72. Jeon, M.; Kim, S.; Park, S.; Lee, H.; Kang, J. In silico drug combination discovery for personalized cancer therapy. BMC Syst. Biol., 2018, 12(S2), 16. doi: 10.1186/s12918-018-0546-1 PMID: 29560824
  73. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639), 115-118. doi: 10.1038/nature21056 PMID: 28117445
  74. Huang, S.T.; Liu, L.R.; Chiu, H.W.; Huang, M.Y.; Tsai, M.F. Deep convolutional neural network for rib fracture recognition on chest radiographs. Front. Med., 2023, 10, 1178798. doi: 10.3389/fmed.2023.1178798 PMID: 37593404
  75. Li, H.; Hou, J.; Adhikari, B.; Lyu, Q.; Cheng, J. Deep learning methods for protein torsion angle prediction. BMC Bioinformatics, 2017, 18(1), 417. doi: 10.1186/s12859-017-1834-2 PMID: 28923002
  76. Wang, X.; Cao, K.; Guo, E.; Mao, X.; an, C.; Guo, L.; Zhang, C.; Yang, X.; Sun, J.; Yang, W.; Li, X.; Miao, S. Integrating DOI in T classification improves the predictive performance of laryngeal cancer staging. Cancer Biol. Ther., 2023, 24(1), 2169040. doi: 10.1080/15384047.2023.2169040 PMID: 36729904
  77. Cao, R.; Yao, Z.; Lin, Z.; Jiao, P.; Cui, L. The performance of the 2022 ACR/EULAR classification criteria for Takayasu’s arteritis as compared to the 1990 ACR classification criteria in a Chinese population. Clin. Exp. Med., 2023, 23(8), 5291-5297. doi: 10.1007/s10238-023-01140-y PMID: 37582910
  78. van Stigt, M.N.; Camps, C.R.; Coutinho, J.M.; Marquering, H.A.; Doelkahar, B.S.; Potters, W.V. The effect of artifact rejection on the performance of a convolutional neural network based algorithm for binary EEG data classification. Biomed. Signal Process. Control, 2023, 85, 105032. doi: 10.1016/j.bspc.2023.105032
  79. Mufazzal, S.; Muzakkir, S.M.; Khanam, S. Enhancing the classification performance of machine learning techniques by using hjorth’s and other statistical parameters for precise tracking of naturally evolving faults in ball bearings. Int. J. Acoust. Vib., 2022, 27(2), 138-150. doi: 10.20855/ijav.2022.27.21847
  80. Al-Mayouf, S.M.; Akbar, L.; Abdwani, R.; Ginesi, G.; Volpi, S.; Gattorno, M.; Bakry, R.; AlHashim, S.; Alsaleem, A. Performance of the EULAR/ACR 2019 classification criteria for systemic lupus erythematous in monogenic lupus. Clin. Rheumatol., 2022, 41(9), 2721-2727. doi: 10.1007/s10067-022-06209-9 PMID: 35590114
  81. Ogino, S.; King, E.E.; Beck, A.H.; Sherman, M.E.; Milner, D.A.; Giovannucci, E. Interdisciplinary education to integrate pathology and epidemiology: towards molecular and population-level health science. Am. J. Epidemiol., 2012, 176(8), 659-667. doi: 10.1093/aje/kws226 PMID: 22935517
  82. Inamura, K.; Hamada, T.; Bullman, S.; Ugai, T.; Yachida, S.; Ogino, S. Cancer as microenvironmental, systemic and environmental diseases: Opportunity for transdisciplinary microbiomics science. Gut, 2022, 71(10), 2107-2122. doi: 10.1136/gutjnl-2022-327209 PMID: 35820782
  83. Ogino, S.; Stampfer, M. Lifestyle factors and microsatellite instability in colorectal cancer: the evolving field of molecular pathological epidemiology. J. Natl. Cancer Inst., 2010, 102(6), 365-367. doi: 10.1093/jnci/djq031 PMID: 20208016
  84. Curtin, K.; Samowitz, W.S.; Wolff, R.K.; Herrick, J.; Caan, B.J.; Slattery, M.L. Somatic alterations, metabolizing genes and smoking in rectal cancer. Int. J. Cancer, 2009, 125(1), 158-164. doi: 10.1002/ijc.24338 PMID: 19358278
  85. Ogino, S.; Nowak, J.A.; Hamada, T.; Milner, D.A., Jr; Nishihara, R. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu. Rev. Pathol., 2019, 14(1), 83-103. doi: 10.1146/annurev-pathmechdis-012418-012818 PMID: 30125150
  86. Ogino, S.; Chan, A.T.; Fuchs, C.S.; Giovannucci, E. Molecular pathological epidemiology of colorectal neoplasia: An emerging transdisciplinary and interdisciplinary field. Gut, 2011, 60(3), 397-411. doi: 10.1136/gut.2010.217182 PMID: 21036793
  87. Haydon, A.M.M.; Macinnis, R.J.; English, D.R.; Giles, G.G. Effect of physical activity and body size on survival after diagnosis with colorectal cancer. Gut, 2006, 55(1), 62-67. doi: 10.1136/gut.2005.068189 PMID: 15972299
  88. Meyerhardt, J.A.; Heseltine, D.; Niedzwiecki, D.; Hollis, D.; Saltz, L.B.; Mayer, R.J.; Thomas, J.; Nelson, H.; Whittom, R.; Hantel, A.; Schilsky, R.L.; Fuchs, C.S. Impact of physical activity on cancer recurrence and survival in patients with stage III colon cancer: Findings from CALGB 89803. J. Clin. Oncol., 2006, 24(22), 3535-3541. doi: 10.1200/JCO.2006.06.0863 PMID: 16822843
  89. Artificial intelligence predicts drug response. Cancer Discov., 2021, 11(1), 4-5.
  90. Ratner, B. Statistical and machine-learning data mining. Techniques for better predictive modelling and analysis of big data, 3rd ed; CRC Press Taylor & Francis Group: Boca Raton, FL, 2017.
  91. Bejani, M.M.; Ghatee, M. A systematic review on overfitting control in shallow and deep neural networks. Artif. Intell. Rev., 2021, 54(8), 6391-6438. doi: 10.1007/s10462-021-09975-1
  92. Wang, S.; Li, D.; Song, X.; Wei, Y.; Li, H. A feature selection method based on improved fisher’s discriminant ratio for text sentiment classification. Expert Syst. Appl., 2011, 38(7), 8696-8702. doi: 10.1016/j.eswa.2011.01.077
  93. Shalev-Shwartz, S.; Ben-David, S. Understanding machine learning from theory to algorithms; Cambridge University press: New York, 2014. doi: 10.1017/CBO9781107298019
  94. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An introduction to statistical learning: with applications in R; Springer: New York, 2013. doi: 10.1007/978-1-4614-7138-7
  95. Tzafestas, S.G.; Dalianis, P.J.; Anthopoulos, G. On the overtraining phenomenon of backpropagation neural networks. Math. Comput. Simul., 1996, 40(5-6), 507-521. doi: 10.1016/0378-4754(95)00003-8
  96. Ng, A.Y. Preventing" overfitting" of cross-validation data. Proceedings of the 14th international conference on machine learning (ICML), 1997, 97, pp. 245-253.
  97. Camacho, D.M.; Collins, K.M.; Powers, R.K.; Costello, J.C.; Collins, J.J. Next-generation machine learning for biological networks. Cell, 2018, 173(7), 1581-1592. doi: 10.1016/j.cell.2018.05.015 PMID: 29887378

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers