Novel Natural Inhibitors for Glioblastoma by Targeting Epidermal Growth Factor Receptor and Phosphoinositide 3-kinase


Cite item

Full Text

Abstract

Background/Aim:Glioblastoma is an extensively malignant neoplasm of the brain that predominantly impacts the human population. To address the challenge of glioblastoma, herein, we have searched for new drug-like candidates by extensive computational and biochemical investigations.

Methods:Approximately 950 compounds were virtually screened against the two most promising targets of glioblastoma, i.e., epidermal growth factor receptor (EGFR) and phosphoinositide 3-kinase (PI3K). Based on highly negative docking scores, excellent binding capabilities and good pharmacokinetic properties, eight and seven compounds were selected for EGFR and PI3K, respectively.

Results:Among those hits, four natural products (SBEH-40, QUER, QTME-12, and HCFR) exerted dual inhibitory effects on EGFR and PI3K in our in-silico analysis; therefore, their capacity to suppress the cell proliferation was assessed in U87 cell line (type of glioma cell line). The compounds SBEH-40, QUER, and QTME-12 exhibited significant anti-proliferative capability with IC50 values of 11.97 ± 0.73 µM, 28.27 ± 1.52 µM, and 22.93 ± 1.63 µM respectively, while HCFR displayed weak inhibitory potency (IC50 = 74.97 ± 2.30 µM).

Conclusion:This study has identified novel natural products that inhibit the progression of glioblastoma; however, further examinations of these molecules are required in animal and tissue models to better understand their downstream targeting mechanisms.

About the authors

Atta Ullah

Natural and Medical Sciences Research Center, University of Nizwa

Email: info@benthamscience.net

Saeed Ullah

Natural and Medical Sciences Research Center, University of Nizwa

Email: info@benthamscience.net

Muhammad Waqas

Natural and Medical Sciences Research Center, University of Nizwa

Email: info@benthamscience.net

Majid Khan

Natural and Medical Sciences Research Center, University of Nizwa

Email: info@benthamscience.net

Najeeb Rehman

Natural and Medical Sciences Research Center, University of Nizwa

Email: info@benthamscience.net

Asaad Khalid

Substance Abuse and Toxicology Research Center, Jazan University

Email: info@benthamscience.net

Afnan Jan

Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University

Email: info@benthamscience.net

Shahkaar Aziz

Institute of Biotechnology and Genetic Engineering, The University of Agriculture

Email: info@benthamscience.net

Muhammad Naeem

College of Life Science, Hebei Normal University

Email: info@benthamscience.net

Sobia Halim

Natural and Medical Sciences Research Center, University of Nizwa

Author for correspondence.
Email: info@benthamscience.net

Ajmal Khan

Natural and Medical Sciences Research Center, University of Nizwa

Author for correspondence.
Email: info@benthamscience.net

Ahmed Al-Harrasi

Natural and Medical Sciences Research Center, University of Nizwa

Author for correspondence.
Email: info@benthamscience.net

References

  1. Krex, D.; Klink, B.; Hartmann, C.; von Deimling, A.; Pietsch, T.; Simon, M.; Sabel, M.; Steinbach, J.P.; Heese, O.; Reifenberger, G.; Weller, M.; Schackert, G. Long-term survival with glioblastoma multiforme. Brain, 2007, 130(10), 2596-2606. doi: 10.1093/brain/awm204 PMID: 17785346
  2. Toraih, E.A.; Aly, N.M.; Abdallah, H.Y.; Qahtani, A.S.A.; Shaalan, A.A.M.; Hussein, M.H.; Fawzy, M.S. MicroRNA-target cross-talks: Key players in glioblastoma multiforme. Tumour Biol., 2017, 39(11), 1010428317726842. doi: 10.1177/1010428317726842 PMID: 29110584
  3. Holland, E.C. Glioblastoma multiforme: The terminator. Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6242-6244. doi: 10.1073/pnas.97.12.6242 PMID: 10841526
  4. Adamson, C.; Kanu, O.O.; Mehta, A.I.; Di, C.; Lin, N.; Mattox, A.K.; Bigner, D.D. Glioblastoma multiforme: A review of where we have been and where we are going. Expert Opin. Investig. Drugs, 2009, 18(8), 1061-1083. doi: 10.1517/13543780903052764 PMID: 19555299
  5. Keles, G.E.; Anderson, B.; Berger, M.S. The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg. Neurol., 1999, 52(4), 371-379. doi: 10.1016/S0090-3019(99)00103-2 PMID: 10555843
  6. Ejaz, K.; Suaib, N.B.M.; Kamal, M.S.; Rahim, M.S.M.; Rana, N. Segmentation method of deterministic feature clustering for identification of brain tumor using MRI. IEEE Access, 2023, 11, 39695-39712. doi: 10.1109/ACCESS.2023.3263798
  7. Parsa, A.T.; Wachhorst, S.; Lamborn, K.R.; Prados, M.D.; McDermott, M.W.; Berger, M.S.; Chang, S.M. Prognostic significance of intracranial dissemination of glioblastoma multiforme in adults. J. Neurosurg., 2005, 102(4), 622-628. doi: 10.3171/jns.2005.102.4.0622 PMID: 15871503
  8. Natha, S.; Laila, U.; Gashim, I.A.; Mahboob, K.; Saeed, M.N.; Noaman, K.M. Automated brain tumor identification in biomedical radiology images: A multi-model ensemble deep learning approach. Appl. Sci., 2024, 14(5), 2210. doi: 10.3390/app14052210
  9. Roth, J.G.; Elvidge, A.R. Glioblastoma multiforme: A clinical survey. J. Neurosurg., 1960, 17(4), 736-750. doi: 10.3171/jns.1960.17.4.0736 PMID: 14439403
  10. Barbagallo, G.M.V.; Jenkinson, M.D.; Brodbelt, A.R. ‘Recurrent’ glioblastoma multiforme, when should we reoperate? Br. J. Neurosurg., 2008, 22(3), 452-455. doi: 10.1080/02688690802182256 PMID: 18568742
  11. Sanli, A.; Turkoglu, E.; Dolgun, H.; Sekerci, Z. Unusual manifestations of primary Glioblastoma Multiforme: A report of three cases. Surg. Neurol. Int., 2010, 1(1), 87. doi: 10.4103/2152-7806.74146 PMID: 21206896
  12. Robinson, G.W.; Orr, B.A.; Gajjar, A. Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer, 2014, 14(1), 258. doi: 10.1186/1471-2407-14-258 PMID: 24725538
  13. Sasmita, A.O.; Wong, Y.P.; Ling, A.P.K. Biomarkers and therapeutic advances in glioblastoma multiforme. Asia Pac. J. Clin. Oncol., 2018, 14(1), 40-51. doi: 10.1111/ajco.12756 PMID: 28840962
  14. Hodges, L.C.; Smith, J.L.; Garrett, A.; Tate, S. Prevalence of glioblastoma multiforme in subjects with prior therapeutic radiation. J. Neurosci. Nurs., 1992, 24(2), 79-83.
  15. Zhao, H.; Wang, J.; Shao, W.; Wu, C.; Chen, Z.; To, S.T.; Li, W. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: Current preclinical and clinical development. Mol. Cancer, 2017, 16(1), 100. doi: 10.1186/s12943-017-0670-3 PMID: 28592260
  16. Ramaiah, M.J.; Kumar, K.R. mTOR-Rictor-EGFR axis in oncogenesis and diagnosis of glioblastoma multiforme. Mol. Biol. Rep., 2021, 48(5), 4813-4835. doi: 10.1007/s11033-021-06462-2 PMID: 34132942
  17. Lötsch, D.; Steiner, E.; Holzmann, K.; Kreinecker, S.S.; Pirker, C.; Hlavaty, J.; Petznek, H.; Hegedus, B.; Garay, T.; Mohr, T.; Sommergruber, W.; Grusch, M.; Berger, W. Major vault protein supports glioblastoma survival and migration by upregulating the EGFR/PI3K signalling axis. Oncotarget, 2013, 4(11), 1904-1918. doi: 10.18632/oncotarget.1264 PMID: 24243798
  18. Fan, Q.-W.; Weiss, W.A. Targeting the RTK-PI3K-mTOR axis in malignant glioma: Overcoming resistance. Curr. Top. Microbiol. Immunol., 2011, 2, 279-296.
  19. Akhavan, D.; Cloughesy, T.F.; Mischel, P.S. mTOR signaling in glioblastoma: Lessons learned from bench to bedside. Neuro-oncol., 2010, 12(8), 882-889. doi: 10.1093/neuonc/noq052 PMID: 20472883
  20. Newton, H.B. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis. Expert Rev. Anticancer Ther., 2004, 4(1), 105-128. doi: 10.1586/14737140.4.1.105 PMID: 14748662
  21. Prasad, G.; Sottero, T.; Yang, X.; Mueller, S.; James, C.D.; Weiss, W.A.; Polley, M.Y.; Ozawa, T.; Berger, M.S.; Aftab, D.T.; Prados, M.D.; Haas-Kogan, D.A. Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide. Neuro-oncol., 2011, 13(4), 384-392. doi: 10.1093/neuonc/noq193 PMID: 21317208
  22. Tuncel, G.; Kalkan, R. Receptor tyrosine kinase-Ras-PI 3 kinase-Akt signaling network in glioblastoma multiforme. Med. Oncol., 2018, 35(9), 122. doi: 10.1007/s12032-018-1185-5 PMID: 30078108
  23. Crespo, S.; Kind, M.; Arcaro, A. The role of the PI3K/AKT/mTOR pathway in brain tumor metastasis. J. Cancer Metastasis Treat., 2016, 2(3), 80-89. doi: 10.20517/2394-4722.2015.72
  24. Jalalvand, A.R. Chemometrics in investigation of small molecule-biomacromolecule interactions: A review. Int. J. Biol. Macromol., 2021, 181, 478-493. doi: 10.1016/j.ijbiomac.2021.03.184 PMID: 33798569
  25. Glaysher, S.; Bolton, L.M.; Johnson, P.; Atkey, N.; Dyson, M.; Torrance, C.; Cree, I.A. Targeting EGFR and PI3K pathways in ovarian cancer. Br. J. Cancer, 2013, 109(7), 1786-1794. doi: 10.1038/bjc.2013.529 PMID: 24022196
  26. Zaryouh, H.; De Pauw, I.; Baysal, H.; Peeters, M.; Vermorken, J.B.; Lardon, F.; Wouters, A. Recent insights in the PI3K/Akt pathway as a promising therapeutic target in combination with EGFR-targeting agents to treat head and neck squamous cell carcinoma. Med. Res. Rev., 2022, 42(1), 112-155. doi: 10.1002/med.21806 PMID: 33928670
  27. Markham, A. Copanlisib: first global approval. Drugs, 2017, 77(18), 2057-2062. doi: 10.1007/s40265-017-0838-6 PMID: 29127587
  28. Dreyling, M.; Morschhauser, F.; Bouabdallah, K.; Bron, D.; Cunningham, D.; Assouline, S.E.; Verhoef, G.; Linton, K.; Thieblemont, C.; Vitolo, U.; Hiemeyer, F.; Giurescu, M.; Vargas, G.J.; Gorbatchevsky, I.; Liu, L.; Koechert, K.; Peña, C.; Neves, M.; Childs, B.H.; Zinzani, P.L. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann. Oncol., 2017, 28(9), 2169-2178. doi: 10.1093/annonc/mdx289 PMID: 28633365
  29. Markham, A. Idelalisib: First global approval. Drugs, 2014, 74(14), 1701-1707. doi: 10.1007/s40265-014-0285-6 PMID: 25187123
  30. Lu, S.; Dong, X.; Jian, H.; Chen, J.; Chen, G.; Sun, Y.; Ji, Y.; Wang, Z.; Shi, J.; Lu, J. Am. Soc. Clin. Oncol., 2022, 40(27), 3162.
  31. Kumar, A.; Bhatia, R.; Chawla, P.; Anghore, D.; Saini, V.; Rawal, R.K. Copanlisib: Novel PI3K inhibitor for the treatment of lymphoma. Anti-Cancer Agents Med. Chem., 2020, 20(10), 1158-1172.
  32. Shirley, M.; Keam, S.J. Aumolertinib: A review in non-small cell lung cancer. Drugs, 2022, 82(5), 577-584. doi: 10.1007/s40265-022-01695-2 PMID: 35305259
  33. Michaels, S.A.; Hulverson, M.A.; Whitman, G.R.; Tran, L.T.; Choi, R.; Fan, E.; McNamara, C.W.; Love, M.S.; Ojo, K.K. Repurposing the kinase inhibitor mavelertinib for giardiasis therapy. Antimicrob. Agents Chemother., 2022, 66(7), e00017-22. doi: 10.1128/aac.00017-22 PMID: 35703552
  34. Sun, Y.; Chu, L.; Wang, H.; Peng, H.; Liu, J. Inhibitory effect of gefitinib derivative LPY-9 on human glioma. Mol. Med. Rep., 2021, 24(3), 623. doi: 10.3892/mmr.2021.12262 PMID: 34212976
  35. Tan, J.; Li, M.; Zhong, W.; Hu, C.; Gu, Q.; Xie, Y. Tyrosine kinase inhibitors show different anti-brain metastases efficacy in NSCLC: A direct comparative analysis of icotinib, gefitinib, and erlotinib in a nude mouse model. Oncotarget, 2017, 8(58), 98771-98781. doi: 10.18632/oncotarget.21936 PMID: 29228726
  36. Rich, J.N.; Reardon, D.A.; Peery, T.; Dowell, J.M.; Quinn, J.A.; Penne, K.L.; Wikstrand, C.J.; Van Duyn, L.B.; Dancey, J.E.; McLendon, R.E.; Kao, J.C.; Stenzel, T.T.; Rasheed, A.B.K.; Uhlig, T.S.E.; Herndon, J.E., II; Vredenburgh, J.J.; Sampson, J.H.; Friedman, A.H.; Bigner, D.D.; Friedman, H.S. Phase II trial of gefitinib in recurrent glioblastoma. J. Clin. Oncol., 2004, 22(1), 133-142. doi: 10.1200/JCO.2004.08.110 PMID: 14638850
  37. Yang, Q.; Modi, P.; Newcomb, T.; Quéva, C.; Gandhi, V. Idelalisib: First-in-class PI3K delta inhibitor for the treatment of chronic lymphocytic leukemia, small lymphocytic leukemia, and follicular lymphoma. Clin. Cancer Res., 2015, 21(7), 1537-1542. doi: 10.1158/1078-0432.CCR-14-2034 PMID: 25670221
  38. Kumar, N.; Lal, N.; Nemaysh, V.; Luthra, P.M. Design, synthesis, DNA binding studies and evaluation of anticancer potential of novel substituted biscarbazole derivatives against human glioma U87 MG cell line. Bioorg. Chem., 2020, 100, 103911. doi: 10.1016/j.bioorg.2020.103911 PMID: 32502918
  39. Karve, A.S.; Desai, J.M.; Dave, N.; Draper, W.T.M.; Gudelsky, G.A.; Phoenix, T.N.; DasGupta, B.; Sengupta, S.; Plas, D.R.; Desai, P.B. Potentiation of temozolomide activity against glioblastoma cells by aromatase inhibitor letrozole. Cancer Chemother. Pharmacol., 2022, 90(4), 345-356. doi: 10.1007/s00280-022-04469-5 PMID: 36050497
  40. Li, X.; Wu, C.; Chen, N.; Gu, H.; Yen, A.; Cao, L.; Wang, E.; Wang, L. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget, 2016, 7(22), 33440-33450. doi: 10.18632/oncotarget.7961 PMID: 26967052
  41. Fan, Q.W.; Cheng, C.K.; Nicolaides, T.P.; Hackett, C.S.; Knight, Z.A.; Shokat, K.M.; Weiss, W.A. A dual phosphoinositide-3-kinase α/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res., 2007, 67(17), 7960-7965. doi: 10.1158/0008-5472.CAN-07-2154 PMID: 17804702
  42. Lino, M.M.; Merlo, A. PI3Kinase signaling in glioblastoma. J. Neurooncol., 2011, 103(3), 417-427. doi: 10.1007/s11060-010-0442-z PMID: 21063898
  43. Demir, Y.; Ceylan, H.; Türkeş, C.; Beydemir, Ş. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J. Biomol. Struct. Dyn., 2022, 40(22), 12008-12021. doi: 10.1080/07391102.2021.1967195 PMID: 34424822
  44. Tokalı, F.S.; Demir, Y.; Türkeş, C.; Dinçer, B.; Beydemir, Ş. Novel acetic acid derivatives containing quinazolin-4(3 H )-one ring: Synthesis, in vitro, and in silico evaluation of potent aldose reductase inhibitors. Drug Dev. Res., 2023, 84(2), 275-295. doi: 10.1002/ddr.22031 PMID: 36598092
  45. Rose, P.W.; Bi, C.; Bluhm, W.F.; Christie, C.H.; Dimitropoulos, D.; Dutta, S.; Green, R.K.; Goodsell, D.S.; Prlić, A.; Quesada, M.; Quinn, G.B.; Ramos, A.G.; Westbrook, J.D.; Young, J.; Zardecki, C.; Berman, H.M.; Bourne, P.E. The RCSB Protein Data Bank: New resources for research and education. Nucleic Acids Res., 2013, 41(Database issue), D475-D482. PMID: 23193259
  46. Stamos, J.; Sliwkowski, M.X.; Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem., 2002, 277(48), 46265-46272. doi: 10.1074/jbc.M207135200 PMID: 12196540
  47. Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell, 2000, 6(4), 909-919. doi: 10.1016/S1097-2765(05)00089-4 PMID: 11090628
  48. Peters, M.B.; Yang, Y.; Wang, B.; Molnár, F.L.; Weaver, M.N.; Merz Jr., K.M. Structural survey of zinc-containing proteins and development of the zinc AMBER force field (ZAFF). J. Chem. Theory Comput., 2010, 6(9), 2935-2947. doi: 10.1021/ct1002626 PMID: 20856692
  49. Rajhi, A.A.M.H.; Qanash, H.; Almuhayawi, M.S.; Jaouni, A.S.K.; Bakri, M.M.; Ganash, M.; Salama, H.M.; Selim, S.; Abdelghany, T.M. Molecular interaction studies and phytochemical characterization of Mentha pulegium L. constituents with multiple biological utilities as antioxidant, antimicrobial, anticancer and anti-hemolytic agents. Molecules, 2022, 27(15), 4824. doi: 10.3390/molecules27154824 PMID: 35956775
  50. Aziz, M.; Ejaz, S.A.; Tamam, N.; Siddique, F.; Riaz, N.; Qais, F.A.; Chtita, S.; Iqbal, J. Identification of potent inhibitors of NEK7 protein using a comprehensive computational approach. Sci. Rep., 2022, 12(1), 6404. doi: 10.1038/s41598-022-10253-5 PMID: 35436996
  51. Chan, W.K.B.; Olson, K.M.; Wotring, J.W.; Sexton, J.Z.; Carlson, H.A.; Traynor, J.R. In silico analysis of SARS-CoV-2 proteins as targets for clinically available drugs. Sci. Rep., 2022, 12(1), 5320. doi: 10.1038/s41598-022-08320-y PMID: 35351926
  52. Scholz, C.; Knorr, S.; Hamacher, K.; Schmidt, B. DOCKTITE-A highly versatile step-by-step workflow for covalent docking and virtual screening in the molecular operating environment. J. Chem. Inf. Model., 2015, 55(2), 398-406. doi: 10.1021/ci500681r PMID: 25541749
  53. Ullah, A.; Waqas, M.; Halim, S.A.; Daud, M.; Jan, A.; Khan, A.; Harrasi, A.A. Sirtuin 1 inhibition: A promising avenue to suppress cancer progression through small inhibitors design. J. Biomol. Struct. Dyn., 2023, 1-17. doi: 10.1080/07391102.2023.2252898 PMID: 37661778
  54. Corbeil, C.R.; Williams, C.I.; Labute, P. Variability in docking success rates due to dataset preparation. J. Comput. Aided Mol. Des., 2012, 26(6), 775-786. doi: 10.1007/s10822-012-9570-1 PMID: 22566074
  55. Béchet, E.; Minnebo, H.; Moës, N.; Burgardt, B. Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int. J. Numer. Methods Eng., 2005, 64(8), 1033-1056. doi: 10.1002/nme.1386
  56. Waqas, M.; Halim, S.A.; Ullah, A.; Ali, A.A.M.; Khalid, A.; Abdalla, A.N.; Khan, A.; Harrasi, A.A. Multi-Fold computational analysis to discover novel putative inhibitors of isethionate sulfite-lyase (isla) from Bilophila wadsworthia: Combating colorectal cancer and inflammatory bowel diseases. Cancers, 2023, 15(3), 901. doi: 10.3390/cancers15030901 PMID: 36765864
  57. Shi, C.; Chen, J.; Xiao, B.; Kang, X.; Lao, X.; Zheng, H. Discovery of NDM-1 inhibitors from natural products. J. Glob. Antimicrob. Resist., 2019, 18, 80-87. doi: 10.1016/j.jgar.2019.02.003 PMID: 30763762
  58. Chopra, H.; Bibi, S.; Kumar, S.; Khan, M.S.; Kumar, P.; Singh, I. Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound healing application. Gels, 2022, 8(2), 111. doi: 10.3390/gels8020111 PMID: 35200493
  59. Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res., 2014, 42(W1), W32-W38. doi: 10.1093/nar/gku293 PMID: 24792161
  60. Mayr, A.; Klambauer, G.; Unterthiner, T.; Steijaert, M.; Wegner, J.K.; Ceulemans, H.; Clevert, D.A.; Hochreiter, S. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem. Sci., 2018, 9(24), 5441-5451. doi: 10.1039/C8SC00148K PMID: 30155234
  61. Da, C.; Kireev, D. Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: Method and benchmark study. J. Chem. Inf. Model., 2014, 54(9), 2555-2561. doi: 10.1021/ci500319f PMID: 25116840
  62. Sravika, N.; Priya, S.; Divya, N.; Jyotsna, P.M.S.; Anusha, P.; Kudumula, N.; Bai, S.A. Swiss ADME properties screening of the phytochemical compounds present in Bauhinia acuminata. J. Pharmacogn. Phytochem., 2021, 10(4), 411-419. doi: 10.22271/phyto.2021.v10.i4e.14193
  63. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
  64. Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc., 2018, 2018(6), pdb.prot095505. doi: 10.1101/pdb.prot095505 PMID: 29858338
  65. Plumb, J.A. Cell sensitivity assays: the MTT assay. Methods Mol Med., 1999, 28, 25-30.
  66. Sever, B.; Altıntop, M.D.; Demir, Y.; Yılmaz, N.; Çiftçi, A.G.; Beydemir, Ş.; Özdemir, A. Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chem. Biol. Interact., 2021, 345, 109576. doi: 10.1016/j.cbi.2021.109576 PMID: 34252406
  67. Buza, A.; Türkeş, C.; Arslan, M.; Demir, Y.; Dincer, B.; Nixha, A.R.; Beydemir, Ş. Discovery of novel benzenesulfonamides incorporating 1,2,3-triazole scaffold as carbonic anhydrase I, II, IX, and XII inhibitors. Int. J. Biol. Macromol., 2023, 239, 124232. doi: 10.1016/j.ijbiomac.2023.124232 PMID: 37001773
  68. He, J.J.; Zhang, W.H.; Liu, S.L.; Chen, Y.F.; Liao, C.X.; Shen, Q.Q.; Hu, P. Activation of β-adrenergic receptor promotes cellular proliferation in human glioblastoma. Oncol. Lett., 2017, 14(3), 3846-3852. doi: 10.3892/ol.2017.6653 PMID: 28927156
  69. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63. doi: 10.1016/0022-1759(83)90303-4 PMID: 6606682
  70. Meerloo, V.J.; Kaspers, G.J.; Cloos, J. Cell sensitivity assays: the MTT assay. Methods Mol Biol., 2011, 731, 237-245.
  71. Ma, D.L.; Chan, D.S.H.; Leung, C.H. Molecular docking for virtual screening of natural product databases. Chem. Sci., 2011, 2(9), 1656-1665. doi: 10.1039/C1SC00152C
  72. Kakakhan, C.; Türkeş, C.; Güleç, Ö.; Demir, Y.; Arslan, M.; Özkemahlı, G.; Beydemir, Ş. Exploration of 1,2,3-triazole linked benzenesulfonamide derivatives as isoform selective inhibitors of human carbonic anhydrase. Bioorg. Med. Chem., 2023, 77, 117111. doi: 10.1016/j.bmc.2022.117111 PMID: 36463726
  73. Wirsching, H.-G.; Weller, M. Glioblastoma. Malignant brain tumors: State-of-the-art treatment Springer Nature, 2017, 265-288.
  74. Ohgaki, H.; Kleihues, P. The definition of primary and secondary glioblastoma. Clin. Cancer Res., 2013, 19(4), 764-772. doi: 10.1158/1078-0432.CCR-12-3002 PMID: 23209033
  75. Alexander, B.M.; Cloughesy, T.F. Adult glioblastoma. J. Clin. Oncol., 2017, 35(21), 2402-2409. doi: 10.1200/JCO.2017.73.0119 PMID: 28640706
  76. Sami, A.; Karsy, M. Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: Novel therapeutic agents and advances in understanding. Tumour Biol., 2013, 34(4), 1991-2002. doi: 10.1007/s13277-013-0800-5 PMID: 23625692
  77. Koul, D.; Shen, R.; Bergh, S.; Sheng, X.; Shishodia, S.; Lafortune, T.A.; Lu, Y.; de Groot, J.F.; Mills, G.B.; Yung, W.K.A. Inhibition of Akt survival pathway by a small- molecule inhibitor in human glioblastoma. Mol. Cancer Ther., 2006, 5(3), 637-644. doi: 10.1158/1535-7163.MCT-05-0453 PMID: 16546978
  78. Mischel, P.S.; Cloughesy, T.F. Targeted molecular therapy of GBM. Brain Pathol., 2003, 13(1), 52-61. doi: 10.1111/j.1750-3639.2003.tb00006.x PMID: 12580545
  79. Yu, L. Jessica, Wei.; Liu, P. Attacking the PI3K/Akt/mToR signaling pathway for targeted therapeutic treatment in human cancer. Semin. Cancer Biol., 2022, 85, 69-94.
  80. Koul, D.; Shen, R.; Kim, Y.W.; Kondo, Y.; Lu, Y.; Bankson, J.; Ronen, S.M.; Kirkpatrick, D.L.; Powis, G.; Yung, W.K.A. Cellular and in vivo activity of a novel PI3K inhibitor, PX-866, against human glioblastoma. Neuro-oncol., 2010, 12(6), 559-569. doi: 10.1093/neuonc/nop058 PMID: 20156803
  81. Gijtenbeek, R.G.P.; Noort, v.d.V.; Aerts, J.G.J.V.; Brekel, S.v.d.J.A.; Smit, E.F.; Krouwels, F.H.; Wilschut, F.A.; Hiltermann, T.J.N.; Timens, W.; Schuuring, E.; Janssen, J.D.J.; Goosens, M.; Berg, v.d.P.M.; de Langen, A.J.; Stigt, J.A.; van den Borne, B.E.E.M.; Groen, H.J.M.; van Geffen, W.H.; van der Wekken, A.J. Randomised controlled trial of first-line tyrosine-kinase inhibitor (TKI) versus intercalated TKI with chemotherapy for EGFR -mutated nonsmall cell lung cancer. ERJ Open Res., 2022, 8(4), 00239-2022. doi: 10.1183/23120541.00239-2022 PMID: 36267895
  82. Zhang, H. Osimertinib making a breakthrough in lung cancer targeted therapy. OncoTargets Ther., 2016, 9, 5489-5493. doi: 10.2147/OTT.S114722 PMID: 27660466
  83. Nagasaka, M.; Zhu, V.W.; Lim, S.M.; Greco, M.; Wu, F.; Ou, S.H.I. Beyond osimertinib: The development of third- generation EGFR tyrosine kinase inhibitors for advanced EGFR+ NSCLC. J. Thorac. Oncol., 2021, 16(5), 740-763. doi: 10.1016/j.jtho.2020.11.028 PMID: 33338652
  84. Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science, 2004, 304(5676), 1497-1500. doi: 10.1126/science.1099314 PMID: 15118125
  85. Greig, S.L. Osimertinib: first global approval. Drugs, 2016, 76(2), 263-273. doi: 10.1007/s40265-015-0533-4 PMID: 26729184
  86. Rawat, A.; Reddy, V.B.A. Recent advances on anticancer activity of coumarin derivatives. European J. Med. Chem. Reports, 2022, 5, 100038. doi: 10.1016/j.ejmcr.2022.100038
  87. Xiang, Y.; Zhang, Q.; Wei, S.; Huang, C.; Li, Z.; Gao, Y. Paeoniflorin: A monoterpene glycoside from plants of Paeoniaceae family with diverse anticancer activities. J. Pharm. Pharmacol., 2020, 72(4), 483-495. doi: 10.1111/jphp.13204 PMID: 31858611
  88. Zubair, T.; Bandyopadhyay, D. Small molecule EGFR inhibitors as anti-cancer agents: Discovery, mechanisms of action, and opportunities. Int. J. Mol. Sci., 2023, 24(3), 2651. doi: 10.3390/ijms24032651 PMID: 36768973
  89. Nozhat, Z.; Heydarzadeh, S.; Khalaji, S.M.; Wang, S.; Iqbal, M.Z.; Kong, X. Advanced biomaterials for human glioblastoma multiforme (GBM) drug delivery. Biomater. Sci., 2023, 11(12), 4094-4131. doi: 10.1039/D2BM01996E PMID: 37073998
  90. Zhang, F.Y.; Hu, Y.; Que, Z.Y.; Wang, P.; Liu, Y.H.; Wang, Z.H.; Xue, Y.X. Shikonin inhibits the migration and invasion of human glioblastoma cells by targeting phosphorylated β-catenin and phosphorylated PI3K/Akt: A potential mechanism for the anti-glioma efficacy of a traditional Chinese herbal medicine. Int. J. Mol. Sci., 2015, 16(10), 23823-23848. doi: 10.3390/ijms161023823 PMID: 26473829
  91. Atiq, A.; Parhar, I. Anti-neoplastic potential of flavonoids and polysaccharide phytochemicals in glioblastoma. Molecules, 2020, 25(21), 4895. doi: 10.3390/molecules25214895 PMID: 33113890

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers