Novel Natural Inhibitors for Glioblastoma by Targeting Epidermal Growth Factor Receptor and Phosphoinositide 3-kinase
- Authors: Ullah A.1, Ullah S.1, Waqas M.1, Khan M.1, Rehman N.1, Khalid A.2, Jan A.3, Aziz S.4, Naeem M.5, Halim S.1, Khan A.1, Al-Harrasi A.1
-
Affiliations:
- Natural and Medical Sciences Research Center, University of Nizwa
- Substance Abuse and Toxicology Research Center, Jazan University
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture
- College of Life Science, Hebei Normal University
- Issue: Vol 31, No 40 (2024)
- Pages: 6596-6613
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645128
- DOI: https://doi.org/10.2174/0109298673293279240404080046
- ID: 645128
Cite item
Full Text
Abstract
Background/Aim:Glioblastoma is an extensively malignant neoplasm of the brain that predominantly impacts the human population. To address the challenge of glioblastoma, herein, we have searched for new drug-like candidates by extensive computational and biochemical investigations.
Methods:Approximately 950 compounds were virtually screened against the two most promising targets of glioblastoma, i.e., epidermal growth factor receptor (EGFR) and phosphoinositide 3-kinase (PI3K). Based on highly negative docking scores, excellent binding capabilities and good pharmacokinetic properties, eight and seven compounds were selected for EGFR and PI3K, respectively.
Results:Among those hits, four natural products (SBEH-40, QUER, QTME-12, and HCFR) exerted dual inhibitory effects on EGFR and PI3K in our in-silico analysis; therefore, their capacity to suppress the cell proliferation was assessed in U87 cell line (type of glioma cell line). The compounds SBEH-40, QUER, and QTME-12 exhibited significant anti-proliferative capability with IC50 values of 11.97 ± 0.73 µM, 28.27 ± 1.52 µM, and 22.93 ± 1.63 µM respectively, while HCFR displayed weak inhibitory potency (IC50 = 74.97 ± 2.30 µM).
Conclusion:This study has identified novel natural products that inhibit the progression of glioblastoma; however, further examinations of these molecules are required in animal and tissue models to better understand their downstream targeting mechanisms.
Keywords
About the authors
Atta Ullah
Natural and Medical Sciences Research Center, University of Nizwa
Email: info@benthamscience.net
Saeed Ullah
Natural and Medical Sciences Research Center, University of Nizwa
Email: info@benthamscience.net
Muhammad Waqas
Natural and Medical Sciences Research Center, University of Nizwa
Email: info@benthamscience.net
Majid Khan
Natural and Medical Sciences Research Center, University of Nizwa
Email: info@benthamscience.net
Najeeb Rehman
Natural and Medical Sciences Research Center, University of Nizwa
Email: info@benthamscience.net
Asaad Khalid
Substance Abuse and Toxicology Research Center, Jazan University
Email: info@benthamscience.net
Afnan Jan
Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University
Email: info@benthamscience.net
Shahkaar Aziz
Institute of Biotechnology and Genetic Engineering, The University of Agriculture
Email: info@benthamscience.net
Muhammad Naeem
College of Life Science, Hebei Normal University
Email: info@benthamscience.net
Sobia Halim
Natural and Medical Sciences Research Center, University of Nizwa
Author for correspondence.
Email: info@benthamscience.net
Ajmal Khan
Natural and Medical Sciences Research Center, University of Nizwa
Author for correspondence.
Email: info@benthamscience.net
Ahmed Al-Harrasi
Natural and Medical Sciences Research Center, University of Nizwa
Author for correspondence.
Email: info@benthamscience.net
References
- Krex, D.; Klink, B.; Hartmann, C.; von Deimling, A.; Pietsch, T.; Simon, M.; Sabel, M.; Steinbach, J.P.; Heese, O.; Reifenberger, G.; Weller, M.; Schackert, G. Long-term survival with glioblastoma multiforme. Brain, 2007, 130(10), 2596-2606. doi: 10.1093/brain/awm204 PMID: 17785346
- Toraih, E.A.; Aly, N.M.; Abdallah, H.Y.; Qahtani, A.S.A.; Shaalan, A.A.M.; Hussein, M.H.; Fawzy, M.S. MicroRNA-target cross-talks: Key players in glioblastoma multiforme. Tumour Biol., 2017, 39(11), 1010428317726842. doi: 10.1177/1010428317726842 PMID: 29110584
- Holland, E.C. Glioblastoma multiforme: The terminator. Proc. Natl. Acad. Sci. USA, 2000, 97(12), 6242-6244. doi: 10.1073/pnas.97.12.6242 PMID: 10841526
- Adamson, C.; Kanu, O.O.; Mehta, A.I.; Di, C.; Lin, N.; Mattox, A.K.; Bigner, D.D. Glioblastoma multiforme: A review of where we have been and where we are going. Expert Opin. Investig. Drugs, 2009, 18(8), 1061-1083. doi: 10.1517/13543780903052764 PMID: 19555299
- Keles, G.E.; Anderson, B.; Berger, M.S. The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg. Neurol., 1999, 52(4), 371-379. doi: 10.1016/S0090-3019(99)00103-2 PMID: 10555843
- Ejaz, K.; Suaib, N.B.M.; Kamal, M.S.; Rahim, M.S.M.; Rana, N. Segmentation method of deterministic feature clustering for identification of brain tumor using MRI. IEEE Access, 2023, 11, 39695-39712. doi: 10.1109/ACCESS.2023.3263798
- Parsa, A.T.; Wachhorst, S.; Lamborn, K.R.; Prados, M.D.; McDermott, M.W.; Berger, M.S.; Chang, S.M. Prognostic significance of intracranial dissemination of glioblastoma multiforme in adults. J. Neurosurg., 2005, 102(4), 622-628. doi: 10.3171/jns.2005.102.4.0622 PMID: 15871503
- Natha, S.; Laila, U.; Gashim, I.A.; Mahboob, K.; Saeed, M.N.; Noaman, K.M. Automated brain tumor identification in biomedical radiology images: A multi-model ensemble deep learning approach. Appl. Sci., 2024, 14(5), 2210. doi: 10.3390/app14052210
- Roth, J.G.; Elvidge, A.R. Glioblastoma multiforme: A clinical survey. J. Neurosurg., 1960, 17(4), 736-750. doi: 10.3171/jns.1960.17.4.0736 PMID: 14439403
- Barbagallo, G.M.V.; Jenkinson, M.D.; Brodbelt, A.R. Recurrent glioblastoma multiforme, when should we reoperate? Br. J. Neurosurg., 2008, 22(3), 452-455. doi: 10.1080/02688690802182256 PMID: 18568742
- Sanli, A.; Turkoglu, E.; Dolgun, H.; Sekerci, Z. Unusual manifestations of primary Glioblastoma Multiforme: A report of three cases. Surg. Neurol. Int., 2010, 1(1), 87. doi: 10.4103/2152-7806.74146 PMID: 21206896
- Robinson, G.W.; Orr, B.A.; Gajjar, A. Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy. BMC Cancer, 2014, 14(1), 258. doi: 10.1186/1471-2407-14-258 PMID: 24725538
- Sasmita, A.O.; Wong, Y.P.; Ling, A.P.K. Biomarkers and therapeutic advances in glioblastoma multiforme. Asia Pac. J. Clin. Oncol., 2018, 14(1), 40-51. doi: 10.1111/ajco.12756 PMID: 28840962
- Hodges, L.C.; Smith, J.L.; Garrett, A.; Tate, S. Prevalence of glioblastoma multiforme in subjects with prior therapeutic radiation. J. Neurosci. Nurs., 1992, 24(2), 79-83.
- Zhao, H.; Wang, J.; Shao, W.; Wu, C.; Chen, Z.; To, S.T.; Li, W. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: Current preclinical and clinical development. Mol. Cancer, 2017, 16(1), 100. doi: 10.1186/s12943-017-0670-3 PMID: 28592260
- Ramaiah, M.J.; Kumar, K.R. mTOR-Rictor-EGFR axis in oncogenesis and diagnosis of glioblastoma multiforme. Mol. Biol. Rep., 2021, 48(5), 4813-4835. doi: 10.1007/s11033-021-06462-2 PMID: 34132942
- Lötsch, D.; Steiner, E.; Holzmann, K.; Kreinecker, S.S.; Pirker, C.; Hlavaty, J.; Petznek, H.; Hegedus, B.; Garay, T.; Mohr, T.; Sommergruber, W.; Grusch, M.; Berger, W. Major vault protein supports glioblastoma survival and migration by upregulating the EGFR/PI3K signalling axis. Oncotarget, 2013, 4(11), 1904-1918. doi: 10.18632/oncotarget.1264 PMID: 24243798
- Fan, Q.-W.; Weiss, W.A. Targeting the RTK-PI3K-mTOR axis in malignant glioma: Overcoming resistance. Curr. Top. Microbiol. Immunol., 2011, 2, 279-296.
- Akhavan, D.; Cloughesy, T.F.; Mischel, P.S. mTOR signaling in glioblastoma: Lessons learned from bench to bedside. Neuro-oncol., 2010, 12(8), 882-889. doi: 10.1093/neuonc/noq052 PMID: 20472883
- Newton, H.B. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, SHH/PTCH and angiogenesis. Expert Rev. Anticancer Ther., 2004, 4(1), 105-128. doi: 10.1586/14737140.4.1.105 PMID: 14748662
- Prasad, G.; Sottero, T.; Yang, X.; Mueller, S.; James, C.D.; Weiss, W.A.; Polley, M.Y.; Ozawa, T.; Berger, M.S.; Aftab, D.T.; Prados, M.D.; Haas-Kogan, D.A. Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide. Neuro-oncol., 2011, 13(4), 384-392. doi: 10.1093/neuonc/noq193 PMID: 21317208
- Tuncel, G.; Kalkan, R. Receptor tyrosine kinase-Ras-PI 3 kinase-Akt signaling network in glioblastoma multiforme. Med. Oncol., 2018, 35(9), 122. doi: 10.1007/s12032-018-1185-5 PMID: 30078108
- Crespo, S.; Kind, M.; Arcaro, A. The role of the PI3K/AKT/mTOR pathway in brain tumor metastasis. J. Cancer Metastasis Treat., 2016, 2(3), 80-89. doi: 10.20517/2394-4722.2015.72
- Jalalvand, A.R. Chemometrics in investigation of small molecule-biomacromolecule interactions: A review. Int. J. Biol. Macromol., 2021, 181, 478-493. doi: 10.1016/j.ijbiomac.2021.03.184 PMID: 33798569
- Glaysher, S.; Bolton, L.M.; Johnson, P.; Atkey, N.; Dyson, M.; Torrance, C.; Cree, I.A. Targeting EGFR and PI3K pathways in ovarian cancer. Br. J. Cancer, 2013, 109(7), 1786-1794. doi: 10.1038/bjc.2013.529 PMID: 24022196
- Zaryouh, H.; De Pauw, I.; Baysal, H.; Peeters, M.; Vermorken, J.B.; Lardon, F.; Wouters, A. Recent insights in the PI3K/Akt pathway as a promising therapeutic target in combination with EGFR-targeting agents to treat head and neck squamous cell carcinoma. Med. Res. Rev., 2022, 42(1), 112-155. doi: 10.1002/med.21806 PMID: 33928670
- Markham, A. Copanlisib: first global approval. Drugs, 2017, 77(18), 2057-2062. doi: 10.1007/s40265-017-0838-6 PMID: 29127587
- Dreyling, M.; Morschhauser, F.; Bouabdallah, K.; Bron, D.; Cunningham, D.; Assouline, S.E.; Verhoef, G.; Linton, K.; Thieblemont, C.; Vitolo, U.; Hiemeyer, F.; Giurescu, M.; Vargas, G.J.; Gorbatchevsky, I.; Liu, L.; Koechert, K.; Peña, C.; Neves, M.; Childs, B.H.; Zinzani, P.L. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann. Oncol., 2017, 28(9), 2169-2178. doi: 10.1093/annonc/mdx289 PMID: 28633365
- Markham, A. Idelalisib: First global approval. Drugs, 2014, 74(14), 1701-1707. doi: 10.1007/s40265-014-0285-6 PMID: 25187123
- Lu, S.; Dong, X.; Jian, H.; Chen, J.; Chen, G.; Sun, Y.; Ji, Y.; Wang, Z.; Shi, J.; Lu, J. Am. Soc. Clin. Oncol., 2022, 40(27), 3162.
- Kumar, A.; Bhatia, R.; Chawla, P.; Anghore, D.; Saini, V.; Rawal, R.K. Copanlisib: Novel PI3K inhibitor for the treatment of lymphoma. Anti-Cancer Agents Med. Chem., 2020, 20(10), 1158-1172.
- Shirley, M.; Keam, S.J. Aumolertinib: A review in non-small cell lung cancer. Drugs, 2022, 82(5), 577-584. doi: 10.1007/s40265-022-01695-2 PMID: 35305259
- Michaels, S.A.; Hulverson, M.A.; Whitman, G.R.; Tran, L.T.; Choi, R.; Fan, E.; McNamara, C.W.; Love, M.S.; Ojo, K.K. Repurposing the kinase inhibitor mavelertinib for giardiasis therapy. Antimicrob. Agents Chemother., 2022, 66(7), e00017-22. doi: 10.1128/aac.00017-22 PMID: 35703552
- Sun, Y.; Chu, L.; Wang, H.; Peng, H.; Liu, J. Inhibitory effect of gefitinib derivative LPY-9 on human glioma. Mol. Med. Rep., 2021, 24(3), 623. doi: 10.3892/mmr.2021.12262 PMID: 34212976
- Tan, J.; Li, M.; Zhong, W.; Hu, C.; Gu, Q.; Xie, Y. Tyrosine kinase inhibitors show different anti-brain metastases efficacy in NSCLC: A direct comparative analysis of icotinib, gefitinib, and erlotinib in a nude mouse model. Oncotarget, 2017, 8(58), 98771-98781. doi: 10.18632/oncotarget.21936 PMID: 29228726
- Rich, J.N.; Reardon, D.A.; Peery, T.; Dowell, J.M.; Quinn, J.A.; Penne, K.L.; Wikstrand, C.J.; Van Duyn, L.B.; Dancey, J.E.; McLendon, R.E.; Kao, J.C.; Stenzel, T.T.; Rasheed, A.B.K.; Uhlig, T.S.E.; Herndon, J.E., II; Vredenburgh, J.J.; Sampson, J.H.; Friedman, A.H.; Bigner, D.D.; Friedman, H.S. Phase II trial of gefitinib in recurrent glioblastoma. J. Clin. Oncol., 2004, 22(1), 133-142. doi: 10.1200/JCO.2004.08.110 PMID: 14638850
- Yang, Q.; Modi, P.; Newcomb, T.; Quéva, C.; Gandhi, V. Idelalisib: First-in-class PI3K delta inhibitor for the treatment of chronic lymphocytic leukemia, small lymphocytic leukemia, and follicular lymphoma. Clin. Cancer Res., 2015, 21(7), 1537-1542. doi: 10.1158/1078-0432.CCR-14-2034 PMID: 25670221
- Kumar, N.; Lal, N.; Nemaysh, V.; Luthra, P.M. Design, synthesis, DNA binding studies and evaluation of anticancer potential of novel substituted biscarbazole derivatives against human glioma U87 MG cell line. Bioorg. Chem., 2020, 100, 103911. doi: 10.1016/j.bioorg.2020.103911 PMID: 32502918
- Karve, A.S.; Desai, J.M.; Dave, N.; Draper, W.T.M.; Gudelsky, G.A.; Phoenix, T.N.; DasGupta, B.; Sengupta, S.; Plas, D.R.; Desai, P.B. Potentiation of temozolomide activity against glioblastoma cells by aromatase inhibitor letrozole. Cancer Chemother. Pharmacol., 2022, 90(4), 345-356. doi: 10.1007/s00280-022-04469-5 PMID: 36050497
- Li, X.; Wu, C.; Chen, N.; Gu, H.; Yen, A.; Cao, L.; Wang, E.; Wang, L. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget, 2016, 7(22), 33440-33450. doi: 10.18632/oncotarget.7961 PMID: 26967052
- Fan, Q.W.; Cheng, C.K.; Nicolaides, T.P.; Hackett, C.S.; Knight, Z.A.; Shokat, K.M.; Weiss, W.A. A dual phosphoinositide-3-kinase α/mTOR inhibitor cooperates with blockade of epidermal growth factor receptor in PTEN-mutant glioma. Cancer Res., 2007, 67(17), 7960-7965. doi: 10.1158/0008-5472.CAN-07-2154 PMID: 17804702
- Lino, M.M.; Merlo, A. PI3Kinase signaling in glioblastoma. J. Neurooncol., 2011, 103(3), 417-427. doi: 10.1007/s11060-010-0442-z PMID: 21063898
- Demir, Y.; Ceylan, H.; Türkeş, C.; Beydemir, Ş. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J. Biomol. Struct. Dyn., 2022, 40(22), 12008-12021. doi: 10.1080/07391102.2021.1967195 PMID: 34424822
- Tokalı, F.S.; Demir, Y.; Türkeş, C.; Dinçer, B.; Beydemir, Ş. Novel acetic acid derivatives containing quinazolin-4(3 H )-one ring: Synthesis, in vitro, and in silico evaluation of potent aldose reductase inhibitors. Drug Dev. Res., 2023, 84(2), 275-295. doi: 10.1002/ddr.22031 PMID: 36598092
- Rose, P.W.; Bi, C.; Bluhm, W.F.; Christie, C.H.; Dimitropoulos, D.; Dutta, S.; Green, R.K.; Goodsell, D.S.; Prlić, A.; Quesada, M.; Quinn, G.B.; Ramos, A.G.; Westbrook, J.D.; Young, J.; Zardecki, C.; Berman, H.M.; Bourne, P.E. The RCSB Protein Data Bank: New resources for research and education. Nucleic Acids Res., 2013, 41(Database issue), D475-D482. PMID: 23193259
- Stamos, J.; Sliwkowski, M.X.; Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem., 2002, 277(48), 46265-46272. doi: 10.1074/jbc.M207135200 PMID: 12196540
- Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell, 2000, 6(4), 909-919. doi: 10.1016/S1097-2765(05)00089-4 PMID: 11090628
- Peters, M.B.; Yang, Y.; Wang, B.; Molnár, F.L.; Weaver, M.N.; Merz Jr., K.M. Structural survey of zinc-containing proteins and development of the zinc AMBER force field (ZAFF). J. Chem. Theory Comput., 2010, 6(9), 2935-2947. doi: 10.1021/ct1002626 PMID: 20856692
- Rajhi, A.A.M.H.; Qanash, H.; Almuhayawi, M.S.; Jaouni, A.S.K.; Bakri, M.M.; Ganash, M.; Salama, H.M.; Selim, S.; Abdelghany, T.M. Molecular interaction studies and phytochemical characterization of Mentha pulegium L. constituents with multiple biological utilities as antioxidant, antimicrobial, anticancer and anti-hemolytic agents. Molecules, 2022, 27(15), 4824. doi: 10.3390/molecules27154824 PMID: 35956775
- Aziz, M.; Ejaz, S.A.; Tamam, N.; Siddique, F.; Riaz, N.; Qais, F.A.; Chtita, S.; Iqbal, J. Identification of potent inhibitors of NEK7 protein using a comprehensive computational approach. Sci. Rep., 2022, 12(1), 6404. doi: 10.1038/s41598-022-10253-5 PMID: 35436996
- Chan, W.K.B.; Olson, K.M.; Wotring, J.W.; Sexton, J.Z.; Carlson, H.A.; Traynor, J.R. In silico analysis of SARS-CoV-2 proteins as targets for clinically available drugs. Sci. Rep., 2022, 12(1), 5320. doi: 10.1038/s41598-022-08320-y PMID: 35351926
- Scholz, C.; Knorr, S.; Hamacher, K.; Schmidt, B. DOCKTITE-A highly versatile step-by-step workflow for covalent docking and virtual screening in the molecular operating environment. J. Chem. Inf. Model., 2015, 55(2), 398-406. doi: 10.1021/ci500681r PMID: 25541749
- Ullah, A.; Waqas, M.; Halim, S.A.; Daud, M.; Jan, A.; Khan, A.; Harrasi, A.A. Sirtuin 1 inhibition: A promising avenue to suppress cancer progression through small inhibitors design. J. Biomol. Struct. Dyn., 2023, 1-17. doi: 10.1080/07391102.2023.2252898 PMID: 37661778
- Corbeil, C.R.; Williams, C.I.; Labute, P. Variability in docking success rates due to dataset preparation. J. Comput. Aided Mol. Des., 2012, 26(6), 775-786. doi: 10.1007/s10822-012-9570-1 PMID: 22566074
- Béchet, E.; Minnebo, H.; Moës, N.; Burgardt, B. Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int. J. Numer. Methods Eng., 2005, 64(8), 1033-1056. doi: 10.1002/nme.1386
- Waqas, M.; Halim, S.A.; Ullah, A.; Ali, A.A.M.; Khalid, A.; Abdalla, A.N.; Khan, A.; Harrasi, A.A. Multi-Fold computational analysis to discover novel putative inhibitors of isethionate sulfite-lyase (isla) from Bilophila wadsworthia: Combating colorectal cancer and inflammatory bowel diseases. Cancers, 2023, 15(3), 901. doi: 10.3390/cancers15030901 PMID: 36765864
- Shi, C.; Chen, J.; Xiao, B.; Kang, X.; Lao, X.; Zheng, H. Discovery of NDM-1 inhibitors from natural products. J. Glob. Antimicrob. Resist., 2019, 18, 80-87. doi: 10.1016/j.jgar.2019.02.003 PMID: 30763762
- Chopra, H.; Bibi, S.; Kumar, S.; Khan, M.S.; Kumar, P.; Singh, I. Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound healing application. Gels, 2022, 8(2), 111. doi: 10.3390/gels8020111 PMID: 35200493
- Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res., 2014, 42(W1), W32-W38. doi: 10.1093/nar/gku293 PMID: 24792161
- Mayr, A.; Klambauer, G.; Unterthiner, T.; Steijaert, M.; Wegner, J.K.; Ceulemans, H.; Clevert, D.A.; Hochreiter, S. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem. Sci., 2018, 9(24), 5441-5451. doi: 10.1039/C8SC00148K PMID: 30155234
- Da, C.; Kireev, D. Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: Method and benchmark study. J. Chem. Inf. Model., 2014, 54(9), 2555-2561. doi: 10.1021/ci500319f PMID: 25116840
- Sravika, N.; Priya, S.; Divya, N.; Jyotsna, P.M.S.; Anusha, P.; Kudumula, N.; Bai, S.A. Swiss ADME properties screening of the phytochemical compounds present in Bauhinia acuminata. J. Pharmacogn. Phytochem., 2021, 10(4), 411-419. doi: 10.22271/phyto.2021.v10.i4e.14193
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc., 2018, 2018(6), pdb.prot095505. doi: 10.1101/pdb.prot095505 PMID: 29858338
- Plumb, J.A. Cell sensitivity assays: the MTT assay. Methods Mol Med., 1999, 28, 25-30.
- Sever, B.; Altıntop, M.D.; Demir, Y.; Yılmaz, N.; Çiftçi, A.G.; Beydemir, Ş.; Özdemir, A. Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chem. Biol. Interact., 2021, 345, 109576. doi: 10.1016/j.cbi.2021.109576 PMID: 34252406
- Buza, A.; Türkeş, C.; Arslan, M.; Demir, Y.; Dincer, B.; Nixha, A.R.; Beydemir, Ş. Discovery of novel benzenesulfonamides incorporating 1,2,3-triazole scaffold as carbonic anhydrase I, II, IX, and XII inhibitors. Int. J. Biol. Macromol., 2023, 239, 124232. doi: 10.1016/j.ijbiomac.2023.124232 PMID: 37001773
- He, J.J.; Zhang, W.H.; Liu, S.L.; Chen, Y.F.; Liao, C.X.; Shen, Q.Q.; Hu, P. Activation of β-adrenergic receptor promotes cellular proliferation in human glioblastoma. Oncol. Lett., 2017, 14(3), 3846-3852. doi: 10.3892/ol.2017.6653 PMID: 28927156
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63. doi: 10.1016/0022-1759(83)90303-4 PMID: 6606682
- Meerloo, V.J.; Kaspers, G.J.; Cloos, J. Cell sensitivity assays: the MTT assay. Methods Mol Biol., 2011, 731, 237-245.
- Ma, D.L.; Chan, D.S.H.; Leung, C.H. Molecular docking for virtual screening of natural product databases. Chem. Sci., 2011, 2(9), 1656-1665. doi: 10.1039/C1SC00152C
- Kakakhan, C.; Türkeş, C.; Güleç, Ö.; Demir, Y.; Arslan, M.; Özkemahlı, G.; Beydemir, Ş. Exploration of 1,2,3-triazole linked benzenesulfonamide derivatives as isoform selective inhibitors of human carbonic anhydrase. Bioorg. Med. Chem., 2023, 77, 117111. doi: 10.1016/j.bmc.2022.117111 PMID: 36463726
- Wirsching, H.-G.; Weller, M. Glioblastoma. Malignant brain tumors: State-of-the-art treatment Springer Nature, 2017, 265-288.
- Ohgaki, H.; Kleihues, P. The definition of primary and secondary glioblastoma. Clin. Cancer Res., 2013, 19(4), 764-772. doi: 10.1158/1078-0432.CCR-12-3002 PMID: 23209033
- Alexander, B.M.; Cloughesy, T.F. Adult glioblastoma. J. Clin. Oncol., 2017, 35(21), 2402-2409. doi: 10.1200/JCO.2017.73.0119 PMID: 28640706
- Sami, A.; Karsy, M. Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: Novel therapeutic agents and advances in understanding. Tumour Biol., 2013, 34(4), 1991-2002. doi: 10.1007/s13277-013-0800-5 PMID: 23625692
- Koul, D.; Shen, R.; Bergh, S.; Sheng, X.; Shishodia, S.; Lafortune, T.A.; Lu, Y.; de Groot, J.F.; Mills, G.B.; Yung, W.K.A. Inhibition of Akt survival pathway by a small- molecule inhibitor in human glioblastoma. Mol. Cancer Ther., 2006, 5(3), 637-644. doi: 10.1158/1535-7163.MCT-05-0453 PMID: 16546978
- Mischel, P.S.; Cloughesy, T.F. Targeted molecular therapy of GBM. Brain Pathol., 2003, 13(1), 52-61. doi: 10.1111/j.1750-3639.2003.tb00006.x PMID: 12580545
- Yu, L. Jessica, Wei.; Liu, P. Attacking the PI3K/Akt/mToR signaling pathway for targeted therapeutic treatment in human cancer. Semin. Cancer Biol., 2022, 85, 69-94.
- Koul, D.; Shen, R.; Kim, Y.W.; Kondo, Y.; Lu, Y.; Bankson, J.; Ronen, S.M.; Kirkpatrick, D.L.; Powis, G.; Yung, W.K.A. Cellular and in vivo activity of a novel PI3K inhibitor, PX-866, against human glioblastoma. Neuro-oncol., 2010, 12(6), 559-569. doi: 10.1093/neuonc/nop058 PMID: 20156803
- Gijtenbeek, R.G.P.; Noort, v.d.V.; Aerts, J.G.J.V.; Brekel, S.v.d.J.A.; Smit, E.F.; Krouwels, F.H.; Wilschut, F.A.; Hiltermann, T.J.N.; Timens, W.; Schuuring, E.; Janssen, J.D.J.; Goosens, M.; Berg, v.d.P.M.; de Langen, A.J.; Stigt, J.A.; van den Borne, B.E.E.M.; Groen, H.J.M.; van Geffen, W.H.; van der Wekken, A.J. Randomised controlled trial of first-line tyrosine-kinase inhibitor (TKI) versus intercalated TKI with chemotherapy for EGFR -mutated nonsmall cell lung cancer. ERJ Open Res., 2022, 8(4), 00239-2022. doi: 10.1183/23120541.00239-2022 PMID: 36267895
- Zhang, H. Osimertinib making a breakthrough in lung cancer targeted therapy. OncoTargets Ther., 2016, 9, 5489-5493. doi: 10.2147/OTT.S114722 PMID: 27660466
- Nagasaka, M.; Zhu, V.W.; Lim, S.M.; Greco, M.; Wu, F.; Ou, S.H.I. Beyond osimertinib: The development of third- generation EGFR tyrosine kinase inhibitors for advanced EGFR+ NSCLC. J. Thorac. Oncol., 2021, 16(5), 740-763. doi: 10.1016/j.jtho.2020.11.028 PMID: 33338652
- Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; Naoki, K.; Sasaki, H.; Fujii, Y.; Eck, M.J.; Sellers, W.R.; Johnson, B.E.; Meyerson, M. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science, 2004, 304(5676), 1497-1500. doi: 10.1126/science.1099314 PMID: 15118125
- Greig, S.L. Osimertinib: first global approval. Drugs, 2016, 76(2), 263-273. doi: 10.1007/s40265-015-0533-4 PMID: 26729184
- Rawat, A.; Reddy, V.B.A. Recent advances on anticancer activity of coumarin derivatives. European J. Med. Chem. Reports, 2022, 5, 100038. doi: 10.1016/j.ejmcr.2022.100038
- Xiang, Y.; Zhang, Q.; Wei, S.; Huang, C.; Li, Z.; Gao, Y. Paeoniflorin: A monoterpene glycoside from plants of Paeoniaceae family with diverse anticancer activities. J. Pharm. Pharmacol., 2020, 72(4), 483-495. doi: 10.1111/jphp.13204 PMID: 31858611
- Zubair, T.; Bandyopadhyay, D. Small molecule EGFR inhibitors as anti-cancer agents: Discovery, mechanisms of action, and opportunities. Int. J. Mol. Sci., 2023, 24(3), 2651. doi: 10.3390/ijms24032651 PMID: 36768973
- Nozhat, Z.; Heydarzadeh, S.; Khalaji, S.M.; Wang, S.; Iqbal, M.Z.; Kong, X. Advanced biomaterials for human glioblastoma multiforme (GBM) drug delivery. Biomater. Sci., 2023, 11(12), 4094-4131. doi: 10.1039/D2BM01996E PMID: 37073998
- Zhang, F.Y.; Hu, Y.; Que, Z.Y.; Wang, P.; Liu, Y.H.; Wang, Z.H.; Xue, Y.X. Shikonin inhibits the migration and invasion of human glioblastoma cells by targeting phosphorylated β-catenin and phosphorylated PI3K/Akt: A potential mechanism for the anti-glioma efficacy of a traditional Chinese herbal medicine. Int. J. Mol. Sci., 2015, 16(10), 23823-23848. doi: 10.3390/ijms161023823 PMID: 26473829
- Atiq, A.; Parhar, I. Anti-neoplastic potential of flavonoids and polysaccharide phytochemicals in glioblastoma. Molecules, 2020, 25(21), 4895. doi: 10.3390/molecules25214895 PMID: 33113890
Supplementary files
