Rhodotorulic Acid and its Derivatives: Synthesis, Properties, and Applications


Cite item

Full Text

Abstract

:Siderophores are low molecular weight compounds produced by microorganisms to scavenge iron in iron-deficient environments. Rhodotorulic acid, a natural hydroxamate siderophore, plays a vital role in iron acquisition for fungi and bacteria. As the simplest natural hydroxamate siderophore, it exhibits a high affinity for ferric ions, enabling it to form stable complexes that facilitate iron uptake and transport within microorganisms. This article provides a comprehensive analysis of this hydroxamate siderophore, rhodotorulic acid, its synthesis, physicochemical properties, and biological significance. It also explores its applications in antifungal and plant protection strategies. Insights into RA derivatives reveal distinct biological effects and applications with potential in various fields, from antioxidants to antifungals. Rhodotorulic acid and its derivatives show promise for novel therapies, plant protection strategies, and iron supplementation in agriculture. Understanding their properties could advance science and medicine with sustainable practices.

About the authors

Joanna Stefaniak

Departament of Organic Chemistry, Gdańsk University of Technology

Author for correspondence.
Email: info@benthamscience.net

Michał Nowak

Departament of Organic Chemistry, Gdańsk University of Technology

Email: info@benthamscience.net

Andrzej Skwarecki

Departament of Pharmaceutical Technology and Biochemistry, Gdańsk Univeristy of Technology

Email: info@benthamscience.net

References

  1. Hider, R.C.; Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep., 2010, 27(5), 637-657. doi: 10.1039/b906679a PMID: 20376388
  2. Miethke, M.; Marahiel, M.A. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev., 2007, 71(3), 413-451. doi: 10.1128/MMBR.00012-07
  3. Haas, H. Molecular genetics of fungal siderophore biosynthesis and uptake: The role of siderophores in iron uptake and storage. Appl. Microbiol. Biotechnol., 2003, 62(4), 316-330. doi: 10.1007/s00253-003-1335-2 PMID: 12759789
  4. Raymond, K.N.; Allred, B.E.; Sia, A.K. Coordination chemistry of microbial iron transport. Acc. Chem. Res., 2015, 48(9), 2496-2505. doi: 10.1021/acs.accounts.5b00301 PMID: 26332443
  5. Messenger, A.J.M.; Barclay, R. Bacteria, iron and pathogenicity. Biochem. Educ., 1983, 11(2), 54-63. doi: 10.1016/0307-4412(83)90043-2
  6. Sah, S.; Singh, R. Siderophore: Structural and functional characterisation – a comprehensive review. Agriculture, 2015, 61, 97-114.
  7. Lawlor, M.S.; O’Connor, C.; Miller, V.L. Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infection. Infect. Immun., 2007, 75(3), 1463-1472. doi: 10.1128/IAI.00372-06 PMID: 17220312
  8. Haas, H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat. Prod. Rep., 2014, 31(10), 1266-1276. doi: 10.1039/C4NP00071D PMID: 25140791
  9. Grinter, R.; Lithgow, T. Determination of the molecular basis for coprogen import by Gram-negative bacteria. Intercollegiate US-China J., 2019, 6(3), 401-411. doi: 10.1107/S2052252519002926
  10. Tilbrook, G.S.; Hider, R.C. Iron chelators for clinical use. Met. Ions Biol. Syst., 1998, 35, 691-730. PMID: 9444773
  11. Stradling, G.N. Decorporation of actinides: a review of recent research. J. Alloys Compd., 1998, 271-273, 72-77. doi: 10.1016/S0925-8388(98)00027-9
  12. Lu, Y.; Miller, M.J. Syntheses and studies of multiwarhead siderophore-5-fluorouridine conjugates. Bioorg. Med. Chem., 1999, 7(12), 3025-3038. doi: 10.1016/S0968-0896(99)00248-5 PMID: 10658609
  13. Grady, R.W.; Peterson, C.M.; Jones, R.L.; Graziano, J.H.; Bhargava, K.K.; Berdoukas, V.A.; Kokkini, G.; Loukopoulos, D.; Cerami, A. Rhodotorulic acid-investigation of its potential as an iron-chelating drug. Pharmacol. Exp. Ther., 1979, 209, 342-348.
  14. Atkin, C.L.; Neilands, J.B. Rhodotorulic acid, a diketopiperazine dihydroxamic acid with growth-factor activity. I. Isolation and characterization. Biochemistry, 1968, 7(10), 3734-3739. doi: 10.1021/bi00850a054 PMID: 4971459
  15. Atkin, C.L.; Neilands, J.B.; Phaff, H.J. Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J. Bacteriol., 1970, 103(3), 722-733. doi: 10.1128/jb.103.3.722-733.1970 PMID: 5529038
  16. Brich, L.E.; Ruddat, M. Extracellular Accumulation of rhodotorulic acid in strains of Microbotryum violaceum. Int. J. Plant Sci., 1998, 159, 213-220. doi: 10.1086/297541
  17. Van der Helm, D.; Winkelmann, G. Hydroxamates and polycarboxylates as iron transport agents (Siderophores) in fungi. In: Metal Ions in Fungi, 1st ed.; CRC Press, 1994.
  18. Pecoraro, L.; Wang, X.; Shah, D.; Song, X.; Kumar, V.; Shakoor, A.; Tripathi, K.; Ramteke, P.W.; Rani, R. J. Fungi (Basel), 2022, 8, 1-28.
  19. De Luca, N.G.; Wood, P.M. Iron uptake by fungi: Contrasted mechanisms with internal or external reduction. Adv. Microb. Physiol., 2000, 43, 39-74. doi: 10.1016/S0065-2911(00)43002-X PMID: 10907554
  20. Neilands, J.B.; Konopka, K.; Schwyn, B.; Francis, R.T.; Paw, B.H.; Bagg, A. Iron Transport in Microbes; Plants and Animals, 1987, pp. 1-33.
  21. Anke, T.; Diekmann, H. Biosynthesis of sideramines in fungi. Rhodotorulic acid synthetase from extracts of Rhodotorula glutinis. FEBS Lett., 1972, 27(2), 259-262. doi: 10.1016/0014-5793(72)80635-5 PMID: 4677112
  22. Leong, S.A.; Winkelmann, G. Molecular biology of iron transport in fungi. Met. Ions Biol. Syst., 1998, 35, 147-186. PMID: 9444761
  23. Akres, H.; Llinas, M.; Neilands, J.B. Protonated amino acid precursor studies on rhodotorulic acid biosynthesis in deuterium oxide media. Biochemistry, 1972, 12, 2283-2291. doi: 10.1021/bi00762a012
  24. Makarova, E.N.; Grigoryan, D.T. Effect of urea and amino acids of the ornithine cycle on the biomass accumulation and amino acids synthesis by Candida guilliermondii. Prikl. Biokhim. Mikrobiol., 1975, 11(3), 322-325. PMID: 1208387
  25. Calvente, V.; de Orellano, M.E.; Sansone, G.; Benuzzi, D.; Sanz de Tosetti, M.I. Effect of nitrogen source and pH on siderophore production by Rhodotorula strains and their application to biocontrol of phytopathogenic moulds. J. Ind. Microbiol. Biotechnol., 2001, 26(4), 226-229. doi: 10.1038/sj.jim.7000117
  26. Andersen, D.; Renshaw, J.C.; Wiebe, M.G. Rhodotorulic acid production by Rhodotorula mucilaginosa. Mycol. Res., 2003, 107(8), 949-956. doi: 10.1017/S0953756203008220 PMID: 14531617
  27. Das, A.; Prasad, R.; Srivastava, A.; Giang, P.H.; Bhatnagar, K.; Varma, A. Fungal siderophores: Structure, functions and regulation. Soc. Biol., 2007, 12, 1-42. doi: 10.1007/978-3-540-71160-5_1
  28. Matzanke, B.F. Iron storage in fungi. Winkelmann, G.; Wing, DR. In: Metal Ions in Fungi; Marcel Dekker: NY, 1994; pp. 179-214.
  29. Carrano, C.J.; Raymond, K.N. Coordination chemistry of microbial iron transport compounds: Rhodotorulic acid and iron uptake in Rhodotorula pilimanae. J. Bacteriol., 1978, 136(1), 69-74. doi: 10.1128/jb.136.1.69-74.1978 PMID: 30750
  30. Müller, G.; Barclay, S.J.; Raymond, K.N. The mechanism and specificity of iron transport in Rhodotorula pilimanae probed by synthetic analogs of rhodotorulic acid. J. Biol. Chem., 1985, 260(26), 13916-13920. doi: 10.1016/S0021-9258(17)38663-5 PMID: 4055765
  31. Matzanke, B.F.; Bill, E.; Trautwein, A.X.; Winkelmann, G. Siderophores as iron storage compounds in the yeastsRhodotorula minuta and Ustilago sphaerogena detected by in vivo Mössbauer spectroscopy. Hyperfine Interact., 1990, 58(1-4), 2359-2364. doi: 10.1007/BF02398344
  32. Hantke, K. Identification of an iron uptake system specific for coprogen and rhodotorulic acid in Escherichia coli K12. Mol. Gen. Genet., 1983, 191(2), 301-306. doi: 10.1007/BF00334830 PMID: 6353165
  33. Winkelmann, G. Handbook of microbial iron chelates. 1991, pp. 65-105.
  34. Noinaj, N.; Guillier, M.; Barnard, T.J.; Buchanan, S.K. TonB-dependent transporters: Regulation, structure, and function. Annu. Rev. Microbiol., 2010, 64(1), 43-60. doi: 10.1146/annurev.micro.112408.134247 PMID: 20420522
  35. Boukhalfa, H.; Crumbliss, A.L. Chemical aspects of siderophore mediated iron transport. Biometals, 2002, 15(4), 325-339. doi: 10.1023/A:1020218608266 PMID: 12405526
  36. Carrano, C.J.; Cooper, S.R.; Raymond, K.N. Coordination chemistry of microbial iron transport compounds. 11. Solution equilibriums and electrochemistry of ferric rhodotorulate complexes. J. Am. Chem. Soc., 1979, 101(3), 599-604. doi: 10.1021/ja00497a019
  37. Müller, G.; Isowa, Y.; Raymond, K.N. Stereospecificity of siderophore-mediated iron uptake in Rhodotorula pilimanae as probed by enantiorhodotorulic acid and isomers of chromic rhodotorulate. J. Biol. Chem., 1985, 260(26), 13921-13926. doi: 10.1016/S0021-9258(17)38664-7 PMID: 4055766
  38. Müller, G.; Matzanke, B.F.; Raymond, K.N. Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantio-rhodotorulic acid. J. Bacteriol., 1984, 160(1), 313-318. doi: 10.1128/jb.160.1.313-318.1984 PMID: 6480558
  39. Carrano, C.J.; Raymond, K.N. Coordination chemistry of microbial iron transport compounds. 10. Characterization of the complexes of rhodotorulic acid, a dihydroxamate siderophore. J. Am. Chem. Soc., 1978, 100(17), 5371-5374. doi: 10.1021/ja00485a019
  40. Carrano, C.J.; Raymond, K.N. Synthesis and characterization of iron complexes of rhodotorulic acid: A novel dihydroxamate siderophore and potential chelating drug. J. Chem. Soc. Chem. Commun., 1978, 12(12), 501-502. doi: 10.1039/c39780000501
  41. Spasojević, I.; Armstrong, S.K.; Brickman, T.J.; Crumbliss, A.L. Electrochemical behavior of the Fe(III) complexes of the cyclic hydroxamate siderophores alcaligin and desferrioxamine E. Inorg. Chem., 1999, 38(3), 449-454. doi: 10.1021/ic980635n PMID: 11673947
  42. Zaiter, N.; Krad, I.; Roukos, R. Thermodynamic studies of iron(III) complex of some new dihydroxamic acids model of rhodotorulic acid. Inorg. Chim. Acta, 2018, 482, 187-194. doi: 10.1016/j.ica.2018.06.016
  43. Isowa, Y.; Takashima, T.; Ohmori, M.; Kurita, H.; Sato, M.; Mori, K. Synthesis of rhodotorulic acid. Bull. Chem. Soc. Jpn., 1972, 45(5), 1467-1471. doi: 10.1246/bcsj.45.1467
  44. Fuji, T.; Hatanaka, Y. A synthesis of rhodotorulic acid. Tetrahedron, 1973, 29, 3825-3831. doi: 10.1016/0040-4020(73)80202-9
  45. Lee, B.H.; Gerfen, G.J.; Miller, M.J. Constituents of microbial iron chelators. Alternate syntheses of delta-N-hydroxy-L-ornithine derivatives and applications to the synthesis of rhodotorulic acid. J. Org. Chem., 1984, 49(13), 2418-2423. doi: 10.1021/jo00187a023
  46. Nakao, M.; Fukayama, S.; Kitaike, S.; Sano, S. Heterocycles, 2015, 90, 1309-1316. doi: 10.3987/COM-14-S(K)67
  47. Lee, B.H.; Miller, M.J.; Prody, C.A.; Neilands, J.B. Artificial siderophores. 2. Syntheses of trihydroxamate analogs of rhodotorulic acid and their biological iron transport capabilities in Escherichia coli. J. Med. Chem., 1985, 28(3), 323-327. doi: 10.1021/jm00381a011 PMID: 3156249
  48. Nakao, M. Development of novel functional molecules based on the molecular structure characteristics of diketopiperazines. Yakugaku Zasshi, 2017, 137(12), 1505-1516. doi: 10.1248/yakushi.17-00176 PMID: 29199259
  49. Calvente, V.; Benuzzi, D.; de Tosetti, M.I.S. Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. Int. Biodeterior. Biodegradation, 1999, 43(4), 167-172. doi: 10.1016/S0964-8305(99)00046-3
  50. Snowdon, A.L. A colour atlas of post-harvest diseases and disorders of fruits and vegetables: General introduction and fruits; Wolfe, 1990.
  51. Chand-Goyal, T.; Spotts, R.A. Control of postharvest pear diseases using natural saprophytic yeast colonists and their combination with a low dosage of thiabendazole. Postharvest Biol. Technol., 1996, 7(1-2), 51-64. doi: 10.1016/0925-5214(95)00031-3
  52. Sansone, G.; Rezza, I.; Calvente, V.; Benuzzi, D.; Tosetti, M.I.S. Control of botrytis cinerea strains resistant to iprodione in apple with rhodotorulic acid and yeasts. Postharvest Biol. Technol., 2005, 35(3), 245-251. doi: 10.1016/j.postharvbio.2004.09.005
  53. Miller, G.W.; Pushnik, J.C.; Browne, J.C.; Emery, T.E.; Jolley, V.D.; Warnick, K.Y. Biochemistry of Metal Micronutrients in the Rhizosphere. CRC Press; 1994.
  54. Johnson, G.V.; Lopez, A.; La Valle Foster, N. Reduction and transport of Fe from siderophores. Plant Soil, 2002, 241(1), 27-33. doi: 10.1023/A:1016007708926
  55. Rӧmheld, V.; Marschner, H. Mobilization of iron in the rhizosphere of different plant species. Adv. Plant Nutr, 1986, 2, 155-204.
  56. Fernandez-Scavino, A.; Pedraza, R.O. The role of siderophores in plant growth-promoting bacteria. Bacteria in Agrobiology: Crop Productivity, 2013, 265-285.
  57. Miller, G.W. Treatment of plant chlorosis with rhodotorulic acid. EP Patent 0197225A2, 1989.
  58. Lee, B.H.; Pan, T.M. Dimerumic acid, a novel antioxidant identified from Monascus-fermented products exerts chemoprotective effects: Mini review. J. Funct. Foods, 2013, 5(1), 2-9. doi: 10.1016/j.jff.2012.11.009
  59. Khan, W.; Regmi, O.; Panda, B.P. Enrichment of dimerumic acid in Monascus-fermented rice and its in vivo antioxidant activity. Food Front., 2021, 2(4), 547-556. doi: 10.1002/fft2.108
  60. Taira, J.; Miyagi, C.; Aniya, Y. Dimerumic acid as an antioxidant from the mold, Monascus anka: The inhibition mechanisms against lipid peroxidation and hemeprotein- mediated oxidation. Biochem. Pharmacol., 2002, 63(5), 1019-1026. doi: 10.1016/S0006-2952(01)00923-6 PMID: 11911855
  61. Sekine, S.; Yano, K.; Saeki, J.; Hashimoto, N.; Fuwa, T.; Horie, T. Oxidative stress is a triggering factor for LPS-induced Mrp2 internalization in the cryopreserved rat and human liver slices. Biochem. Biophys. Res. Commun., 2010, 399(2), 279-285. doi: 10.1016/j.bbrc.2010.07.069
  62. Yano, K.; Sekine, S.; Nemoto, K.; Fuwa, T.; Horie, T. The effect of dimerumic acid on LPS-induced downregulation of Mrp2 in the rat. Biochem. Pharmacol., 2010, 80(4), 533-539. doi: 10.1016/j.bcp.2010.04.036 PMID: 20457138
  63. Yamaishiro, J.; Sumihiro, S.; Toru, F.; Toshiharu, H. Dimerumic acid protected oxidative stress-induced cytotoxicity in isolated rat hepatocytes. Cell Biol. Toxicol., 2008, 24, 283-290.
  64. Lee, B.H.; Hsu, W.H.; Hsu, Y.W.; Pan, T.M. Suppression of dimerumic acid on hepatic fibrosis caused from carboxymethyl-lysine (CML) by attenuating oxidative stress depends on Nrf2 activation in hepatic stellate cells (HSCs). Food Chem. Toxicol., 2013, 62, 413-419. doi: 10.1016/j.fct.2013.09.007 PMID: 24036144
  65. Aniya, Y.; Ohtani, I.I.; Higa, T.; Miyagi, C.; Gibo, H.; Shimabukuro, M.; Nakanishi, H.; Taira, J. Dimerumic acid as an antioxidant of the mold, Monascus Anka. Free Radic. Biol. Med., 2000, 28(6), 999-1004. doi: 10.1016/S0891-5849(00)00188-X PMID: 10802232
  66. Lai, J.R.; Ke, B.J.; Hsu, Y.W.; Lee, C.L. Dimerumic acid and deferricoprogen produced by Monascus purpureus attenuate liquid ethanol diet-induced alcoholic hepatitis via suppressing NF-κB inflammation signalling pathways and stimulation of AMPK-mediated lipid metabolism. J. Funct. Foods, 2019, 60, 103393. doi: 10.1016/j.jff.2019.05.049
  67. Lee, B.H.; Hsu, W.H.; Hsu, Y.W.; Pan, T.M. Dimerumic acid attenuates receptor for advanced glycation endproducts signal to inhibit inflammation and diabetes mediated by Nrf2 activation and promotes methylglyoxal metabolism into d-lactic acid. Free Radic. Biol. Med., 2013, 60, 7-16. doi: 10.1016/j.freeradbiomed.2013.01.030 PMID: 23434766
  68. Lee, B.H.; Hsu, W.H.; Hsu, Y.W.; Pan, T.M. Dimerumic acid protects pancreas damage and elevates insulin production in methylglyoxal-treated pancreatic RINm5F cells. J. Funct. Foods, 2013, 5(2), 642-650. doi: 10.1016/j.jff.2012.12.007
  69. Ho, B.Y.; Wu, Y.M.; Chang, K.J.; Pan, T.M. Dimerumic acid inhibits SW620 cell invasion by attenuating H2O2-mediated MMP-7 expression via JNK/C-Jun and ERK/C-Fos activation in an AP-1-dependent manner. Int. J. Biol. Sci., 2011, 7(6), 869-880. doi: 10.7150/ijbs.7.869 PMID: 21814482
  70. Tseng, W.T.; Hsu, Y.W.; Pan, T.M. Dimerumic acid and deferricoprogen activate ak mouse strain thymoma/heme oxygenase-1 pathways and prevent apoptotic cell death in 6-hydroxydopamine-induced SH-SY5Y cells. J. Agric. Food Chem., 2016, 64(30), 5995-6002. doi: 10.1021/acs.jafc.6b01551 PMID: 27431098
  71. Tseng, W.T. Neuroprotective effects of dimerumic acid and deferricoprogen from Monascus purpureus NTU 568-fermented rice against 6-hydroxydopamine-induced oxidative stress and apoptosis in differentiated pheochromocytoma PC-12 cells. Pharm. Biol., 2016, 54, 1434-1444. doi: 10.3109/13880209.2015.1104698 PMID: 26794209
  72. Krasnoff, S.B.; Keresztes, I.; Donzelli, B.G.G.; Gibson, D.M. Metachelins, mannosylated and N-oxidized coprogen-type siderophores from Metarhizium robertsii. J. Nat. Prod., 2014, 77(7), 1685-1692. doi: 10.1021/np500300s PMID: 24992511
  73. Krasnoff, S.B.; Howe, K.J.; Heck, M.L.; Donzelli, B.G.G. Siderophores from the entomopathogenic fungus Beauveria bassiana. J. Nat. Prod., 2020, 83(2), 296-304. doi: 10.1021/acs.jnatprod.9b00698 PMID: 32058711
  74. Kalansuriya, P.; Quezada, M.; Espósito, B.P.; Capon, R.J. Talarazines A–E: noncytotoxic iron(III) chelators from an Australian mud dauber wasp-associated fungus, Talaromyces sp. (CMB-W045). J. Nat. Prod., 2017, 80(3), 609-615. doi: 10.1021/acs.jnatprod.6b00889 PMID: 28058837
  75. Ouchi, T.; Watanabe, Y.; Nonaka, K.; Muramatsu, R.; Noguchi, C.; Tozawa, M.; Hokari, R.; Ishiyama, A.; Koike, R.; Matsui, H.; Asami, Y.; Inahashi, Y.; Ishii, T.; Teruya, T.; Iwatsuki, M.; Hanaki, H.; Ōmura, S. Clonocoprogens A, B and C, new antimalarial coprogens from the Okinawan fungus Clonostachys compactiuscula FKR-0021. J. Antibiot., 2020, 73(6), 365-371. doi: 10.1038/s41429-020-0292-7 PMID: 32139881

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers