Effects of Consuming Repeatedly Heated Edible Oils on Cardiovascular Diseases: A Narrative Review


Cite item

Full Text

Abstract

:Edible oils are inevitable requisites in the human diet as they are enriched with essential fatty acids, vitamins, carotenoids, sterols, and other antioxidants. Due to their nutritive value and commercial significance, edible oils have been used for food preparation for many centuries. The use of global consumption of edible oils has dramatically increased throughout the world in the 21st century owing to their incredible application in all kinds of food preparation. However, a variety of pollutants, such as pesticides, toxic chemicals, heavy metals, and environmental pollution, have contributed to the contamination of edible oils. Furthermore, the benzophenanthridine alkaloids, sanguinarine, dihydrosanguinarine, butter yellow, and other several agents are added intentionally, which are known to cause a number of human diseases. Apart from this, repeated heating and reusing of oils results in trans fats, and lipid peroxidation alters the fatty acid composition, which adversely affects the health of consumers and increases the risk of cardiovascular diseases. Moreover, the prevention of edible oil contamination in human health at various levels is inevitable to ensure consumer safety. Hence, the present review provides an overview of vegetable cooking oils and the health ailments that detection techniques are focused on.

About the authors

Prathyusha Soundararajan

Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology

Email: info@benthamscience.net

Srividya Parthasarathy

Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology

Email: info@benthamscience.net

Meenakumari Sakthivelu

Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology

Email: info@benthamscience.net

Kanchana Karuppiah

Department of Medical Research, Medical College Hospital and Research Centre, SRM Institute of Science and Technology

Email: info@benthamscience.net

Palaniyandi Velusamy

Department of Medical Research, Research & Development, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research (BIHER)

Email: info@benthamscience.net

Subash Gopinath

Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis

Email: info@benthamscience.net

Pachaiappan Raman

Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Ayu, D.F.; Aminah, S.; Diharmi, A. Photo-oxidation stability of mayonnaise from striped catfish and red palm mixture oil. IOP Conf. Ser. Earth Environ. Sci., 2021, 757(1), 012052. doi: 10.1088/1755-1315/757/1/012052
  2. Odabasoglu, F.; Halici, Z.; Cakir, A.; Halici, M.; Aygun, H.; Suleyman, H.; Cadirci, E.; Atalay, F. Beneficial effects of vegetable oils (corn, olive and sunflower oils) and α-tocopherol on anti-inflammatory and gastrointestinal profiles of indomethacin in rats. Eur. J. Pharmacol., 2008, 591(1-3), 300-306. doi: 10.1016/j.ejphar.2008.06.075 PMID: 18621042
  3. Pachaiappan, R.; Nagasathiya, K.; Singh, P.K.; Gopalakrishnan, A.V.; Velusamy, P.; Ramasamy, K.; Velmurugan, D.; Kandasamy, R.; Ramasamy, P.; Gopinath, S.C.B. Phytochemical profile of black cumin (Nigella sativa L.) seed oil: Identification of bioactive anti-pathogenic compounds for traditional Siddha formulation. Biomass Convers. Biorefin., 2023, 13(16), 14683-14695. doi: 10.1007/s13399-022-02951-x
  4. Li, X.; Kong, W.; Shi, W.; Shen, Q. A combination of chemometrics methods and GC-MS for the classification of edible vegetable oils. Chemom. Intell. Lab. Syst., 2016, 155, 145-150. doi: 10.1016/j.chemolab.2016.03.028
  5. Dorni, C.; Sharma, P.; Saikia, G.; Longvah, T. Fatty acid profile of edible oils and fats consumed in India. Food Chem., 2018, 238, 9-15. doi: 10.1016/j.foodchem.2017.05.072 PMID: 28867107
  6. Lim, K.; Pan, K.; Yu, Z.; Xiao, R.H. Pattern recognition based on machine learning identifies oil adulteration and edible oil mixtures. Nat. Commun., 2020, 11(1), 5353. doi: 10.1038/s41467-020-19137-6 PMID: 33097723
  7. Luo, Q.; Liu, Z.; Yin, H.; Dang, Z.; Wu, P.; Zhu, N.; Lin, Z.; Liu, Y. Global review of phthalates in edible oil: An emerging and nonnegligible exposure source to human. Sci. Total Environ., 2020, 704, 135369. doi: 10.1016/j.scitotenv.2019.135369 PMID: 31812395
  8. Zhou, Y.; Zhao, W.; Lai, Y.; Zhang, B.; Zhang, D. Edible plant oil: Global status, health issues, and perspectives. Front. Plant Sci., 2020, 11, 1315. doi: 10.3389/fpls.2020.01315 PMID: 32983204
  9. Purba, H.J.; Sinaga, B.M.; Novianti, T.; Kustiari, R. The impact of changes in external factors on the world vegetable oil market. Int. J. Econ. Financial Issues., 2018, 8(6), 176-186.
  10. Ng, T.T.; So, P.K.; Zheng, B.; Yao, Z.P. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chim. Acta, 2015, 884, 70-76. doi: 10.1016/j.aca.2015.05.013 PMID: 26073811
  11. Ozulku, G.; Yildirim, R.M.; Toker, O.S.; Karasu, S.; Durak, M.Z. Rapid detection of adulteration of cold pressed sesame oil adultered with hazelnut, canola, and sunflower oils using ATR-FTIR spectroscopy combined with chemometric. Food Control, 2017, 82(212-216), 212-216. doi: 10.1016/j.foodcont.2017.06.034
  12. Durazzo, A.; Fawzy Ramadan, M.; Lucarini, M. Editorial: Cold pressed oils: A green source of specialty oils. Front. Nutr., 2022, 8, 836651. doi: 10.3389/fnut.2021.836651 PMID: 35223938
  13. Yadav, S. Edible oil adulterations: Current issues, detection techniques, and health hazards. IJCS, 2018, 6(2), 1393-1397.
  14. Azadmard-Damirchi, S.; Torbati, M. Adulterations in some edible oils and fats and their detection methods. J. Food Qual., 2015, 2(2), 38-44.
  15. Vijayakumar, M.; Vasudevan, D.M.; Sundaram, K.R.; Krishnan, S.; Vaidyanathan, K.; Nandakumar, S.; Chandrasekhar, R.; Mathew, N. A randomized study of coconut oil versus sunflower oil on cardiovascular risk factors in patients with stable coronary heart disease. Indian Heart J., 2016, 68(4), 498-506. doi: 10.1016/j.ihj.2015.10.384 PMID: 27543472
  16. Ganesan, K.; Sukalingam, K.; Xu, B. Impact of consumption and cooking manners of vegetable oils on cardiovascular diseases- A critical review. Trends Food Sci. Technol., 2018, 71, 132-154. doi: 10.1016/j.tifs.2017.11.003
  17. Joshi, J.R.; Bhanderi, K.K.; Patel, J.V. A review on bio-lubricants from non-edible oils-recent advances, chemical modifications and applications. J. Indian Chem. Soc., 2023, 100(1), 100849. doi: 10.1016/j.jics.2022.100849
  18. Mani, S.; Bhatt, S.B.; Vasudevan, V.; Prabhu, D.; Rajamanikandan, S.; Velusamy, P.; Ramasamy, P.; Raman, P. The updated review on plant peptides and their applications in human health. Int. J. Pept. Res. Ther., 2022, 28(5), 135. doi: 10.1007/s10989-022-10437-7 PMID: 35911180
  19. Hu, R.; He, T.; Zhang, Z.; Yang, Y.; Liu, M. Safety analysis of edible oil products via Raman spectroscopy. Talanta, 2019, 191, 324-332. doi: 10.1016/j.talanta.2018.08.074 PMID: 30262067
  20. Gianazza, E.; Brioschi, M.; Martinez Fernandez, A.; Casalnuovo, F.; Altomare, A.; Aldini, G.; Banfi, C. Lipid peroxidation in atherosclerotic cardiovascular diseases. Antioxid. Redox Signal., 2021, 34(1), 49-98. doi: 10.1089/ars.2019.7955 PMID: 32640910
  21. Shi, L.K.; Zhang, D-D.; Liu, Y-L. Incidence and survey of polycyclic aromatic hydrocarbons in edible vegetable oils in China. Food Control, 2016, 62(62), 165-170. doi: 10.1016/j.foodcont.2015.10.037
  22. Sim, B.I.; Khor, Y.P.; Lai, O.M.; Yeoh, C.B.; Wang, Y.; Liu, Y.; Nehdi, I.A.; Tan, C.P. Mitigation of 3-MCPD esters and glycidyl esters during the physical refining process of palm oil by micro and macro laboratory scale refining. Food Chem., 2020, 328, 127147. doi: 10.1016/j.foodchem.2020.127147 PMID: 32497897
  23. Chen, C.H.; Jiang, S.S.; Chang, I.S.; Wen, H.J.; Sun, C.W.; Wang, S.L. Association between fetal exposure to phthalate endocrine disruptor and genome-wide DNA methylation at birth. Environ. Res., 2018, 162, 261-270. doi: 10.1016/j.envres.2018.01.009 PMID: 29367177
  24. Lacoste, F. Undesirable substances in vegetable oils: Anything to declare? Ocl, 2014, 21(1), 103. doi: 10.1051/ocl/2013060
  25. Sherma, J.; Rabel, F. A review of thin layer chromatography methods for determination of authenticity of foods and dietary supplements. J. Liq. Chromatogr. Relat. Technol., 2018, 41(10), 645-657. doi: 10.1080/10826076.2018.1505637
  26. Yousefi, M.; Yousefi, M.; Hosseini, H. Evaluation of hexane content in edible vegetable oils consumed in Iran. J. Expe. Cli. Toxi., 2017, 1(1), 27-30. doi: 10.14302/issn.2641-7669.ject-17-1790
  27. Hassanzadazar, H.; Ghayurdoost, F.; Aminzare, M.; Mottaghianpour, E.; Taami, B. Monitoring of edible oils quality in restaurants and fast food centers using peroxide and acid values. J. Chem. Health Risks, 2018, 8(3)
  28. Hamm, W.; Hamilton, R.J.; Calliauw, G. Eds.;Edible oil processing; Wiley-Blackwell: UK, 2013, p. 342. doi: 10.1002/9781118535202
  29. Vasseghian, Y.; Moradi, M.; Dragoi, E.N.; Khaneghah, A.M. A review on mycotoxins detection techniques in edible oils. J. Environ. Anal. Chem., 2022, 102(9), 2215-2219. doi: 10.1080/03067319.2020.1750607
  30. Javanmardi, F.; Khodaei, D.; Sheidaei, Z.; Bashiry, M.; Nayebzadeh, K.; Vasseghian, Y.; Khaneghah, M.A. Decontamination of aflatoxins in edible oils: A comprehensive review. Food Rev. Int., 2020, 66(12), 2125-2132. doi: 10.1590/S1807-59322011001200020
  31. MengYu, Z.; Abulaiti, G.; Jun, Y.; Ling, C. Simultaneous determination of free gossypol and its degradation product tetramethoxy gossypol in commercially available cottonseed oil by high performance liquid chromatography. Sh. Kexue. Shipin Kexue, 2019, 40(16), 261-266. doi: 10.7506/spkx1002-6630-20180926-282
  32. Zio, S.; Cisse, H.; Zongo, O.; Guira, F.; Tapsoba, F.; Siourime Somda, N.; Hama-Ba, F.; Toulsoumde Songre-Ouattara, L.; Zongo, C.; Traore, Y.; Savadogo, A. The oils refining process and contaminants in edible oils: A review. J. Food. Tech. Res., 2020, 7(1), 9-47. doi: 10.18488/journal.58.2020.71.9.47
  33. Duarte, D.J.; Rutten, J.M.M.; van den Berg, M.; Westerink, R.H.S. In vitro neurotoxic hazard characterization of different tricresyl phosphate (TCP) isomers and mixtures. Neurotoxicology, 2017, 59, 222-230. doi: 10.1016/j.neuro.2016.02.001 PMID: 26851706
  34. EFSA, E. Panel on Food Additives and Nutrient Sources Added to Food (ANS): Scientific opinion on the safety of allyl isothiocyanate for the proposed uses as a food additive. EFSA J., 2010, 8(12), 1943. doi: 10.2903/j.efsa.2010.1943
  35. Al Massati, S.B. Synthesis and characterization of molecularly imprinted polymers for the selective extraction of organophosphorus pesticides from vegetable oils. PhD diss. Université Pierre et Marie Curie-Paris VI, 2017, 1513, 59-68. doi: 10.1016/j.chroma.2017.07.067
  36. Nishad, J.; Dutta, A.; Saha, S.; Rudra, S.G.; Varghese, E.; Sharma, R.R.; Tomar, M.; Kumar, M.; Kaur, C. Ultrasound-assisted development of stable grapefruit peel polyphenolic nano-emulsion: Optimization and application in improving oxidative stability of mustard oil. Food Chem., 2021, 334, 127561. doi: 10.1016/j.foodchem.2020.127561 PMID: 32711272
  37. Al-Jasass, F.M.; Al-Jasser, M.S. Chemical composition and fatty acid content of some spices and herbs under Saudi Arabia conditions. Sci. World. J., 2012, 2012, 1-5. doi: 10.1100/2012/859892 PMID: 23319888
  38. Mhatre, S.; Rajaraman, P.; Chatterjee, N.; Bray, F.; Goel, M.; Patkar, S.; Dikshit, R. Mustard oil consumption, cooking method, diet and gallbladder cancer risk in high‐and low‐risk regions of India. Int. J. Cancer, 2020, 147(6), 1621-1628. doi: 10.1002/ijc.32952 PMID: 32142159
  39. Babu, C.K.; Ansari, K.M.; Mehrotra, S.; Khanna, R.; Khanna, S.K.; Das, M. Alterations in redox potential of glutathione/glutathione disulfide and cysteine/cysteine disulfide couples in plasma of dropsy patients with argemone oil poisoning. Food Chem. Toxicol., 2008, 46(7), 2409-2414. doi: 10.1016/j.fct.2008.03.031 PMID: 18486295
  40. Das, M.; Ansari, K.M.; Dhawan, A.; Shukla, Y.; Khanna, S.K. Correlation of DNA damage in epidemic dropsy patients to carcinogenic potential of argemone oil and isolated sanguinarine alkaloid in mice. Int. J. Cancer, 2005, 117(5), 709-717. doi: 10.1002/ijc.21234 PMID: 15981203
  41. Sharma, B.D.; Malhotra, S.; Bhatia, V.; Rathee, M. Epidemic dropsy in India. Postgrad. Med. J., 1999, 75(889), 657-661. doi: 10.1136/pgmj.75.889.657 PMID: 10621875
  42. Gupta, S.; Kori, C.; Kumar, V.; Misra, S.; Akhtar, N. Epidemiological study of gallbladder cancer patients from North Indian Gangetic Planes-a high-volume centre’s experience. J. Gastrointest. Cancer, 2016, 47(1), 27-35. doi: 10.1007/s12029-015-9781-5 PMID: 26585944
  43. Dixit, R.; Srivastava, P.; Basu, S.; Srivastava, P.; Mishra, P.K.; Shukla, V.K. Association of mustard oil as cooking media with carcinoma of the gallbladder. J. Gastrointest. Cancer, 2013, 44(2), 177-181. doi: 10.1007/s12029-012-9458-2 PMID: 23180022
  44. Mishra, V.; Mishra, M.; Ansari, K.M.; Chaudhari, B.P.; Khanna, R.; Das, M. Edible oil adulterants, argemone oil and butter yellow, as aetiological factors for gall bladder cancer. Eur. J. Cancer, 2012, 48(13), 2075-2085. doi: 10.1016/j.ejca.2011.09.026 PMID: 22071130
  45. Motarjemi, Y.; Moy, G.; Todd, E. Eds.;Encyclopedia of food safety; Academic Press, 2013.
  46. Poddar, K.H.; Sikand, G.; Kalra, D.; Wong, N.; Duell, P.B. Mustard oil and cardiovascular health: Why the controversy? J. Clin. Lipidol., 2022, 16(1), 13-22. doi: 10.1016/j.jacl.2021.11.002 PMID: 34924350
  47. McDowell, D.; Elliott, C.T.; Koidis, A. Characterization and comparison of UK, Irish, and French cold pressed rapeseed oils with refined rapeseed oils and extra virgin olive oils. Eur. J. Lipid Sci. Technol., 2017, 119(8), 1600327. doi: 10.1002/ejlt.201600327
  48. Siger, A.; Gawrysiak-Witulska, M.; Bartkowiak-Broda, I. Antioxidant (tocopherol and canolol) content in rapeseed oil obtained from roasted yellow-seeded brassica napus. J. Am. Oil Chem. Soc., 2017, 94(1), 37-46. doi: 10.1007/s11746-016-2921-7 PMID: 28163323
  49. Ansari, K.M.; Das, M. Potentiation of tumour promotion by topical application of argemone oil/isolated sanguinarine alkaloid in a model of mouse skin carcinogenesis. Chem. Biol. Interact., 2010, 188(3), 591-597. doi: 10.1016/j.cbi.2010.07.023 PMID: 20691676
  50. Messeguer, A. Potential implication of aniline derivatives in the toxic oil syndrome (TOS). Chem. Biol. Interact., 2011, 192(1-2), 136-141. doi: 10.1016/j.cbi.2010.10.006 PMID: 20970410
  51. Bujons, J.; Ladona, M.G.; Messeguer, A.; Morató, A.; Ampurdanés, C. Metabolism of (R)- and (S)-3-(phenylamino)propane-1,2-diol in C57BL/6- and A/J-strain mice. Identification of new metabolites with potential toxicological significance to the toxic oil syndrome. Chem. Res. Toxicol., 2001, 14(8), 1097-1106. doi: 10.1021/tx010001k PMID: 11511184
  52. Gallardo, S.; Cárdaba, B.; Posada, M.; del Pozo, V.; Messeguer, A.; David, C.S.; Lahoz, C. Toxic oil syndrome: Genetic restriction and immunomodulatory effects due to adulterated oils in a model of HLA transgenic mice. Toxicol. Lett., 2005, 159(2), 173-181. doi: 10.1016/j.toxlet.2005.05.009 PMID: 15979827
  53. de la Paz, M.P.; Philen, R.M.; Borda, I.A. Toxic oil syndrome: the perspective after 20 years. Epidemiol. Rev., 2001, 23(2), 231-247. doi: 10.1093/oxfordjournals.epirev.a000804 PMID: 12192735
  54. DebMandal, M.; Mandal, S. Coconut (Cocos nucifera L.: Arecaceae): In health promotion and disease prevention. Asian Pac. J. Trop. Med., 2011, 4(3), 241-247. doi: 10.1016/S1995-7645(11)60078-3 PMID: 21771462
  55. Boateng, L.; Ansong, R.; Owusu, W.; Steiner-Asiedu, M. Coconut oil and palm oil’s role in nutrition, health and national development: A review. Ghana Med. J., 2016, 50(3), 189-196. doi: 10.4314/gmj.v50i3.11 PMID: 27752194
  56. Bhatnagar, A.S.; Prasanth Kumar, P.K.; Hemavathy, J.; Gopala Krishna, A.G. Fatty acid composition, oxidative stability, and radical scavenging activity of vegetable oil blends with coconut oil. J. Am. Oil Chem. Soc., 2009, 86(10), 991-999. doi: 10.1007/s11746-009-1435-y
  57. Rohman, A.; Che Man, Y.B.; Ali, M.E. The authentication of virgin coconut oil from grape seed oil and soybean oil using ftir spectroscopy and chemometrics. Int. J. Appl. Pharm., 2019, 11, 259-263. doi: 10.22159/ijap.2019v11i2.31758
  58. Parthasarathy, S.; Soundararajan, P.; Krishnan, N.; Karuppiah, K.; Devadasan, V.; Prabhu, D.; Rajamanikandan, S.; Velusamy, P.; Gopinath, S.C.B.; Raman, P. Detection of adulterants from common edible oils by GC-MS; Biomass Conv. Bioref, 2022, pp. 1-21. doi: 10.1007/s13399-022-02913-3
  59. Pandiselvam, R.; Manikantan, M.R.; Ramesh, S.V.; Beegum, S.; Mathew, A.C. Adulteration in coconut and virgin coconut oil. Impl. Det. Methods, 2019, 62(7), 19-22.
  60. Shukla, A.K.; Dixit, A.K.; Singh, R.P. Detection of adulteration in edible oils. J. Oleo Sci., 2005, 54(6), 317-324. doi: 10.5650/jos.54.317
  61. Rema Shree, A.B.; Balachandran, I.; Deepak, M.; Kumar, P.U.; Nitha, B. Quality parameters, fatty acid profiling and estimation of umbelliferone in grahaṇimihira tailam: An ayurvedic oil preparation. Anc. Sci. Life, 2013, 33(1), 10-14. doi: 10.4103/0257-7941.134557 PMID: 25161324
  62. Chandravanshi, S. L. Epidemic dropsy glaucoma. Gems of Ophthalmology: Glaucoma, 2018, 213
  63. Krishnamurthy, N.M.N.; Pashupathy, K.S.; Nagaraja, K.V.; Kapur, O.P. Evaluation of the turbidity and thin layer chromatographic tests for detection of castor oil. J. Am. Oil Chem. Soc., 1982, 59(8), 337-339. doi: 10.1007/BF02541015
  64. Krishnamurthy, M. N.; Nagaraja, K. V. Methods for detection of rice‐bran, mustard, karanja oils and rice‐bran deoiled cake., Lipid/Fett, 1992, 94(12), 457-458. doi: 10.1002/lipi.19920941205
  65. Nayak, B.S.; Patel, K.N. Physicochemical characterization of seed and seed oil of Jatropha curcas L. collected from Bardoli (South Gujarat). Sains Malays., 2010, 39(6), 951-955.
  66. Chetti, S.O.; Akuskar, S.K.; Malve, M.K.; Krishnamurthy, R. Identification of tricresyl phosphate (TCP) an adulterant in edible oils by HPTLC-densitometer. Int. J. Med., 2012, 14, 121-124.
  67. Setiowaty, G.; Che Man, Y.B. Multivariate determination of cloud point in palm oil using partial least squares and principal component regression based on FTIR spectroscopy. J. Am. Oil Chem. Soc., 2004, 81(1), 7-11. doi: 10.1007/s11746-004-0852-4
  68. Deepam, L.S.A.; Arumughan, C. Effect of saponification on composition of unsaponifiable matter in rice bran oil. J. Oleo Sci., 2012, 61(5), 241-247. doi: 10.5650/jos.61.241 PMID: 22531051
  69. Ochando-Pulido, J.M.; Hodaifa, G.; Victor-Ortega, M.D.; Rodriguez-Vives, S.; Martinez-Ferez, A. Reuse of olive mill effluents from two-phase extraction process by integrated advanced oxidation and reverse osmosis treatment. J. Hazard. Mater., 2013, 263(Pt 1), 158-167. doi: 10.1016/j.jhazmat.2013.07.015 PMID: 23910394
  70. Aalto-Korte, K.; Pesonen, M.; Kuuliala, O.; Suuronen, K. Occupational allergic contact dermatitis caused by coconut fatty acids diethanolamide. Contact Dermat., 2014, 70(3), 169-174. doi: 10.1111/cod.12151 PMID: 24588369
  71. Myint, D.; Gilani, S.A.; Kawase, M.; Watanabe, K.N. Sustainable sesame (Sesamum indicum L.) production through improved technology: An overview of production, challenges, and opportunities in Myanmar. Sustainability, 2020, 12(9), 3515. doi: 10.3390/su12093515
  72. Bhat, K.V.; Kumari, R.; Pathak, N.; Rai, A.K. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn. Rev., 2014, 8(16), 147-155. doi: 10.4103/0973-7847.134249 PMID: 25125886
  73. Dhayal, G.L.; Agarwal, H.; Mathur, A.; Mathur, S.; Kishoria, N.; Jain, S.; Choudhary, R.; Sharma, R.; Bishnoi, S.; Mathur, S. Case report of a small outbreak of epidemic dropsy. J. Indian Med. Assoc., 2013, 111(3), 200-201. PMID: 24592766
  74. Boening, D.W. Ecological effects, transport, and fate of mercury: A general review. Chemosphere, 2000, 40(12), 1335-1351. doi: 10.1016/S0045-6535(99)00283-0 PMID: 10789973
  75. Wexler, P.; Anderson, B.D.; Gad, S.C.; Hakkinen, P.B.; Kamrin, M.; De Peyster, A.; Shugart, L.R. Eds.;Encyclopedia of toxicology; Academic Press, 2005, p. 1.
  76. Zhu, F.; Fan, W.; Wang, X.; Qu, L.; Yao, S. Health risk assessment of eight heavy metals in nine varieties of edible vegetable oils consumed in China. Food Chem. Toxicol., 2011, 49(12), 3081-3085. doi: 10.1016/j.fct.2011.09.019 PMID: 21964195
  77. Karthik, D.; Vijayarekha, K. Chemometric identification of a few heavy metals, pesticides and plasticides in edible sunflower oil for health risk assessment. Int. J. Food Prop., 2018, 21(1), 1442-1448. doi: 10.1080/10942912.2018.1494192
  78. Cold pressed oils In: Ramadan, M.F., Ed.;Green technology, bioactive compounds, functionality, and applications; Academic Press, 2020, pp. 1-5.
  79. Carter, C.; Finley, W.; Fry, J.; Jackson, D.; Willis, L. Palm oil markets and future supply. Eur. J. Lipid Sci. Technol., 2007, 109(4), 307-314. doi: 10.1002/ejlt.200600256
  80. Montoya, C.; Cochard, B.; Flori, A.; Cros, D.; Lopes, R.; Cuellar, T.; Espeout, S.; Syaputra, I.; Villeneuve, P.; Pina, M.; Ritter, E.; Leroy, T.; Billotte, N. Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to its wild relative E. oleifera (H.B.K) Cortés. PLoS One, 2014, 9(5), e95412. doi: 10.1371/journal.pone.0095412 PMID: 24816555
  81. Rosqvist, F.; Iggman, D.; Kullberg, J.; Cedernaes, J.; Johansson, H.E.; Larsson, A.; Johansson, L.; Ahlström, H.; Arner, P.; Dahlman, I.; Risérus, U. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes, 2014, 63(7), 2356-2368. doi: 10.2337/db13-1622 PMID: 24550191
  82. MacArthur, R.L.; Teye, E.; Darkwa, S. Predicting adulteration of Palm oil with Sudan IV dye using shortwave handheld spectroscopy and comparative analysis of models. Vib. Spectrosc., 2020, 110, 103129. doi: 10.1016/j.vibspec.2020.103129
  83. Idrissi, Z.L.E.; El Moudden, H.; Mghazli, N.; Bouyahya, A.; Guezzane, C.E.; Alshahrani, M.M.; Al Awadh, A.A.; Goh, K.W.; Ming, L.C.; Harhar, H.; Tabyaoui, M. Effects of extraction methods on the bioactivities and nutritional value of virginia and valencia-type peanut oil. Molecules, 2022, 27(22), 7709. doi: 10.3390/molecules27227709 PMID: 36431807
  84. Gahukar, R.T. Food adulteration and contamination in India: Occurrence, implication and safety measures. Int. J. Basic Appl. Sci., 2014, 3(1), 47. doi: 10.14419/ijbas.v3i1.1727
  85. Palladino, C.; Breiteneder, H. Peanut allergens. Mol. Immunol., 2018, 100, 58-70. doi: 10.1016/j.molimm.2018.04.005 PMID: 29680589
  86. Ghobadi, S.; Akhlaghi, M.; Shams, S.; Mazloomi, S.M. Acid and peroxide values and total polar compounds of frying oils in fast food restaurants of Shiraz, Southern Iran. Int. J. Food Sci. Nutr., 2018, 3(1), 25-30.
  87. Guillaume, C.; De Alzaa, F.; Ravetti, L. Evaluation of chemical and physical changes in different commercial oils during heating. Act. Sci. Nutr., 2018, 9(1), 43-48.
  88. Reitznerová, A.; Šuleková, M.; Nagy, J.; Marcinčák, S.; Semjon, B.; Čertík, M.; Klempová, T. Lipid peroxidation process in meat and meat products: A comparison study of malondialdehyde determination between modified 2-Thiobarbituric acid spectrophotometric method and reverse-phase high-performance liquid chromatography. Molecules, 2017, 22(11), 1988. doi: 10.3390/molecules22111988 PMID: 29144423
  89. Baum, S.J.; Kris-Etherton, P.M.; Willett, W.C.; Lichtenstein, A.H.; Rudel, L.L.; Maki, K.C.; Whelan, J.; Ramsden, C.E.; Block, R.C. Fatty acids in cardiovascular health and disease: A comprehensive update. J. Clin. Lipidol., 2012, 6(3), 216-234. doi: 10.1016/j.jacl.2012.04.077 PMID: 22658146
  90. Mohiuddin, A. The mysterious domination of food contaminants and adulterants in Bangladesh. Int. J. Environ. Sci. Nat. Resour., 2019, 16(4), 34-56. doi: 10.19080/IJESNR.2019.16.555941
  91. Seo, W.D.; Kang, J.E.; Choi, S.W.; Lee, K.S.; Lee, M.J.; Park, K.D.; Lee, J.H. Comparison of nutritional components (isoflavone, protein, oil, and fatty acid) and antioxidant properties at the growth stage of different parts of soybean Glycine max (L.) Merrill. Food Sci. Biotechnol., 2017, 26(2), 339-347. doi: 10.1007/s10068-017-0046-x PMID: 30263548
  92. Papazzo, A.; Conlan, X.A.; Lexis, L.; Lewandowski, P.A. Differential effects of dietary canola and soybean oil intake on oxidative stress in stroke-prone spontaneously hypertensive rats. Lipids Health Dis., 2011, 10(1), 98. doi: 10.1186/1476-511X-10-98 PMID: 21669000
  93. Ananth, D.A.; Deviram, G.; Mahalakshmi, V.; Sivasudha, T.; Tietel, Z. Phytochemical composition and antioxidant characteristics of traditional cold pressed seed oils in South India. Biocatal. Agric. Biotechnol., 2019, 17, 416-421. doi: 10.1016/j.bcab.2018.12.018
  94. Adu, O.B.; Fajana, O.O.; Ogunrinola, O.O.; Okonkwo, U.V.; Evuarherhe, P.; Elemo, B.O. Effect of continuous usage on the natural antioxidants of vegetable oils during deep-fat frying. Sci. Am., 2019, 5, e00144. doi: 10.1016/j.sciaf.2019.e00144
  95. Leong, X.F.; Aishah, A.; Nor Aini, U.; Das, S.; Jaarin, K. Heated palm oil causes rise in blood pressure and cardiac changes in heart muscle in experimental rats. Arch. Med. Res., 2008, 39(6), 567-572. doi: 10.1016/j.arcmed.2008.04.009 PMID: 18662587
  96. Jaarin, K.; Mustafa, M.R.; Leong, X.F. The effects of heated vegetable oils on blood pressure in rats. Clinics, 2011, 66(12), 2125-2132. doi: 10.1590/S1807-59322011001200020 PMID: 22189740
  97. Leong, X.F.; Mustafa, M.R.; Das, S.; Jaarin, K. Association of elevated blood pressure and impaired vasorelaxation in experimental Sprague-Dawley rats fed with heated vegetable oil. Lipids Health Dis., 2010, 9(1), 66. doi: 10.1186/1476-511X-9-66 PMID: 20573259
  98. Clemente, T.E.; Cahoon, E.B. Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol., 2009, 151(3), 1030-1040. doi: 10.1104/pp.109.146282 PMID: 19783644
  99. Rakhshandehroo, M.; Knoch, B.; Müller, M.; Kersten, S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res., 2010, 2010, 1-20. doi: 10.1155/2010/612089 PMID: 20936127
  100. Xian, T.K.; Omar, N.A.; Ying, L.W.; Hamzah, A.; Raj, S.; Jaarin, K.; Hussan, F. Reheated palm oil consumption and risk of atherosclerosis: Evidence at ultrastructural level. Evid. Based Complement. Alternat. Med., 2012, 2012, 828170. doi: 10.1155/2012/828170
  101. Adam, S.K.; Das, S.; Soelaiman, I.N.; Umar, N.A.; Jaarin, K. Consumption of repeatedly heated soy oil increases the serum parameters related to atherosclerosis in ovariectomized rats. Tohoku J. Exp. Med., 2008, 215(3), 219-226. doi: 10.1620/tjem.215.219 PMID: 18648182
  102. Chistiakov, D.A.; Bobryshev, Y.V.; Orekhov, A.N. Macrophage‐mediated cholesterol handling in atherosclerosis. J. Cell. Mol. Med., 2016, 20(1), 17-28. doi: 10.1111/jcmm.12689 PMID: 26493158
  103. Salah, W.A.; Nofal, M. Review of some adulteration detection techniques of edible oils. J. Sci. Food Agric., 2021, 101(3), 811-819. doi: 10.1002/jsfa.10750 PMID: 32833235
  104. Ng, T.T.; Li, S.; Ng, C.C.A.; So, P.K.; Wong, T.F.; Li, Z.Y.; Chan, S.T.; Yao, Z.P. Establishment of a spectral database for classification of edible oils using matrix-assisted laser desorption/ionization mass spectrometry. Food Chem., 2018, 252, 335-342. doi: 10.1016/j.foodchem.2018.01.125 PMID: 29478551
  105. Jergović, A.M.; Peršurić, Ž.; Saftić, L.; Kraljević Pavelić, S. Evaluation of MALDI‐TOF/MS technology in olive oil adulteration. J. Am. Oil Chem. Soc., 2017, 94(6), 749-757. doi: 10.1007/s11746-017-2994-y
  106. Biedermann, M.; Munoz, C.; Grob, K. Epoxidation for the analysis of the mineral oil aromatic hydrocarbons in food. An update. J. Chromatogr. A, 2020, 1624, 461236. doi: 10.1016/j.chroma.2020.461236 PMID: 32540076
  107. Srbinovska, A.; Conchione, C.; Menegoz Ursol, L.; Lucci, P.; Moret, S. Occurrence of n-Alkanes in vegetable oils and their analytical determination. Foods, 2020, 9(11), 1546. doi: 10.3390/foods9111546 PMID: 33114601
  108. Nestola, M.; Schmidt, T.C. Determination of mineral oil aromatic hydrocarbons in edible oils and fats by online liquid chromatography-gas chromatography-flame ionization detection - Evaluation of automated removal strategies for biogenic olefins. J. Chromatogr. A, 2017, 1505, 69-76. doi: 10.1016/j.chroma.2017.05.035 PMID: 28533029
  109. Criado-Navarro, I.; Mena-Bravo, A.; Calderón-Santiago, M.; Priego-Capote, F. Determination of glycerophospholipids in vegetable edible oils: Proof of concept to discriminate olive oil categories. Food Chem., 2019, 299, 125136. doi: 10.1016/j.foodchem.2019.125136 PMID: 31302429
  110. Rohman, A. The use of infrared spectroscopy in combination with chemometrics for quality control and authentication of edible fats and oils: A review. Appl. Spectrosc. Rev., 2017, 52(7), 589-604. doi: 10.1080/05704928.2016.1266493
  111. Pereira, C.G.; Leite, A.I.N.; Andrade, J.; Bell, M.J.V.; Anjos, V. Evaluation of butter oil adulteration with soybean oil by FT-MIR and FT-NIR spectroscopies and multivariate analyses. Lebensm. Wiss. Technol., 2019, 107, 1-8. doi: 10.1016/j.lwt.2019.02.072
  112. Sota-Uba, I.; Bamidele, M.; Moulton, J.; Booksh, K.; Lavine, B.K. Authentication of edible oils using Fourier transform infrared spectroscopy and pattern recognition methods. Chemom. Intell. Lab. Syst., 2021, 210, 104251. doi: 10.1016/j.chemolab.2021.104251
  113. Wang, X.; Wang, G.; Hou, X.; Nie, S. A rapid screening approach for authentication of olive oil and classification of binary blends of olive oils using low-field nuclear magnetic resonance spectra and support vector machine. Food Anal. Methods, 2020, 13(10), 1894-1905. doi: 10.1007/s12161-020-01799-z

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers