Research Progress of Pyroptosis in Renal Diseases

  • Authors: Hu B.1, Ma K.2, Wang W.3, Han Z.4, Chi M.5, Nasser M.I.6, Liu C.3
  • Affiliations:
    1. School of Medicine, University of Electronic Science and Technology of China
    2. Department of Nephrology, Osaka University Graduate School of Medicine
    3. Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China,
    4. School of Medical and Life Sciences, Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine
    5. Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China
    6. Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital,, Guangdong Academy of Medical Sciences
  • Issue: Vol 31, No 40 (2024)
  • Pages: 6656-6671
  • Section: Anti-Infectives and Infectious Diseases
  • URL: https://hum-ecol.ru/0929-8673/article/view/645132
  • DOI: https://doi.org/10.2174/0109298673255656231003111621
  • ID: 645132

Cite item

Full Text

Abstract

:Kidney diseases, particularly Acute Kidney Injury (AKI) and Chronic Kidney Disease (CKD), are identified as global public health issues affecting millions of individuals. In addition, the frequency of renal diseases in the population has increased dramatically and rapidly in recent years. Renal disorders have become a significant public health burden. The pathophysiology of renal diseases is significantly connected with renal cell death, including apoptosis, necrosis, necroptosis, ferroptosis, pyroptosis, and autophagy, as is now recognized. Unlike other forms of cell death, pyroptosis is a unique planned cell death (PCD). Scientists have proven that pyroptosis is crucial in developing various disorders, and this phenomenon is gaining increasing attention. It is considered a novel method of inflammatory cell death. Intriguingly, inflammation is among the most significant pathological characteristics of renal disease. This study investigates the effects of pyroptosis on Acute Kidney Injury (AKI), Chronic Kidney Disease (CKD), Diabetic Nephropathy (DN), Immunoglobulin A (IgA) Nephropathy, and Lupus Nephritis (LN) to identify novel therapeutic targets for kidney diseases.

About the authors

Boyan Hu

School of Medicine, University of Electronic Science and Technology of China

Email: info@benthamscience.net

Kuai Ma

Department of Nephrology, Osaka University Graduate School of Medicine

Email: info@benthamscience.net

Wei Wang

Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China,

Email: info@benthamscience.net

Zhongyu Han

School of Medical and Life Sciences, Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine

Email: info@benthamscience.net

Mingxuan Chi

Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China

Email: info@benthamscience.net

Moussa Ide Nasser

Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital,, Guangdong Academy of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Chi Liu

Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China,

Author for correspondence.
Email: info@benthamscience.net

References

  1. de Vasconcelos, N.M.; Lamkanfi, M. Recent insights on inflammasomes, gasdermin pores, and pyroptosis. Cold Spring Harb. Perspect. Biol., 2020, 12(5), a036392. doi: 10.1101/cshperspect.a036392 PMID: 31570336
  2. Xia, S.; Hollingsworth, L.R., IV; Wu, H. Mechanism and regulation of gasdermin-mediated cell death. Cold Spring Harb. Perspect. Biol., 2020, 12(3), a036400. doi: 10.1101/cshperspect.a036400 PMID: 31451512
  3. Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.M.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ., 2018, 25(3), 486-541. doi: 10.1038/s41418-017-0012-4 PMID: 29362479
  4. Kayagaki, N.; Stowe, I.B.; Lee, B.L.; O’Rourke, K.; Anderson, K.; Warming, S.; Cuellar, T.; Haley, B.; Roose-Girma, M.; Phung, Q.T.; Liu, P.S.; Lill, J.R.; Li, H.; Wu, J.; Kummerfeld, S.; Zhang, J.; Lee, W.P.; Snipas, S.J.; Salvesen, G.S.; Morris, L.X.; Fitzgerald, L.; Zhang, Y.; Bertram, E.M.; Goodnow, C.C.; Dixit, V.M. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526(7575), 666-671. doi: 10.1038/nature15541 PMID: 26375259
  5. Lin, J.; Cheng, A.; Cheng, K.; Deng, Q.; Zhang, S.; Lan, Z.; Wang, W.; Chen, J. New insights into the mechanisms of pyroptosis and implications for diabetic kidney disease. Int. J. Mol. Sci., 2020, 21(19), 7057. doi: 10.3390/ijms21197057 PMID: 32992874
  6. Guo, H.; Xie, M.; Zhou, C.; Zheng, M. The relevance of pyroptosis in the pathogenesis of liver diseases. Life Sci., 2019, 223, 69-73. doi: 10.1016/j.lfs.2019.02.060 PMID: 30831126
  7. Cuevas, S.; Pelegrín, P. Pyroptosis and redox balance in kidney diseases. Antioxid. Redox Signal., 2021, 35(1), 40-60. doi: 10.1089/ars.2020.8243 PMID: 33559516
  8. Yang, C.; Long, J.; Shi, Y.; Zhou, Z.; Wang, J.; Zhao, M.H.; Wang, H.; Zhang, L.; Coresh, J. Healthcare resource utilisation for chronic kidney disease and other major non-communicable chronic diseases in China: A cross-sectional study. BMJ Open, 2022, 12(1), e051888. doi: 10.1136/bmjopen-2021-051888 PMID: 35027417
  9. Bao, Y.W.; Yuan, Y.; Chen, J.H.; Lin, W.Q. Kidney disease models: Tools to identify mechanisms and potential therapeutic targets. Zool. Res., 2018, 39(2), 72-86. PMID: 29515089
  10. Andreeva, L.; David, L.; Rawson, S.; Shen, C.; Pasricha, T.; Pelegrin, P.; Wu, H. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell, 2021, 184(26), 6299-6312.e22. doi: 10.1016/j.cell.2021.11.011 PMID: 34861190
  11. Niu, T.; De Rosny, C.; Chautard, S.; Rey, A.; Patoli, D.; Groslambert, M.; Cosson, C.; Lagrange, B.; Zhang, Z.; Visvikis, O.; Hacot, S.; Hologne, M.; Walker, O.; Wong, J.; Wang, P.; Ricci, R.; Henry, T.; Boyer, L.; Petrilli, V.; Py, B.F. NLRP3 phosphorylation in its LRR domain critically regulates inflammasome assembly. Nat. Commun., 2021, 12(1), 5862. doi: 10.1038/s41467-021-26142-w PMID: 34615873
  12. Xia, S.; Zhang, Z.; Magupalli, V.G.; Pablo, J.L.; Dong, Y.; Vora, S.M.; Wang, L.; Fu, T.M.; Jacobson, M.P.; Greka, A.; Lieberman, J.; Ruan, J.; Wu, H. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature, 2021, 593(7860), 607-611. doi: 10.1038/s41586-021-03478-3 PMID: 33883744
  13. Levey, A.S.; James, M.T. Acute kidney injury. Ann. Intern. Med., 2017, 167(9), ITC66-ITC80. doi: 10.7326/AITC201711070 PMID: 29114754
  14. Faubel, S.; Edelstein, C.L. Mechanisms and mediators of lung injury after acute kidney injury. Nat. Rev. Nephrol., 2016, 12(1), 48-60. doi: 10.1038/nrneph.2015.158 PMID: 26434402
  15. Sawhney, S.; Tan, Z.; Black, C.; Marks, A.; Mclernon, D.J.; Ronksley, P.; James, M.T. Validation of risk prediction models to inform clinical decisions after acute kidney injury. Am. J. Kidney Dis., 2021, 78(1), 28-37. doi: 10.1053/j.ajkd.2020.12.008 PMID: 33428996
  16. Ozkok, A.; Edelstein, C.L. Pathophysiology of cisplatin-induced acute kidney injury. BioMed Res. Int., 2014, 2014, 1-17. doi: 10.1155/2014/967826 PMID: 25165721
  17. Gómez, H.; Kellum, J.A. Sepsis-induced acute kidney injury. Curr. Opin. Crit. Care, 2016, 22(6), 546-553. doi: 10.1097/MCC.0000000000000356 PMID: 27661757
  18. Fähling, M.; Seeliger, E.; Patzak, A.; Persson, P.B. Understanding and preventing contrast-induced acute kidney injury. Nat. Rev. Nephrol., 2017, 13(3), 169-180. doi: 10.1038/nrneph.2016.196 PMID: 28138128
  19. Yang, K.; Li, W.F.; Yu, J.F.; Yi, C.; Huang, W.F. Diosmetin protects against ischemia/reperfusion-induced acute kidney injury in mice. J. Surg. Res., 2017, 214, 69-78. doi: 10.1016/j.jss.2017.02.067 PMID: 28624062
  20. Xiao, C.; Zhao, H.; Zhu, H.; Zhang, Y.; Su, Q.; Zhao, F.; Wang, R. Tisp40 induces tubular epithelial cell GSDMD-mediated pyroptosis in renal ischemia-reperfusion injury via NF-κB signaling. Front. Physiol., 2020, 11, 906. doi: 10.3389/fphys.2020.00906 PMID: 32903383
  21. Xia, W.; Li, Y.; Wu, M.; Jin, Q.; Wang, Q.; Li, S.; Huang, S.; Zhang, A.; Zhang, Y.; Jia, Z. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation. Cell Death Dis., 2021, 12(2), 139. doi: 10.1038/s41419-021-03431-2 PMID: 33542198
  22. Zang, Z-D.; Yan, J. An analysis of clinical characteristics of septic acute kidney injury by using criteria of kidney disease: Improving Global Outcomes. Zhonghua Nei Ke Za Zhi, 2013, 52(4), 299-304. PMID: 23925356
  23. Wang, Z.; Gu, Z.; Hou, Q.; Chen, W.; Mu, D.; Zhang, Y.; Liu, Q.; Liu, Z.; Yang, D. Zebrafish GSDMEb cleavage- gated pyroptosis drives septic acute kidney injury in vivo. J. Immunol., 2020, 204(7), 1929-1942. doi: 10.4049/jimmunol.1901456 PMID: 32111733
  24. Dai, X.G.; Li, Q.; Li, T.; Huang, W.B.; Zeng, Z.H.; Yang, Y.; Duan, Z.P.; Wang, Y.J.; Ai, Y.H. The interaction between C/EBPβ and TFAM promotes acute kidney injury via regulating NLRP3 inflammasome-mediated pyroptosis. Mol. Immunol., 2020, 127, 136-145. doi: 10.1016/j.molimm.2020.08.023 PMID: 32971400
  25. Tamura, A.; Hirai, H.; Yokota, A.; Kamio, N.; Sato, A.; Shoji, T.; Kashiwagi, T.; Torikoshi, Y.; Miura, Y.; Tenen, D.G.; Maekawa, T. C/EBPβ is required for survival of Ly6C− monocytes. Blood, 2017, 130(16), 1809-1818. doi: 10.1182/blood-2017-03-772962 PMID: 28807982
  26. Guo, J.; Wang, R.; Liu, D. Bone marrow-derived mesenchymal stem cells ameliorate sepsis-induced acute kidney injury by promoting mitophagy of renal tubular epithelial cells via the SIRT1/Parkin axis. Front. Endocrinol., 2021, 12, 639165. doi: 10.3389/fendo.2021.639165 PMID: 34248837
  27. Chen, B.; Ni, Y.; Liu, J.; Zhang, Y.; Yan, F. Bone marrow-derived mesenchymal stem cells exert diverse effects on different macrophage subsets. Stem Cells Int., 2018, 2018, 1-9. doi: 10.1155/2018/8348121 PMID: 30140291
  28. Juan, C.X.; Mao, Y.; Cao, Q.; Chen, Y.; Zhou, L.B.; Li, S.; Chen, H.; Chen, J.H.; Zhou, G.P.; Jin, R. Exosome-mediated pyroptosis of miR-93-TXNIP-NLRP3 leads to functional difference between M1 and M2 macrophages in sepsis-induced acute kidney injury. J. Cell. Mol. Med., 2021, 25(10), 4786-4799. doi: 10.1111/jcmm.16449 PMID: 33745232
  29. Sun, J.; Ge, X.; Wang, Y.; Niu, L.; Tang, L.; Pan, S. USF2 knockdown downregulates THBS1 to inhibit the TGF-β signaling pathway and reduce pyroptosis in sepsis-induced acute kidney injury. Pharmacol. Res., 2022, 176, 105962. doi: 10.1016/j.phrs.2021.105962 PMID: 34756923
  30. Wang, Q.L.; Xing, W.; Yu, C.; Gao, M.; Deng, L.T. ROCK1 regulates sepsis-induced acute kidney injury via TLR2-mediated endoplasmic reticulum stress/pyroptosis axis. Mol. Immunol., 2021, 138, 99-109. doi: 10.1016/j.molimm.2021.07.022 PMID: 34365196
  31. Chen, B.; Huang, S.; Su, Y.; Wu, Y.J.; Hanna, A.; Brickshawana, A.; Graff, J.; Frangogiannis, N.G. Macrophage Smad3 protects the infarcted heart, stimulating phagocytosis and regulating inflammation. Circ. Res., 2019, 125(1), 55-70. doi: 10.1161/CIRCRESAHA.119.315069 PMID: 31092129
  32. Zhou, M.; Yang, L.; Zhuo, Y.; Li, D.; Zhang, L.; Cui, L.; Li, J. Effect of Liangxue Huoxue decoction on intestinal flora and NLRP3/caspase-1/GSDMD signaling pathway in mice model of sepsis-induced acute kidney injury. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2023, 35(3), 250-255. PMID: 36916336
  33. Battistone, M.A.; Mendelsohn, A.C.; Spallanzani, R.G.; Allegretti, A.S.; Liberman, R.N.; Sesma, J.; Kalim, S.; Wall, S.M.; Bonventre, J.V.; Lazarowski, E.R.; Brown, D.; Breton, S. Proinflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice. J. Clin. Invest., 2020, 130(7), 3734-3749. doi: 10.1172/JCI134791 PMID: 32287042
  34. Shigeoka, A.A.; Mueller, J.L.; Kambo, A.; Mathison, J.C.; King, A.J.; Hall, W.F.; Correia, J.S.; Ulevitch, R.J.; Hoffman, H.M.; McKay, D.B. An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J. Immunol., 2010, 185(10), 6277-6285. doi: 10.4049/jimmunol.1002330 PMID: 20962258
  35. Yang, J.R.; Yao, F.H.; Zhang, J.G.; Ji, Z.Y.; Li, K.L.; Zhan, J.; Tong, Y.N.; Lin, L.R.; He, Y.N. Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am. J. Physiol. Renal Physiol., 2014, 306(1), F75-F84. doi: 10.1152/ajprenal.00117.2013 PMID: 24133119
  36. Bai, T.; Cui, Y.; Yang, X.; Cui, X.; Yan, C.; Tang, Y.; Cao, X.; Dong, C. miR-302a-3p targets FMR1 to regulate pyroptosis of renal tubular epithelial cells induced by hypoxia–reoxygenation injury. Exp. Physiol., 2021, 106(12), 2531-2541. doi: 10.1113/EP089887 PMID: 34605097
  37. Wang, R.; Zhao, H.; Zhang, Y.; Zhu, H.; Su, Q.; Qi, H.; Deng, J.; Xiao, C. Identification of MicroRNA-92a-3p as an essential regulator of tubular epithelial cell pyroptosis by targeting Nrf1 via HO-1. Front. Genet., 2021, 11, 616947. doi: 10.3389/fgene.2020.616947 PMID: 33505436
  38. Tajima, T.; Yoshifuji, A.; Matsui, A.; Itoh, T.; Uchiyama, K.; Kanda, T.; Tokuyama, H.; Wakino, S.; Itoh, H. β-hydroxybutyrate attenuates renal ischemia-reperfusion injury through its anti-pyroptotic effects. Kidney Int., 2019, 95(5), 1120-1137. doi: 10.1016/j.kint.2018.11.034 PMID: 30826015
  39. Pang, Y.; Zhang, P.; Lu, R.; Li, H.; Li, J.; Fu, H.; Cao, Y.W.; Fang, G.; Liu, B.; Wu, J.; Zhou, J.; Zhou, Y. Andrade-oliveira salvianolic acid B modulates caspase-1–mediated pyroptosis in renal ischemia-reperfusion injury via Nrf2 pathway. Front. Pharmacol., 2020, 11, 541426. doi: 10.3389/fphar.2020.541426 PMID: 33013384
  40. Miao, N.; Yin, F.; Xie, H.; Wang, Y.; Xu, Y.; Shen, Y.; Xu, D.; Yin, J.; Wang, B.; Zhou, Z.; Cheng, Q.; Chen, P.; Xue, H.; Zhou, L.; Liu, J.; Wang, X.; Zhang, W.; Lu, L. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury. Kidney Int., 2019, 96(5), 1105-1120. doi: 10.1016/j.kint.2019.04.035 PMID: 31405732
  41. Zhang, Z.; Shao, X.; Jiang, N.; Mou, S.; Gu, L.; Li, S.; Lin, Q.; He, Y.; Zhang, M.; Zhou, W.; Ni, Z. Caspase-11- mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury. Cell Death Dis., 2018, 9(10), 983. doi: 10.1038/s41419-018-1023-x PMID: 30250284
  42. Abu Jawdeh, B.G.; Kanso, A.A.; Schelling, J.R. Evidence-based approach for prevention of radiocontrast-induced nephropathy. J. Hosp. Med., 2009, 4(8), 500-506. doi: 10.1002/jhm.477 PMID: 19824094
  43. Morcos, R.; Kucharik, M.; Bansal, P.; Al Taii, H.; Manam, R.; Casale, J.; Khalili, H.; Maini, B. Contrast-induced acute kidney injury: Review and practical update. Clin. Med. Insights Cardiol., 2019, 13, 1179546819878680. doi: 10.1177/1179546819878680 PMID: 31700251
  44. Chen, F.; Lu, J.; Yang, X.; Xiao, B.; Chen, H.; Pei, W.; Jin, Y.; Wang, M.; Li, Y.; Zhang, J.; Liu, F.; Gu, G.; Cui, W. Acetylbritannilactone attenuates contrast-induced acute kidney injury through its anti-pyroptosis effects. Biosci. Rep., 2020, 40(2), BSR20193253. doi: 10.1042/BSR20193253 PMID: 31998952
  45. Vilaysane, A.; Chun, J.; Seamone, M.E.; Wang, W.; Chin, R.; Hirota, S.; Li, Y.; Clark, S.A.; Tschopp, J.; Trpkov, K.; Hemmelgarn, B.R.; Beck, P.L.; Muruve, D.A. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J. Am. Soc. Nephrol., 2010, 21(10), 1732-1744. doi: 10.1681/ASN.2010020143 PMID: 20688930
  46. Mulay, S.R. Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases. Kidney Int., 2019, 96(1), 58-66. doi: 10.1016/j.kint.2019.01.014 PMID: 30922667
  47. Kong, Y.; Feng, W.; Zhao, X.; Zhang, P.; Li, S.; Li, Z.; Lin, Y.; Liang, B.; Li, C.; Wang, W.; Huang, H. Statins ameliorate cholesterol-induced inflammation and improve AQP2 expression by inhibiting NLRP3 activation in the kidney. Theranostics, 2020, 10(23), 10415-10433. doi: 10.7150/thno.49603 PMID: 32929357
  48. Zhu, Y.; Huang, G.; Yang, Y.; Yong, C.; Yu, X.; Wang, G.; Yi, L.; Gao, K.; Tian, F.; Qian, S.; Zhou, E.; Zou, Y. Chinese herbal medicine suyin detoxification granule inhibits pyroptosis and epithelial-mesenchymal transition by downregulating MAVS/NLRP3 to alleviate renal injury. J. Inflamm. Res., 2021, 14, 6601-6618. doi: 10.2147/JIR.S341598 PMID: 34908861
  49. Geng, W.; Tu, C.; Chen, D.; Lu, Z.; Mao, W.; Zhu, H. Huaier attenuates the adverse effects of pyroptosis by regulating the methylation of rat mesangial cells: An in vitro study. BMC Complem. Med. Therap., 2022, 22(1), 92. doi: 10.1186/s12906-022-03559-4 PMID: 35351070
  50. Pang, Q.; Wang, P.; Pan, Y.; Dong, X.; Zhou, T.; Song, X.; Zhang, A. Irisin protects against vascular calcification by activating autophagy and inhibiting NLRP3-mediated vascular smooth muscle cell pyroptosis in chronic kidney disease. Cell Death Dis., 2022, 13(3), 283. doi: 10.1038/s41419-022-04735-7 PMID: 35354793
  51. Sigrist, M.K.; Taal, M.W.; Bungay, P.; McIntyre, C.W. Progressive vascular calcification over 2 years is associated with arterial stiffening and increased mortality in patients with stages 4 and 5 chronic kidney disease. Clin. J. Am. Soc. Nephrol., 2007, 2(6), 1241-1248. doi: 10.2215/CJN.02190507 PMID: 17928470
  52. Miao, N.; Xie, H.; Xu, D.; Yin, J.; Wang, Y.; Wang, B.; Yin, F.; Zhou, Z.; Cheng, Q.; Chen, P.; Zhou, L.; Xue, H.; Zhang, W.; Wang, X.; Liu, J.; Lu, L. Caspase-11 promotes renal fibrosis by stimulating IL-1β maturation via activating caspase-1. Acta Pharmacol. Sin., 2019, 40(6), 790-800. doi: 10.1038/s41401-018-0177-5 PMID: 30382182
  53. Zhang, H.; Wang, Z. Effect and regulation of the NLRP3 inflammasome during renal fibrosis. Front. Cell Dev. Biol., 2020, 7, 379. doi: 10.3389/fcell.2019.00379 PMID: 32039201
  54. Guo, H.; Bi, X.; Zhou, P.; Zhu, S.; Ding, W. NLRP3 deficiency attenuates renal fibrosis and ameliorates mitochondrial dysfunction in a mouse unilateral ureteral obstruction model of chronic kidney disease. Mediators Inflamm., 2017, 2017, 1-10. doi: 10.1155/2017/8316560 PMID: 28348462
  55. Anders, H.J.; Suarez-Alvarez, B.; Grigorescu, M.; Foresto-Neto, O.; Steiger, S.; Desai, J.; Marschner, J.A.; Honarpisheh, M.; Shi, C.; Jordan, J.; Müller, L.; Burzlaff, N.; Bäuerle, T.; Mulay, S.R. The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1–mediated tissue injury. Kidney Int., 2018, 93(3), 656-669. doi: 10.1016/j.kint.2017.09.022 PMID: 29241624
  56. Wu, M.; Xia, W.; Jin, Q.; Zhou, A.; Wang, Q.; Li, S.; Huang, S.; Zhang, A.; Zhang, Y.; Li, Y.; Jia, Z.; Gasdermin, E. Gasdermin E deletion attenuates ureteral obstruction and 5/6 nephrectomy-induced renal fibrosis and kidney dysfunction. Front. Cell Dev. Biol., 2021, 9, 754134. doi: 10.3389/fcell.2021.754134 PMID: 34746148
  57. Tang, Y.S.; Zhao, Y.H.; Zhong, Y.; Li, X.Z.; Pu, J.X.; Luo, Y.C.; Zhou, Q.L. Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/Caspase-1 signaling pathway. Inflamm. Res., 2019, 68(9), 727-738. doi: 10.1007/s00011-019-01256-6 PMID: 31172209
  58. Flyvbjerg, A. The role of the complement system in diabetic nephropathy. Nat. Rev. Nephrol., 2017, 13(5), 311-318. doi: 10.1038/nrneph.2017.31 PMID: 28262777
  59. Ke, R.; Wang, Y.; Hong, S.; Xiao, L. Endoplasmic reticulum stress related factor IRE1α regulates TXNIP/NLRP3- mediated pyroptosis in diabetic nephropathy. Exp. Cell Res., 2020, 396(2), 112293. doi: 10.1016/j.yexcr.2020.112293 PMID: 32950473
  60. Cheng, Q.; Pan, J.; Zhou, Z.; Yin, F.; Xie, H.; Chen, P.; Li, J.; Zheng, P.; Zhou, L.; Zhang, W.; Liu, J.; Lu, L. Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy. Acta Pharmacol. Sin., 2021, 42(6), 954-963. doi: 10.1038/s41401-020-00525-z PMID: 32968210
  61. Shahzad, K.; Bock, F.; Dong, W.; Wang, H.; Kopf, S.; Kohli, S.; Al-Dabet, M.M.; Ranjan, S.; Wolter, J.; Wacker, C.; Biemann, R.; Stoyanov, S.; Reymann, K.; Söderkvist, P.; Groß, O.; Schwenger, V.; Pahernik, S.; Nawroth, P.P.; Gröne, H.J.; Madhusudhan, T.; Isermann, B. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int., 2015, 87(1), 74-84. doi: 10.1038/ki.2014.271 PMID: 25075770
  62. Chen, X.; He, W.; Hu, L.; Li, J.; Fang, Y.; Wang, X.; Xu, X.; Wang, Z.; Huang, K.; Han, J. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res., 2016, 26(9), 1007-1020. doi: 10.1038/cr.2016.100 PMID: 27573174
  63. Wang, Y.; Zhu, X.; Yuan, S.; Wen, S.; Liu, X.; Wang, C.; Qu, Z.; Li, J.; Liu, H.; Sun, L.; Liu, F. TLR4/NF-κB signaling induces GSDMD-related pyroptosis in tubular cells in diabetic kidney disease. Front. Endocrinol., 2019, 10, 603. doi: 10.3389/fendo.2019.00603 PMID: 31608008
  64. Liu, P.; Zhang, Z.; Li, Y. Relevance of the pyroptosis-related inflammasome pathway in the pathogenesis of diabetic kidney disease. Front. Immunol., 2021, 12, 603416. doi: 10.3389/fimmu.2021.603416 PMID: 33692782
  65. Zhan, J.F.; Huang, H.W.; Huang, C.; Hu, L.L.; Xu, W.W.; Long Non-Coding, R.N.A. Long Non-Coding RNA NEAT1 regulates pyroptosis in diabetic nephropathy via mediating the miR-34c/NLRP3 Axis. Kidney Blood Press. Res., 2020, 45(4), 589-602. doi: 10.1159/000508372 PMID: 32721950
  66. Wang, J.; Zhao, S.M. LncRNA-antisense non-coding RNA in the INK4 locus promotes pyroptosis via miR-497/thioredoxin-interacting protein axis in diabetic nephropathy. Life Sci., 2021, 264, 118728. doi: 10.1016/j.lfs.2020.118728 PMID: 33160992
  67. Deng, J.; Tan, W.; Luo, Q.; Lin, L.; Zheng, L.; Yang, J. Long non-coding RNA MEG3 promotes renal tubular epithelial cell pyroptosis by regulating the miR-18a-3p/GSDMD pathway in lipopolysaccharide-induced acute kidney injury. Front. Physiol., 2021, 12, 663216. doi: 10.3389/fphys.2021.663216 PMID: 34012408
  68. Ding, X.; Jing, N.; Shen, A.; Guo, F.; Song, Y.; Pan, M.; Ma, X.; Zhao, L.; Zhang, H.; Wu, L.; Qin, G.; Zhao, Y. MiR-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating A20. J. Endocrinol. Invest., 2021, 44(6), 1175-1184. doi: 10.1007/s40618-020-01401-7 PMID: 32930981
  69. Xie, C.; Wu, W.; Tang, A.; Luo, N.; Tan, Y. lncRNA GAS5/miR-452-5p reduces oxidative stress and pyroptosis of high-glucose-stimulated renal tubular cells. Diabetes Metab. Syndr. Obes., 2019, 12, 2609-2617. doi: 10.2147/DMSO.S228654 PMID: 31849505
  70. Zhu, B.; Cheng, X.; Jiang, Y.; Cheng, M.; Chen, L.; Bao, J.; Tang, X. Silencing of KCNQ1OT1 decreases oxidative stress and pyroptosis of renal tubular epithelial cells. Diabetes Metab. Syndr. Obes., 2020, 13, 365-375. doi: 10.2147/DMSO.S225791 PMID: 32104033
  71. Bai, Y.; Mu, Q.; Bao, X.; Zuo, J.; Fang, X.; Hua, J.; Zhang, D.; Jiang, G.; Li, P.; Gao, S.; Zhao, D. Targeting NLRP3 inflammasome in the treatment of diabetes and diabetic complications: Role of natural compounds from herbal medicine. Aging Dis., 2021, 12(7), 1587-1604. doi: 10.14336/AD.2021.0318 PMID: 34631209
  72. Wen, S.; Li, S.; Li, L.; Fan, Q. circACTR2: A novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis. Biol. Pharm. Bull., 2020, 43(3), 558-564. doi: 10.1248/bpb.b19-00901 PMID: 32115515
  73. Ram, C.; Jha, A.K.; Ghosh, A.; Gairola, S.; Syed, A.M.; Murty, U.S.; Naidu, V.G.M.; Sahu, B.D. Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy: Preclinical evidences with therapeutic approaches. Eur. J. Pharmacol., 2020, 885, 173503. doi: 10.1016/j.ejphar.2020.173503 PMID: 32858047
  74. Gu, J.; Huang, W.; Zhang, W.; Zhao, T.; Gao, C.; Gan, W.; Rao, M.; Chen, Q.; Guo, M.; Xu, Y.; Xu, Y.H. Sodium butyrate alleviates high-glucose-induced renal glomerular endothelial cells damage via inhibiting pyroptosis. Int. Immunopharmacol., 2019, 75, 105832. doi: 10.1016/j.intimp.2019.105832 PMID: 31473434
  75. Wang, B.; Dai, Z.; Gao, Q.; Liu, Y.; Gu, G.; Zheng, H. Spop ameliorates diabetic nephropathy through restraining NLRP3 inflammasome. Biochem. Biophys. Res. Commun., 2022, 594, 131-138. doi: 10.1016/j.bbrc.2021.12.068 PMID: 35081502
  76. Ding, T.; Wang, S.; Zhang, X.; Zai, W.; Fan, J.; Chen, W.; Bian, Q.; Luan, J.; Shen, Y.; Zhang, Y.; Ju, D.; Mei, X. Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome. Phytomedicine, 2018, 41, 45-53. doi: 10.1016/j.phymed.2018.01.026 PMID: 29519318
  77. Samra, Y.A.; Said, H.S.; Elsherbiny, N.M.; Liou, G.I.; El-Shishtawy, M.M.; Eissa, L.A. Cepharanthine and piperine ameliorate diabetic nephropathy in rats: Role of NF-κB and NLRP3 inflammasome. Life Sci., 2016, 157, 187-199. doi: 10.1016/j.lfs.2016.06.002 PMID: 27266851
  78. Song, W.; Wei, L.; Du, Y.; Wang, Y.; Jiang, S. Protective effect of ginsenoside metabolite compound K against diabetic nephropathy by inhibiting NLRP3 inflammasome activation and NF-κB/p38 signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Int. Immunopharmacol., 2018, 63, 227-238. doi: 10.1016/j.intimp.2018.07.027 PMID: 30107367
  79. Zhu, Y.; Zhu, C.; Yang, H.; Deng, J.; Fan, D. Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol. Res., 2020, 155, 104746. doi: 10.1016/j.phrs.2020.104746 PMID: 32156650
  80. Ka, S.M.; Lin, J.C.; Lin, T.J.; Liu, F.C.; Chao, L.K.; Ho, C.L.; Yeh, L.T.; Sytwu, H.K.; Hua, K.F.; Chen, A. Citral alleviates an accelerated and severe lupus nephritis model by inhibiting the activation signal of NLRP3 inflammasome and enhancing Nrf2 activation. Arthritis Res. Ther., 2015, 17(1), 331. doi: 10.1186/s13075-015-0844-6 PMID: 26584539
  81. Peng, X.; Yang, T.; Liu, G.; Liu, H.; Peng, Y.; He, L. Piperine ameliorated lupus nephritis by targeting AMPK-mediated activation of NLRP3 inflammasome. Int. Immunopharmacol., 2018, 65, 448-457. doi: 10.1016/j.intimp.2018.10.025 PMID: 30388519
  82. He, J.; Sun, M.; Tian, S. Procyanidin B2 prevents lupus nephritis development in mice by inhibiting NLRP3 inflammasome activation. Innate Immun., 2018, 24(5), 307-315. doi: 10.1177/1753425918780985 PMID: 29874961
  83. Zhao, J.; Wang, J.; Zhou, M.; Li, M.; Li, M.; Tan, H. Curcumin attenuates murine lupus via inhibiting NLRP3 inflammasome. Int. Immunopharmacol., 2019, 69, 213-216. doi: 10.1016/j.intimp.2019.01.046 PMID: 30738291
  84. Che, Y.; Li, Y.; Zheng, F.; Zou, K.; Li, Z.; Chen, M.; Hu, S.; Tian, C.; Yu, W.; Guo, W.; Luo, M.; Deng, W.; Zou, L. TRIP4 promotes tumor growth and metastasis and regulates radiosensitivity of cervical cancer by activating MAPK, PI3K/AKT, and hTERT signaling. Cancer Lett., 2019, 452, 1-13. doi: 10.1016/j.canlet.2019.03.017 PMID: 30905820
  85. Huang, J.; An, Q.; Ju, B.; Zhang, J.; Fan, P.; He, L.; Wang, L. Role of vitamin D/VDR nuclear translocation in down-regulation of NF-κB/NLRP3/caspase-1 axis in lupus nephritis. Int. Immunopharmacol., 2021, 100, 108131. doi: 10.1016/j.intimp.2021.108131 PMID: 34536747
  86. Bonomini, F.; Dos Santos, M.; Veronese, F.V.; Rezzani, R. NLRP3 inflammasome modulation by melatonin supplementation in chronic pristane-induced lupus nephritis. Int. J. Mol. Sci., 2019, 20(14), 3466. doi: 10.3390/ijms20143466 PMID: 31311094
  87. Zhang, L.; Wang, X.Z.; Li, Y.S.; Zhang, L.; Hao, L.R. Icariin ameliorates IgA nephropathy by inhibition of nuclear factor kappa b/Nlrp3 pathway. FEBS Open Bio, 2017, 7(1), 54-63. doi: 10.1002/2211-5463.12161 PMID: 28097088
  88. Yang, S.M.; Ka, S.M.; Hua, K.F.; Wu, T.H.; Chuang, Y.P.; Lin, Y.W.; Yang, F.L.; Wu, S.H.; Yang, S.S.; Lin, S.H.; Chang, J.M.; Chen, A. Antroquinonol mitigates an accelerated and progressive IgA nephropathy model in mice by activating the Nrf2 pathway and inhibiting T cells and NLRP3 inflammasome. Free Radic. Biol. Med., 2013, 61, 285-297. doi: 10.1016/j.freeradbiomed.2013.03.024 PMID: 23567192
  89. Wu, C.Y.; Hua, K.F.; Hsu, W.H.; Suzuki, Y.; Chu, L.J.; Lee, Y.C.; Takahata, A.; Lee, S.L.; Wu, C.C.; Nikolic-Paterson, D.J.; Ka, S.M.; Chen, A. IgA nephropathy benefits from compound K treatment by inhibiting NF-κB/NLRP3 inflammasome and enhancing autophagy and SIRT1. J. Immunol., 2020, 205(1), 202-212. doi: 10.4049/jimmunol.1900284 PMID: 32482710
  90. Hua, K.F.; Yang, S.M.; Kao, T.Y.; Chang, J.M.; Chen, H.L.; Tsai, Y.J.; Chen, A.; Yang, S.S.; Chao, L.K.; Ka, S.M. Osthole mitigates progressive IgA nephropathy by inhibiting reactive oxygen species generation and NF-κB/NLRP3 pathway. PLoS One, 2013, 8(10), e77794. doi: 10.1371/journal.pone.0077794 PMID: 24204969
  91. Li, H.; Lu, R.; Pang, Y.; Li, J.; Cao, Y.; Fu, H.; Fang, G.; Chen, Q.; Liu, B.; Wu, J.; Zhou, Y.; Zhou, J. Zhen-Wu-Tang protects IgA nephropathy in rats by regulating exosomes to inhibit NF-κB/NLRP3 pathway. Front. Pharmacol., 2020, 11, 1080. doi: 10.3389/fphar.2020.01080 PMID: 32765277
  92. Goldwich, A.; Burkard, M.; Ölke, M.; Daniel, C.; Amann, K.; Hugo, C.; Kurts, C.; Steinkasserer, A.; Gessner, A. Podocytes are nonhematopoietic professional antigen-presenting cells. J. Am. Soc. Nephrol., 2013, 24(6), 906-916. doi: 10.1681/ASN.2012020133 PMID: 23539760
  93. Zhang, W.; Cai, Y.; Xu, W.; Yin, Z.; Gao, X.; Xiong, S. AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. J. Clin. Immunol., 2013, 33(5), 925-937. doi: 10.1007/s10875-013-9881-6 PMID: 23479181
  94. Guo, C.; Fu, R.; Zhou, M.; Wang, S.; Huang, Y.; Hu, H.; Zhao, J.; Gaskin, F.; Yang, N.; Fu, S.M. Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation. J. Autoimmun., 2019, 103, 102286. doi: 10.1016/j.jaut.2019.05.014 PMID: 31133359
  95. Mistry, P.; Kaplan, M.J. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis. Clin. Immunol., 2017, 185, 59-73. doi: 10.1016/j.clim.2016.08.010 PMID: 27519955
  96. Zhang, H.; Liu, L.; Li, L. Lentivirus-mediated knockdown of FcγRI (CD64) attenuated lupus nephritis via inhibition of NF-κB regulating NLRP3 inflammasome activation in MRL/lpr mice. J. Pharmacol. Sci., 2018, 137(4), 342-349. doi: 10.1016/j.jphs.2018.05.012 PMID: 30190171
  97. Zhao, J.; Wang, H.; Dai, C.; Wang, H.; Zhang, H.; Huang, Y.; Wang, S.; Gaskin, F.; Yang, N.; Man Fu, S. P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway. Arthritis Rheum., 2013, 65(12), 3176-3185. doi: 10.1002/art.38174 PMID: 24022661
  98. Magistroni, R.; D’Agati, V.D.; Appel, G.B.; Kiryluk, K. New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int., 2015, 88(5), 974-989. doi: 10.1038/ki.2015.252 PMID: 26376134
  99. Chun, J.; Chung, H.; Wang, X.; Barry, R.; Taheri, Z.M.; Platnich, J.M.; Ahmed, S.B.; Trpkov, K.; Hemmelgarn, B.; Benediktsson, H.; James, M.T.; Muruve, D.A. NLRP3 localizes to the tubular epithelium in human kidney and correlates with outcome in IgA nephropathy. Sci. Rep., 2016, 6(1), 24667. doi: 10.1038/srep24667 PMID: 27093923
  100. Pétrilli, V.; Dostert, C.; Muruve, D.A.; Tschopp, J. The inflammasome: A danger sensing complex triggering innate immunity. Curr. Opin. Immunol., 2007, 19(6), 615-622. doi: 10.1016/j.coi.2007.09.002 PMID: 17977705
  101. Mizushima, N.; Komatsu, M. Autophagy: renovation of cells and tissues. Cell, 2011, 147(4), 728-741. doi: 10.1016/j.cell.2011.10.026 PMID: 22078875
  102. Sun, Q.; Fan, J.; Billiar, T.R.; Scott, M.J. Inflammasome and autophagy regulation: A two-way street. Mol. Med., 2017, 23(1), 188-195. doi: 10.2119/molmed.2017.00077 PMID: 28741645
  103. Chang, Y.P.; Ka, S.M.; Hsu, W.H.; Chen, A.; Chao, L.K.; Lin, C.C.; Hsieh, C.C.; Chen, M.C.; Chiu, H.W.; Ho, C.L.; Chiu, Y.C.; Liu, M.L.; Hua, K.F. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy. J. Cell. Physiol., 2015, 230(7), 1567-1579. doi: 10.1002/jcp.24903 PMID: 25535911
  104. Tsai, Y.L.; Hua, K.F.; Chen, A.; Wei, C.W.; Chen, W.S.; Wu, C.Y.; Chu, C.L.; Yu, Y.L.; Lo, C.W.; Ka, S.M. NLRP3 inflammasome: Pathogenic role and potential therapeutic target for IgA nephropathy. Sci. Rep., 2017, 7(1), 41123. doi: 10.1038/srep41123 PMID: 28117341
  105. Peng, W.; Pei, G.; Tang, Y.; Tan, L.; Qin, W. IgA1 deposition may induce NLRP3 expression and macrophage transdifferentiation of podocyte in IgA nephropathy. J. Transl. Med., 2019, 17(1), 406. doi: 10.1186/s12967-019-02157-2 PMID: 31796125

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers