Research Progress of Pyroptosis in Renal Diseases
- Authors: Hu B.1, Ma K.2, Wang W.3, Han Z.4, Chi M.5, Nasser M.I.6, Liu C.3
-
Affiliations:
- School of Medicine, University of Electronic Science and Technology of China
- Department of Nephrology, Osaka University Graduate School of Medicine
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China,
- School of Medical and Life Sciences, Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital,, Guangdong Academy of Medical Sciences
- Issue: Vol 31, No 40 (2024)
- Pages: 6656-6671
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645132
- DOI: https://doi.org/10.2174/0109298673255656231003111621
- ID: 645132
Cite item
Full Text
Abstract
:Kidney diseases, particularly Acute Kidney Injury (AKI) and Chronic Kidney Disease (CKD), are identified as global public health issues affecting millions of individuals. In addition, the frequency of renal diseases in the population has increased dramatically and rapidly in recent years. Renal disorders have become a significant public health burden. The pathophysiology of renal diseases is significantly connected with renal cell death, including apoptosis, necrosis, necroptosis, ferroptosis, pyroptosis, and autophagy, as is now recognized. Unlike other forms of cell death, pyroptosis is a unique planned cell death (PCD). Scientists have proven that pyroptosis is crucial in developing various disorders, and this phenomenon is gaining increasing attention. It is considered a novel method of inflammatory cell death. Intriguingly, inflammation is among the most significant pathological characteristics of renal disease. This study investigates the effects of pyroptosis on Acute Kidney Injury (AKI), Chronic Kidney Disease (CKD), Diabetic Nephropathy (DN), Immunoglobulin A (IgA) Nephropathy, and Lupus Nephritis (LN) to identify novel therapeutic targets for kidney diseases.
About the authors
Boyan Hu
School of Medicine, University of Electronic Science and Technology of China
Email: info@benthamscience.net
Kuai Ma
Department of Nephrology, Osaka University Graduate School of Medicine
Email: info@benthamscience.net
Wei Wang
Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China,
Email: info@benthamscience.net
Zhongyu Han
School of Medical and Life Sciences, Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine
Email: info@benthamscience.net
Mingxuan Chi
Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China
Email: info@benthamscience.net
Moussa Ide Nasser
Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital,, Guangdong Academy of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
Chi Liu
Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China,
Author for correspondence.
Email: info@benthamscience.net
References
- de Vasconcelos, N.M.; Lamkanfi, M. Recent insights on inflammasomes, gasdermin pores, and pyroptosis. Cold Spring Harb. Perspect. Biol., 2020, 12(5), a036392. doi: 10.1101/cshperspect.a036392 PMID: 31570336
- Xia, S.; Hollingsworth, L.R., IV; Wu, H. Mechanism and regulation of gasdermin-mediated cell death. Cold Spring Harb. Perspect. Biol., 2020, 12(3), a036400. doi: 10.1101/cshperspect.a036400 PMID: 31451512
- Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.M.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; DAngiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K.M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J.C.; Martin, S.J.; Martinou, J.C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H.U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ., 2018, 25(3), 486-541. doi: 10.1038/s41418-017-0012-4 PMID: 29362479
- Kayagaki, N.; Stowe, I.B.; Lee, B.L.; ORourke, K.; Anderson, K.; Warming, S.; Cuellar, T.; Haley, B.; Roose-Girma, M.; Phung, Q.T.; Liu, P.S.; Lill, J.R.; Li, H.; Wu, J.; Kummerfeld, S.; Zhang, J.; Lee, W.P.; Snipas, S.J.; Salvesen, G.S.; Morris, L.X.; Fitzgerald, L.; Zhang, Y.; Bertram, E.M.; Goodnow, C.C.; Dixit, V.M. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526(7575), 666-671. doi: 10.1038/nature15541 PMID: 26375259
- Lin, J.; Cheng, A.; Cheng, K.; Deng, Q.; Zhang, S.; Lan, Z.; Wang, W.; Chen, J. New insights into the mechanisms of pyroptosis and implications for diabetic kidney disease. Int. J. Mol. Sci., 2020, 21(19), 7057. doi: 10.3390/ijms21197057 PMID: 32992874
- Guo, H.; Xie, M.; Zhou, C.; Zheng, M. The relevance of pyroptosis in the pathogenesis of liver diseases. Life Sci., 2019, 223, 69-73. doi: 10.1016/j.lfs.2019.02.060 PMID: 30831126
- Cuevas, S.; Pelegrín, P. Pyroptosis and redox balance in kidney diseases. Antioxid. Redox Signal., 2021, 35(1), 40-60. doi: 10.1089/ars.2020.8243 PMID: 33559516
- Yang, C.; Long, J.; Shi, Y.; Zhou, Z.; Wang, J.; Zhao, M.H.; Wang, H.; Zhang, L.; Coresh, J. Healthcare resource utilisation for chronic kidney disease and other major non-communicable chronic diseases in China: A cross-sectional study. BMJ Open, 2022, 12(1), e051888. doi: 10.1136/bmjopen-2021-051888 PMID: 35027417
- Bao, Y.W.; Yuan, Y.; Chen, J.H.; Lin, W.Q. Kidney disease models: Tools to identify mechanisms and potential therapeutic targets. Zool. Res., 2018, 39(2), 72-86. PMID: 29515089
- Andreeva, L.; David, L.; Rawson, S.; Shen, C.; Pasricha, T.; Pelegrin, P.; Wu, H. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell, 2021, 184(26), 6299-6312.e22. doi: 10.1016/j.cell.2021.11.011 PMID: 34861190
- Niu, T.; De Rosny, C.; Chautard, S.; Rey, A.; Patoli, D.; Groslambert, M.; Cosson, C.; Lagrange, B.; Zhang, Z.; Visvikis, O.; Hacot, S.; Hologne, M.; Walker, O.; Wong, J.; Wang, P.; Ricci, R.; Henry, T.; Boyer, L.; Petrilli, V.; Py, B.F. NLRP3 phosphorylation in its LRR domain critically regulates inflammasome assembly. Nat. Commun., 2021, 12(1), 5862. doi: 10.1038/s41467-021-26142-w PMID: 34615873
- Xia, S.; Zhang, Z.; Magupalli, V.G.; Pablo, J.L.; Dong, Y.; Vora, S.M.; Wang, L.; Fu, T.M.; Jacobson, M.P.; Greka, A.; Lieberman, J.; Ruan, J.; Wu, H. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature, 2021, 593(7860), 607-611. doi: 10.1038/s41586-021-03478-3 PMID: 33883744
- Levey, A.S.; James, M.T. Acute kidney injury. Ann. Intern. Med., 2017, 167(9), ITC66-ITC80. doi: 10.7326/AITC201711070 PMID: 29114754
- Faubel, S.; Edelstein, C.L. Mechanisms and mediators of lung injury after acute kidney injury. Nat. Rev. Nephrol., 2016, 12(1), 48-60. doi: 10.1038/nrneph.2015.158 PMID: 26434402
- Sawhney, S.; Tan, Z.; Black, C.; Marks, A.; Mclernon, D.J.; Ronksley, P.; James, M.T. Validation of risk prediction models to inform clinical decisions after acute kidney injury. Am. J. Kidney Dis., 2021, 78(1), 28-37. doi: 10.1053/j.ajkd.2020.12.008 PMID: 33428996
- Ozkok, A.; Edelstein, C.L. Pathophysiology of cisplatin-induced acute kidney injury. BioMed Res. Int., 2014, 2014, 1-17. doi: 10.1155/2014/967826 PMID: 25165721
- Gómez, H.; Kellum, J.A. Sepsis-induced acute kidney injury. Curr. Opin. Crit. Care, 2016, 22(6), 546-553. doi: 10.1097/MCC.0000000000000356 PMID: 27661757
- Fähling, M.; Seeliger, E.; Patzak, A.; Persson, P.B. Understanding and preventing contrast-induced acute kidney injury. Nat. Rev. Nephrol., 2017, 13(3), 169-180. doi: 10.1038/nrneph.2016.196 PMID: 28138128
- Yang, K.; Li, W.F.; Yu, J.F.; Yi, C.; Huang, W.F. Diosmetin protects against ischemia/reperfusion-induced acute kidney injury in mice. J. Surg. Res., 2017, 214, 69-78. doi: 10.1016/j.jss.2017.02.067 PMID: 28624062
- Xiao, C.; Zhao, H.; Zhu, H.; Zhang, Y.; Su, Q.; Zhao, F.; Wang, R. Tisp40 induces tubular epithelial cell GSDMD-mediated pyroptosis in renal ischemia-reperfusion injury via NF-κB signaling. Front. Physiol., 2020, 11, 906. doi: 10.3389/fphys.2020.00906 PMID: 32903383
- Xia, W.; Li, Y.; Wu, M.; Jin, Q.; Wang, Q.; Li, S.; Huang, S.; Zhang, A.; Zhang, Y.; Jia, Z. Gasdermin E deficiency attenuates acute kidney injury by inhibiting pyroptosis and inflammation. Cell Death Dis., 2021, 12(2), 139. doi: 10.1038/s41419-021-03431-2 PMID: 33542198
- Zang, Z-D.; Yan, J. An analysis of clinical characteristics of septic acute kidney injury by using criteria of kidney disease: Improving Global Outcomes. Zhonghua Nei Ke Za Zhi, 2013, 52(4), 299-304. PMID: 23925356
- Wang, Z.; Gu, Z.; Hou, Q.; Chen, W.; Mu, D.; Zhang, Y.; Liu, Q.; Liu, Z.; Yang, D. Zebrafish GSDMEb cleavage- gated pyroptosis drives septic acute kidney injury in vivo. J. Immunol., 2020, 204(7), 1929-1942. doi: 10.4049/jimmunol.1901456 PMID: 32111733
- Dai, X.G.; Li, Q.; Li, T.; Huang, W.B.; Zeng, Z.H.; Yang, Y.; Duan, Z.P.; Wang, Y.J.; Ai, Y.H. The interaction between C/EBPβ and TFAM promotes acute kidney injury via regulating NLRP3 inflammasome-mediated pyroptosis. Mol. Immunol., 2020, 127, 136-145. doi: 10.1016/j.molimm.2020.08.023 PMID: 32971400
- Tamura, A.; Hirai, H.; Yokota, A.; Kamio, N.; Sato, A.; Shoji, T.; Kashiwagi, T.; Torikoshi, Y.; Miura, Y.; Tenen, D.G.; Maekawa, T. C/EBPβ is required for survival of Ly6C− monocytes. Blood, 2017, 130(16), 1809-1818. doi: 10.1182/blood-2017-03-772962 PMID: 28807982
- Guo, J.; Wang, R.; Liu, D. Bone marrow-derived mesenchymal stem cells ameliorate sepsis-induced acute kidney injury by promoting mitophagy of renal tubular epithelial cells via the SIRT1/Parkin axis. Front. Endocrinol., 2021, 12, 639165. doi: 10.3389/fendo.2021.639165 PMID: 34248837
- Chen, B.; Ni, Y.; Liu, J.; Zhang, Y.; Yan, F. Bone marrow-derived mesenchymal stem cells exert diverse effects on different macrophage subsets. Stem Cells Int., 2018, 2018, 1-9. doi: 10.1155/2018/8348121 PMID: 30140291
- Juan, C.X.; Mao, Y.; Cao, Q.; Chen, Y.; Zhou, L.B.; Li, S.; Chen, H.; Chen, J.H.; Zhou, G.P.; Jin, R. Exosome-mediated pyroptosis of miR-93-TXNIP-NLRP3 leads to functional difference between M1 and M2 macrophages in sepsis-induced acute kidney injury. J. Cell. Mol. Med., 2021, 25(10), 4786-4799. doi: 10.1111/jcmm.16449 PMID: 33745232
- Sun, J.; Ge, X.; Wang, Y.; Niu, L.; Tang, L.; Pan, S. USF2 knockdown downregulates THBS1 to inhibit the TGF-β signaling pathway and reduce pyroptosis in sepsis-induced acute kidney injury. Pharmacol. Res., 2022, 176, 105962. doi: 10.1016/j.phrs.2021.105962 PMID: 34756923
- Wang, Q.L.; Xing, W.; Yu, C.; Gao, M.; Deng, L.T. ROCK1 regulates sepsis-induced acute kidney injury via TLR2-mediated endoplasmic reticulum stress/pyroptosis axis. Mol. Immunol., 2021, 138, 99-109. doi: 10.1016/j.molimm.2021.07.022 PMID: 34365196
- Chen, B.; Huang, S.; Su, Y.; Wu, Y.J.; Hanna, A.; Brickshawana, A.; Graff, J.; Frangogiannis, N.G. Macrophage Smad3 protects the infarcted heart, stimulating phagocytosis and regulating inflammation. Circ. Res., 2019, 125(1), 55-70. doi: 10.1161/CIRCRESAHA.119.315069 PMID: 31092129
- Zhou, M.; Yang, L.; Zhuo, Y.; Li, D.; Zhang, L.; Cui, L.; Li, J. Effect of Liangxue Huoxue decoction on intestinal flora and NLRP3/caspase-1/GSDMD signaling pathway in mice model of sepsis-induced acute kidney injury. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2023, 35(3), 250-255. PMID: 36916336
- Battistone, M.A.; Mendelsohn, A.C.; Spallanzani, R.G.; Allegretti, A.S.; Liberman, R.N.; Sesma, J.; Kalim, S.; Wall, S.M.; Bonventre, J.V.; Lazarowski, E.R.; Brown, D.; Breton, S. Proinflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice. J. Clin. Invest., 2020, 130(7), 3734-3749. doi: 10.1172/JCI134791 PMID: 32287042
- Shigeoka, A.A.; Mueller, J.L.; Kambo, A.; Mathison, J.C.; King, A.J.; Hall, W.F.; Correia, J.S.; Ulevitch, R.J.; Hoffman, H.M.; McKay, D.B. An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J. Immunol., 2010, 185(10), 6277-6285. doi: 10.4049/jimmunol.1002330 PMID: 20962258
- Yang, J.R.; Yao, F.H.; Zhang, J.G.; Ji, Z.Y.; Li, K.L.; Zhan, J.; Tong, Y.N.; Lin, L.R.; He, Y.N. Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am. J. Physiol. Renal Physiol., 2014, 306(1), F75-F84. doi: 10.1152/ajprenal.00117.2013 PMID: 24133119
- Bai, T.; Cui, Y.; Yang, X.; Cui, X.; Yan, C.; Tang, Y.; Cao, X.; Dong, C. miR-302a-3p targets FMR1 to regulate pyroptosis of renal tubular epithelial cells induced by hypoxiareoxygenation injury. Exp. Physiol., 2021, 106(12), 2531-2541. doi: 10.1113/EP089887 PMID: 34605097
- Wang, R.; Zhao, H.; Zhang, Y.; Zhu, H.; Su, Q.; Qi, H.; Deng, J.; Xiao, C. Identification of MicroRNA-92a-3p as an essential regulator of tubular epithelial cell pyroptosis by targeting Nrf1 via HO-1. Front. Genet., 2021, 11, 616947. doi: 10.3389/fgene.2020.616947 PMID: 33505436
- Tajima, T.; Yoshifuji, A.; Matsui, A.; Itoh, T.; Uchiyama, K.; Kanda, T.; Tokuyama, H.; Wakino, S.; Itoh, H. β-hydroxybutyrate attenuates renal ischemia-reperfusion injury through its anti-pyroptotic effects. Kidney Int., 2019, 95(5), 1120-1137. doi: 10.1016/j.kint.2018.11.034 PMID: 30826015
- Pang, Y.; Zhang, P.; Lu, R.; Li, H.; Li, J.; Fu, H.; Cao, Y.W.; Fang, G.; Liu, B.; Wu, J.; Zhou, J.; Zhou, Y. Andrade-oliveira salvianolic acid B modulates caspase-1mediated pyroptosis in renal ischemia-reperfusion injury via Nrf2 pathway. Front. Pharmacol., 2020, 11, 541426. doi: 10.3389/fphar.2020.541426 PMID: 33013384
- Miao, N.; Yin, F.; Xie, H.; Wang, Y.; Xu, Y.; Shen, Y.; Xu, D.; Yin, J.; Wang, B.; Zhou, Z.; Cheng, Q.; Chen, P.; Xue, H.; Zhou, L.; Liu, J.; Wang, X.; Zhang, W.; Lu, L. The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury. Kidney Int., 2019, 96(5), 1105-1120. doi: 10.1016/j.kint.2019.04.035 PMID: 31405732
- Zhang, Z.; Shao, X.; Jiang, N.; Mou, S.; Gu, L.; Li, S.; Lin, Q.; He, Y.; Zhang, M.; Zhou, W.; Ni, Z. Caspase-11- mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury. Cell Death Dis., 2018, 9(10), 983. doi: 10.1038/s41419-018-1023-x PMID: 30250284
- Abu Jawdeh, B.G.; Kanso, A.A.; Schelling, J.R. Evidence-based approach for prevention of radiocontrast-induced nephropathy. J. Hosp. Med., 2009, 4(8), 500-506. doi: 10.1002/jhm.477 PMID: 19824094
- Morcos, R.; Kucharik, M.; Bansal, P.; Al Taii, H.; Manam, R.; Casale, J.; Khalili, H.; Maini, B. Contrast-induced acute kidney injury: Review and practical update. Clin. Med. Insights Cardiol., 2019, 13, 1179546819878680. doi: 10.1177/1179546819878680 PMID: 31700251
- Chen, F.; Lu, J.; Yang, X.; Xiao, B.; Chen, H.; Pei, W.; Jin, Y.; Wang, M.; Li, Y.; Zhang, J.; Liu, F.; Gu, G.; Cui, W. Acetylbritannilactone attenuates contrast-induced acute kidney injury through its anti-pyroptosis effects. Biosci. Rep., 2020, 40(2), BSR20193253. doi: 10.1042/BSR20193253 PMID: 31998952
- Vilaysane, A.; Chun, J.; Seamone, M.E.; Wang, W.; Chin, R.; Hirota, S.; Li, Y.; Clark, S.A.; Tschopp, J.; Trpkov, K.; Hemmelgarn, B.R.; Beck, P.L.; Muruve, D.A. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J. Am. Soc. Nephrol., 2010, 21(10), 1732-1744. doi: 10.1681/ASN.2010020143 PMID: 20688930
- Mulay, S.R. Multifactorial functions of the inflammasome component NLRP3 in pathogenesis of chronic kidney diseases. Kidney Int., 2019, 96(1), 58-66. doi: 10.1016/j.kint.2019.01.014 PMID: 30922667
- Kong, Y.; Feng, W.; Zhao, X.; Zhang, P.; Li, S.; Li, Z.; Lin, Y.; Liang, B.; Li, C.; Wang, W.; Huang, H. Statins ameliorate cholesterol-induced inflammation and improve AQP2 expression by inhibiting NLRP3 activation in the kidney. Theranostics, 2020, 10(23), 10415-10433. doi: 10.7150/thno.49603 PMID: 32929357
- Zhu, Y.; Huang, G.; Yang, Y.; Yong, C.; Yu, X.; Wang, G.; Yi, L.; Gao, K.; Tian, F.; Qian, S.; Zhou, E.; Zou, Y. Chinese herbal medicine suyin detoxification granule inhibits pyroptosis and epithelial-mesenchymal transition by downregulating MAVS/NLRP3 to alleviate renal injury. J. Inflamm. Res., 2021, 14, 6601-6618. doi: 10.2147/JIR.S341598 PMID: 34908861
- Geng, W.; Tu, C.; Chen, D.; Lu, Z.; Mao, W.; Zhu, H. Huaier attenuates the adverse effects of pyroptosis by regulating the methylation of rat mesangial cells: An in vitro study. BMC Complem. Med. Therap., 2022, 22(1), 92. doi: 10.1186/s12906-022-03559-4 PMID: 35351070
- Pang, Q.; Wang, P.; Pan, Y.; Dong, X.; Zhou, T.; Song, X.; Zhang, A. Irisin protects against vascular calcification by activating autophagy and inhibiting NLRP3-mediated vascular smooth muscle cell pyroptosis in chronic kidney disease. Cell Death Dis., 2022, 13(3), 283. doi: 10.1038/s41419-022-04735-7 PMID: 35354793
- Sigrist, M.K.; Taal, M.W.; Bungay, P.; McIntyre, C.W. Progressive vascular calcification over 2 years is associated with arterial stiffening and increased mortality in patients with stages 4 and 5 chronic kidney disease. Clin. J. Am. Soc. Nephrol., 2007, 2(6), 1241-1248. doi: 10.2215/CJN.02190507 PMID: 17928470
- Miao, N.; Xie, H.; Xu, D.; Yin, J.; Wang, Y.; Wang, B.; Yin, F.; Zhou, Z.; Cheng, Q.; Chen, P.; Zhou, L.; Xue, H.; Zhang, W.; Wang, X.; Liu, J.; Lu, L. Caspase-11 promotes renal fibrosis by stimulating IL-1β maturation via activating caspase-1. Acta Pharmacol. Sin., 2019, 40(6), 790-800. doi: 10.1038/s41401-018-0177-5 PMID: 30382182
- Zhang, H.; Wang, Z. Effect and regulation of the NLRP3 inflammasome during renal fibrosis. Front. Cell Dev. Biol., 2020, 7, 379. doi: 10.3389/fcell.2019.00379 PMID: 32039201
- Guo, H.; Bi, X.; Zhou, P.; Zhu, S.; Ding, W. NLRP3 deficiency attenuates renal fibrosis and ameliorates mitochondrial dysfunction in a mouse unilateral ureteral obstruction model of chronic kidney disease. Mediators Inflamm., 2017, 2017, 1-10. doi: 10.1155/2017/8316560 PMID: 28348462
- Anders, H.J.; Suarez-Alvarez, B.; Grigorescu, M.; Foresto-Neto, O.; Steiger, S.; Desai, J.; Marschner, J.A.; Honarpisheh, M.; Shi, C.; Jordan, J.; Müller, L.; Burzlaff, N.; Bäuerle, T.; Mulay, S.R. The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1mediated tissue injury. Kidney Int., 2018, 93(3), 656-669. doi: 10.1016/j.kint.2017.09.022 PMID: 29241624
- Wu, M.; Xia, W.; Jin, Q.; Zhou, A.; Wang, Q.; Li, S.; Huang, S.; Zhang, A.; Zhang, Y.; Li, Y.; Jia, Z.; Gasdermin, E. Gasdermin E deletion attenuates ureteral obstruction and 5/6 nephrectomy-induced renal fibrosis and kidney dysfunction. Front. Cell Dev. Biol., 2021, 9, 754134. doi: 10.3389/fcell.2021.754134 PMID: 34746148
- Tang, Y.S.; Zhao, Y.H.; Zhong, Y.; Li, X.Z.; Pu, J.X.; Luo, Y.C.; Zhou, Q.L. Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/Caspase-1 signaling pathway. Inflamm. Res., 2019, 68(9), 727-738. doi: 10.1007/s00011-019-01256-6 PMID: 31172209
- Flyvbjerg, A. The role of the complement system in diabetic nephropathy. Nat. Rev. Nephrol., 2017, 13(5), 311-318. doi: 10.1038/nrneph.2017.31 PMID: 28262777
- Ke, R.; Wang, Y.; Hong, S.; Xiao, L. Endoplasmic reticulum stress related factor IRE1α regulates TXNIP/NLRP3- mediated pyroptosis in diabetic nephropathy. Exp. Cell Res., 2020, 396(2), 112293. doi: 10.1016/j.yexcr.2020.112293 PMID: 32950473
- Cheng, Q.; Pan, J.; Zhou, Z.; Yin, F.; Xie, H.; Chen, P.; Li, J.; Zheng, P.; Zhou, L.; Zhang, W.; Liu, J.; Lu, L. Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy. Acta Pharmacol. Sin., 2021, 42(6), 954-963. doi: 10.1038/s41401-020-00525-z PMID: 32968210
- Shahzad, K.; Bock, F.; Dong, W.; Wang, H.; Kopf, S.; Kohli, S.; Al-Dabet, M.M.; Ranjan, S.; Wolter, J.; Wacker, C.; Biemann, R.; Stoyanov, S.; Reymann, K.; Söderkvist, P.; Groß, O.; Schwenger, V.; Pahernik, S.; Nawroth, P.P.; Gröne, H.J.; Madhusudhan, T.; Isermann, B. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int., 2015, 87(1), 74-84. doi: 10.1038/ki.2014.271 PMID: 25075770
- Chen, X.; He, W.; Hu, L.; Li, J.; Fang, Y.; Wang, X.; Xu, X.; Wang, Z.; Huang, K.; Han, J. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res., 2016, 26(9), 1007-1020. doi: 10.1038/cr.2016.100 PMID: 27573174
- Wang, Y.; Zhu, X.; Yuan, S.; Wen, S.; Liu, X.; Wang, C.; Qu, Z.; Li, J.; Liu, H.; Sun, L.; Liu, F. TLR4/NF-κB signaling induces GSDMD-related pyroptosis in tubular cells in diabetic kidney disease. Front. Endocrinol., 2019, 10, 603. doi: 10.3389/fendo.2019.00603 PMID: 31608008
- Liu, P.; Zhang, Z.; Li, Y. Relevance of the pyroptosis-related inflammasome pathway in the pathogenesis of diabetic kidney disease. Front. Immunol., 2021, 12, 603416. doi: 10.3389/fimmu.2021.603416 PMID: 33692782
- Zhan, J.F.; Huang, H.W.; Huang, C.; Hu, L.L.; Xu, W.W.; Long Non-Coding, R.N.A. Long Non-Coding RNA NEAT1 regulates pyroptosis in diabetic nephropathy via mediating the miR-34c/NLRP3 Axis. Kidney Blood Press. Res., 2020, 45(4), 589-602. doi: 10.1159/000508372 PMID: 32721950
- Wang, J.; Zhao, S.M. LncRNA-antisense non-coding RNA in the INK4 locus promotes pyroptosis via miR-497/thioredoxin-interacting protein axis in diabetic nephropathy. Life Sci., 2021, 264, 118728. doi: 10.1016/j.lfs.2020.118728 PMID: 33160992
- Deng, J.; Tan, W.; Luo, Q.; Lin, L.; Zheng, L.; Yang, J. Long non-coding RNA MEG3 promotes renal tubular epithelial cell pyroptosis by regulating the miR-18a-3p/GSDMD pathway in lipopolysaccharide-induced acute kidney injury. Front. Physiol., 2021, 12, 663216. doi: 10.3389/fphys.2021.663216 PMID: 34012408
- Ding, X.; Jing, N.; Shen, A.; Guo, F.; Song, Y.; Pan, M.; Ma, X.; Zhao, L.; Zhang, H.; Wu, L.; Qin, G.; Zhao, Y. MiR-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating A20. J. Endocrinol. Invest., 2021, 44(6), 1175-1184. doi: 10.1007/s40618-020-01401-7 PMID: 32930981
- Xie, C.; Wu, W.; Tang, A.; Luo, N.; Tan, Y. lncRNA GAS5/miR-452-5p reduces oxidative stress and pyroptosis of high-glucose-stimulated renal tubular cells. Diabetes Metab. Syndr. Obes., 2019, 12, 2609-2617. doi: 10.2147/DMSO.S228654 PMID: 31849505
- Zhu, B.; Cheng, X.; Jiang, Y.; Cheng, M.; Chen, L.; Bao, J.; Tang, X. Silencing of KCNQ1OT1 decreases oxidative stress and pyroptosis of renal tubular epithelial cells. Diabetes Metab. Syndr. Obes., 2020, 13, 365-375. doi: 10.2147/DMSO.S225791 PMID: 32104033
- Bai, Y.; Mu, Q.; Bao, X.; Zuo, J.; Fang, X.; Hua, J.; Zhang, D.; Jiang, G.; Li, P.; Gao, S.; Zhao, D. Targeting NLRP3 inflammasome in the treatment of diabetes and diabetic complications: Role of natural compounds from herbal medicine. Aging Dis., 2021, 12(7), 1587-1604. doi: 10.14336/AD.2021.0318 PMID: 34631209
- Wen, S.; Li, S.; Li, L.; Fan, Q. circACTR2: A novel mechanism regulating high glucose-induced fibrosis in renal tubular cells via pyroptosis. Biol. Pharm. Bull., 2020, 43(3), 558-564. doi: 10.1248/bpb.b19-00901 PMID: 32115515
- Ram, C.; Jha, A.K.; Ghosh, A.; Gairola, S.; Syed, A.M.; Murty, U.S.; Naidu, V.G.M.; Sahu, B.D. Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy: Preclinical evidences with therapeutic approaches. Eur. J. Pharmacol., 2020, 885, 173503. doi: 10.1016/j.ejphar.2020.173503 PMID: 32858047
- Gu, J.; Huang, W.; Zhang, W.; Zhao, T.; Gao, C.; Gan, W.; Rao, M.; Chen, Q.; Guo, M.; Xu, Y.; Xu, Y.H. Sodium butyrate alleviates high-glucose-induced renal glomerular endothelial cells damage via inhibiting pyroptosis. Int. Immunopharmacol., 2019, 75, 105832. doi: 10.1016/j.intimp.2019.105832 PMID: 31473434
- Wang, B.; Dai, Z.; Gao, Q.; Liu, Y.; Gu, G.; Zheng, H. Spop ameliorates diabetic nephropathy through restraining NLRP3 inflammasome. Biochem. Biophys. Res. Commun., 2022, 594, 131-138. doi: 10.1016/j.bbrc.2021.12.068 PMID: 35081502
- Ding, T.; Wang, S.; Zhang, X.; Zai, W.; Fan, J.; Chen, W.; Bian, Q.; Luan, J.; Shen, Y.; Zhang, Y.; Ju, D.; Mei, X. Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome. Phytomedicine, 2018, 41, 45-53. doi: 10.1016/j.phymed.2018.01.026 PMID: 29519318
- Samra, Y.A.; Said, H.S.; Elsherbiny, N.M.; Liou, G.I.; El-Shishtawy, M.M.; Eissa, L.A. Cepharanthine and piperine ameliorate diabetic nephropathy in rats: Role of NF-κB and NLRP3 inflammasome. Life Sci., 2016, 157, 187-199. doi: 10.1016/j.lfs.2016.06.002 PMID: 27266851
- Song, W.; Wei, L.; Du, Y.; Wang, Y.; Jiang, S. Protective effect of ginsenoside metabolite compound K against diabetic nephropathy by inhibiting NLRP3 inflammasome activation and NF-κB/p38 signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Int. Immunopharmacol., 2018, 63, 227-238. doi: 10.1016/j.intimp.2018.07.027 PMID: 30107367
- Zhu, Y.; Zhu, C.; Yang, H.; Deng, J.; Fan, D. Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol. Res., 2020, 155, 104746. doi: 10.1016/j.phrs.2020.104746 PMID: 32156650
- Ka, S.M.; Lin, J.C.; Lin, T.J.; Liu, F.C.; Chao, L.K.; Ho, C.L.; Yeh, L.T.; Sytwu, H.K.; Hua, K.F.; Chen, A. Citral alleviates an accelerated and severe lupus nephritis model by inhibiting the activation signal of NLRP3 inflammasome and enhancing Nrf2 activation. Arthritis Res. Ther., 2015, 17(1), 331. doi: 10.1186/s13075-015-0844-6 PMID: 26584539
- Peng, X.; Yang, T.; Liu, G.; Liu, H.; Peng, Y.; He, L. Piperine ameliorated lupus nephritis by targeting AMPK-mediated activation of NLRP3 inflammasome. Int. Immunopharmacol., 2018, 65, 448-457. doi: 10.1016/j.intimp.2018.10.025 PMID: 30388519
- He, J.; Sun, M.; Tian, S. Procyanidin B2 prevents lupus nephritis development in mice by inhibiting NLRP3 inflammasome activation. Innate Immun., 2018, 24(5), 307-315. doi: 10.1177/1753425918780985 PMID: 29874961
- Zhao, J.; Wang, J.; Zhou, M.; Li, M.; Li, M.; Tan, H. Curcumin attenuates murine lupus via inhibiting NLRP3 inflammasome. Int. Immunopharmacol., 2019, 69, 213-216. doi: 10.1016/j.intimp.2019.01.046 PMID: 30738291
- Che, Y.; Li, Y.; Zheng, F.; Zou, K.; Li, Z.; Chen, M.; Hu, S.; Tian, C.; Yu, W.; Guo, W.; Luo, M.; Deng, W.; Zou, L. TRIP4 promotes tumor growth and metastasis and regulates radiosensitivity of cervical cancer by activating MAPK, PI3K/AKT, and hTERT signaling. Cancer Lett., 2019, 452, 1-13. doi: 10.1016/j.canlet.2019.03.017 PMID: 30905820
- Huang, J.; An, Q.; Ju, B.; Zhang, J.; Fan, P.; He, L.; Wang, L. Role of vitamin D/VDR nuclear translocation in down-regulation of NF-κB/NLRP3/caspase-1 axis in lupus nephritis. Int. Immunopharmacol., 2021, 100, 108131. doi: 10.1016/j.intimp.2021.108131 PMID: 34536747
- Bonomini, F.; Dos Santos, M.; Veronese, F.V.; Rezzani, R. NLRP3 inflammasome modulation by melatonin supplementation in chronic pristane-induced lupus nephritis. Int. J. Mol. Sci., 2019, 20(14), 3466. doi: 10.3390/ijms20143466 PMID: 31311094
- Zhang, L.; Wang, X.Z.; Li, Y.S.; Zhang, L.; Hao, L.R. Icariin ameliorates IgA nephropathy by inhibition of nuclear factor kappa b/Nlrp3 pathway. FEBS Open Bio, 2017, 7(1), 54-63. doi: 10.1002/2211-5463.12161 PMID: 28097088
- Yang, S.M.; Ka, S.M.; Hua, K.F.; Wu, T.H.; Chuang, Y.P.; Lin, Y.W.; Yang, F.L.; Wu, S.H.; Yang, S.S.; Lin, S.H.; Chang, J.M.; Chen, A. Antroquinonol mitigates an accelerated and progressive IgA nephropathy model in mice by activating the Nrf2 pathway and inhibiting T cells and NLRP3 inflammasome. Free Radic. Biol. Med., 2013, 61, 285-297. doi: 10.1016/j.freeradbiomed.2013.03.024 PMID: 23567192
- Wu, C.Y.; Hua, K.F.; Hsu, W.H.; Suzuki, Y.; Chu, L.J.; Lee, Y.C.; Takahata, A.; Lee, S.L.; Wu, C.C.; Nikolic-Paterson, D.J.; Ka, S.M.; Chen, A. IgA nephropathy benefits from compound K treatment by inhibiting NF-κB/NLRP3 inflammasome and enhancing autophagy and SIRT1. J. Immunol., 2020, 205(1), 202-212. doi: 10.4049/jimmunol.1900284 PMID: 32482710
- Hua, K.F.; Yang, S.M.; Kao, T.Y.; Chang, J.M.; Chen, H.L.; Tsai, Y.J.; Chen, A.; Yang, S.S.; Chao, L.K.; Ka, S.M. Osthole mitigates progressive IgA nephropathy by inhibiting reactive oxygen species generation and NF-κB/NLRP3 pathway. PLoS One, 2013, 8(10), e77794. doi: 10.1371/journal.pone.0077794 PMID: 24204969
- Li, H.; Lu, R.; Pang, Y.; Li, J.; Cao, Y.; Fu, H.; Fang, G.; Chen, Q.; Liu, B.; Wu, J.; Zhou, Y.; Zhou, J. Zhen-Wu-Tang protects IgA nephropathy in rats by regulating exosomes to inhibit NF-κB/NLRP3 pathway. Front. Pharmacol., 2020, 11, 1080. doi: 10.3389/fphar.2020.01080 PMID: 32765277
- Goldwich, A.; Burkard, M.; Ölke, M.; Daniel, C.; Amann, K.; Hugo, C.; Kurts, C.; Steinkasserer, A.; Gessner, A. Podocytes are nonhematopoietic professional antigen-presenting cells. J. Am. Soc. Nephrol., 2013, 24(6), 906-916. doi: 10.1681/ASN.2012020133 PMID: 23539760
- Zhang, W.; Cai, Y.; Xu, W.; Yin, Z.; Gao, X.; Xiong, S. AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. J. Clin. Immunol., 2013, 33(5), 925-937. doi: 10.1007/s10875-013-9881-6 PMID: 23479181
- Guo, C.; Fu, R.; Zhou, M.; Wang, S.; Huang, Y.; Hu, H.; Zhao, J.; Gaskin, F.; Yang, N.; Fu, S.M. Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation. J. Autoimmun., 2019, 103, 102286. doi: 10.1016/j.jaut.2019.05.014 PMID: 31133359
- Mistry, P.; Kaplan, M.J. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis. Clin. Immunol., 2017, 185, 59-73. doi: 10.1016/j.clim.2016.08.010 PMID: 27519955
- Zhang, H.; Liu, L.; Li, L. Lentivirus-mediated knockdown of FcγRI (CD64) attenuated lupus nephritis via inhibition of NF-κB regulating NLRP3 inflammasome activation in MRL/lpr mice. J. Pharmacol. Sci., 2018, 137(4), 342-349. doi: 10.1016/j.jphs.2018.05.012 PMID: 30190171
- Zhao, J.; Wang, H.; Dai, C.; Wang, H.; Zhang, H.; Huang, Y.; Wang, S.; Gaskin, F.; Yang, N.; Man Fu, S. P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway. Arthritis Rheum., 2013, 65(12), 3176-3185. doi: 10.1002/art.38174 PMID: 24022661
- Magistroni, R.; DAgati, V.D.; Appel, G.B.; Kiryluk, K. New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int., 2015, 88(5), 974-989. doi: 10.1038/ki.2015.252 PMID: 26376134
- Chun, J.; Chung, H.; Wang, X.; Barry, R.; Taheri, Z.M.; Platnich, J.M.; Ahmed, S.B.; Trpkov, K.; Hemmelgarn, B.; Benediktsson, H.; James, M.T.; Muruve, D.A. NLRP3 localizes to the tubular epithelium in human kidney and correlates with outcome in IgA nephropathy. Sci. Rep., 2016, 6(1), 24667. doi: 10.1038/srep24667 PMID: 27093923
- Pétrilli, V.; Dostert, C.; Muruve, D.A.; Tschopp, J. The inflammasome: A danger sensing complex triggering innate immunity. Curr. Opin. Immunol., 2007, 19(6), 615-622. doi: 10.1016/j.coi.2007.09.002 PMID: 17977705
- Mizushima, N.; Komatsu, M. Autophagy: renovation of cells and tissues. Cell, 2011, 147(4), 728-741. doi: 10.1016/j.cell.2011.10.026 PMID: 22078875
- Sun, Q.; Fan, J.; Billiar, T.R.; Scott, M.J. Inflammasome and autophagy regulation: A two-way street. Mol. Med., 2017, 23(1), 188-195. doi: 10.2119/molmed.2017.00077 PMID: 28741645
- Chang, Y.P.; Ka, S.M.; Hsu, W.H.; Chen, A.; Chao, L.K.; Lin, C.C.; Hsieh, C.C.; Chen, M.C.; Chiu, H.W.; Ho, C.L.; Chiu, Y.C.; Liu, M.L.; Hua, K.F. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy. J. Cell. Physiol., 2015, 230(7), 1567-1579. doi: 10.1002/jcp.24903 PMID: 25535911
- Tsai, Y.L.; Hua, K.F.; Chen, A.; Wei, C.W.; Chen, W.S.; Wu, C.Y.; Chu, C.L.; Yu, Y.L.; Lo, C.W.; Ka, S.M. NLRP3 inflammasome: Pathogenic role and potential therapeutic target for IgA nephropathy. Sci. Rep., 2017, 7(1), 41123. doi: 10.1038/srep41123 PMID: 28117341
- Peng, W.; Pei, G.; Tang, Y.; Tan, L.; Qin, W. IgA1 deposition may induce NLRP3 expression and macrophage transdifferentiation of podocyte in IgA nephropathy. J. Transl. Med., 2019, 17(1), 406. doi: 10.1186/s12967-019-02157-2 PMID: 31796125
Supplementary files
