Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy


Cite item

Full Text

Abstract

:In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.

About the authors

Ayşe Hale Alkan

Biotechnology Institute, Ankara University

Email: info@benthamscience.net

Mine Ensoy

Biotechnology Institute, Ankara University

Email: info@benthamscience.net

Demet Cansaran-Duman

Biotechnology Institute, Ankara University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Stewart, B. W.; Wild, C. P. World Cancer Report 2014; WHO Press: Lyon, 2014.
  2. Worldwide cancer data. World Cancer Research Fund International. Available from: https://www.wcrf.org/cancer-trends/worldwide-cancer-data/(accessed May 19, 2023)
  3. Worldwide cancer incidence statistics. Cancer Research UK. Available from: https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer/incidence(accessed May 19, 2023)
  4. Debela, D.T.; Muzazu, S.G.Y.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med., 2021, 9, 20503121211034366. doi: 10.1177/20503121211034366 PMID: 34408877
  5. Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233. doi: 10.3390/ijms21093233 PMID: 32370233
  6. Yan, L.; Shen, J.; Wang, J.; Yang, X.; Dong, S.; Lu, S. Nanoparticle-based drug delivery system: A patient-friendly chemotherapy for oncology. Dose Response, 2020, 18(3), 1559325820936161. doi: 10.1177/1559325820936161 PMID: 32699536
  7. Liu, X.Y.; Zhang, Q.; Guo, J.; Zhang, P.; Liu, H.; Tian, Z.B.; Zhang, C.P.; Li, X.Y. The role of circular rnas in the drug resistance of cancers. Front. Oncol., 2022, 11, 790589. doi: 10.3389/fonc.2021.790589 PMID: 35070998
  8. Lichota, A.; Gwozdzinski, K. Anti-cancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci., 2018, 19(11), 3533. doi: 10.3390/ijms19113533 PMID: 30423952
  9. Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348. doi: 10.15171/apb.2017.041 PMID: 29071215
  10. Greenwell, M.; Rahman, P.K.S.M. Medicinal plants: Their use in anti-cancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(11), 4103-4112. doi: 10.13040/IJPSR.0975-8232.6(10).4103-12 PMID: 26594645
  11. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34. doi: 10.3322/caac.21551 PMID: 30620402
  12. Cansaran-Duman, D.; Tanman, Ü.; Yangın, S.; Atakol, O. The comparison of miRNAs that respond to anti-breast cancer drugs and usnic acid for the treatment of breast cancer. Cytotechnology, 2020, 72(6), 855-872. doi: 10.1007/s10616-020-00430-7 PMID: 33128199
  13. Beck, H.; Härter, M.; Haß, B.; Schmeck, C.; Baerfacker, L. Small molecules and their impact in drug discovery: A perspective on the occasion of the 125th anniversary of the bayer chemical research laboratory. Drug Discov. Today, 2022, 27(6), 1560-1574. doi: 10.1016/j.drudis.2022.02.015 PMID: 35202802
  14. Seca, A.; Pinto, D. Plant secondary metabolites as anti-cancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263. doi: 10.3390/ijms19010263 PMID: 29337925
  15. Evans, A. E.; Farber, S.; Brunet, S.; Marlano, P. J.; Johnson, W. Vincristine in the treatment of acute leukemia in children. Cancer, 1963, 16, 1302-1306.
  16. Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681. doi: 10.1091/mbc.e14-04-0916 PMID: 25213191
  17. Huang, M.; Lu, J.J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect., 2021, 11(1), 5-13. doi: 10.1007/s13659-020-00293-7 PMID: 33389713
  18. Sun, G.; Rong, D.; Li, Z.; Sun, G.; Wu, F.; Li, X.; Cao, H.; Cheng, Y.; Tang, W.; Sun, Y. Role of small molecule targeted compounds in cancer: Progress, opportunities, and challenges. Front. Cell Dev. Biol., 2021, 9, 694363. doi: 10.3389/fcell.2021.694363 PMID: 34568317
  19. Ngo, H.X.; Garneau-Tsodikova, S. What are the drugs of the future? MedChemComm, 2018, 9(5), 757-758. doi: 10.1039/C8MD90019A PMID: 30108965
  20. Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; Yang, S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther., 2021, 6(1), 201. doi: 10.1038/s41392-021-00572-w PMID: 34054126
  21. Xicota, L.; De Toma, I.; Maffioletti, E.; Pisanu, C.; Squassina, A.; Baune, B.T.; Potier, M.C.; Stacey, D.; Dierssen, M. Recommendations for pharmacotranscriptomic profiling of drug response in CNS disorders. Eur. Neuropsychopharmacol., 2022, 54, 41-53. doi: 10.1016/j.euroneuro.2021.10.005 PMID: 34743061
  22. Yu, A.M.; Choi, Y.H.; Tu, M.J. RNA drugs and RNA targets for small molecules: Principles, progress, and challenges. Pharmacol. Rev., 2020, 72(4), 862-898. doi: 10.1124/pr.120.019554 PMID: 32929000
  23. Mollocana-Lara, E.C.; Ni, M.; Agathos, S.N.; Gonzales-Zubiate, F.A. The infinite possibilities of RNA therapeutics. J. Ind. Microbiol. Biotechnol., 2021, 48(9-10), kuab063. doi: 10.1093/jimb/kuab063 PMID: 34463324
  24. Li, Y.; Kong, D.; Wang, Z.; Sarkar, F.H. Regulation of microRNAs by natural agents: An emerging field in chemoprevention and chemotherapy research. Pharm. Res., 2010, 27(6), 1027-1041. doi: 10.1007/s11095-010-0105-y PMID: 20306121
  25. Qian, Y.; Shi, L.; Luo, Z. Long non-coding RNAs in cancer: Implications for diagnosis, prognosis, and therapy. Front. Med., 2020, 7, 612393. doi: 10.3389/fmed.2020.612393 PMID: 33330574
  26. Arun, G.; Diermeier, S.D.; Spector, D.L. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol. Med., 2018, 24(3), 257-277. doi: 10.1016/j.molmed.2018.01.001 PMID: 29449148
  27. Hanna, J.; Hossain, G.S.; Kocerha, J. The potential for microRNA therapeutics and clinical research. Front. Genet., 2019, 10(MAY), 478. doi: 10.3389/fgene.2019.00478 PMID: 31156715
  28. Lu, T.; Wang, Y.; Chen, D.; Liu, J.; Jiao, W. Potential clinical application of lncRNAs in non-small cell lung cancer. OncoTargets Ther., 2018, 11, 8045-8052. doi: 10.2147/OTT.S178431 PMID: 30519046
  29. Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S.S. Therapeutic advances of miRNAs: A preclinical and clinical update. J. Adv. Res., 2021, 28, 127-138. doi: 10.1016/j.jare.2020.08.012 PMID: 33364050
  30. Lindow, M.; Kauppinen, S. Discovering the first microRNA-targeted drug. J. Cell Biol., 2012, 199(3), 407-412. doi: 10.1083/jcb.201208082 PMID: 23109665
  31. Mercer, T.R.; Munro, T.; Mattick, J.S. The potential of long noncoding RNA therapies. Trends Pharmacol. Sci., 2022, 43(4), 269-280. doi: 10.1016/j.tips.2022.01.008 PMID: 35153075
  32. Jiang, M-C.; Ni, J-J.; Cui, W-Y.; Wang, B-Y.; Zhuo, W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am. J. Cancer Res., 2019, 9(7), 1354-1366. PMID: 31392074
  33. Jarroux, J.; Morillon, A.; Pinskaya, M. History, discovery, and classification of lncRNAs. Adv. Exp. Med. Biol., 2017, 1008, 1-46. doi: 10.1007/978-981-10-5203-3_1 PMID: 28815535
  34. Mattick, J.S. The state of long non-coding RNA Biology. Noncoding RNA, 2018, 4(3), 17. doi: 10.3390/ncrna4030017 PMID: 30103474
  35. Clark, M.B.; Johnston, R.L.; Inostroza-Ponta, M.; Fox, A.H.; Fortini, E.; Moscato, P.; Dinger, M.E.; Mattick, J.S. Genome-wide analysis of long noncoding RNA stability. Genome Res., 2012, 22(5), 885-898. doi: 10.1101/gr.131037.111 PMID: 22406755
  36. Orafidiya, F.; Deng, L.; Bevan, C.L.; Fletcher, C.E. Crosstalk between long non coding RNAs, microRNAs and DNA damage repair in prostate cancer: New therapeutic opportunities? Cancers, 2022, 14(3), 755. doi: 10.3390/cancers14030755 PMID: 35159022
  37. Zhang, A.; Zhao, J.C.; Kim, J.; Fong, K.; Yang, Y.A.; Chakravarti, D.; Mo, Y.Y.; Yu, J. LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Rep., 2015, 13(1), 209-221. doi: 10.1016/j.celrep.2015.08.069 PMID: 26411689
  38. Prensner, J.R.; Iyer, M.K.; Sahu, A.; Asangani, I.A.; Cao, Q.; Patel, L.; Vergara, I.A.; Davicioni, E.; Erho, N.; Ghadessi, M.; Jenkins, R.B.; Triche, T.J.; Malik, R.; Bedenis, R.; McGregor, N.; Ma, T.; Chen, W.; Han, S.; Jing, X.; Cao, X.; Wang, X.; Chandler, B.; Yan, W.; Siddiqui, J.; Kunju, L.P.; Dhanasekaran, S.M.; Pienta, K.J.; Feng, F.Y.; Chinnaiyan, A.M. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet., 2013, 45(11), 1392-1398. doi: 10.1038/ng.2771 PMID: 24076601
  39. Gu, P.; Chen, X.; Xie, R.; Han, J.; Xie, W.; Wang, B.; Dong, W.; Chen, C.; Yang, M.; Jiang, J.; Chen, Z.; Huang, J.; Lin, T. lncRNA HOXD-AS1 regulates proliferation and chemo-resistance of castration-resistant prostate cancer via recruiting WDR5. Mol. Ther., 2017, 25(8), 1959-1973. doi: 10.1016/j.ymthe.2017.04.016 PMID: 28487115
  40. Munschauer, M.; Nguyen, C.T.; Sirokman, K.; Hartigan, C.R.; Hogstrom, L.; Engreitz, J.M.; Ulirsch, J.C.; Fulco, C.P.; Subramanian, V.; Chen, J.; Schenone, M.; Guttman, M.; Carr, S.A.; Lander, E.S. The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature, 2018, 561(7721), 132-136. doi: 10.1038/s41586-018-0453-z PMID: 30150775
  41. Yang, C.; Wu, D.; Gao, L.; Liu, X.; Jin, Y.; Wang, D.; Wang, T.; Li, X. Competing endogenous RNA networks in human cancer: Hypothesis, validation, and perspectives. Oncotarget, 2016, 7(12), 13479-13490. doi: 10.18632/oncotarget.7266 PMID: 26872371
  42. Alkan, A.H.; Akgül, B. Endogenous MiRNA sponges. Methods Mol. Biol., 2022, 91-104. doi: 10.1007/978-1-0716-1170-8_5
  43. Jia, M.; Shi, Y.; Xie, Y.; Li, W.; Deng, J.; Fu, D.; Bai, J.; Ma, Y.; Zuberi, Z.; Li, J.; Li, Z. WT1-AS/IGF2BP2 axis is a potential diagnostic and prognostic biomarker for lung adenocarcinoma according to ceRNA network comprehensive analysis combined with experiments. Cells, 2021, 11(1), 25. doi: 10.3390/cells11010025 PMID: 35011587
  44. Cui, Y.S.; Song, Y.P.; Fang, B.J. The role of long non-coding RNAs in multiple myeloma. Eur. J. Haematol., 2019, 103(1), 3-9. doi: 10.1111/ejh.13237 PMID: 30985973
  45. Wang, Y.; Chen, S.; Chen, L.; Wang, Y. Associating lncRNAs with small molecules via bilevel optimization reveals cancer-related lncRNAs. PLOS Comput. Biol., 2019, 15(12), e1007540. doi: 10.1371/journal.pcbi.1007540 PMID: 31877126
  46. Childs-Disney, J.L.; Yang, X.; Gibaut, Q.M.R.; Tong, Y.; Batey, R.T.; Disney, M.D. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov., 2022, 21(10), 736-762. doi: 10.1038/s41573-022-00521-4 PMID: 35941229
  47. Murray, A.; Hearn, J.; Turner, S. The emerging landscape of RNA-targeted small molecules. 2021. Available from:https://www.alacrita.com/whitepapers/the-emerging-landscape-of-rna-targeted-small-molecules#:~:text=An%20emerging%20strategy%20to%20exploit,thus%20altering%20its%20conformational%20landscape.
  48. Yousefi, H.; Maheronnaghsh, M.; Molaei, F.; Mashouri, L.; Reza Aref, A.; Momeny, M.; Alahari, S.K. Long noncoding RNAs and exosomal lncRNAs: Classification, and mechanisms in breast cancer metastasis and drug resistance. Oncogene, 2020, 39(5), 953-974. doi: 10.1038/s41388-019-1040-y PMID: 31601996
  49. Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; Wang, Y.; Brzoska, P.; Kong, B.; Li, R.; West, R.B.; van de Vijver, M.J.; Sukumar, S.; Chang, H.Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291), 1071-1076. doi: 10.1038/nature08975 PMID: 20393566
  50. Sanchez Calle, A.; Kawamura, Y.; Yamamoto, Y.; Takeshita, F.; Ochiya, T. Emerging roles of long non-coding RNA in cancer. Cancer Sci., 2018, 109(7), 2093-2100. doi: 10.1111/cas.13642 PMID: 29774630
  51. Huarte, M.; Guttman, M.; Feldser, D.; Garber, M.; Koziol, M.J.; Kenzelmann-Broz, D.; Khalil, A.M.; Zuk, O.; Amit, I.; Rabani, M.; Attardi, L.D.; Regev, A.; Lander, E.S.; Jacks, T.; Rinn, J.L. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell, 2010, 142(3), 409-419. doi: 10.1016/j.cell.2010.06.040 PMID: 20673990
  52. Zhang, Y.; Tang, L. The application of lncRNAs in cancer treatment and diagnosis. Recent Patents Anti-cancer Drug Discov., 2018, 13(3), 292-301. doi: 10.2174/1574892813666180226121819 PMID: 29485010
  53. Hoon, D. S. B.; Lessard, L. Long Noncoding RNA (LncRNA) as a biomarker and therapeutic marker in cancer. US Patent 9410206B2, 2016.
  54. Lin, J.; Zhou, D.; Steitz, T.A.; Polikanov, Y.S.; Gagnon, M.G. Ribosome-targeting antibiotics: Modes of action, mechanisms of resistance, and implications for drug design. Annu. Rev. Biochem., 2018, 87(1), 451-478. doi: 10.1146/annurev-biochem-062917-011942 PMID: 29570352
  55. Zhao, R.; Fu, J.; Zhu, L.; Chen, Y.; Liu, B. Designing strategies of small-molecule compounds for modulating non-coding RNAs in cancer therapy. J. Hematol. Oncol., 2022, 15(1), 14. doi: 10.1186/s13045-022-01230-6 PMID: 35123522
  56. Feng, R.; Patil, S.; Zhao, X.; Miao, Z.; Qian, A. RNA therapeutics - Research and clinical advancements. Front. Mol. Biosci., 2021, 8, 710738. doi: 10.3389/fmolb.2021.710738 PMID: 34631795
  57. Liang, X.; Li, D.; Leng, S.; Zhu, X. RNA-based pharmacotherapy for tumors: From bench to clinic and back. Biomed. Pharmacother., 2020, 125, 109997. doi: 10.1016/j.biopha.2020.109997 PMID: 32062550
  58. Ren, Y.; Wang, Y.; Zhang, J.; Wang, Q.; Han, L.; Mei, M.; Kang, C. Targeted design and identification of AC1NOD4Q to block activity of HOTAIR by abrogating the scaffold interaction with EZH2. Clin. Epigenetics, 2019, 11(1), 29. doi: 10.1186/s13148-019-0624-2 PMID: 30764859
  59. Li, Y.; Disney, M.D. Precise small molecule degradation of a noncoding RNA identifies cellular binding sites and modulates an oncogenic phenotype. ACS Chem. Biol., 2018, 13(11), 3065-3071. doi: 10.1021/acschembio.8b00827 PMID: 30375843
  60. Kotha, R.R.; Luthria, D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules, 2019, 24(16), 2930. doi: 10.3390/molecules24162930 PMID: 31412624
  61. Gowhari Shabgah, A.; Hejri Zarifi, S.; Mazloumi Kiapey, S.S.; Ezzatifar, F.; Pahlavani, N.; Soleimani, D.; Mohammadian Haftcheshmeh, S.; Mohammadi, H.; Gholizadeh Navashenaq, J. Curcumin and cancer; are long non-coding RNAs missing link? Prog. Biophys. Mol. Biol., 2021, 164, 63-71. doi: 10.1016/j.pbiomolbio.2021.04.001 PMID: 33894206
  62. Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218. doi: 10.1208/s12248-012-9432-8 PMID: 23143785
  63. Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol. Adv., 2014, 32(6), 1053-1064. doi: 10.1016/j.biotechadv.2014.04.004 PMID: 24793420
  64. Zhang, Z.; Yi, P.; Tu, C.; Zhan, J.; Jiang, L.; Zhang, F. Curcumin inhibits ERK/c-Jun expressions and phosphorylation against endometrial carcinoma. BioMed Res. Int., 2019, 2019, 1-13. doi: 10.1155/2019/8912961 PMID: 32083122
  65. Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H. Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp. Ther. Med., 2018, 16(2), 1266-1272. doi: 10.3892/etm.2018.6345 PMID: 30116377
  66. Chen, T.; Zhao, L.; Chen, S.; Zheng, B.; Chen, H.; Zeng, T.; Sun, H.; Zhong, S.; Wu, W.; Lin, X.; Wang, L. The curcumin analogue WZ35 affects glycolysis inhibition of gastric cancer cells through ROS-YAP-JNK pathway. Food Chem. Toxicol., 2020, 137, 111131. doi: 10.1016/j.fct.2020.111131 PMID: 31958483
  67. Yu, H.; Xie, Y.; Zhou, Z.; Wu, Z.; Dai, X.; Xu, B. Curcumin regulates the progression of colorectal cancer via LncRNA NBR2/AMPK pathway. Technol. Cancer Res. Treat., 2019, 18 doi: 10.1177/1533033819870781 PMID: 31888414
  68. Esmatabadi, M.J.D.; Motamedrad, M.; Sadeghizadeh, M. Down-regulation of lncRNA, GAS5 decreases chemotherapeutic effect of dendrosomal curcumin (DNC) in breast cancer cells. Phytomedicine, 2018, 42, 56-65. doi: 10.1016/j.phymed.2018.03.022 PMID: 29655698
  69. Shao, J.; Shi, C.J.; Li, Y.; Zhang, F.; Pan, F.; Fu, W.; Zhang, J. LincROR mediates the suppressive effects of curcumin on hepatocellular carcinoma through inactivating Wnt/β-catenin signaling. Front. Pharmacol., 2020, 11, 847. doi: 10.3389/fphar.2020.00847 PMID: 32714183
  70. Xu, F.; Ji, Z.; He, L.; Chen, M.; Chen, H.; Feng, Q.; Dong, B.; Yang, X.; Jiang, L.; Jin, R. Downregulation of LINC01021 by curcumin analog Da0324 inhibits gastric cancer progression through activation of p53. Am. J. Transl. Res., 2020, 12(7), 3429-3444. PMID: 32774710
  71. Truong, V.L.; Jun, M.; Jeong, W.S. Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors, 2018, 44(1), 36-49. doi: 10.1002/biof.1399 PMID: 29193412
  72. Breuss, J.; Atanasov, A.; Uhrin, P. Resveratrol and its effects on the vascular system. Int. J. Mol. Sci., 2019, 20(7), 1523. doi: 10.3390/ijms20071523 PMID: 30934670
  73. Carter, L.G.; D’Orazio, J.A.; Pearson, K.J. Resveratrol and cancer: Focus on in vivo evidence. Endocr. Relat. Cancer, 2014, 21(3), R209-R225. doi: 10.1530/ERC-13-0171 PMID: 24500760
  74. Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. anti-cancer molecular mechanisms of resveratrol. Front. Nutr., 2016, 3, 8. doi: 10.3389/fnut.2016.00008 PMID: 27148534
  75. Espinoza, J.L.; Kurokawa, Y.; Takami, A. Rationale for assessing the therapeutic potential of resveratrol in hematological malignancies. Blood Rev., 2019, 33, 43-52. doi: 10.1016/j.blre.2018.07.001 PMID: 30005817
  76. Rimbaud, S.; Ruiz, M.; Piquereau, J.; Mateo, P.; Fortin, D.; Veksler, V.; Garnier, A.; Ventura-Clapier, R. Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS One, 2011, 6(10), e26391. doi: 10.1371/journal.pone.0026391 PMID: 22028869
  77. Pyo, I.S.; Yun, S.; Yoon, Y.E.; Choi, J.W.; Lee, S.J. Mechanisms of aging and the preventive effects of resveratrol on age-related diseases. Molecules, 2020, 25(20), 4649. doi: 10.3390/molecules25204649 PMID: 33053864
  78. Zhou, D.D.; Luo, M.; Huang, S.Y.; Saimaiti, A.; Shang, A.; Gan, R.Y.; Li, H.B. Effects and mechanisms of resveratrol on aging and age-related diseases. Oxid. Med. Cell. Longev., 2021, 2021, 1-15. doi: 10.1155/2021/9932218 PMID: 34336123
  79. Li, T.; Zhang, X.; Cheng, L.; Li, C.; Wu, Z.; Luo, Y.; Zhou, K.; Li, Y.; Zhao, Q.; Huang, Y. Modulation of lncRNA H19 enhances resveratrol-inhibited cancer cell proliferation and migration by regulating endoplasmic reticulum stress. J. Cell. Mol. Med., 2022, 26(8), 2205-2217. doi: 10.1111/jcmm.17242 PMID: 35166018
  80. Cesmeli, S.; Goker Bagca, B.; Caglar, H.O.; Ozates, N.P.; Gunduz, C.; Biray Avci, C. Combination of resveratrol and BIBR1532 inhibits proliferation of colon cancer cells by repressing expression of LncRNAs. Med. Oncol., 2022, 39(1), 12. doi: 10.1007/s12032-021-01611-w PMID: 34779924
  81. Yang, Q.; Xu, E.; Dai, J.; Liu, B.; Han, Z.; Wu, J.; Zhang, S.; Peng, B.; Zhang, Y.; Jiang, Y. A novel long noncoding RNA AK001796 acts as an oncogene and is involved in cell growth inhibition by resveratrol in lung cancer. Toxicol. Appl. Pharmacol., 2015, 285(2), 79-88. doi: 10.1016/j.taap.2015.04.003 PMID: 25888808
  82. Singh, D.; Gupta, M.; Sarwat, M.; Siddique, H.R. Apigenin in cancer prevention and therapy: A systematic review and meta-analysis of animal models. Crit. Rev. Oncol. Hematol., 2022, 176, 103751. doi: 10.1016/j.critrevonc.2022.103751 PMID: 35752426
  83. Singh, D.; Khan, M.A.; Akhtar, K.; Arjmand, F.; Siddique, H.R. Apigenin alleviates cancer drug sorafenib induced multiple toxic effects in Swiss albino mice via anti-oxidative stress. Toxicol. Appl. Pharmacol., 2022, 447, 116072. doi: 10.1016/j.taap.2022.116072 PMID: 35613639
  84. Shi, C.; Ma, C.; Ren, C.; Li, N.; Liu, X.; Zhang, Y.; Wang, Y.; Li, X.; Lv, P.; Han, C.; Li, X. LINC00629, a KLF10-responsive lncRNA, promotes the anti-cancer effects of apigenin by decreasing Mcl1 stability in oral squamous cell carcinoma. Aging, 2022, 14(22), 9149-9166. doi: 10.18632/aging.204396 PMID: 36445338
  85. Xu, L.; Zhang, Y.; Tian, K.; Chen, X.; Zhang, R.; Mu, X.; Wu, Y.; Wang, D.; Wang, S.; Liu, F.; Wang, T.; Zhang, J.; Liu, S.; Zhang, Y.; Tu, C.; Liu, H. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects. J. Exp. Clin. Cancer Res., 2018, 37(1), 261. doi: 10.1186/s13046-018-0929-6 PMID: 30373602
  86. Pan, F.; Zheng, Y.B.; Shi, C.J.; Zhang, F.; Zhang, J.; Fu, W. H19-Wnt/β-catenin regulatory axis mediates the suppressive effects of apigenin on tumor growth in hepatocellular carcinoma. Eur. J. Pharmacol., 2021, 893, 173810. doi: 10.1016/j.ejphar.2020.173810 PMID: 33345859
  87. Karami, A.; Fakhri, S.; Kooshki, L.; Khan, H. Polydatin: Pharmacological mechanisms, therapeutic targets, biological activities, and health benefits. Molecules, 2022, 27(19), 6474. doi: 10.3390/molecules27196474 PMID: 36235012
  88. Du, Q.H.; Peng, C.; Zhang, H. Polydatin: A review of pharmacology and pharmacokinetics. Pharm. Biol., 2013, 51(11), 1347-1354. doi: 10.3109/13880209.2013.792849 PMID: 23862567
  89. Hu, T.; Fei, Z.; Su, H.; Xie, R.; Chen, L. Polydatin inhibits proliferation and promotes apoptosis of doxorubicin-resistant osteosarcoma through LncRNA TUG1 mediated suppression of Akt signaling. Toxicol. Appl. Pharmacol., 2019, 371, 55-62. doi: 10.1016/j.taap.2019.04.005 PMID: 30974157
  90. Ruan, W.; Li, J.; Xu, Y.; Wang, Y.; Zhao, F.; Yang, X.; Jiang, H.; Zhang, L.; Saavedra, J.M.; Shi, L.; Pang, T. MALAT1 up-regulator polydatin protects brain microvascular integrity and ameliorates stroke through C/EBPβ/MALAT1/CREB/PGC-1α/PPARγ pathway. Cell. Mol. Neurobiol., 2019, 39(2), 265-286. doi: 10.1007/s10571-018-00646-4 PMID: 30607811
  91. Kasala, E.R.; Bodduluru, L.N.; Madana, R.M.; v, A.K.; Gogoi, R.; Barua, C.C. Chemopreventive and therapeutic potential of chrysin in cancer: Mechanistic perspectives. Toxicol. Lett., 2015, 233(2), 214-225. doi: 10.1016/j.toxlet.2015.01.008 PMID: 25596314
  92. Gresa-Arribas, N.; Serratosa, J.; Saura, J.; Solà, C. Inhibition of CCAAT/enhancer binding protein δ expression by chrysin in microglial cells results in anti-inflammatory and neuroprotective effects. J. Neurochem., 2010, 115(2), 526-536. doi: 10.1111/j.1471-4159.2010.06952.x PMID: 20722966
  93. Wang, J.; Qiu, J.; Dong, J.; Li, H.; Luo, M.; Dai, X.; Zhang, Y.; Leng, B.; Niu, X.; Zhao, S.; Deng, X. Chrysin protects mice from Staphylococcus aureus pneumonia. J. Appl. Microbiol., 2011, 111(6), 1551-1558. doi: 10.1111/j.1365-2672.2011.05170.x PMID: 21972890
  94. Rodríguez-Landa, J.F.; German-Ponciano, L.J.; Puga-Olguín, A.; Olmos-Vázquez, O.J. Pharmacological, neurochemical, and behavioral mechanisms underlying the anxiolytic- and antidepressant-like effects of flavonoid chrysin. Molecules, 2022, 27(11), 3551. doi: 10.3390/molecules27113551 PMID: 35684488
  95. Khoo, B.Y.; Chua, S.L.; Balaram, P. Apoptotic effects of chrysin in human cancer cell lines. Int. J. Mol. Sci., 2010, 11(5), 2188-2199. doi: 10.3390/ijms11052188 PMID: 20559509
  96. Zhang, T.; Chen, X.; Qu, L.; Wu, J.; Cui, R.; Zhao, Y. Chrysin and its phosphate ester inhibit cell proliferation and induce apoptosis in Hela cells. Bioorg. Med. Chem., 2004, 12(23), 6097-6105. doi: 10.1016/j.bmc.2004.09.013 PMID: 15519155
  97. Salari, N.; Faraji, F.; Jafarpour, S.; Faraji, F.; Rasoulpoor, S.; Dokaneheifard, S.; Mohammadi, M. Anti-cancer activity of chrysin in cancer therapy: A systematic review. Indian J. Surg. Oncol., 2022, 13(4), 681-690. doi: 10.1007/s13193-022-01550-6 PMID: 36687219
  98. Sherif, I.O.; Al-Mutabagani, L.A.; Sabry, D.; Elsherbiny, N.M. Antineoplastic activity of chrysin against human hepatocellular carcinoma: New insight on GPC3/SULF2 axis and lncRNA-AF085935 expression. Int. J. Mol. Sci., 2020, 21(20), 7642. doi: 10.3390/ijms21207642 PMID: 33076548
  99. Chen, L.; Li, Q.; Jiang, Z.; Li, C.; Hu, H.; Wang, T.; Gao, Y.; Wang, D. Chrysin induced cell apoptosis through H19/let-7a/COPB2 axis in gastric cancer cells and inhibited tumor growth. Front. Oncol., 2021, 11, 651644. doi: 10.3389/fonc.2021.651644 PMID: 34150620
  100. Singh, P.; Arif, Y.; Bajguz, A.; Hayat, S. The role of quercetin in plants. Plant Physiol. Biochem., 2021, 166, 10-19. doi: 10.1016/j.plaphy.2021.05.023 PMID: 34087741
  101. Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 3177. doi: 10.3390/ijms20133177 PMID: 31261749
  102. Kawabata, K.; Mukai, R.; Ishisaka, A. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food Funct., 2015, 6(5), 1399-1417. doi: 10.1039/C4FO01178C PMID: 25761771
  103. Jeong, J.H.; An, J.Y.; Kwon, Y.T.; Rhee, J.G.; Lee, Y.J. Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. J. Cell. Biochem., 2009, 106(1), 73-82. doi: 10.1002/jcb.21977 PMID: 19009557
  104. Noori-Daloii, M.R.; Momeny, M.; Yousefi, M.; Shirazi, F.G.; Yaseri, M.; Motamed, N.; Kazemialiakbar, N.; Hashemi, S. Multifaceted preventive effects of single agent quercetin on a human prostate adenocarcinoma cell line (PC-3): Implications for nutritional transcriptomics and multi-target therapy. Med. Oncol., 2011, 28(4), 1395-1404. doi: 10.1007/s12032-010-9603-3 PMID: 20596804
  105. Shankar, G.M.; Antony, J.; Anto, R.J. Quercetin and tryptanthrin. In: Enzymes; Academic Press, 2015; 37, pp. 43-72. doi: 10.1016/bs.enz.2015.05.001
  106. Tang, S.M.; Deng, X.T.; Zhou, J.; Li, Q.P.; Ge, X.X.; Miao, L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother., 2020, 121, 109604. doi: 10.1016/j.biopha.2019.109604 PMID: 31733570
  107. Ward, A.B.; Mir, H.; Kapur, N.; Gales, D.N.; Carriere, P.P.; Singh, S. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J. Surg. Oncol., 2018, 16(1), 108. doi: 10.1186/s12957-018-1400-z PMID: 29898731
  108. Khan, K.; Javed, Z.; Sadia, H.; Sharifi-Rad, J.; Cho, W.C.; Luparello, C. Quercetin and MicroRNA interplay in apoptosis regulation in ovarian cancer. Curr. Pharm. Des., 2021, 27(20), 2328-2336. doi: 10.2174/1381612826666201019102207 PMID: 33076802
  109. Rezaie, F.; Mokhtari, M.J.; Kalani, M. Quercetin arrests in G2 phase, upregulates INXS LncRNA and downregulates UCA1 LncRNA in MCF-7 cells. Int. J. Mol. Cell. Med., 2021, 10(3), 208-216. doi: 10.22088/IJMCM.BUMS.10.3.207 PMID: 35178359
  110. Chai, R.; Xu, C.; Lu, L.; Liu, X.; Ma, Z. Quercetin inhibits proliferation of and induces apoptosis in non-small-cell lung carcinoma via the lncRNA SNHG7/miR-34a-5p pathway. Immunopharmacol. Immunotoxicol., 2021, 43(6), 693-703. doi: 10.1080/08923973.2021.1966032 PMID: 34448661
  111. Chandrashekar, N.; Pandi, A. Baicalein: A review on its anti-cancer effects and mechanisms in lung carcinoma. J. Food Biochem., 2022, 46(9), e14230. doi: 10.1111/jfbc.14230 PMID: 35543192
  112. Bie, B.; Sun, J.; Guo, Y.; Li, J.; Jiang, W.; Yang, J.; Huang, C.; Li, Z. Baicalein: A review of its anti-cancer effects and mechanisms in hepatocellular carcinoma. Biomed. Pharmacother., 2017, 93, 1285-1291. doi: 10.1016/j.biopha.2017.07.068 PMID: 28747003
  113. Kalhori, M.R.; Khodayari, H.; Khodayari, S.; Vesovic, M.; Jackson, G.; Farzaei, M.H.; Bishayee, A. Regulation of long non-coding rnas by plant secondary metabolites: A novel anti-cancer therapeutic approach. Cancers, 2021, 13(6), 1274. doi: 10.3390/cancers13061274 PMID: 33805687
  114. Fatima, N.; Baqri, S.S.R.; Bhattacharya, A.; Koney, N.K.K.; Husain, K.; Abbas, A.; Ansari, R.A. Role of flavonoids as epigenetic modulators in cancer prevention and therapy. Front. Genet., 2021, 12, 758733. doi: 10.3389/fgene.2021.758733 PMID: 34858475
  115. Yang, X.; Jiang, J.; Zhang, C.; Li, Y. Baicalein restrains proliferation, migration, and invasion of human malignant melanoma cells by down-regulating colon cancer associated transcript-1. Braz. J. Med. Biol. Res., 2019, 52(12), e8934. doi: 10.1590/1414-431x20198934 PMID: 31778440
  116. Yu, X.; Yang, Y.; Li, Y.; Cao, Y.; Tang, L.; Chen, F.; Xia, J. Baicalein inhibits cervical cancer progression via downregulating long noncoding RNA BDLNR and its downstream PI3 K/Akt pathway. Int. J. Biochem. Cell Biol., 2018, 94, 107-118. doi: 10.1016/j.biocel.2017.11.009 PMID: 29175387
  117. Yu, X.; Cao, Y.; Tang, L.; Yang, Y.; Chen, F.; Xia, J. Baicalein inhibits breast cancer growth via activating a novel isoform of the long noncoding RNA PAX8-AS1-N. J. Cell. Biochem., 2018, 119(8), 6842-6856. doi: 10.1002/jcb.26881 PMID: 29693272
  118. Yu, X.; Tang, W.; Yang, Y.; Tang, L.; Dai, R.; Pu, B.; Feng, C.; Xia, J. Long noncoding RNA NKILA enhances the anti-cancer effects of baicalein in hepatocellular carcinoma via the regulation of NF-κB signaling. Chem. Biol. Interact., 2018, 285, 48-58. doi: 10.1016/j.cbi.2018.02.027 PMID: 29481769
  119. Mostafa, S.M.; Gamal-Eldeen, A.M.; Maksoud, N.A.E.; Fahmi, A.A. Epigallocatechin gallate-capped gold nanoparticles enhanced the tumor suppressors let-7a and miR-34a in hepatocellular carcinoma cells. An. Acad. Bras. Cienc., 2020, 92(4), e20200574. doi: 10.1590/0001-3765202020200574
  120. Zhao, Y.; Chen, X.; Jiang, J.; Wan, X.; Wang, Y.; Xu, P. Epigallocatechin gallate reverses gastric cancer by regulating the long noncoding RNA LINC00511/miR-29b/KDM2A axis. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165856. doi: 10.1016/j.bbadis.2020.165856 PMID: 32512188
  121. Hu, D.L.; Wang, G.; Yu, J.; Zhang, L.H.; Huang, Y.F.; Wang, D.; Zhou, H.H. Epigallocatechin-3-gallate modulates long non-coding RNA and mRNA expression profiles in lung cancer cells. Mol. Med. Rep., 2019, 19(3), 1509-1520. doi: 10.3892/mmr.2019.9816 PMID: 30628683
  122. Sabry, D.; Abdelaleem, O.O.; El Amin Ali, A.M.; Mohammed, R.A.; Abdel-Hameed, N.D.; Hassouna, A.; Khalifa, W.A. Anti-proliferative and anti-apoptotic potential effects of epigallocatechin-3-gallate and/or metformin on hepatocellular carcinoma cells: In vitro study. Mol. Biol. Rep., 2019, 46(2), 2039-2047. doi: 10.1007/s11033-019-04653-6 PMID: 30710234
  123. Liu, G.; Zheng, X.; Xu, Y.; Lu, J.; Chen, J.; Huang, X. Long non-coding RNAs expression profile in HepG2 cells reveals the potential role of long non-coding RNAs in the cholesterol metabolism. Chin. Med. J., 2015, 128(1), 91-97. doi: 10.4103/0366-6999.147824 PMID: 25563320
  124. Hayakawa, S.; Ohishi, T.; Oishi, Y.; Isemura, M.; Miyoshi, N. Contribution of non-coding RNAs to anti-cancer effects of dietary polyphenols: chlorogenic acid, curcumin, epigallocatechin-3-gallate, genistein, quercetin and resveratrol. Anti-oxidants, 2022, 11(12), 2352. doi: 10.3390/antiox11122352 PMID: 36552560
  125. Mobeen, I.; Romero, M.A.; Yulaevna, I.M.; Attar, R.; Jabeen, S.; Fayyaz, S. Regulation of cell signaling pathways by genistein in different cancers: Progress, prospects and pitfalls. Cell. Mol. Biol., 2022, 67(6), 318-329. doi: 10.14715/cmb/2021.67.6.42 PMID: 35818180
  126. Chen, X.; Wu, Y.; Gu, J.; Liang, P.; Shen, M.; Xi, J.; Qin, J. Anti-invasive effect and pharmacological mechanism of genistein against colorectal cancer. Biofactors, 2020, 46(4), 620-628. doi: 10.1002/biof.1627 PMID: 32078221
  127. Phuah, N.H.; Nagoor, N.H. Regulation of microRNAs by natural agents: New strategies in cancer therapies. BioMed Res. Int., 2014, 2014, 1-17. doi: 10.1155/2014/804510 PMID: 25254214
  128. Chen, J.; Lin, C.; Yong, W.; Ye, Y.; Huang, Z. Calycosin and genistein induce apoptosis by inactivation of HOTAIR/p-Akt signaling pathway in human breast cancer MCF-7 cells. Cell. Physiol. Biochem., 2015, 35(2), 722-728. doi: 10.1159/000369732 PMID: 25613518
  129. Chiyomaru, T.; Yamamura, S.; Fukuhara, S.; Yoshino, H.; Kinoshita, T.; Majid, S.; Saini, S.; Chang, I.; Tanaka, Y.; Enokida, H.; Seki, N.; Nakagawa, M.; Dahiya, R. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One, 2013, 8(8), e70372. doi: 10.1371/journal.pone.0070372 PMID: 23936419
  130. Chen, Y.; Zhu, Z.; Chen, J.; Zheng, Y.; Limsila, B.; Lu, M.; Gao, T.; Yang, Q.; Fu, C.; Liao, W. Terpenoids from Curcumae Rhizoma: Their anti-cancer effects and clinical uses on combination and versus drug therapies. Biomed. Pharmacother., 2021, 138, 111350. doi: 10.1016/j.biopha.2021.111350 PMID: 33721752
  131. Zhai, B.; Zhang, N.; Han, X.; Li, Q.; Zhang, M.; Chen, X.; Li, G.; Zhang, R.; Chen, P.; Wang, W.; Li, C.; Xiang, Y.; Liu, S.; Duan, T.; Lou, J.; Xie, T.; Sui, X. Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: A review. Biomed. Pharmacother., 2019, 114, 108812. doi: 10.1016/j.biopha.2019.108812 PMID: 30965237
  132. Hu, Z.; Wu, H.; Li, Y.; Hou, Q.; Wang, Y.; Li, S.; Xia, B.; Wu, S. β-Elemene inhibits the proliferation of esophageal squamous cell carcinoma by regulating long noncoding RNA-mediated inhibition of hTERT expression. Anti-cancer Drugs, 2015, 26(5), 531-539. doi: 10.1097/CAD.0000000000000216 PMID: 25646744
  133. Hu, T.; Gao, Y. β-Elemene suppresses tumor growth of diffuse large B-cell lymphoma through regulating lncRNA HULC-mediated apoptotic pathway. Biosci. Rep., 2020, 40(2), BSR20190804. doi: 10.1042/BSR20190804 PMID: 32010942
  134. Xu, C.; Jiang, Z.B.; Shao, L.; Zhao, Z.M.; Fan, X.X.; Sui, X.; Yu, L.L.; Wang, X.R.; Zhang, R.N.; Wang, W.J.; Xie, Y.J.; Zhang, Y.Z.; Nie, X.W.; Xie, C.; Huang, J.M.; Wang, J.; Wang, J.; Leung, E.L.H.; Wu, Q.B. β-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer. Pharmacol. Res., 2023, 191, 106739. doi: 10.1016/j.phrs.2023.106739 PMID: 36948327
  135. Zhu, L.; Chen, L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett., 2019, 24(1), 40. doi: 10.1186/s11658-019-0164-y PMID: 31223315
  136. Yang, Y.H.; Mao, J.W.; Tan, X.L. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chin. J. Nat. Med., 2020, 18(12), 890-897. doi: 10.1016/S1875-5364(20)60032-2 PMID: 33357719
  137. Thiruvengadam, M.; Ahmed Khalil, A.; Rauf, A.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Javed, M.S.; Khan, M.A.; Khan, I.A.; El-Esawi, M.A.; Bawazeer, S.; Bouyahya, A.; Rebezov, M.; Shariati, M.A. Recent developments and anti-cancer therapeutics of paclitaxel: An update. Curr. Pharm. Des., 2022, 28(41), 3363-3373. doi: 10.2174/1381612829666221102155212 PMID: 36330627
  138. Howat, S.; Park, B.; Oh, I.S.; Jin, Y.W.; Lee, E.K.; Loake, G.J. Paclitaxel: Biosynthesis, production and future prospects. N. Biotechnol., 2014, 31(3), 242-245. doi: 10.1016/j.nbt.2014.02.010 PMID: 24614567
  139. Rodríguez-Antona, C. Pharmacogenomics of paclitaxel. Pharmacogenomics, 2010, 11(5), 621-623. doi: 10.2217/pgs.10.32 PMID: 20415548
  140. Dong, Z.; Zhang, D.; Yang, R.; Wang, S. Paclitaxel: New uses for an old drug. Drug Des. Devel. Ther., 2014, 8, 279-284. doi: 10.2147/DDDT.S56801 PMID: 24591817
  141. Li, Z-Y.; Wang, X-L.; Dang, Y.; Zhu, X-Z.; Zhang, Y-H.; Cai, B-X.; Zheng, L. Long non-coding RNA UCA1 promotes the progression of paclitaxel resistance in ovarian cancer by regulating the miR-654-5p/SIK2 axis. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(2), 591-603. doi: 10.26355/eurrev_202001_20035 PMID: 32016960
  142. Zhao, Y.; Hong, L. lncRNA-PRLB confers paclitaxel resistance of ovarian cancer cells by regulating RSF1/NF-κB signaling pathway. Cancer Biother. Radiopharm., 2021, 36(2), 202-210. doi: 10.1089/cbr.2019.3363 PMID: 33156701
  143. Wang, R.; Zhang, T.; Yang, Z.; Jiang, C.; Seng, J. Long non-coding RNA FTH 1P3 activates paclitaxel resistance in breast cancer through miR-206/ ABCB 1. J. Cell. Mol. Med., 2018, 22(9), 4068-4075. doi: 10.1111/jcmm.13679 PMID: 29971911
  144. Haroyan, A.; Mukuchyan, V.; Mkrtchyan, N.; Minasyan, N.; Gasparyan, S.; Sargsyan, A.; Narimanyan, M.; Hovhannisyan, A. Efficacy and safety of curcumin and its combination with boswellic acid in osteoarthritis: A comparative, randomized, double-blind, placebo-controlled study. BMC Complement. Altern. Med., 2018, 18(1), 7. doi: 10.1186/s12906-017-2062-z PMID: 29316908
  145. Ammon, H. Boswellic acids in chronic inflammatory diseases. Planta Med., 2006, 72(12), 1100-1116. doi: 10.1055/s-2006-947227 PMID: 17024588
  146. Reddy, G.K.; Chandrakasan, G.; Dhar, S.C. Studies on the metabolism of glycosaminoglycans under the influence of new herbal anti-inflammatory agents. Biochem. Pharmacol., 1989, 38(20), 3527-3534. doi: 10.1016/0006-2952(89)90124-X PMID: 2818645
  147. Yadav, V.R.; Prasad, S.; Sung, B.; Gelovani, J.G.; Guha, S.; Krishnan, S.; Aggarwal, B.B. Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers. Int. J. Cancer, 2012, 130(9), 2176-2184. doi: 10.1002/ijc.26251 PMID: 21702037
  148. Liu, J.J.; Nilsson, A.; Oredsson, S.; Badmaev, V.; Zhao, W.Z.; Duan, R.D. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells. Carcinogenesis, 2002, 23(12), 2087-2093. doi: 10.1093/carcin/23.12.2087 PMID: 12507932
  149. Dai, J.; Lin, Y.; Duan, Y.; Li, Z.; Zhou, D.; Chen, W.; Wang, L.; Zhang, Q.Q. Andrographolide inhibits angiogenesis by inhibiting the Mir-21-5p/TIMP3 signaling pathway. Int. J. Biol. Sci., 2017, 13(5), 660-668. doi: 10.7150/ijbs.19194 PMID: 28539838
  150. Jiang, X.; Liu, Y.; Zhang, G.; Lin, S.; Yuan, N.; Wu, J.; Yan, X.; Ma, Y.; Ma, M. Acetyl-11-keto-β-boswellic acid inhibits precancerous breast lesion MCF-10AT cells via regulation of LINC00707/miR-206 that reduces estrogen receptor-α. Cancer Manag. Res., 2020, 12, 2301-2314. doi: 10.2147/CMAR.S238051 PMID: 32273767
  151. Sun, M.; Ye, Y.; Xiao, L.; Duan, X.; Zhang, Y.; Zhang, H. Anti-cancer effects of ginsenoside Rg3 (Review). Int. J. Mol. Med., 2017, 39(3), 507-518. doi: 10.3892/ijmm.2017.2857 PMID: 28098857
  152. Zhao, L.; Sun, W.; Zheng, A.; Zhang, Y.; Fang, C.; Zhang, P. Ginsenoside Rg3 suppresses ovarian cancer cell proliferation and invasion by inhibiting the expression of lncRNA H19. Acta Biochim. Pol., 2021, 68(4), 575-582. doi: 10.18388/abp.2020_5343 PMID: 34038042
  153. Wu, P.; Yu, X.; Peng, Y.; Wang, Q.L.; Deng, L.T.; Xing, W. Ginsenoside Rg3 alleviates septic liver injury by regulating the lncRNA TUG1/miR-200c-3p/SIRT1 axis. J. Inflamm., 2021, 18(1), 31. doi: 10.1186/s12950-021-00296-2 PMID: 34930287
  154. Pu, Z.; Ge, F.; Wang, Y.; Jiang, Z.; Zhu, S.; Qin, S.; Dai, Q.; Liu, H.; Hua, H. Ginsenoside-Rg3 inhibits the proliferation and invasion of hepatoma carcinoma cells via regulating long non-coding RNA HOX antisense intergenic. Bioengineered, 2021, 12(1), 2398-2409. doi: 10.1080/21655979.2021.1932211 PMID: 34130594
  155. Zhang, Y.; Lu, Q.; Li, N.; Xu, M.; Miyamoto, T.; Liu, J. Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway. NPJ Breast Cancer, 2022, 8(1), 40. doi: 10.1038/s41523-022-00402-4 PMID: 35332167
  156. Vanduchova, A.; Anzenbacher, P.; Anzenbacherova, E. Isothiocyanate from broccoli, sulforaphane, and its properties. J. Med. Food, 2019, 22(2), 121-126. doi: 10.1089/jmf.2018.0024 PMID: 30372361
  157. Luo, Y.; Yan, B.; Liu, L.; Yin, L.; Ji, H.; An, X.; Gladkich, J.; Qi, Z.; De La Torre, C.; Herr, I. Sulforaphane inhibits the expression of long noncoding RNA H19 and Its Target APOBEC3G and thereby pancreatic cancer progression. Cancers, 2021, 13(4), 827. doi: 10.3390/cancers13040827 PMID: 33669381
  158. Beaver, L.M.; Kuintzle, R.; Buchanan, A.; Wiley, M.W.; Glasser, S.T.; Wong, C.P.; Johnson, G.S.; Chang, J.H.; Löhr, C.V.; Williams, D.E.; Dashwood, R.H.; Hendrix, D.A.; Ho, E. Long noncoding RNAs and sulforaphane: A target for chemoprevention and suppression of prostate cancer. J. Nutr. Biochem., 2017, 42, 72-83. doi: 10.1016/j.jnutbio.2017.01.001 PMID: 28131897
  159. Stanojković, T. Investigations of lichen secondary metabolites with potential anti-cancer activity. In: Lichen Secondary Metabolites; Springer: Cham, 2015; pp. 127-146. doi: 10.1007/978-3-319-13374-4_5
  160. Çolak, B.; Cansaran-Duman, D.; Guney Eskiler, G.; Földes, K.; Yangın, S. Usnic acid-induced programmed cell death in ovarian cancer cells. Rend. Lincei Sci. Fis. Nat., 2022, 33(1), 143-152. doi: 10.1007/s12210-021-01044-7
  161. Song, Y.; Dai, F.; Zhai, D.; Dong, Y.; Zhang, J.; Lu, B.; Luo, J.; Liu, M.; Yi, Z. Usnic acid inhibits breast tumor angiogenesis and growth by suppressing VEGFR2-mediated AKT and ERK1/2 signaling pathways. Angiogenesis, 2012, 15(3), 421-432. doi: 10.1007/s10456-012-9270-4 PMID: 22669534
  162. Kiliç, N.; Islakoğlu, Y.Ö.; Büyük, İ.; Gür-Dedeoğlu, B.; Cansaran-Duman, D. Determination of usnic acid responsive mirnas in breast cancer cell lines. Anti-cancer. Agents Med. Chem., 2019, 19(12), 1463-1472. doi: 10.2174/1871520618666181112120142 PMID: 30417797
  163. Petrozza, V.; Carbone, A.; Bellissimo, T.; Porta, N.; Palleschi, G.; Pastore, A.; Di Carlo, A.; Della Rocca, C.; Fazi, F. Oncogenic MicroRNAs characterization in clear cell renal cell carcinoma. Int. J. Mol. Sci., 2015, 16(12), 29219-29225. doi: 10.3390/ijms161226160 PMID: 26670229
  164. Wang, B.; Li, J.; Sun, M.; Sun, L.; Zhang, X. MiRNA expression in breast cancer varies with lymph node metastasis and other clinicopathologic features. IUBMB Life, 2014, 66(5), 371-377. doi: 10.1002/iub.1273 PMID: 24846313
  165. Wen, Y.; Han, J.; Chen, J.; Dong, J.; Xia, Y.; Liu, J.; Jiang, Y.; Dai, J.; Lu, J.; Jin, G.; Han, J.; Wei, Q.; Shen, H.; Sun, B.; Hu, Z. Plasma miRNAs as early biomarkers for detecting hepatocellular carcinoma. Int. J. Cancer, 2015, 137(7), 1679-1690. doi: 10.1002/ijc.29544 PMID: 25845839
  166. Secme, M.; Dodurga, Y. Usnic acid inhibits cell proliferation and downregulates LncRNA UCA1 expression in ishikawa endometrial cancer cells. Nat. Prod. Biotechnol., 2021, 1(1), 28-37.
  167. Zinovieva, O.L.; Grineva, E.N.; Prokofjeva, M.M.; Karpov, D.S.; Krasnov, G.S.; Prassolov, V.S.; Mashkova, T.D.; Lisitsyn, N.A. Treatment with anti-cancer agents results in profound changes in lncRNA expression in colon cancer cells. Mol. Biol., 2017, 51(5), 733-739. doi: 10.1134/S0026893317050247 PMID: 29116072
  168. Sung, W.J.; Hong, J. Targeting lncRNAs of colorectal cancers with natural products. Front. Pharmacol., 2023, 13, 1050032. doi: 10.3389/fphar.2022.1050032 PMID: 36699052
  169. Brown, J.A.; Bulkley, D.; Wang, J.; Valenstein, M.L.; Yario, T.A.; Steitz, T.A.; Steitz, J.A. Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat. Struct. Mol. Biol., 2014, 21(7), 633-640. doi: 10.1038/nsmb.2844 PMID: 24952594
  170. Gencel-Augusto, J.; Wu, W.; Bivona, T.G. Long non-coding RNAs as emerging targets in lung cancer. Cancers, 2023, 15(12), 3135. doi: 10.3390/cancers15123135 PMID: 37370745
  171. Rakheja, I.; Ansari, A.H.; Ray, A.; Chandra Joshi, D.; Maiti, S. Small molecule quercetin binds MALAT1 triplex and modulates its cellular function. Mol. Ther. Nucleic Acids, 2022, 30, 241-256. doi: 10.1016/j.omtn.2022.09.016 PMID: 36284512
  172. Aguilar, R.; Spencer, K.B.; Kesner, B.; Rizvi, N.F.; Badmalia, M.D.; Mrozowich, T.; Mortison, J.D.; Rivera, C.; Smith, G.F.; Burchard, J.; Dandliker, P.J.; Patel, T.R.; Nickbarg, E.B.; Lee, J.T. Targeting Xist with compounds that disrupt RNA structure and X inactivation. Nature, 2022, 604(7904), 160-166. doi: 10.1038/s41586-022-04537-z PMID: 35355011

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers