Multi-omics Combined with Machine Learning Facilitating the Diagnosis of Gastric Cancer


Cite item

Full Text

Abstract

:Gastric cancer (GC) is a highly intricate gastrointestinal malignancy. Early detection of gastric cancer forms the cornerstone of precision medicine. Several studies have been conducted to investigate early biomarkers of gastric cancer using genomics, transcriptomics, proteomics, and metabolomics, respectively. However, endogenous substances associated with various omics are concurrently altered during gastric cancer development. Furthermore, environmental exposures and family history can also induce modifications in endogenous substances. Therefore, in this study, we primarily investigated alterations in DNA mutation, DNA methylation, mRNA, lncRNA, miRNA, circRNA, and protein, as well as glucose, amino acid, nucleotide, and lipid metabolism levels in the context of GC development, employing genomics, transcriptomics, proteomics, and metabolomics. Additionally, we elucidate the impact of exposure factors, including HP, EBV, nitrosamines, smoking, alcohol consumption, and family history, on diagnostic biomarkers of gastric cancer. Lastly, we provide a summary of the application of machine learning in integrating multi-omics data. Thus, this review aims to elucidate: i) the biomarkers of gastric cancer related to genomics, transcriptomics, proteomics, and metabolomics; ii) the influence of environmental exposure and family history on multiomics data; iii) the integrated analysis of multi-omics data using machine learning techniques.

About the authors

Jie Li

Key Laboratory of Environmental Medicine Engineerin, Ministry of Education, School of Public Health, Southeast University

Email: info@benthamscience.net

Siyi Xu

Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, Southeast University

Email: info@benthamscience.net

Feng Zhu

Physical and Chemical Laboratory,, Jiangsu Provincial Center for Disease Control & Prevention

Email: info@benthamscience.net

Fei Shen

Physical and Chemical Laboratory, Jiangsu Provincial Center for Disease Control & Prevention

Email: info@benthamscience.net

Tianyi Zhang

Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University

Email: info@benthamscience.net

Xin Wan

Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University

Email: info@benthamscience.net

Saisai Gong

Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University

Email: info@benthamscience.net

Geyu Liang

Key Laboratory of Environmental Medicine Engineerin, Ministry of Education, School of Public Health, Southeast University

Author for correspondence.
Email: info@benthamscience.net

Yonglin Zhou

Physical and Chemical Laboratory,, Jiangsu Provincial Center for Disease Control and Prevention

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Morgan, E.; Arnold, M.; Camargo, M.C.; Gini, A.; Kunzmann, A.T.; Matsuda, T.; Meheus, F.; Verhoeven, R.H.A.; Vignat, J.; Laversanne, M.; Ferlay, J.; Soerjomataram, I. The current and future incidence and mortality of gastric cancer in 185 countries, 2020–40: A population-based modelling study. E. Clinical. Medicine, 2022, 47, 101404. doi: 10.1016/j.eclinm.2022.101404 PMID: 35497064
  3. Katai, H.; Ishikawa, T.; Akazawa, K.; Isobe, Y.; Miyashiro, I.; Oda, I.; Tsujitani, S.; Ono, H.; Tanabe, S.; Fukagawa, T.; Nunobe, S.; Kakeji, Y.; Nashimoto, A. Five-year survival analysis of surgically resected gastric cancer cases in Japan: A retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese Gastric Cancer Association (2001–2007). Gastric Cancer, 2018, 21(1), 144-154. doi: 10.1007/s10120-017-0716-7 PMID: 28417260
  4. Sumiyama, K. Past and current trends in endoscopic diagnosis for early stage gastric cancer in Japan. Gastric Cancer, 2017, 20(S1)(Suppl. 1), 20-27. doi: 10.1007/s10120-016-0659-4 PMID: 27734273
  5. Ren, W.; Yu, J.; Zhang, Z.M.; Song, Y.K.; Li, Y.H.; Wang, L. Missed diagnosis of early gastric cancer or high-grade intraepithelial neoplasia. World J. Gastroenterol., 2013, 19(13), 2092-2096. doi: 10.3748/wjg.v19.i13.2092 PMID: 23599630
  6. Herrera-Pariente, C.; Montori, S.; Llach, J.; Bofill, A.; Albeniz, E.; Moreira, L. Biomarkers for gastric cancer screening and early diagnosis. Biomedicines, 2021, 9(10), 1448. doi: 10.3390/biomedicines9101448 PMID: 34680565
  7. Shi, X.J.; Wei, Y.; Ji, B. Systems biology of gastric cancer: Perspectives on the omics-based diagnosis and treatment. Front. Mol. Biosci., 2020, 7, 203. doi: 10.3389/fmolb.2020.00203 PMID: 33005629
  8. Sironi, L.; Tremoli, E.; Miller, I.; Guerrini, U.; Calvio, A.M.; Eberini, I.; Gemeiner, M.; Asdente, M.; Paoletti, R.; Gianazza, E. Acute-phase proteins before cerebral ischemia in stroke-prone rats: Identification by proteomics. Stroke, 2001, 32(3), 753-760. doi: 10.1161/01.STR.32.3.753 PMID: 11239198
  9. Gonzalez-Covarrubias, V.; Martínez-Martínez, E.; del Bosque-Plata, L. The potential of metabolomics in biomedical applications. Metabolites, 2022, 12(2), 194. doi: 10.3390/metabo12020194 PMID: 35208267
  10. Fiehn, O. Metabolomics-the link between genotypes and phenotypes. Plant Mol. Biol., 2002, 48(1/2), 155-171. doi: 10.1023/A:1013713905833 PMID: 11860207
  11. Burton, C.; Ma, Y. Current trends in cancer biomarker discovery using urinary metabolomics: Achievements and new challenges. Curr. Med. Chem., 2019, 26(1), 5-28. doi: 10.2174/0929867324666170914102236 PMID: 28914192
  12. Amantonico, A.; Urban, P.L.; Zenobi, R. Analytical techniques for single-cell metabolomics: State of the art and trends. Anal. Bioanal. Chem., 2010, 398(6), 2493-2504. doi: 10.1007/s00216-010-3850-1 PMID: 20544183
  13. Wu, X.; Jian, A.; Tang, H.; Liu, W.; Liu, F.; Liu, S.; Wu, H. A multi-omics study on the effect of helicobacter pylori-related genes in the tumor immunity on stomach adenocarcinoma. Front. Cell. Infect. Microbiol., 2022, 12, 880636. doi: 10.3389/fcimb.2022.880636 PMID: 35619651
  14. Jung, Y.S.; Xuan Tran, M.T.; Park, B.; Moon, C.M. Association between family history of gastric cancer and the risk of gastric cancer and adenoma: A nationwide population-based study. Am. J. Gastroenterol., 2022, 117(8), 1255-1263. doi: 10.14309/ajg.0000000000001837 PMID: 35613561
  15. Herrera-Pariente, C.; Capó-García, R.; Díaz-Gay, M.; Carballal, S.; Muñoz, J.; Llach, J.; Sánchez, A.; Bonjoch, L.; Arnau-Collell, C.; Soares de Lima, Y.; Golubicki, M.; Jung, G.; Lozano, J.J.; Castells, A.; Balaguer, F.; Bujanda, L.; Castellví-Bel, S.; Moreira, L. Identification of new genes involved in germline predisposition to early-onset gastric cancer. Int. J. Mol. Sci., 2021, 22(3), 1310. doi: 10.3390/ijms22031310 PMID: 33525650
  16. Reel, P.S.; Reel, S.; Pearson, E.; Trucco, E.; Jefferson, E. Using machine learning approaches for multi-omics data analysis: A review. Biotechnol. Adv., 2021, 49, 107739. doi: 10.1016/j.biotechadv.2021.107739 PMID: 33794304
  17. Poirion, O.B.; Jing, Z.; Chaudhary, K.; Huang, S.; Garmire, L.X. DeepProg: An ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data. Genome Med., 2021, 13(1), 112. doi: 10.1186/s13073-021-00930-x PMID: 34261540
  18. Fan, P.; Zhang, Z.; Lu, L.; Guo, X.; Hao, Z.; Wang, X.; Ye, Y. Association of single nucleotide polymorphisms (SNPs) with gastric cancer susceptibility and prognosis in population in Wuwei, Gansu, China. World J. Surg. Oncol., 2022, 20(1), 194. doi: 10.1186/s12957-022-02663-6 PMID: 35689286
  19. Zang, Z.J.; Ong, C.K.; Cutcutache, I.; Yu, W.; Zhang, S.L.; Huang, D.; Ler, L.D.; Dykema, K.; Gan, A.; Tao, J.; Lim, S.; Liu, Y.; Futreal, P.A.; Grabsch, H.; Furge, K.A.; Goh, L.K.; Rozen, S.; Teh, B.T.; Tan, P. Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing. Cancer Res., 2011, 71(1), 29-39. doi: 10.1158/0008-5472.CAN-10-1749 PMID: 21097718
  20. Zhang, J.; Liu, F.; Yang, Y.; Yu, N.; Weng, X.; Yang, Y.; Gong, Z.; Huang, S.; Gan, L.; Sun, S.; Zhang, X.; Gong, Y.; Liu, Y.; Guo, W. Integrated DNA and RNA sequencing reveals early drivers involved in metastasis of gastric cancer. Cell Death Dis., 2022, 13(4), 392. doi: 10.1038/s41419-022-04838-1 PMID: 35449126
  21. Xiao, Y.; Bi, M.; Guo, H.; Li, M. Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis. E. Bio. Medicine., 2022, 79, 104001. doi: 10.1016/j.ebiom.2022.104001 PMID: 35439677
  22. Han, X.; Liu, T.; Zhai, J.; Liu, C.; Wang, W.; Nie, C.; Wang, Q.; Zhu, X.; Zhou, H.; Tian, W. Association between EPHA5 methylation status in peripheral blood leukocytes and the risk and prognosis of gastric cancer. PeerJ, 2022, 10, e13774. doi: 10.7717/peerj.13774 PMID: 36164608
  23. Zhang, Y.; Hu, S.; Li, J.; Shi, D.; Luo, B. The promoter aberrant methylation status of TMEM130 is associated with gastric cancer. Dig. Liver Dis., 2022, 54(6), 819-825. doi: 10.1016/j.dld.2021.05.035 PMID: 34162508
  24. Guo, X.Y.; Dong, L.; Qin, B.; Jiang, J.; Shi, A.M. Decreased expression of gastrokine 1 in gastric mucosa of gastric cancer patients. World J. Gastroenterol., 2014, 20(44), 16702-16706. doi: 10.3748/wjg.v20.i44.16702 PMID: 25469040
  25. Yamada, S.; Kato, S.; Matsuhisa, T.; Makonkawkeyoon, L.; Yoshida, M.; Chakrabandhu, T.; Lertprasertsuk, N.; Suttharat, P.; Chakrabandhu, B.; Nishiumi, S.; Chongraksut, W.; Azuma, T. Predominant mucosal IL-8 mRNA expression in non-cagA Thais is risk for gastric cancer. World J. Gastroenterol., 2013, 19(19), 2941-2949. doi: 10.3748/wjg.v19.i19.2941 PMID: 23704827
  26. Pereira, B.S.; Wisnieski, F.; Calcagno, D.Q.; Santos, L.C.; Gigek, C.O.; Chen, E.S.; Rasmussen, L.T.; Payão, S.L.M.; Almeida, R.S.; Pinto, C.A.; Karia, B.T.R.; Artigiani, R.; Demachki, S.; Assumpção, P.P.; Lourenço, L.G.; Arasaki, C.H.; Burbano, R.R.; Leal, M.F.; Smith, M.A.C. Genetic and transcriptional analysis of 8q24.21 cluster in gastric cancer. Anticancer Res., 2022, 42(9), 4381-4394. doi: 10.21873/anticanres.15938 PMID: 36039443
  27. Qian, H.; Appiah-Kubi, K.; Wang, Y.; Wu, M.; Tao, Y.; Wu, Y.; Chen, Y. The clinical significance of platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) in gastric cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol., 2018, 127, 15-28. doi: 10.1016/j.critrevonc.2018.05.004 PMID: 29891108
  28. Zhang, C.; Liang, Y.; Ma, M.H.; Wu, K.Z.; Dai, D.Q. KRT15, INHBA, MATN3, and AGT are aberrantly methylated and differentially expressed in gastric cancer and associated with prognosis. Pathol. Res. Pract., 2019, 215(5), 893-899. doi: 10.1016/j.prp.2019.01.034 PMID: 30718100
  29. Verma, R.; Sharma, P.C. Identification of stage-specific differentially expressed genes and SNPs in gastric cancer employing RNA-Seq based transcriptome profiling. Genomics, 2022, 114(1), 61-71. doi: 10.1016/j.ygeno.2021.11.032 PMID: 34839019
  30. Zhang, Y.; Liu, W.; Feng, W.; Wang, X.; Lei, T.; Chen, Z.; Song, W. Identification of 14 differentially-expressed metabolism-related genes as potential targets of gastric cancer by integrated proteomics and transcriptomics. Front. Cell Dev. Biol., 2022, 10, 816249. doi: 10.3389/fcell.2022.816249 PMID: 35265615
  31. Zhao, X.; Wu, S.; Jing, J. Identifying diagnostic and prognostic biomarkers and candidate therapeutic drugs of gastric cancer based on transcriptomics and single-cell sequencing. Pathol. Oncol. Res., 2021, 27, 1609955. doi: 10.3389/pore.2021.1609955 PMID: 34899080
  32. Zhang, P.; Yang, M.; Zhang, Y.; Xiao, S.; Lai, X.; Tan, A.; Du, S.; Li, S. Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer. Cell Rep., 2020, 30(12), 4317. doi: 10.1016/j.celrep.2020.03.020 PMID: 32209487
  33. Liu, X.Y.; Zhang, T.Q.; Zhang, Q.; Guo, J.; Zhang, P.; Mao, T.; Tian, Z.B.; Zhang, C.P.; Li, X.Y. Differential long non-coding RNA expression analysis in chronic non-atrophic gastritis, gastric mucosal intraepithelial neoplasia, and gastric cancer tissues. Front. Genet., 2022, 13, 833857. doi: 10.3389/fgene.2022.833857 PMID: 35571069
  34. Sun, M.; Xia, R.; Jin, F.; Xu, T.; Liu, Z.; De, W.; Liu, X. Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol., 2014, 35(2), 1065-1073. doi: 10.1007/s13277-013-1142-z PMID: 24006224
  35. Lee, S.; Park, J.; Oh, S.; Kwack, K. Downregulation of LOC441461 promotes cell growth and motility in human gastric cancer. Cancers, 2022, 14(5), 1149. doi: 10.3390/cancers14051149 PMID: 35267457
  36. Deng, Y.; Huang, Z.; Xu, Y.; Jin, J.; Zhuo, W.; Zhang, C.; Zhang, X.; Shen, M.; Yan, X.; Wang, L.; Wang, X.; Kang, Y.; Si, J.; Zhou, T. MiR-215 modulates gastric cancer cell proliferation by targeting RB1. Cancer Lett., 2014, 342(1), 27-35. doi: 10.1016/j.canlet.2013.08.033 PMID: 23981575
  37. Liu, G.; Xiang, T.; Wu, Q.F.; Wang, W.X. Long noncoding RNA H19-Derived miR-675 enhances proliferation and invasion via RUNX1 in gastric cancer cells. Oncol. Res., 2016, 23(3), 99-107. doi: 10.3727/096504015X14496932933575 PMID: 26931432
  38. Kong, Y.; Ning, L.; Qiu, F.; Yu, Q.; Cao, B. Clinical significance of serum miR-25 as a diagnostic and prognostic biomarker in human gastric cancer. Cancer Biomark., 2019, 24(4), 477-483. doi: 10.3233/CBM-182213 PMID: 30909187
  39. Shin, V.Y.; Ng, E.K.O.; Chan, V.W.; Kwong, A.; Chu, K.M. A three-miRNA signature as promising non-invasive diagnostic marker for gastric cancer. Mol. Cancer, 2015, 14(1), 202. doi: 10.1186/s12943-015-0473-3 PMID: 26607322
  40. Huang, Z.; Zhu, D.; Wu, L.; He, M.; Zhou, X.; Zhang, L.; Zhang, H.; Wang, W.; Zhu, J.; Cheng, W.; Chen, Y.; Fan, Y.; Qi, L.; Yin, Y.; Zhu, W.; Shu, Y.; Liu, P. Six serum-based miRNAs as potential diagnostic biomarkers for gastric cancer. Cancer Epidemiol. Biomarkers Prev., 2017, 26(2), 188-196. doi: 10.1158/1055-9965.EPI-16-0607 PMID: 27756776
  41. So, J.B.Y.; Kapoor, R.; Zhu, F.; Koh, C.; Zhou, L.; Zou, R.; Tang, Y.C.; Goo, P.C.K.; Rha, S.Y.; Chung, H.C.; Yoong, J.; Yap, C.T.; Rao, J.; Chia, C.K.; Tsao, S.; Shabbir, A.; Lee, J.; Lam, K.P.; Hartman, M.; Yong, W.P.; Too, H.P.; Yeoh, K.G. Development and validation of a serum microRNA biomarker panel for detecting gastric cancer in a high-risk population. Gut, 2021, 70(5), 829-837. doi: 10.1136/gutjnl-2020-322065 PMID: 33028667
  42. Zhao, Q.; Chen, S.; Li, T.; Xiao, B.; Zhang, X. Clinical values of circular RNA 0000181 in the screening of gastric cancer. J. Clin. Lab. Anal., 2018, 32(4), e22333. doi: 10.1002/jcla.22333 PMID: 28940688
  43. Xie, Y.; Shao, Y.; Sun, W.; Ye, G.; Zhang, X.; Xiao, B.; Guo, J. Downregulated expression of hsa_circ_0074362 in gastric cancer and its potential diagnostic values. Biomarkers Med., 2018, 12(1), 11-20. doi: 10.2217/bmm-2017-0114 PMID: 29240459
  44. Chen, S.; Li, T.; Zhao, Q.; Xiao, B.; Guo, J. Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin. Chim. Acta, 2017, 466, 167-171. doi: 10.1016/j.cca.2017.01.025 PMID: 28130019
  45. Li, T.; Shao, Y.; Fu, L.; Xie, Y.; Zhu, L.; Sun, W.; Yu, R.; Xiao, B.; Guo, J. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J. Mol. Med., 2018, 96(1), 85-96. doi: 10.1007/s00109-017-1600-y PMID: 29098316
  46. Sun, H.; Tang, W.; Rong, D.; Jin, H.; Fu, K.; Zhang, W.; Liu, Z.; Cao, H.; Cao, X. Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma. Cancer Biomark., 2018, 21(2), 299-306. doi: 10.3233/CBM-170379 PMID: 29103021
  47. Bure, I.V.; Nemtsova, M.V. Methylation and noncoding RNAs in gastric cancer: Everything is connected. Int. J. Mol. Sci., 2021, 22(11), 5683. doi: 10.3390/ijms22115683 PMID: 34073603
  48. Zhang, P.; Wu, W.; Chen, Q.; Chen, M. Non-coding RNAs and their integrated networks. J. Integr. Bioinform., 2019, 16(3), 20190027. doi: 10.1515/jib-2019-0027 PMID: 31301674
  49. Goodall, G.J.; Wickramasinghe, V.O. RNA in cancer. Nat. Rev. Cancer, 2021, 21(1), 22-36. doi: 10.1038/s41568-020-00306-0 PMID: 33082563
  50. Chun-zhi, Z.; Lei, H.; An-ling, Z.; Yan-chao, F.; Xiao, Y.; Guang-xiu, W.; Zhi-fan, J.; Pei-yu, P.; Qing-yu, Z.; Chun-sheng, K. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer, 2010, 10(1), 367. doi: 10.1186/1471-2407-10-367 PMID: 20618998
  51. Liu, Y.; Zhang, L.; Du, W. Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p. Biosci. Rep., 2019, 39(12), BSR20193045. doi: 10.1042/BSR20193045 PMID: 31793989
  52. Zhang, F.; Li, Y.; Xu, W.; He, L.; Tan, Y.; Xu, H. Long non-coding RNA ZFAS1 regulates the malignant progression of gastric cancer via the microRNA-200b-3p/Wnt1 axis. Biosci. Biotechnol. Biochem., 2019, 83(7), 1289-1299. doi: 10.1080/09168451.2019.1606697 PMID: 30999814
  53. Liu, X.; Ma, R.; Yi, B.; Riker, A.I.; Xi, Y. MicroRNAs are involved in the development and progression of gastric cancer. Acta Pharmacol. Sin., 2021, 42(7), 1018-1026. doi: 10.1038/s41401-020-00540-0 PMID: 33037405
  54. Wu, S.R.; Wu, Q.; Shi, Y.Q. Recent advances of miRNAs in the development and clinical application of gastric cancer. Chin. Med. J., 2020, 133(15), 1856-1867. doi: 10.1097/CM9.0000000000000921 PMID: 32649523
  55. Zhu, C.; Ren, C.; Han, J.; Ding, Y.; Du, J.; Dai, N.; Dai, J.; Ma, H.; Hu, Z.; Shen, H.; Xu, Y.; Jin, G. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br. J. Cancer, 2014, 110(9), 2291-2299. doi: 10.1038/bjc.2014.119 PMID: 24595006
  56. Li, J.; Sun, D.; Pu, W.; Wang, J.; Peng, Y. Circular RNAs in cancer: Biogenesis, function, and clinical significance. Trends Cancer, 2020, 6(4), 319-336. doi: 10.1016/j.trecan.2020.01.012 PMID: 32209446
  57. Ding, L.; Zhao, Y.; Dang, S.; Wang, Y.; Li, X.; Yu, X.; Li, Z.; Wei, J.; Liu, M.; Li, G. Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. Mol. Cancer, 2019, 18(1), 45. doi: 10.1186/s12943-019-1006-2 PMID: 30922402
  58. Dhondrup, R.; Zhang, X.; Feng, X.; Lobsang, D.; Hua, Q.; Liu, J.; Cuo, Y.; Zhuoma, S.; Duojie, G.; Duojie Caidan, S.; Gyal, S. Proteomic analysis reveals molecular differences in the development of gastric cancer. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-18. doi: 10.1155/2022/8266544 PMID: 35958927
  59. Uehara, T.; Kikuchi, H.; Miyazaki, S.; Iino, I.; Setoguchi, T.; Hiramatsu, Y.; Ohta, M.; Kamiya, K.; Morita, Y.; Tanaka, H.; Baba, S.; Hayasaka, T.; Setou, M.; Konno, H. Overexpression of lysophosphatidylcholine acyltransferase 1 and concomitant lipid alterations in gastric cancer. Ann. Surg. Oncol., 2016, 23(S2), 206-213. doi: 10.1245/s10434-015-4459-6 PMID: 25752890
  60. Wang, X.; Zhi, Q.; Liu, S.; Xue, S.L.; Shen, C.; Li, Y.; Wu, C.; Tang, Z.; Chen, W.; Song, J.L.; Bao, M.; Song, Y.H.; Zhou, J. Identification of specific biomarkers for gastric adenocarcinoma by ITRAQ proteomic approach. Sci. Rep., 2016, 6(1), 38871. doi: 10.1038/srep38871 PMID: 27941907
  61. Jiang, Z.; Sun, X.; Zhang, Q.; Ji, X.; Yu, Q.; Huang, T.; Chen, D.; Chen, H.; Mei, X.; Wang, L.; He, L.; Fang, J.; Hou, L.; Wang, L. Identification of candidate biomarkers that involved in the epigenetic transcriptional regulation for detection gastric cancer by iTRAQ based quantitative proteomic analysis. Clin. Chim. Acta, 2017, 471, 29-37. doi: 10.1016/j.cca.2017.05.015 PMID: 28502558
  62. Jiang, Z.; Zhang, C.; Gan, L.; Jia, Y.; Xiong, Y.; Chen, Y.; Wang, Z.; Wang, L.; Luo, H.; Li, J.; Zhu, R.; Ji, X.; Yu, Q.; Wang, L. iTRAQ-Based quantitative proteomics approach identifies novel diagnostic biomarkers that were essential for glutamine metabolism and redox homeostasis for gastric cancer. Proteomics Clin. Appl., 2019, 13(4), 1800038. doi: 10.1002/prca.201800038 PMID: 30485682
  63. Yoo, M.W.; Park, J.; Han, H.S.; Yun, Y.M.; Kang, J.W.; Choi, D.Y.; Lee, J.; Jung, J.H.; Lee, K.Y.; Kim, K.P. Discovery of gastric cancer specific biomarkers by the application of serum proteomics. Proteomics, 2017, 17(6), 1600332. doi: 10.1002/pmic.201600332 PMID: 28133907
  64. Zhou, B.; Zhou, Z.; Chen, Y.; Deng, H.; Cai, Y.; Rao, X.; Yin, Y.; Rong, L. Plasma proteomics-based identification of novel biomarkers in early gastric cancer. Clin. Biochem., 2020, 76, 5-10. doi: 10.1016/j.clinbiochem.2019.11.001 PMID: 31765635
  65. Aa, J.; Yu, L.; Sun, M.; Liu, L.; Li, M.; Cao, B.; Shi, J.; Xu, J.; Cheng, L.; Zhou, J.; Zheng, T.; Wang, X.; Zhao, C.; Gu, R.; Zhang, F.; Shi, R.; Wang, G. Metabolic features of the tumor microenvironment of gastric cancer and the link to the systemic macroenvironment. Metabolomics, 2012, 8(1), 164-173. doi: 10.1007/s11306-011-0297-0
  66. Kaji, S.; Irino, T.; Kusuhara, M.; Makuuchi, R.; Yamakawa, Y.; Tokunaga, M.; Tanizawa, Y.; Bando, E.; Kawamura, T.; Kami, K.; Ohashi, Y.; Zhang, S.; Orita, H.; Lee-Okada, H.C.; Fukunaga, T.; Terashima, M. Metabolomic profiling of gastric cancer tissues identified potential biomarkers for predicting peritoneal recurrence. Gastric Cancer, 2020, 23(5), 874-883. doi: 10.1007/s10120-020-01065-5 PMID: 32219586
  67. Zhu, X.; Wang, K.; Liu, G.; Wang, Y.; Xu, J.; Liu, L.; Li, M.; Shi, J.; Aa, J.; Yu, L. Metabolic perturbation and potential markers in patients with esophageal cancer. Gastroenterol. Res. Pract., 2017, 2017, 1-9. doi: 10.1155/2017/5469597 PMID: 28512469
  68. Ikeda, A.; Nishiumi, S.; Shinohara, M.; Yoshie, T.; Hatano, N.; Okuno, T.; Bamba, T.; Fukusaki, E.; Takenawa, T.; Azuma, T.; Yoshida, M. Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. Biomed. Chromatogr., 2012, 26(5), 548-558. doi: 10.1002/bmc.1671 PMID: 21773981
  69. Han, Y.; Yoo, H.J.; Jee, S.H.; Lee, J.H. High serum levels of l-carnitine and citric acid negatively correlated with alkaline phosphatase are detectable in Koreans before gastric cancer onset. Metabolomics, 2022, 18(8), 62. doi: 10.1007/s11306-022-01922-7 PMID: 35900644
  70. Song, H.; Peng, J.S.; Dong-Sheng, Y.; Yang, Z.L.; Liu, H.L.; Zeng, Y.K.; Shi, X.P.; Lu, B.Y. Serum metabolic profiling of human gastric cancer based on gas chromatography/mass spectrometry. Braz. J. Med. Biol. Res., 2012, 45(1), 78-85. doi: 10.1590/S0100-879X2011007500158 PMID: 22124703
  71. Miyagi, Y.; Higashiyama, M.; Gochi, A.; Akaike, M.; Ishikawa, T.; Miura, T.; Saruki, N.; Bando, E.; Kimura, H.; Imamura, F.; Moriyama, M.; Ikeda, I.; Chiba, A.; Oshita, F.; Imaizumi, A.; Yamamoto, H.; Miyano, H.; Horimoto, K.; Tochikubo, O.; Mitsushima, T.; Yamakado, M.; Okamoto, N. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One, 2011, 6(9), e24143. doi: 10.1371/journal.pone.0024143 PMID: 21915291
  72. Wang, H.; Zhang, H.; Deng, P.; Liu, C.; Li, D.; Jie, H.; Zhang, H.; Zhou, Z.; Zhao, Y.L. Tissue metabolic profiling of human gastric cancer assessed by 1H NMR. BMC Cancer, 2016, 16(1), 371. doi: 10.1186/s12885-016-2356-4 PMID: 27356757
  73. Lario, S.; Ramírez-Lázaro, M.J.; Sanjuan-Herráez, D.; Brunet-Vega, A.; Pericay, C.; Gombau, L.; Junquera, F.; Quintás, G.; Calvet, X. Plasma sample based analysis of gastric cancer progression using targeted metabolomics. Sci. Rep., 2017, 7(1), 17774. doi: 10.1038/s41598-017-17921-x PMID: 29259332
  74. Jung, J.; Jung, Y.; Bang, E.J.; Cho, S.; Jang, Y.J.; Kwak, J.M.; Ryu, D.H.; Park, S.; Hwang, G.S. Noninvasive diagnosis and evaluation of curative surgery for gastric cancer by using NMR-based metabolomic profiling. Ann. Surg. Oncol., 2014, 21(S4), 736-742. doi: 10.1245/s10434-014-3886-0 PMID: 25092158
  75. Dai, D.; Yang, Y.; Yu, J.; Dang, T.; Qin, W.; Teng, L.; Ye, J.; Jiang, H. Interactions between gastric microbiota and metabolites in gastric cancer. Cell Death Dis., 2021, 12(12), 1104. doi: 10.1038/s41419-021-04396-y PMID: 34819503
  76. Wu, H.; Xue, R.; Tang, Z.; Deng, C.; Liu, T.; Zeng, H.; Sun, Y.; Shen, X. Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry. Anal. Bioanal. Chem., 2010, 396(4), 1385-1395. doi: 10.1007/s00216-009-3317-4 PMID: 20012946
  77. Huang, S.; Guo, Y.; Li, Z.W.; Shui, G.; Tian, H.; Li, B.W.; Kadeerhan, G.; Li, Z.X.; Li, X.; Zhang, Y.; Zhou, T.; You, W.C.; Pan, K.F.; Li, W.Q. Identification and validation of plasma metabolomic signatures in precancerous gastric lesions that progress to cancer. JAMA Netw. Open, 2021, 4(6), e2114186. doi: 10.1001/jamanetworkopen.2021.14186 PMID: 34156450
  78. Yu, L.; Lai, Q.; Feng, Q.; Li, Y.; Feng, J.; Xu, B. Serum metabolic profiling analysis of chronic gastritis and gastric cancer by untargeted metabolomics. Front. Oncol., 2021, 11, 636917. doi: 10.3389/fonc.2021.636917 PMID: 33777793
  79. Zou, L.; Guo, L.; Zhu, C.; Lai, Z.; Li, Z.; Yang, A. Serum phospholipids are potential biomarkers for the early diagnosis of gastric cancer. Clin. Chim. Acta, 2021, 519, 276-284. doi: 10.1016/j.cca.2021.05.002 PMID: 33989614
  80. Hung, C.Y.; Yeh, T.S.; Tsai, C.K.; Wu, R.C.; Lai, Y.C.; Chiang, M.H.; Lu, K.Y.; Lin, C.N.; Cheng, M.L.; Lin, G. Glycerophospholipids pathways and chromosomal instability in gastric cancer: Global lipidomics analysis. World J. Gastrointest. Oncol., 2019, 11(3), 181-194. doi: 10.4251/wjgo.v11.i3.181 PMID: 30918592
  81. Zhang, H.; Cui, L.; Liu, W.; Wang, Z.; Ye, Y.; Li, X.; Wang, H. 1H NMR metabolic profiling of gastric cancer patients with lymph node metastasis. Metabolomics, 2018, 14(4), 47. doi: 10.1007/s11306-018-1344-x PMID: 29541009
  82. Jin, H.; Qiao, F.; Chen, L.; Lu, C.; Xu, L.; Gao, X. Serum metabolomic signatures of lymph node metastasis of esophageal squamous cell carcinoma. J. Proteome Res., 2014, 13(9), 4091-4103. doi: 10.1021/pr500483z PMID: 25162382
  83. Gu, J.; Hu, X.; Shao, W.; Ji, T.; Yang, W.; Zhuo, H.; Jin, Z.; Huang, H.; Chen, J.; Huang, C.; Lin, D. Metabolomic analysis reveals altered metabolic pathways in a rat model of gastric carcinogenesis. Oncotarget, 2016, 7(37), 60053-60073. doi: 10.18632/oncotarget.11049 PMID: 27527852
  84. Xu, J.; Chen, Y.; Zhang, R.; Song, Y.; Cao, J.; Bi, N.; Wang, J.; He, J.; Bai, J.; Dong, L.; Wang, L.; Zhan, Q.; Abliz, Z. Global and targeted metabolomics of esophageal squamous cell carcinoma discovers potential diagnostic and therapeutic biomarkers. Mol. Cell. Proteomics, 2013, 12(5), 1306-1318. doi: 10.1074/mcp.M112.022830 PMID: 23397110
  85. Hirayama, A.; Kami, K.; Sugimoto, M.; Sugawara, M.; Toki, N.; Onozuka, H.; Kinoshita, T.; Saito, N.; Ochiai, A.; Tomita, M.; Esumi, H.; Soga, T. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res., 2009, 69(11), 4918-4925. doi: 10.1158/0008-5472.CAN-08-4806 PMID: 19458066
  86. Chen, J.L.; Tang, H.Q.; Hu, J.D.; Fan, J.; Hong, J.; Gu, J.Z. Metabolomics of gastric cancer metastasis detected by gas chromatography and mass spectrometry. World J. Gastroenterol., 2010, 16(46), 5874-5880. doi: 10.3748/wjg.v16.i46.5874 PMID: 21155010
  87. Zhang, H.; Wang, L.; Hou, Z.; Ma, H.; Mamtimin, B.; Hasim, A.; Sheyhidin, I. Metabolomic profiling reveals potential biomarkers in esophageal cancer progression using liquid chromatography-mass spectrometry platform. Biochem. Biophys. Res. Commun., 2017, 491(1), 119-125. doi: 10.1016/j.bbrc.2017.07.060 PMID: 28711496
  88. Wang, L.; Chen, J.; Chen, L.; Deng, P.; bu, Q.; Xiang, P.; Li, M.; Lu, W.; Xu, Y.; Lin, H.; Wu, T.; Wang, H.; Hu, J.; Shao, X.; Cen, X.; Zhao, Y.L. 1H-NMR based metabonomic profiling of human esophageal cancer tissue. Mol. Cancer, 2013, 12(1), 25. doi: 10.1186/1476-4598-12-25 PMID: 23556477
  89. Chen, J.L.; Fan, J.; Lu, X. CE-MS based on moving reaction boundary method for urinary metabolomic analysis of gastric cancer patients. Electrophoresis, 2014, 35(7), 1032-1039. doi: 10.1002/elps.201300243 PMID: 23900894
  90. Han, J.; Meng, Q.; Shen, L.; Wu, G. Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis., 2018, 17(1), 14. doi: 10.1186/s12944-018-0657-0 PMID: 29338749
  91. Boison, D.; Yegutkin, G.G. Adenosine metabolism: Emerging concepts for cancer therapy. Cancer Cell, 2019, 36(6), 582-596. doi: 10.1016/j.ccell.2019.10.007 PMID: 31821783
  92. Nie, S.; Zhao, Y.; Qiu, X.; Wang, W.; Yao, Y.; Yi, M.; Wang, D. Metabolomic study on nude mice models of gastric cancer treated with modified Si Jun Zi Tang via HILIC UHPLC-Q-TOF/MS analysis. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-18. doi: 10.1155/2019/3817879 PMID: 31341492
  93. Liu, Z.C.; Wu, W.H.; Huang, S.; Li, Z.W.; Li, X.; Shui, G.H.; Lam, S.M.; Li, B.W.; Li, Z.X.; Zhang, Y.; Zhou, T.; You, W.C.; Pan, K.F.; Li, W.Q. Plasma lipids signify the progression of precancerous gastric lesions to gastric cancer: A prospective targeted lipidomics study. Theranostics, 2022, 12(10), 4671-4683. doi: 10.7150/thno.74770 PMID: 35832080
  94. Jin, G.; Lv, J.; Yang, M.; Wang, M.; Zhu, M.; Wang, T.; Yan, C.; Yu, C.; Ding, Y.; Li, G.; Ren, C.; Ni, J.; Zhang, R.; Guo, Y.; Bian, Z.; Zheng, Y.; Zhang, N.; Jiang, Y.; Chen, J.; Wang, Y.; Xu, D.; Zheng, H.; Yang, L.; Chen, Y.; Walters, R.; Millwood, I.Y.; Dai, J.; Ma, H.; Chen, K.; Chen, Z.; Hu, Z.; Wei, Q.; Shen, H.; Li, L. Genetic risk, incident gastric cancer, and healthy lifestyle: A meta-analysis of genome-wide association studies and prospective cohort study. Lancet Oncol., 2020, 21(10), 1378-1386. doi: 10.1016/S1470-2045(20)30460-5 PMID: 33002439
  95. Matsuoka, K.; Nishiumi, S.; Yoshida, M.; Kodama, Y. Effects of Helicobacter pylori on the glutathione-related pathway in gastric epithelial cells. Biochem. Biophys. Res. Commun., 2020, 526(4), 1118-1124. doi: 10.1016/j.bbrc.2020.04.019 PMID: 32312521
  96. Liu, D.; Zhu, J.; Ma, X.; Zhang, L.; Wu, Y.; Zhu, W.; Xing, Y.; Jia, Y.; Wang, Y. Transcriptomic and metabolomic profiling in Helicobacter pylori–induced gastric cancer identified prognosis- and immunotherapy-relevant gene signatures. Front. Cell Dev. Biol., 2021, 9, 769409. doi: 10.3389/fcell.2021.769409 PMID: 35004676
  97. Jabini, R.; Eghbali, S.A.; Ayatollahi, H.; Sheikhi, M.; Farzanehfar, M. Analysis of KRAS gene mutation associated with Helicobacter pylori infection in patients with gastric cancer. Iran. J. Basic Med. Sci., 2019, 22(5), 529-533. PMID: 31217933
  98. Nakajima, T.; Yamashita, S.; Maekita, T.; Niwa, T.; Nakazawa, K.; Ushijima, T. The presence of a methylation fingerprint of Helicobacter pylori infection in human gastric mucosae. Int. J. Cancer, 2009, 124(4), 905-910. doi: 10.1002/ijc.24018 PMID: 19035455
  99. Niwa, T.; Tsukamoto, T.; Toyoda, T.; Mori, A.; Tanaka, H.; Maekita, T.; Ichinose, M.; Tatematsu, M.; Ushijima, T. Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res., 2010, 70(4), 1430-1440. doi: 10.1158/0008-5472.CAN-09-2755 PMID: 20124475
  100. Shin, C.M.; Kim, N.; Jung, Y.; Park, J.H.; Kang, G.H.; Kim, J.S.; Jung, H.C.; Song, I.S. Role of Helicobacter pylori infection in aberrant DNA methylation along multistep gastric carcinogenesis. Cancer Sci., 2010, 101(6), 1337-1346. doi: 10.1111/j.1349-7006.2010.01535.x PMID: 20345486
  101. Zhou, H.; Sun, H.; Liu, X.; Chen, J.; Zhang, L.; Lin, S.; Han, X.; Nie, C.; Liu, Y.; Tian, W.; Zhao, Y. Combined effect between WT1 methylation and Helicobacter pylori infection, smoking, and alcohol consumption on the risk of gastric cancer. Helicobacter, 2019, 24(5), e12650. doi: 10.1111/hel.12650 PMID: 31361067
  102. Li, X.; Zheng, N.R.; Wang, L.H.; Li, Z.W.; Liu, Z.C.; Fan, H.; Wang, Y.; Dai, J.; Ni, X.T.; Wei, X.; Liu, M.W.; Li, K.; Li, Z.X.; Zhou, T.; Zhang, Y.; Zhang, J.Y.; Kadeerhan, G.; Huang, S.; Wu, W.H.; Liu, W.D.; Wu, X.Z.; Zhang, L.F.; Xu, J.M.; Gerhard, M.; You, W.C.; Pan, K.F.; Li, W.Q.; Qin, J. Proteomic profiling identifies signatures associated with progression of precancerous gastric lesions and risk of early gastric cancer. E. Bio. Medicine. , 2021, 74, 103714. doi: 10.1016/j.ebiom.2021.103714 PMID: 34818622
  103. Prinz, C.; Mese, K.; Weber, D. MicroRNA changes in gastric carcinogenesis: Differential dysregulation during Helicobacter pylori and EBV infection. Genes, 2021, 12(4), 597. doi: 10.3390/genes12040597 PMID: 33921696
  104. Zhang, X. Induction of fibroblast growth factor receptor 4 by helicobacter pylori via signal transducer and activator of transcription 3 with a feedforward activation loop involving steroid receptor coactivator signaling in gastric cancer. Gastroenterology, 2022, 163(3), 620-636.e9. doi: 10.1053/j.gastro.2022.05.016 PMID: 35588797
  105. Yoon, S.J.; Kim, J.Y.; Long, N.P.; Min, J.E.; Kim, H.M.; Yoon, J.H.; Anh, N.H.; Park, M.C.; Kwon, S.W.; Lee, S.K. Comprehensive multi-omics analysis reveals aberrant metabolism of Epstein–Barr-virus-associated gastric carcinoma. Cells, 2019, 8(10), 1220. doi: 10.3390/cells8101220 PMID: 31597357
  106. Wang, Z.; Lv, Z.; Xu, Q.; Sun, L.; Yuan, Y. Identification of differential proteomics in Epstein-Barr virus-associated gastric cancer and related functional analysis. Cancer Cell Int., 2021, 21(1), 368. doi: 10.1186/s12935-021-02077-6 PMID: 34247602
  107. Gao, Y.; Fu, Y.; Wang, J.; Zheng, X.; Zhou, J.; Ma, J. EBV as a high infection risk factor promotes RASSF10 methylation and induces cell proliferation in EBV-associated gastric cancer. Biochem. Biophys. Res. Commun., 2021, 547, 1-8. doi: 10.1016/j.bbrc.2021.02.014 PMID: 33588233
  108. Chen, Y.; Fu, R.; Xu, M.; Huang, Y.; Sun, G.; Xu, L. N-methyl-N-nitro-N-nitrosoguanidine-mediated ING4 downregulation contributed to the angiogenesis of transformed human gastric epithelial cells. Life Sci., 2018, 199, 179-187. doi: 10.1016/j.lfs.2018.02.034 PMID: 29496496
  109. Yang, S.; Lv, Y.; Wu, C.; Liu, B.; Shu, Z.; Lin, Y. Pickled vegetables intake impacts the metabolites for gastric cancer. Cancer Manag. Res., 2020, 12, 8263-8273. doi: 10.2147/CMAR.S271277 PMID: 32982422
  110. Suzuki, S.; Muroishi, Y.; Nakanishi, I.; Oda, Y. Relationship between genetic polymorphisms of drug-metabolizing enzymes (CYP1A1, CYP2E1, GSTM1, and NAT2), drinking habits, histological subtypes, and p53 gene point mutations in Japanese patients with gastric cancer. J. Gastroenterol., 2004, 39(3), 220-230. doi: 10.1007/s00535-003-1281-x PMID: 15064998
  111. Nan, H.M.; Song, Y.J.; Yun, H.Y.; Park, J.S.; Kim, H. Effects of dietary intake and genetic factors on hypermethylation of the hMLH1 gene promoter in gastric cancer. World J. Gastroenterol., 2005, 11(25), 3834-3841. doi: 10.3748/wjg.v11.i25.3834 PMID: 15991278
  112. Shimazu, T.; Asada, K.; Charvat, H.; Kusano, C.; Otake, Y.; Kakugawa, Y.; Watanabe, H.; Gotoda, T.; Ushijima, T.; Tsugane, S. Association of gastric cancer risk factors with DNA methylation levels in gastric mucosa of healthy Japanese: a cross-sectional study. Carcinogenesis, 2015, 36(11), 1291-1298. doi: 10.1093/carcin/bgv125 PMID: 26354778
  113. Corona, G.; Cannizzaro, R.; Miolo, G.; Caggiari, L.; De Zorzi, M.; Repetto, O.; Steffan, A.; De Re, V. Use of metabolomics as a complementary omic approach to implement risk criteria for first-degree relatives of gastric cancer patients. Int. J. Mol. Sci., 2018, 19(3), 750. doi: 10.3390/ijms19030750 PMID: 29518896
  114. Braga-Neto, M.B.; Costa, D.V.S.; Queiroz, D.M.M.; Maciel, F.S.; de Oliveira, M.S.; Viana-Junior, A.B.; Santos, F.A.; Leitao, R.F.C.; Brito, G.A.C.; Vasconcelos, P.R.L.; Braga, L.L.B.C. Increased oxidative stress in gastric cancer patients and their first-degree relatives: A prospective study from northeastern brazil. Oxid. Med. Cell. Longev., 2021, 2021, 1-9. doi: 10.1155/2021/6657434 PMID: 34873431
  115. Kim, H.J.; Kim, N.; Kim, H.W.; Park, J.H.; Shin, C.M.; Lee, D.H. Promising aberrant DNA methylation marker to predict gastric cancer development in individuals with family history and long-term effects of H. pylori eradication on DNA methylation. Gastric Cancer, 2021, 24(2), 302-313. doi: 10.1007/s10120-020-01117-w PMID: 32915372
  116. Kim, J.J.; Chung, S.W.; Kim, J.H.; Kim, J.W.; Oh, J.S.; Kim, S.; Song, S.Y.; Park, J.; Kim, D.H. Promoter methylation of helicase-like transcription factor is associated with the early stages of gastric cancer with family history. Ann. Oncol., 2006, 17(4), 657-662. doi: 10.1093/annonc/mdl018 PMID: 16497821
  117. Hai-jiang, Y. Preliminary study on EB virus and gastric cancer. Shiyong Zhongliu Zazhi, 2010.
  118. Fujii, T.; Nishikawa, J.; Fukuda, S.; Kubota, N.; Nojima, J.; Fujisawa, K.; Ogawa, R.; Goto, A.; Hamabe, K.; Hashimoto, S.; Wai, A.P.; Iizasa, H.; Yoshiyama, H.; Sakai, K.; Suehiro, Y.; Yamasaki, T.; Takami, T. MC180295 inhibited Epstein–Barr virus-associated gastric carcinoma cell growth by suppressing DNA repair and the cell cycle. Int. J. Mol. Sci., 2022, 23(18), 10597. doi: 10.3390/ijms231810597 PMID: 36142506
  119. Lu, L.; Mullins, C.S.; Schafmayer, C.; Zeißig, S.; Linnebacher, M. A global assessment of recent trends in gastrointestinal cancer and lifestyle-associated risk factors. Cancer Commun., 2021, 41(11), 1137-1151. doi: 10.1002/cac2.12220 PMID: 34563100
  120. Song, P.; Wu, L.; Guan, W. Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: A meta-analysis. Nutrients, 2015, 7(12), 9872-9895. doi: 10.3390/nu7125505 PMID: 26633477
  121. Picetti, R.; Deeney, M.; Pastorino, S.; Miller, M.R.; Shah, A.; Leon, D.A.; Dangour, A.D.; Green, R. Nitrate and nitrite contamination in drinking water and cancer risk: A systematic review with meta-analysis. Environ. Res., 2022, 210, 112988. doi: 10.1016/j.envres.2022.112988 PMID: 35217009
  122. Dong, E.Y.; Giap, A.Q.; Lustigova, E.; Wu, B.U. Gastric cancer screening in first-degree relatives: A pilot study in a diverse integrated healthcare system. Clin. Transl. Gastroenterol., 2022, 13(11), e00531. doi: 10.14309/ctg.0000000000000531 PMID: 36113027
  123. Youn Nam, S.; Park, B.J.; Nam, J.H.; Ryu, K.H.; Kook, M.C.; Kim, J.; Lee, W.K. Association of current Helicobacter pylori infection and metabolic factors with gastric cancer in 35,519 subjects: A cross-sectional study. United European Gastroenterol. J., 2019, 7(2), 287-296. doi: 10.1177/2050640618819402 PMID: 31080613
  124. Yaghoobi, M.; Bijarchi, R.; Narod, S.A. Family history and the risk of gastric cancer. Br. J. Cancer, 2010, 102(2), 237-242. doi: 10.1038/sj.bjc.6605380 PMID: 19888225
  125. Dhillon, A.; Singh, A.; Vohra, H.; Ellis, C.; Varghese, B.; Gill, S.S. IoTPulse: Machine learning-based enterprise health information system to predict alcohol addiction in Punjab (India) using IoT and fog computing. Enterprise Inf. Syst., 2022, 16(7), 1820583. doi: 10.1080/17517575.2020.1820583
  126. Li, X.; Ma, J.; Leng, L.; Han, M.; Li, M.; He, F.; Zhu, Y. MoGCN: A multi-omics integration method based on graph convolutional network for cancer subtype analysis. Front. Genet., 2022, 13, 806842. doi: 10.3389/fgene.2022.806842 PMID: 35186034
  127. Dhillon, A.; Singh, A. Machine learning in healthcare data analysis: A survey. J. Biol. Todays World, 2019, 8, 1-10.
  128. McCulloch, W.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol., 1990, 52(1-2), 99-115. doi: 10.1016/S0092-8240(05)80006-0 PMID: 2185863
  129. Momeni, Z.; Hassanzadeh, E.; Saniee Abadeh, M.; Bellazzi, R. A survey on single and multi omics data mining methods in cancer data classification. J. Biomed. Inform., 2020, 107, 103466. doi: 10.1016/j.jbi.2020.103466 PMID: 32525020
  130. Ritchie, M.D.; Holzinger, E.R.; Li, R.; Pendergrass, S.A.; Kim, D. Methods of integrating data to uncover genotype– phenotype interactions. Nat. Rev. Genet., 2015, 16(2), 85-97. doi: 10.1038/nrg3868 PMID: 25582081
  131. EL-Manzalawy, Y.; Hsieh, T.Y.; Shivakumar, M.; Kim, D.; Honavar, V. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data. BMC Med. Genomics, 2018, 11(S3)(Suppl. 3), 71. doi: 10.1186/s12920-018-0388-0 PMID: 30255801
  132. Malik, V.; Kalakoti, Y.; Sundar, D. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer. BMC Genomics, 2021, 22(1), 214. doi: 10.1186/s12864-021-07524-2 PMID: 33761889
  133. Zhang, X.; Wang, J.; Lu, J.; Su, L.; Wang, C.; Huang, Y.; Zhang, X.; Zhu, X. Robust prognostic subtyping of muscle-invasive bladder cancer revealed by deep learning-based multi-omics data integration. Front. Oncol., 2021, 11, 689626. doi: 10.3389/fonc.2021.689626 PMID: 34422643
  134. Chaudhary, K.; Poirion, O.B.; Lu, L.; Garmire, L.X. Deep learning–based multi-omics integration robustly predicts survival in liver cancer. Clin. Cancer Res., 2018, 24(6), 1248-1259. doi: 10.1158/1078-0432.CCR-17-0853 PMID: 28982688
  135. Xu, J.; Yao, Y.; Xu, B.; Li, Y.; Su, Z. Unsupervised learning of cross-modal mappings in multi-omics data for survival stratification of gastric cancer. Future Oncol., 2022, 18(2), 215-230. doi: 10.2217/fon-2021-1059 PMID: 34854737
  136. Chen, S.; Zang, Y.; Xu, B.; Lu, B.; Ma, R.; Miao, P.; Chen, B. An unsupervised deep learning-based model using multiomics data to predict prognosis of patients with stomach adenocarcinoma. Comput. Math. Methods Med., 2022, 2022, 1-20. doi: 10.1155/2022/5844846 PMID: 36339684
  137. Hu, C.; Jia, W. Multi-omics profiling: The way toward precision medicine in metabolic diseases. J. Mol. Cell Biol., 2021, 13(8), mjab051. doi: 10.1093/jmcb/mjab051 PMID: 34406397

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers