Multi-omics Combined with Machine Learning Facilitating the Diagnosis of Gastric Cancer
- Authors: Li J.1, Xu S.2, Zhu F.3, Shen F.4, Zhang T.5, Wan X.5, Gong S.5, Liang G.1, Zhou Y.6
-
Affiliations:
- Key Laboratory of Environmental Medicine Engineerin, Ministry of Education, School of Public Health, Southeast University
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, Southeast University
- Physical and Chemical Laboratory,, Jiangsu Provincial Center for Disease Control & Prevention
- Physical and Chemical Laboratory, Jiangsu Provincial Center for Disease Control & Prevention
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University
- Physical and Chemical Laboratory,, Jiangsu Provincial Center for Disease Control and Prevention
- Issue: Vol 31, No 40 (2024)
- Pages: 6692-6712
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645134
- DOI: https://doi.org/10.2174/0109298673284520240112055108
- ID: 645134
Cite item
Full Text
Abstract
:Gastric cancer (GC) is a highly intricate gastrointestinal malignancy. Early detection of gastric cancer forms the cornerstone of precision medicine. Several studies have been conducted to investigate early biomarkers of gastric cancer using genomics, transcriptomics, proteomics, and metabolomics, respectively. However, endogenous substances associated with various omics are concurrently altered during gastric cancer development. Furthermore, environmental exposures and family history can also induce modifications in endogenous substances. Therefore, in this study, we primarily investigated alterations in DNA mutation, DNA methylation, mRNA, lncRNA, miRNA, circRNA, and protein, as well as glucose, amino acid, nucleotide, and lipid metabolism levels in the context of GC development, employing genomics, transcriptomics, proteomics, and metabolomics. Additionally, we elucidate the impact of exposure factors, including HP, EBV, nitrosamines, smoking, alcohol consumption, and family history, on diagnostic biomarkers of gastric cancer. Lastly, we provide a summary of the application of machine learning in integrating multi-omics data. Thus, this review aims to elucidate: i) the biomarkers of gastric cancer related to genomics, transcriptomics, proteomics, and metabolomics; ii) the influence of environmental exposure and family history on multiomics data; iii) the integrated analysis of multi-omics data using machine learning techniques.
Keywords
About the authors
Jie Li
Key Laboratory of Environmental Medicine Engineerin, Ministry of Education, School of Public Health, Southeast University
Email: info@benthamscience.net
Siyi Xu
Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, Southeast University
Email: info@benthamscience.net
Feng Zhu
Physical and Chemical Laboratory,, Jiangsu Provincial Center for Disease Control & Prevention
Email: info@benthamscience.net
Fei Shen
Physical and Chemical Laboratory, Jiangsu Provincial Center for Disease Control & Prevention
Email: info@benthamscience.net
Tianyi Zhang
Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University
Email: info@benthamscience.net
Xin Wan
Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University
Email: info@benthamscience.net
Saisai Gong
Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University
Email: info@benthamscience.net
Geyu Liang
Key Laboratory of Environmental Medicine Engineerin, Ministry of Education, School of Public Health, Southeast University
Author for correspondence.
Email: info@benthamscience.net
Yonglin Zhou
Physical and Chemical Laboratory,, Jiangsu Provincial Center for Disease Control and Prevention
Author for correspondence.
Email: info@benthamscience.net
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Morgan, E.; Arnold, M.; Camargo, M.C.; Gini, A.; Kunzmann, A.T.; Matsuda, T.; Meheus, F.; Verhoeven, R.H.A.; Vignat, J.; Laversanne, M.; Ferlay, J.; Soerjomataram, I. The current and future incidence and mortality of gastric cancer in 185 countries, 202040: A population-based modelling study. E. Clinical. Medicine, 2022, 47, 101404. doi: 10.1016/j.eclinm.2022.101404 PMID: 35497064
- Katai, H.; Ishikawa, T.; Akazawa, K.; Isobe, Y.; Miyashiro, I.; Oda, I.; Tsujitani, S.; Ono, H.; Tanabe, S.; Fukagawa, T.; Nunobe, S.; Kakeji, Y.; Nashimoto, A. Five-year survival analysis of surgically resected gastric cancer cases in Japan: A retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese Gastric Cancer Association (20012007). Gastric Cancer, 2018, 21(1), 144-154. doi: 10.1007/s10120-017-0716-7 PMID: 28417260
- Sumiyama, K. Past and current trends in endoscopic diagnosis for early stage gastric cancer in Japan. Gastric Cancer, 2017, 20(S1)(Suppl. 1), 20-27. doi: 10.1007/s10120-016-0659-4 PMID: 27734273
- Ren, W.; Yu, J.; Zhang, Z.M.; Song, Y.K.; Li, Y.H.; Wang, L. Missed diagnosis of early gastric cancer or high-grade intraepithelial neoplasia. World J. Gastroenterol., 2013, 19(13), 2092-2096. doi: 10.3748/wjg.v19.i13.2092 PMID: 23599630
- Herrera-Pariente, C.; Montori, S.; Llach, J.; Bofill, A.; Albeniz, E.; Moreira, L. Biomarkers for gastric cancer screening and early diagnosis. Biomedicines, 2021, 9(10), 1448. doi: 10.3390/biomedicines9101448 PMID: 34680565
- Shi, X.J.; Wei, Y.; Ji, B. Systems biology of gastric cancer: Perspectives on the omics-based diagnosis and treatment. Front. Mol. Biosci., 2020, 7, 203. doi: 10.3389/fmolb.2020.00203 PMID: 33005629
- Sironi, L.; Tremoli, E.; Miller, I.; Guerrini, U.; Calvio, A.M.; Eberini, I.; Gemeiner, M.; Asdente, M.; Paoletti, R.; Gianazza, E. Acute-phase proteins before cerebral ischemia in stroke-prone rats: Identification by proteomics. Stroke, 2001, 32(3), 753-760. doi: 10.1161/01.STR.32.3.753 PMID: 11239198
- Gonzalez-Covarrubias, V.; Martínez-Martínez, E.; del Bosque-Plata, L. The potential of metabolomics in biomedical applications. Metabolites, 2022, 12(2), 194. doi: 10.3390/metabo12020194 PMID: 35208267
- Fiehn, O. Metabolomics-the link between genotypes and phenotypes. Plant Mol. Biol., 2002, 48(1/2), 155-171. doi: 10.1023/A:1013713905833 PMID: 11860207
- Burton, C.; Ma, Y. Current trends in cancer biomarker discovery using urinary metabolomics: Achievements and new challenges. Curr. Med. Chem., 2019, 26(1), 5-28. doi: 10.2174/0929867324666170914102236 PMID: 28914192
- Amantonico, A.; Urban, P.L.; Zenobi, R. Analytical techniques for single-cell metabolomics: State of the art and trends. Anal. Bioanal. Chem., 2010, 398(6), 2493-2504. doi: 10.1007/s00216-010-3850-1 PMID: 20544183
- Wu, X.; Jian, A.; Tang, H.; Liu, W.; Liu, F.; Liu, S.; Wu, H. A multi-omics study on the effect of helicobacter pylori-related genes in the tumor immunity on stomach adenocarcinoma. Front. Cell. Infect. Microbiol., 2022, 12, 880636. doi: 10.3389/fcimb.2022.880636 PMID: 35619651
- Jung, Y.S.; Xuan Tran, M.T.; Park, B.; Moon, C.M. Association between family history of gastric cancer and the risk of gastric cancer and adenoma: A nationwide population-based study. Am. J. Gastroenterol., 2022, 117(8), 1255-1263. doi: 10.14309/ajg.0000000000001837 PMID: 35613561
- Herrera-Pariente, C.; Capó-García, R.; Díaz-Gay, M.; Carballal, S.; Muñoz, J.; Llach, J.; Sánchez, A.; Bonjoch, L.; Arnau-Collell, C.; Soares de Lima, Y.; Golubicki, M.; Jung, G.; Lozano, J.J.; Castells, A.; Balaguer, F.; Bujanda, L.; Castellví-Bel, S.; Moreira, L. Identification of new genes involved in germline predisposition to early-onset gastric cancer. Int. J. Mol. Sci., 2021, 22(3), 1310. doi: 10.3390/ijms22031310 PMID: 33525650
- Reel, P.S.; Reel, S.; Pearson, E.; Trucco, E.; Jefferson, E. Using machine learning approaches for multi-omics data analysis: A review. Biotechnol. Adv., 2021, 49, 107739. doi: 10.1016/j.biotechadv.2021.107739 PMID: 33794304
- Poirion, O.B.; Jing, Z.; Chaudhary, K.; Huang, S.; Garmire, L.X. DeepProg: An ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data. Genome Med., 2021, 13(1), 112. doi: 10.1186/s13073-021-00930-x PMID: 34261540
- Fan, P.; Zhang, Z.; Lu, L.; Guo, X.; Hao, Z.; Wang, X.; Ye, Y. Association of single nucleotide polymorphisms (SNPs) with gastric cancer susceptibility and prognosis in population in Wuwei, Gansu, China. World J. Surg. Oncol., 2022, 20(1), 194. doi: 10.1186/s12957-022-02663-6 PMID: 35689286
- Zang, Z.J.; Ong, C.K.; Cutcutache, I.; Yu, W.; Zhang, S.L.; Huang, D.; Ler, L.D.; Dykema, K.; Gan, A.; Tao, J.; Lim, S.; Liu, Y.; Futreal, P.A.; Grabsch, H.; Furge, K.A.; Goh, L.K.; Rozen, S.; Teh, B.T.; Tan, P. Genetic and structural variation in the gastric cancer kinome revealed through targeted deep sequencing. Cancer Res., 2011, 71(1), 29-39. doi: 10.1158/0008-5472.CAN-10-1749 PMID: 21097718
- Zhang, J.; Liu, F.; Yang, Y.; Yu, N.; Weng, X.; Yang, Y.; Gong, Z.; Huang, S.; Gan, L.; Sun, S.; Zhang, X.; Gong, Y.; Liu, Y.; Guo, W. Integrated DNA and RNA sequencing reveals early drivers involved in metastasis of gastric cancer. Cell Death Dis., 2022, 13(4), 392. doi: 10.1038/s41419-022-04838-1 PMID: 35449126
- Xiao, Y.; Bi, M.; Guo, H.; Li, M. Multi-omics approaches for biomarker discovery in early ovarian cancer diagnosis. E. Bio. Medicine., 2022, 79, 104001. doi: 10.1016/j.ebiom.2022.104001 PMID: 35439677
- Han, X.; Liu, T.; Zhai, J.; Liu, C.; Wang, W.; Nie, C.; Wang, Q.; Zhu, X.; Zhou, H.; Tian, W. Association between EPHA5 methylation status in peripheral blood leukocytes and the risk and prognosis of gastric cancer. PeerJ, 2022, 10, e13774. doi: 10.7717/peerj.13774 PMID: 36164608
- Zhang, Y.; Hu, S.; Li, J.; Shi, D.; Luo, B. The promoter aberrant methylation status of TMEM130 is associated with gastric cancer. Dig. Liver Dis., 2022, 54(6), 819-825. doi: 10.1016/j.dld.2021.05.035 PMID: 34162508
- Guo, X.Y.; Dong, L.; Qin, B.; Jiang, J.; Shi, A.M. Decreased expression of gastrokine 1 in gastric mucosa of gastric cancer patients. World J. Gastroenterol., 2014, 20(44), 16702-16706. doi: 10.3748/wjg.v20.i44.16702 PMID: 25469040
- Yamada, S.; Kato, S.; Matsuhisa, T.; Makonkawkeyoon, L.; Yoshida, M.; Chakrabandhu, T.; Lertprasertsuk, N.; Suttharat, P.; Chakrabandhu, B.; Nishiumi, S.; Chongraksut, W.; Azuma, T. Predominant mucosal IL-8 mRNA expression in non-cagA Thais is risk for gastric cancer. World J. Gastroenterol., 2013, 19(19), 2941-2949. doi: 10.3748/wjg.v19.i19.2941 PMID: 23704827
- Pereira, B.S.; Wisnieski, F.; Calcagno, D.Q.; Santos, L.C.; Gigek, C.O.; Chen, E.S.; Rasmussen, L.T.; Payão, S.L.M.; Almeida, R.S.; Pinto, C.A.; Karia, B.T.R.; Artigiani, R.; Demachki, S.; Assumpção, P.P.; Lourenço, L.G.; Arasaki, C.H.; Burbano, R.R.; Leal, M.F.; Smith, M.A.C. Genetic and transcriptional analysis of 8q24.21 cluster in gastric cancer. Anticancer Res., 2022, 42(9), 4381-4394. doi: 10.21873/anticanres.15938 PMID: 36039443
- Qian, H.; Appiah-Kubi, K.; Wang, Y.; Wu, M.; Tao, Y.; Wu, Y.; Chen, Y. The clinical significance of platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) in gastric cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol., 2018, 127, 15-28. doi: 10.1016/j.critrevonc.2018.05.004 PMID: 29891108
- Zhang, C.; Liang, Y.; Ma, M.H.; Wu, K.Z.; Dai, D.Q. KRT15, INHBA, MATN3, and AGT are aberrantly methylated and differentially expressed in gastric cancer and associated with prognosis. Pathol. Res. Pract., 2019, 215(5), 893-899. doi: 10.1016/j.prp.2019.01.034 PMID: 30718100
- Verma, R.; Sharma, P.C. Identification of stage-specific differentially expressed genes and SNPs in gastric cancer employing RNA-Seq based transcriptome profiling. Genomics, 2022, 114(1), 61-71. doi: 10.1016/j.ygeno.2021.11.032 PMID: 34839019
- Zhang, Y.; Liu, W.; Feng, W.; Wang, X.; Lei, T.; Chen, Z.; Song, W. Identification of 14 differentially-expressed metabolism-related genes as potential targets of gastric cancer by integrated proteomics and transcriptomics. Front. Cell Dev. Biol., 2022, 10, 816249. doi: 10.3389/fcell.2022.816249 PMID: 35265615
- Zhao, X.; Wu, S.; Jing, J. Identifying diagnostic and prognostic biomarkers and candidate therapeutic drugs of gastric cancer based on transcriptomics and single-cell sequencing. Pathol. Oncol. Res., 2021, 27, 1609955. doi: 10.3389/pore.2021.1609955 PMID: 34899080
- Zhang, P.; Yang, M.; Zhang, Y.; Xiao, S.; Lai, X.; Tan, A.; Du, S.; Li, S. Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer. Cell Rep., 2020, 30(12), 4317. doi: 10.1016/j.celrep.2020.03.020 PMID: 32209487
- Liu, X.Y.; Zhang, T.Q.; Zhang, Q.; Guo, J.; Zhang, P.; Mao, T.; Tian, Z.B.; Zhang, C.P.; Li, X.Y. Differential long non-coding RNA expression analysis in chronic non-atrophic gastritis, gastric mucosal intraepithelial neoplasia, and gastric cancer tissues. Front. Genet., 2022, 13, 833857. doi: 10.3389/fgene.2022.833857 PMID: 35571069
- Sun, M.; Xia, R.; Jin, F.; Xu, T.; Liu, Z.; De, W.; Liu, X. Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol., 2014, 35(2), 1065-1073. doi: 10.1007/s13277-013-1142-z PMID: 24006224
- Lee, S.; Park, J.; Oh, S.; Kwack, K. Downregulation of LOC441461 promotes cell growth and motility in human gastric cancer. Cancers, 2022, 14(5), 1149. doi: 10.3390/cancers14051149 PMID: 35267457
- Deng, Y.; Huang, Z.; Xu, Y.; Jin, J.; Zhuo, W.; Zhang, C.; Zhang, X.; Shen, M.; Yan, X.; Wang, L.; Wang, X.; Kang, Y.; Si, J.; Zhou, T. MiR-215 modulates gastric cancer cell proliferation by targeting RB1. Cancer Lett., 2014, 342(1), 27-35. doi: 10.1016/j.canlet.2013.08.033 PMID: 23981575
- Liu, G.; Xiang, T.; Wu, Q.F.; Wang, W.X. Long noncoding RNA H19-Derived miR-675 enhances proliferation and invasion via RUNX1 in gastric cancer cells. Oncol. Res., 2016, 23(3), 99-107. doi: 10.3727/096504015X14496932933575 PMID: 26931432
- Kong, Y.; Ning, L.; Qiu, F.; Yu, Q.; Cao, B. Clinical significance of serum miR-25 as a diagnostic and prognostic biomarker in human gastric cancer. Cancer Biomark., 2019, 24(4), 477-483. doi: 10.3233/CBM-182213 PMID: 30909187
- Shin, V.Y.; Ng, E.K.O.; Chan, V.W.; Kwong, A.; Chu, K.M. A three-miRNA signature as promising non-invasive diagnostic marker for gastric cancer. Mol. Cancer, 2015, 14(1), 202. doi: 10.1186/s12943-015-0473-3 PMID: 26607322
- Huang, Z.; Zhu, D.; Wu, L.; He, M.; Zhou, X.; Zhang, L.; Zhang, H.; Wang, W.; Zhu, J.; Cheng, W.; Chen, Y.; Fan, Y.; Qi, L.; Yin, Y.; Zhu, W.; Shu, Y.; Liu, P. Six serum-based miRNAs as potential diagnostic biomarkers for gastric cancer. Cancer Epidemiol. Biomarkers Prev., 2017, 26(2), 188-196. doi: 10.1158/1055-9965.EPI-16-0607 PMID: 27756776
- So, J.B.Y.; Kapoor, R.; Zhu, F.; Koh, C.; Zhou, L.; Zou, R.; Tang, Y.C.; Goo, P.C.K.; Rha, S.Y.; Chung, H.C.; Yoong, J.; Yap, C.T.; Rao, J.; Chia, C.K.; Tsao, S.; Shabbir, A.; Lee, J.; Lam, K.P.; Hartman, M.; Yong, W.P.; Too, H.P.; Yeoh, K.G. Development and validation of a serum microRNA biomarker panel for detecting gastric cancer in a high-risk population. Gut, 2021, 70(5), 829-837. doi: 10.1136/gutjnl-2020-322065 PMID: 33028667
- Zhao, Q.; Chen, S.; Li, T.; Xiao, B.; Zhang, X. Clinical values of circular RNA 0000181 in the screening of gastric cancer. J. Clin. Lab. Anal., 2018, 32(4), e22333. doi: 10.1002/jcla.22333 PMID: 28940688
- Xie, Y.; Shao, Y.; Sun, W.; Ye, G.; Zhang, X.; Xiao, B.; Guo, J. Downregulated expression of hsa_circ_0074362 in gastric cancer and its potential diagnostic values. Biomarkers Med., 2018, 12(1), 11-20. doi: 10.2217/bmm-2017-0114 PMID: 29240459
- Chen, S.; Li, T.; Zhao, Q.; Xiao, B.; Guo, J. Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin. Chim. Acta, 2017, 466, 167-171. doi: 10.1016/j.cca.2017.01.025 PMID: 28130019
- Li, T.; Shao, Y.; Fu, L.; Xie, Y.; Zhu, L.; Sun, W.; Yu, R.; Xiao, B.; Guo, J. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J. Mol. Med., 2018, 96(1), 85-96. doi: 10.1007/s00109-017-1600-y PMID: 29098316
- Sun, H.; Tang, W.; Rong, D.; Jin, H.; Fu, K.; Zhang, W.; Liu, Z.; Cao, H.; Cao, X. Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma. Cancer Biomark., 2018, 21(2), 299-306. doi: 10.3233/CBM-170379 PMID: 29103021
- Bure, I.V.; Nemtsova, M.V. Methylation and noncoding RNAs in gastric cancer: Everything is connected. Int. J. Mol. Sci., 2021, 22(11), 5683. doi: 10.3390/ijms22115683 PMID: 34073603
- Zhang, P.; Wu, W.; Chen, Q.; Chen, M. Non-coding RNAs and their integrated networks. J. Integr. Bioinform., 2019, 16(3), 20190027. doi: 10.1515/jib-2019-0027 PMID: 31301674
- Goodall, G.J.; Wickramasinghe, V.O. RNA in cancer. Nat. Rev. Cancer, 2021, 21(1), 22-36. doi: 10.1038/s41568-020-00306-0 PMID: 33082563
- Chun-zhi, Z.; Lei, H.; An-ling, Z.; Yan-chao, F.; Xiao, Y.; Guang-xiu, W.; Zhi-fan, J.; Pei-yu, P.; Qing-yu, Z.; Chun-sheng, K. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer, 2010, 10(1), 367. doi: 10.1186/1471-2407-10-367 PMID: 20618998
- Liu, Y.; Zhang, L.; Du, W. Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p. Biosci. Rep., 2019, 39(12), BSR20193045. doi: 10.1042/BSR20193045 PMID: 31793989
- Zhang, F.; Li, Y.; Xu, W.; He, L.; Tan, Y.; Xu, H. Long non-coding RNA ZFAS1 regulates the malignant progression of gastric cancer via the microRNA-200b-3p/Wnt1 axis. Biosci. Biotechnol. Biochem., 2019, 83(7), 1289-1299. doi: 10.1080/09168451.2019.1606697 PMID: 30999814
- Liu, X.; Ma, R.; Yi, B.; Riker, A.I.; Xi, Y. MicroRNAs are involved in the development and progression of gastric cancer. Acta Pharmacol. Sin., 2021, 42(7), 1018-1026. doi: 10.1038/s41401-020-00540-0 PMID: 33037405
- Wu, S.R.; Wu, Q.; Shi, Y.Q. Recent advances of miRNAs in the development and clinical application of gastric cancer. Chin. Med. J., 2020, 133(15), 1856-1867. doi: 10.1097/CM9.0000000000000921 PMID: 32649523
- Zhu, C.; Ren, C.; Han, J.; Ding, Y.; Du, J.; Dai, N.; Dai, J.; Ma, H.; Hu, Z.; Shen, H.; Xu, Y.; Jin, G. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br. J. Cancer, 2014, 110(9), 2291-2299. doi: 10.1038/bjc.2014.119 PMID: 24595006
- Li, J.; Sun, D.; Pu, W.; Wang, J.; Peng, Y. Circular RNAs in cancer: Biogenesis, function, and clinical significance. Trends Cancer, 2020, 6(4), 319-336. doi: 10.1016/j.trecan.2020.01.012 PMID: 32209446
- Ding, L.; Zhao, Y.; Dang, S.; Wang, Y.; Li, X.; Yu, X.; Li, Z.; Wei, J.; Liu, M.; Li, G. Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. Mol. Cancer, 2019, 18(1), 45. doi: 10.1186/s12943-019-1006-2 PMID: 30922402
- Dhondrup, R.; Zhang, X.; Feng, X.; Lobsang, D.; Hua, Q.; Liu, J.; Cuo, Y.; Zhuoma, S.; Duojie, G.; Duojie Caidan, S.; Gyal, S. Proteomic analysis reveals molecular differences in the development of gastric cancer. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-18. doi: 10.1155/2022/8266544 PMID: 35958927
- Uehara, T.; Kikuchi, H.; Miyazaki, S.; Iino, I.; Setoguchi, T.; Hiramatsu, Y.; Ohta, M.; Kamiya, K.; Morita, Y.; Tanaka, H.; Baba, S.; Hayasaka, T.; Setou, M.; Konno, H. Overexpression of lysophosphatidylcholine acyltransferase 1 and concomitant lipid alterations in gastric cancer. Ann. Surg. Oncol., 2016, 23(S2), 206-213. doi: 10.1245/s10434-015-4459-6 PMID: 25752890
- Wang, X.; Zhi, Q.; Liu, S.; Xue, S.L.; Shen, C.; Li, Y.; Wu, C.; Tang, Z.; Chen, W.; Song, J.L.; Bao, M.; Song, Y.H.; Zhou, J. Identification of specific biomarkers for gastric adenocarcinoma by ITRAQ proteomic approach. Sci. Rep., 2016, 6(1), 38871. doi: 10.1038/srep38871 PMID: 27941907
- Jiang, Z.; Sun, X.; Zhang, Q.; Ji, X.; Yu, Q.; Huang, T.; Chen, D.; Chen, H.; Mei, X.; Wang, L.; He, L.; Fang, J.; Hou, L.; Wang, L. Identification of candidate biomarkers that involved in the epigenetic transcriptional regulation for detection gastric cancer by iTRAQ based quantitative proteomic analysis. Clin. Chim. Acta, 2017, 471, 29-37. doi: 10.1016/j.cca.2017.05.015 PMID: 28502558
- Jiang, Z.; Zhang, C.; Gan, L.; Jia, Y.; Xiong, Y.; Chen, Y.; Wang, Z.; Wang, L.; Luo, H.; Li, J.; Zhu, R.; Ji, X.; Yu, Q.; Wang, L. iTRAQ-Based quantitative proteomics approach identifies novel diagnostic biomarkers that were essential for glutamine metabolism and redox homeostasis for gastric cancer. Proteomics Clin. Appl., 2019, 13(4), 1800038. doi: 10.1002/prca.201800038 PMID: 30485682
- Yoo, M.W.; Park, J.; Han, H.S.; Yun, Y.M.; Kang, J.W.; Choi, D.Y.; Lee, J.; Jung, J.H.; Lee, K.Y.; Kim, K.P. Discovery of gastric cancer specific biomarkers by the application of serum proteomics. Proteomics, 2017, 17(6), 1600332. doi: 10.1002/pmic.201600332 PMID: 28133907
- Zhou, B.; Zhou, Z.; Chen, Y.; Deng, H.; Cai, Y.; Rao, X.; Yin, Y.; Rong, L. Plasma proteomics-based identification of novel biomarkers in early gastric cancer. Clin. Biochem., 2020, 76, 5-10. doi: 10.1016/j.clinbiochem.2019.11.001 PMID: 31765635
- Aa, J.; Yu, L.; Sun, M.; Liu, L.; Li, M.; Cao, B.; Shi, J.; Xu, J.; Cheng, L.; Zhou, J.; Zheng, T.; Wang, X.; Zhao, C.; Gu, R.; Zhang, F.; Shi, R.; Wang, G. Metabolic features of the tumor microenvironment of gastric cancer and the link to the systemic macroenvironment. Metabolomics, 2012, 8(1), 164-173. doi: 10.1007/s11306-011-0297-0
- Kaji, S.; Irino, T.; Kusuhara, M.; Makuuchi, R.; Yamakawa, Y.; Tokunaga, M.; Tanizawa, Y.; Bando, E.; Kawamura, T.; Kami, K.; Ohashi, Y.; Zhang, S.; Orita, H.; Lee-Okada, H.C.; Fukunaga, T.; Terashima, M. Metabolomic profiling of gastric cancer tissues identified potential biomarkers for predicting peritoneal recurrence. Gastric Cancer, 2020, 23(5), 874-883. doi: 10.1007/s10120-020-01065-5 PMID: 32219586
- Zhu, X.; Wang, K.; Liu, G.; Wang, Y.; Xu, J.; Liu, L.; Li, M.; Shi, J.; Aa, J.; Yu, L. Metabolic perturbation and potential markers in patients with esophageal cancer. Gastroenterol. Res. Pract., 2017, 2017, 1-9. doi: 10.1155/2017/5469597 PMID: 28512469
- Ikeda, A.; Nishiumi, S.; Shinohara, M.; Yoshie, T.; Hatano, N.; Okuno, T.; Bamba, T.; Fukusaki, E.; Takenawa, T.; Azuma, T.; Yoshida, M. Serum metabolomics as a novel diagnostic approach for gastrointestinal cancer. Biomed. Chromatogr., 2012, 26(5), 548-558. doi: 10.1002/bmc.1671 PMID: 21773981
- Han, Y.; Yoo, H.J.; Jee, S.H.; Lee, J.H. High serum levels of l-carnitine and citric acid negatively correlated with alkaline phosphatase are detectable in Koreans before gastric cancer onset. Metabolomics, 2022, 18(8), 62. doi: 10.1007/s11306-022-01922-7 PMID: 35900644
- Song, H.; Peng, J.S.; Dong-Sheng, Y.; Yang, Z.L.; Liu, H.L.; Zeng, Y.K.; Shi, X.P.; Lu, B.Y. Serum metabolic profiling of human gastric cancer based on gas chromatography/mass spectrometry. Braz. J. Med. Biol. Res., 2012, 45(1), 78-85. doi: 10.1590/S0100-879X2011007500158 PMID: 22124703
- Miyagi, Y.; Higashiyama, M.; Gochi, A.; Akaike, M.; Ishikawa, T.; Miura, T.; Saruki, N.; Bando, E.; Kimura, H.; Imamura, F.; Moriyama, M.; Ikeda, I.; Chiba, A.; Oshita, F.; Imaizumi, A.; Yamamoto, H.; Miyano, H.; Horimoto, K.; Tochikubo, O.; Mitsushima, T.; Yamakado, M.; Okamoto, N. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One, 2011, 6(9), e24143. doi: 10.1371/journal.pone.0024143 PMID: 21915291
- Wang, H.; Zhang, H.; Deng, P.; Liu, C.; Li, D.; Jie, H.; Zhang, H.; Zhou, Z.; Zhao, Y.L. Tissue metabolic profiling of human gastric cancer assessed by 1H NMR. BMC Cancer, 2016, 16(1), 371. doi: 10.1186/s12885-016-2356-4 PMID: 27356757
- Lario, S.; Ramírez-Lázaro, M.J.; Sanjuan-Herráez, D.; Brunet-Vega, A.; Pericay, C.; Gombau, L.; Junquera, F.; Quintás, G.; Calvet, X. Plasma sample based analysis of gastric cancer progression using targeted metabolomics. Sci. Rep., 2017, 7(1), 17774. doi: 10.1038/s41598-017-17921-x PMID: 29259332
- Jung, J.; Jung, Y.; Bang, E.J.; Cho, S.; Jang, Y.J.; Kwak, J.M.; Ryu, D.H.; Park, S.; Hwang, G.S. Noninvasive diagnosis and evaluation of curative surgery for gastric cancer by using NMR-based metabolomic profiling. Ann. Surg. Oncol., 2014, 21(S4), 736-742. doi: 10.1245/s10434-014-3886-0 PMID: 25092158
- Dai, D.; Yang, Y.; Yu, J.; Dang, T.; Qin, W.; Teng, L.; Ye, J.; Jiang, H. Interactions between gastric microbiota and metabolites in gastric cancer. Cell Death Dis., 2021, 12(12), 1104. doi: 10.1038/s41419-021-04396-y PMID: 34819503
- Wu, H.; Xue, R.; Tang, Z.; Deng, C.; Liu, T.; Zeng, H.; Sun, Y.; Shen, X. Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry. Anal. Bioanal. Chem., 2010, 396(4), 1385-1395. doi: 10.1007/s00216-009-3317-4 PMID: 20012946
- Huang, S.; Guo, Y.; Li, Z.W.; Shui, G.; Tian, H.; Li, B.W.; Kadeerhan, G.; Li, Z.X.; Li, X.; Zhang, Y.; Zhou, T.; You, W.C.; Pan, K.F.; Li, W.Q. Identification and validation of plasma metabolomic signatures in precancerous gastric lesions that progress to cancer. JAMA Netw. Open, 2021, 4(6), e2114186. doi: 10.1001/jamanetworkopen.2021.14186 PMID: 34156450
- Yu, L.; Lai, Q.; Feng, Q.; Li, Y.; Feng, J.; Xu, B. Serum metabolic profiling analysis of chronic gastritis and gastric cancer by untargeted metabolomics. Front. Oncol., 2021, 11, 636917. doi: 10.3389/fonc.2021.636917 PMID: 33777793
- Zou, L.; Guo, L.; Zhu, C.; Lai, Z.; Li, Z.; Yang, A. Serum phospholipids are potential biomarkers for the early diagnosis of gastric cancer. Clin. Chim. Acta, 2021, 519, 276-284. doi: 10.1016/j.cca.2021.05.002 PMID: 33989614
- Hung, C.Y.; Yeh, T.S.; Tsai, C.K.; Wu, R.C.; Lai, Y.C.; Chiang, M.H.; Lu, K.Y.; Lin, C.N.; Cheng, M.L.; Lin, G. Glycerophospholipids pathways and chromosomal instability in gastric cancer: Global lipidomics analysis. World J. Gastrointest. Oncol., 2019, 11(3), 181-194. doi: 10.4251/wjgo.v11.i3.181 PMID: 30918592
- Zhang, H.; Cui, L.; Liu, W.; Wang, Z.; Ye, Y.; Li, X.; Wang, H. 1H NMR metabolic profiling of gastric cancer patients with lymph node metastasis. Metabolomics, 2018, 14(4), 47. doi: 10.1007/s11306-018-1344-x PMID: 29541009
- Jin, H.; Qiao, F.; Chen, L.; Lu, C.; Xu, L.; Gao, X. Serum metabolomic signatures of lymph node metastasis of esophageal squamous cell carcinoma. J. Proteome Res., 2014, 13(9), 4091-4103. doi: 10.1021/pr500483z PMID: 25162382
- Gu, J.; Hu, X.; Shao, W.; Ji, T.; Yang, W.; Zhuo, H.; Jin, Z.; Huang, H.; Chen, J.; Huang, C.; Lin, D. Metabolomic analysis reveals altered metabolic pathways in a rat model of gastric carcinogenesis. Oncotarget, 2016, 7(37), 60053-60073. doi: 10.18632/oncotarget.11049 PMID: 27527852
- Xu, J.; Chen, Y.; Zhang, R.; Song, Y.; Cao, J.; Bi, N.; Wang, J.; He, J.; Bai, J.; Dong, L.; Wang, L.; Zhan, Q.; Abliz, Z. Global and targeted metabolomics of esophageal squamous cell carcinoma discovers potential diagnostic and therapeutic biomarkers. Mol. Cell. Proteomics, 2013, 12(5), 1306-1318. doi: 10.1074/mcp.M112.022830 PMID: 23397110
- Hirayama, A.; Kami, K.; Sugimoto, M.; Sugawara, M.; Toki, N.; Onozuka, H.; Kinoshita, T.; Saito, N.; Ochiai, A.; Tomita, M.; Esumi, H.; Soga, T. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res., 2009, 69(11), 4918-4925. doi: 10.1158/0008-5472.CAN-08-4806 PMID: 19458066
- Chen, J.L.; Tang, H.Q.; Hu, J.D.; Fan, J.; Hong, J.; Gu, J.Z. Metabolomics of gastric cancer metastasis detected by gas chromatography and mass spectrometry. World J. Gastroenterol., 2010, 16(46), 5874-5880. doi: 10.3748/wjg.v16.i46.5874 PMID: 21155010
- Zhang, H.; Wang, L.; Hou, Z.; Ma, H.; Mamtimin, B.; Hasim, A.; Sheyhidin, I. Metabolomic profiling reveals potential biomarkers in esophageal cancer progression using liquid chromatography-mass spectrometry platform. Biochem. Biophys. Res. Commun., 2017, 491(1), 119-125. doi: 10.1016/j.bbrc.2017.07.060 PMID: 28711496
- Wang, L.; Chen, J.; Chen, L.; Deng, P.; bu, Q.; Xiang, P.; Li, M.; Lu, W.; Xu, Y.; Lin, H.; Wu, T.; Wang, H.; Hu, J.; Shao, X.; Cen, X.; Zhao, Y.L. 1H-NMR based metabonomic profiling of human esophageal cancer tissue. Mol. Cancer, 2013, 12(1), 25. doi: 10.1186/1476-4598-12-25 PMID: 23556477
- Chen, J.L.; Fan, J.; Lu, X. CE-MS based on moving reaction boundary method for urinary metabolomic analysis of gastric cancer patients. Electrophoresis, 2014, 35(7), 1032-1039. doi: 10.1002/elps.201300243 PMID: 23900894
- Han, J.; Meng, Q.; Shen, L.; Wu, G. Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis., 2018, 17(1), 14. doi: 10.1186/s12944-018-0657-0 PMID: 29338749
- Boison, D.; Yegutkin, G.G. Adenosine metabolism: Emerging concepts for cancer therapy. Cancer Cell, 2019, 36(6), 582-596. doi: 10.1016/j.ccell.2019.10.007 PMID: 31821783
- Nie, S.; Zhao, Y.; Qiu, X.; Wang, W.; Yao, Y.; Yi, M.; Wang, D. Metabolomic study on nude mice models of gastric cancer treated with modified Si Jun Zi Tang via HILIC UHPLC-Q-TOF/MS analysis. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-18. doi: 10.1155/2019/3817879 PMID: 31341492
- Liu, Z.C.; Wu, W.H.; Huang, S.; Li, Z.W.; Li, X.; Shui, G.H.; Lam, S.M.; Li, B.W.; Li, Z.X.; Zhang, Y.; Zhou, T.; You, W.C.; Pan, K.F.; Li, W.Q. Plasma lipids signify the progression of precancerous gastric lesions to gastric cancer: A prospective targeted lipidomics study. Theranostics, 2022, 12(10), 4671-4683. doi: 10.7150/thno.74770 PMID: 35832080
- Jin, G.; Lv, J.; Yang, M.; Wang, M.; Zhu, M.; Wang, T.; Yan, C.; Yu, C.; Ding, Y.; Li, G.; Ren, C.; Ni, J.; Zhang, R.; Guo, Y.; Bian, Z.; Zheng, Y.; Zhang, N.; Jiang, Y.; Chen, J.; Wang, Y.; Xu, D.; Zheng, H.; Yang, L.; Chen, Y.; Walters, R.; Millwood, I.Y.; Dai, J.; Ma, H.; Chen, K.; Chen, Z.; Hu, Z.; Wei, Q.; Shen, H.; Li, L. Genetic risk, incident gastric cancer, and healthy lifestyle: A meta-analysis of genome-wide association studies and prospective cohort study. Lancet Oncol., 2020, 21(10), 1378-1386. doi: 10.1016/S1470-2045(20)30460-5 PMID: 33002439
- Matsuoka, K.; Nishiumi, S.; Yoshida, M.; Kodama, Y. Effects of Helicobacter pylori on the glutathione-related pathway in gastric epithelial cells. Biochem. Biophys. Res. Commun., 2020, 526(4), 1118-1124. doi: 10.1016/j.bbrc.2020.04.019 PMID: 32312521
- Liu, D.; Zhu, J.; Ma, X.; Zhang, L.; Wu, Y.; Zhu, W.; Xing, Y.; Jia, Y.; Wang, Y. Transcriptomic and metabolomic profiling in Helicobacter pyloriinduced gastric cancer identified prognosis- and immunotherapy-relevant gene signatures. Front. Cell Dev. Biol., 2021, 9, 769409. doi: 10.3389/fcell.2021.769409 PMID: 35004676
- Jabini, R.; Eghbali, S.A.; Ayatollahi, H.; Sheikhi, M.; Farzanehfar, M. Analysis of KRAS gene mutation associated with Helicobacter pylori infection in patients with gastric cancer. Iran. J. Basic Med. Sci., 2019, 22(5), 529-533. PMID: 31217933
- Nakajima, T.; Yamashita, S.; Maekita, T.; Niwa, T.; Nakazawa, K.; Ushijima, T. The presence of a methylation fingerprint of Helicobacter pylori infection in human gastric mucosae. Int. J. Cancer, 2009, 124(4), 905-910. doi: 10.1002/ijc.24018 PMID: 19035455
- Niwa, T.; Tsukamoto, T.; Toyoda, T.; Mori, A.; Tanaka, H.; Maekita, T.; Ichinose, M.; Tatematsu, M.; Ushijima, T. Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res., 2010, 70(4), 1430-1440. doi: 10.1158/0008-5472.CAN-09-2755 PMID: 20124475
- Shin, C.M.; Kim, N.; Jung, Y.; Park, J.H.; Kang, G.H.; Kim, J.S.; Jung, H.C.; Song, I.S. Role of Helicobacter pylori infection in aberrant DNA methylation along multistep gastric carcinogenesis. Cancer Sci., 2010, 101(6), 1337-1346. doi: 10.1111/j.1349-7006.2010.01535.x PMID: 20345486
- Zhou, H.; Sun, H.; Liu, X.; Chen, J.; Zhang, L.; Lin, S.; Han, X.; Nie, C.; Liu, Y.; Tian, W.; Zhao, Y. Combined effect between WT1 methylation and Helicobacter pylori infection, smoking, and alcohol consumption on the risk of gastric cancer. Helicobacter, 2019, 24(5), e12650. doi: 10.1111/hel.12650 PMID: 31361067
- Li, X.; Zheng, N.R.; Wang, L.H.; Li, Z.W.; Liu, Z.C.; Fan, H.; Wang, Y.; Dai, J.; Ni, X.T.; Wei, X.; Liu, M.W.; Li, K.; Li, Z.X.; Zhou, T.; Zhang, Y.; Zhang, J.Y.; Kadeerhan, G.; Huang, S.; Wu, W.H.; Liu, W.D.; Wu, X.Z.; Zhang, L.F.; Xu, J.M.; Gerhard, M.; You, W.C.; Pan, K.F.; Li, W.Q.; Qin, J. Proteomic profiling identifies signatures associated with progression of precancerous gastric lesions and risk of early gastric cancer. E. Bio. Medicine. , 2021, 74, 103714. doi: 10.1016/j.ebiom.2021.103714 PMID: 34818622
- Prinz, C.; Mese, K.; Weber, D. MicroRNA changes in gastric carcinogenesis: Differential dysregulation during Helicobacter pylori and EBV infection. Genes, 2021, 12(4), 597. doi: 10.3390/genes12040597 PMID: 33921696
- Zhang, X. Induction of fibroblast growth factor receptor 4 by helicobacter pylori via signal transducer and activator of transcription 3 with a feedforward activation loop involving steroid receptor coactivator signaling in gastric cancer. Gastroenterology, 2022, 163(3), 620-636.e9. doi: 10.1053/j.gastro.2022.05.016 PMID: 35588797
- Yoon, S.J.; Kim, J.Y.; Long, N.P.; Min, J.E.; Kim, H.M.; Yoon, J.H.; Anh, N.H.; Park, M.C.; Kwon, S.W.; Lee, S.K. Comprehensive multi-omics analysis reveals aberrant metabolism of EpsteinBarr-virus-associated gastric carcinoma. Cells, 2019, 8(10), 1220. doi: 10.3390/cells8101220 PMID: 31597357
- Wang, Z.; Lv, Z.; Xu, Q.; Sun, L.; Yuan, Y. Identification of differential proteomics in Epstein-Barr virus-associated gastric cancer and related functional analysis. Cancer Cell Int., 2021, 21(1), 368. doi: 10.1186/s12935-021-02077-6 PMID: 34247602
- Gao, Y.; Fu, Y.; Wang, J.; Zheng, X.; Zhou, J.; Ma, J. EBV as a high infection risk factor promotes RASSF10 methylation and induces cell proliferation in EBV-associated gastric cancer. Biochem. Biophys. Res. Commun., 2021, 547, 1-8. doi: 10.1016/j.bbrc.2021.02.014 PMID: 33588233
- Chen, Y.; Fu, R.; Xu, M.; Huang, Y.; Sun, G.; Xu, L. N-methyl-N-nitro-N-nitrosoguanidine-mediated ING4 downregulation contributed to the angiogenesis of transformed human gastric epithelial cells. Life Sci., 2018, 199, 179-187. doi: 10.1016/j.lfs.2018.02.034 PMID: 29496496
- Yang, S.; Lv, Y.; Wu, C.; Liu, B.; Shu, Z.; Lin, Y. Pickled vegetables intake impacts the metabolites for gastric cancer. Cancer Manag. Res., 2020, 12, 8263-8273. doi: 10.2147/CMAR.S271277 PMID: 32982422
- Suzuki, S.; Muroishi, Y.; Nakanishi, I.; Oda, Y. Relationship between genetic polymorphisms of drug-metabolizing enzymes (CYP1A1, CYP2E1, GSTM1, and NAT2), drinking habits, histological subtypes, and p53 gene point mutations in Japanese patients with gastric cancer. J. Gastroenterol., 2004, 39(3), 220-230. doi: 10.1007/s00535-003-1281-x PMID: 15064998
- Nan, H.M.; Song, Y.J.; Yun, H.Y.; Park, J.S.; Kim, H. Effects of dietary intake and genetic factors on hypermethylation of the hMLH1 gene promoter in gastric cancer. World J. Gastroenterol., 2005, 11(25), 3834-3841. doi: 10.3748/wjg.v11.i25.3834 PMID: 15991278
- Shimazu, T.; Asada, K.; Charvat, H.; Kusano, C.; Otake, Y.; Kakugawa, Y.; Watanabe, H.; Gotoda, T.; Ushijima, T.; Tsugane, S. Association of gastric cancer risk factors with DNA methylation levels in gastric mucosa of healthy Japanese: a cross-sectional study. Carcinogenesis, 2015, 36(11), 1291-1298. doi: 10.1093/carcin/bgv125 PMID: 26354778
- Corona, G.; Cannizzaro, R.; Miolo, G.; Caggiari, L.; De Zorzi, M.; Repetto, O.; Steffan, A.; De Re, V. Use of metabolomics as a complementary omic approach to implement risk criteria for first-degree relatives of gastric cancer patients. Int. J. Mol. Sci., 2018, 19(3), 750. doi: 10.3390/ijms19030750 PMID: 29518896
- Braga-Neto, M.B.; Costa, D.V.S.; Queiroz, D.M.M.; Maciel, F.S.; de Oliveira, M.S.; Viana-Junior, A.B.; Santos, F.A.; Leitao, R.F.C.; Brito, G.A.C.; Vasconcelos, P.R.L.; Braga, L.L.B.C. Increased oxidative stress in gastric cancer patients and their first-degree relatives: A prospective study from northeastern brazil. Oxid. Med. Cell. Longev., 2021, 2021, 1-9. doi: 10.1155/2021/6657434 PMID: 34873431
- Kim, H.J.; Kim, N.; Kim, H.W.; Park, J.H.; Shin, C.M.; Lee, D.H. Promising aberrant DNA methylation marker to predict gastric cancer development in individuals with family history and long-term effects of H. pylori eradication on DNA methylation. Gastric Cancer, 2021, 24(2), 302-313. doi: 10.1007/s10120-020-01117-w PMID: 32915372
- Kim, J.J.; Chung, S.W.; Kim, J.H.; Kim, J.W.; Oh, J.S.; Kim, S.; Song, S.Y.; Park, J.; Kim, D.H. Promoter methylation of helicase-like transcription factor is associated with the early stages of gastric cancer with family history. Ann. Oncol., 2006, 17(4), 657-662. doi: 10.1093/annonc/mdl018 PMID: 16497821
- Hai-jiang, Y. Preliminary study on EB virus and gastric cancer. Shiyong Zhongliu Zazhi, 2010.
- Fujii, T.; Nishikawa, J.; Fukuda, S.; Kubota, N.; Nojima, J.; Fujisawa, K.; Ogawa, R.; Goto, A.; Hamabe, K.; Hashimoto, S.; Wai, A.P.; Iizasa, H.; Yoshiyama, H.; Sakai, K.; Suehiro, Y.; Yamasaki, T.; Takami, T. MC180295 inhibited EpsteinBarr virus-associated gastric carcinoma cell growth by suppressing DNA repair and the cell cycle. Int. J. Mol. Sci., 2022, 23(18), 10597. doi: 10.3390/ijms231810597 PMID: 36142506
- Lu, L.; Mullins, C.S.; Schafmayer, C.; Zeißig, S.; Linnebacher, M. A global assessment of recent trends in gastrointestinal cancer and lifestyle-associated risk factors. Cancer Commun., 2021, 41(11), 1137-1151. doi: 10.1002/cac2.12220 PMID: 34563100
- Song, P.; Wu, L.; Guan, W. Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: A meta-analysis. Nutrients, 2015, 7(12), 9872-9895. doi: 10.3390/nu7125505 PMID: 26633477
- Picetti, R.; Deeney, M.; Pastorino, S.; Miller, M.R.; Shah, A.; Leon, D.A.; Dangour, A.D.; Green, R. Nitrate and nitrite contamination in drinking water and cancer risk: A systematic review with meta-analysis. Environ. Res., 2022, 210, 112988. doi: 10.1016/j.envres.2022.112988 PMID: 35217009
- Dong, E.Y.; Giap, A.Q.; Lustigova, E.; Wu, B.U. Gastric cancer screening in first-degree relatives: A pilot study in a diverse integrated healthcare system. Clin. Transl. Gastroenterol., 2022, 13(11), e00531. doi: 10.14309/ctg.0000000000000531 PMID: 36113027
- Youn Nam, S.; Park, B.J.; Nam, J.H.; Ryu, K.H.; Kook, M.C.; Kim, J.; Lee, W.K. Association of current Helicobacter pylori infection and metabolic factors with gastric cancer in 35,519 subjects: A cross-sectional study. United European Gastroenterol. J., 2019, 7(2), 287-296. doi: 10.1177/2050640618819402 PMID: 31080613
- Yaghoobi, M.; Bijarchi, R.; Narod, S.A. Family history and the risk of gastric cancer. Br. J. Cancer, 2010, 102(2), 237-242. doi: 10.1038/sj.bjc.6605380 PMID: 19888225
- Dhillon, A.; Singh, A.; Vohra, H.; Ellis, C.; Varghese, B.; Gill, S.S. IoTPulse: Machine learning-based enterprise health information system to predict alcohol addiction in Punjab (India) using IoT and fog computing. Enterprise Inf. Syst., 2022, 16(7), 1820583. doi: 10.1080/17517575.2020.1820583
- Li, X.; Ma, J.; Leng, L.; Han, M.; Li, M.; He, F.; Zhu, Y. MoGCN: A multi-omics integration method based on graph convolutional network for cancer subtype analysis. Front. Genet., 2022, 13, 806842. doi: 10.3389/fgene.2022.806842 PMID: 35186034
- Dhillon, A.; Singh, A. Machine learning in healthcare data analysis: A survey. J. Biol. Todays World, 2019, 8, 1-10.
- McCulloch, W.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol., 1990, 52(1-2), 99-115. doi: 10.1016/S0092-8240(05)80006-0 PMID: 2185863
- Momeni, Z.; Hassanzadeh, E.; Saniee Abadeh, M.; Bellazzi, R. A survey on single and multi omics data mining methods in cancer data classification. J. Biomed. Inform., 2020, 107, 103466. doi: 10.1016/j.jbi.2020.103466 PMID: 32525020
- Ritchie, M.D.; Holzinger, E.R.; Li, R.; Pendergrass, S.A.; Kim, D. Methods of integrating data to uncover genotype phenotype interactions. Nat. Rev. Genet., 2015, 16(2), 85-97. doi: 10.1038/nrg3868 PMID: 25582081
- EL-Manzalawy, Y.; Hsieh, T.Y.; Shivakumar, M.; Kim, D.; Honavar, V. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data. BMC Med. Genomics, 2018, 11(S3)(Suppl. 3), 71. doi: 10.1186/s12920-018-0388-0 PMID: 30255801
- Malik, V.; Kalakoti, Y.; Sundar, D. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer. BMC Genomics, 2021, 22(1), 214. doi: 10.1186/s12864-021-07524-2 PMID: 33761889
- Zhang, X.; Wang, J.; Lu, J.; Su, L.; Wang, C.; Huang, Y.; Zhang, X.; Zhu, X. Robust prognostic subtyping of muscle-invasive bladder cancer revealed by deep learning-based multi-omics data integration. Front. Oncol., 2021, 11, 689626. doi: 10.3389/fonc.2021.689626 PMID: 34422643
- Chaudhary, K.; Poirion, O.B.; Lu, L.; Garmire, L.X. Deep learningbased multi-omics integration robustly predicts survival in liver cancer. Clin. Cancer Res., 2018, 24(6), 1248-1259. doi: 10.1158/1078-0432.CCR-17-0853 PMID: 28982688
- Xu, J.; Yao, Y.; Xu, B.; Li, Y.; Su, Z. Unsupervised learning of cross-modal mappings in multi-omics data for survival stratification of gastric cancer. Future Oncol., 2022, 18(2), 215-230. doi: 10.2217/fon-2021-1059 PMID: 34854737
- Chen, S.; Zang, Y.; Xu, B.; Lu, B.; Ma, R.; Miao, P.; Chen, B. An unsupervised deep learning-based model using multiomics data to predict prognosis of patients with stomach adenocarcinoma. Comput. Math. Methods Med., 2022, 2022, 1-20. doi: 10.1155/2022/5844846 PMID: 36339684
- Hu, C.; Jia, W. Multi-omics profiling: The way toward precision medicine in metabolic diseases. J. Mol. Cell Biol., 2021, 13(8), mjab051. doi: 10.1093/jmcb/mjab051 PMID: 34406397
Supplementary files
