MicroRNA Profiles in Critically Ill Patients


Cite item

Full Text

Abstract

:The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.

About the authors

Babak Alikiaii

Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences

Email: info@benthamscience.net

Mohammad Bagherniya

Nutrition and Food Security Research Center, Isfahan University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Gholamreza Askari

Nutrition and Food Security Research Center, Isfahan University of Medical Sciences

Email: info@benthamscience.net

Rajkumar Rajendram

Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs

Email: info@benthamscience.net

Amirhossein Sahebkar

Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sakr, Y.; Jaschinski, U.; Wittebole, X.; Szakmany, T.; Lipman, J.; Ñamendys-Silva, S.A.; Martin-Loeches, I.; Leone, M.; Lupu, M.N.; Vincent, J.L. Sepsis in intensive care unit patients: Worldwide data from the intensive care over nations audit. Open Forum Infect. Dis., 2018, 5(12), ofy313. doi: 10.1093/ofid/ofy313 PMID: 30555852
  2. Honore, P.M.; Jacobs, R.; Hendrickx, I.; De Waele, E.; Van Gorp, V.; Joannes-Boyau, O.; De Regt, J.; Boer, W.; Spapen, H.D. Biomarkers in critical illness: Have we made progress? Int. J. Nephrol. Renovasc. Dis., 2016, 9, 253-256. doi: 10.2147/IJNRD.S113219 PMID: 27799811
  3. Biomarkers of infection: Are they useful in the ICU? Semin. Respir. Crit. Care Med., 2019, 40(4), 465-475. doi: 10.1055/s-0039-1696689. PMID: 31585473
  4. Rello, J; Blanch, L; Preiser, J-C; De Waele, JJ How to improve research on management of critically ill patients: Lessons learned from negative randomised clinical trials in the intensive care unit. Anaesth. Crit. Care Pain Med., 2020, 39(2), 173-174. doi: 10.1016/j.accpm.2020.02.001 PMID: 32058127
  5. Ware, L.B. Biomarkers in critical illness: New insights and challenges for the future. Am. J. Respir. Crit. Care Med., 2017, 196(8), 944-945. doi: 10.1164/rccm.201704-0831ED PMID: 28475361
  6. Conway, S.R.; Wong, H.R. Biomarker panels in critical care. Crit. Care Clin., 2020, 36(1), 89-104. doi: 10.1016/j.ccc.2019.08.007 PMID: 31733684
  7. Heffernan, A.J.; Denny, K.J. Host diagnostic biomarkers of infection in the ICU: Where are we and where are we going? Curr. Infect. Dis. Rep., 2021, 23(4), 4. doi: 10.1007/s11908-021-00747-0 PMID: 33613126
  8. Kabekkodu, S.P.; Shukla, V.; Varghese, V.K.; Adiga, D.; Vethil Jishnu, P.; Chakrabarty, S.; Satyamoorthy, K. Cluster miRNAs and cancer: Diagnostic, prognostic and therapeutic opportunities. Wiley Interdiscip. Rev. RNA, 2020, 11(2), e1563. doi: 10.1002/wrna.1563 PMID: 31436881
  9. Tabaei, S.; Tabaee, S.S. Implications for MicroRNA involvement in the prognosis and treatment of atherosclerosis. Mol. Cell. Biochem., 2021, 476(3), 1327-1336. doi: 10.1007/s11010-020-03992-4 PMID: 33389489
  10. Chen, W.; Sinha, B.; Li, Y.; Benowitz, L.; Chen, Q.; Zhang, Z.; Patel, N.J.; Aziz-Sultan, A.M.; Chiocca, A.E.; Wang, X. Monogenic, polygenic, and MicroRNA markers for ischemic stroke. Mol. Neurobiol., 2019, 56(2), 1330-1343. doi: 10.1007/s12035-018-1055-3 PMID: 29948938
  11. Peplow, P.V.; Martinez, B. Blood microRNAs as potential diagnostic markers for hemorrhagic stroke. Neural Regen. Res., 2017, 12(1), 13-18. doi: 10.4103/1673-5374.198965 PMID: 28250731
  12. Sun C.; Liu J.; Duan F.; Cong L.; Qi X.; The role of the microRNA regulatory network in Alzheimer's disease: A bioinformatics analysis. Arch. Med. Sci., 2021, 18(1), 206-222. doi: 10.5114/aoms/80619 PMID: 35154541 PMCID: PMC8826944
  13. Zhang, X; Huang, F; Yang, D; Peng, T; Lu, G. Identification of miRNA-mRNA crosstalk in respiratory syncytial virus- (RSV-) Associated pediatric pneumonia through integrated mirnaome and transcriptome analysis. Mediators Inflamm., 2020, 2020, 8919534. doi: 10.1155/2020/8919534 PMID: 32410870
  14. Galván-Román, JM; Lancho-Sánchez, Á; Luquero-Bueno, S; Vega-Piris, L; Curbelo, J; Manzaneque-Pradales, M; Gómez, M; de la Fuente, H; Ortega-Gómez, M; Aspa, J Usefulness of circulating microRNAs miR-146a and miR-16-5p as prognostic biomarkers in community-acquired pneumonia. PLoS One, 2020, 15(10), e0240926. doi: 10.1371/journal.pone.0240926 PMID: 33095833
  15. Ebrahimi, S.; Hashemy, S.I.; Sahebkar, A.; Aghaee Bakhtiari, S.H. Microrna regulation of androgen receptor in castration-resistant prostate cancer: Premises, promises, and potentials. Curr. Mol. Pharmacol., 2021, 14(4), 559-569. doi: 10.2174/1874467213666201223121850 PMID: 33357209
  16. Gorabi, AM; Kiaie, N; Sathyapalan, T; Al-Rasadi, K; Jamialahmadi, T; Sahebkar, A The role of MicroRNAs in regulating cytokines and growth factors in coronary artery disease: The ins and outs. J. Immunol. Res., 2020, 2020, 5193036. doi: 10.1155/2020/5193036. PMID: 32775466
  17. Fathullahzadeh, S.; Mirzaei, H.; Honardoost, M. A.; Sahebkar, A.; & Salehi, M.; Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene. Ther., 2016, 23(10), 327-332. doi: 10.1038/cgt.2016.34
  18. Mirzaei, H.; Sahebkar, A.; Mohammadi, M.; Yari, R.; Salehi, H.; Jafari, M.; Namdar, A.; Khabazian, E.; Jaafari, M.; Mirzaei, H. Circulating micrornas in hepatocellular carcinoma: Potential diagnostic and prognostic biomarkers. Curr. Pharm. Des., 2016, 22(34), 5257-5269. doi: 10.2174/1381612822666160303110838 PMID: 26935703
  19. Inns, J.; James, V. Circulating microRNAs for the prediction of metastasis in breast cancer patients diagnosed with early stage disease. Breast, 2015, 24(4), 364-369. doi: 10.1016/j.breast.2015.04.001 PMID: 25957467
  20. Li, G.; Morris-Blanco, K.C.; Lopez, M.S.; Yang, T.; Zhao, H.; Vemuganti, R.; Luo, Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog. Neurobiol., 2018, 163-164, 59-78. doi: 10.1016/j.pneurobio.2017.08.002 PMID: 28842356
  21. Gorabi, A.M.; Ghanbari, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Implications of microRNAs in the pathogenesis of atherosclerosis and prospects for therapy. Curr. Drug Targets, 2021, 22(15), 1738-1749. doi: 10.2174/1389450122666210120143450 PMID: 33494668
  22. Mahmoudi, A.; Butler, A.E.; Jamialahmadi, T.; Sahebkar, A. The role of exosomal miRNA in nonalcoholic fatty liver disease. J. Cell. Physiol., 2022, 237(4), 2078-2094. doi: 10.1002/jcp.30699 PMID: 35137416
  23. Tavasolian, F.; Abdollahi, E.; Rezaei, R.; Momtazi-borojeni, A.A.; Henrotin, Y.; Sahebkar, A. Altered expression of MicroRNAs in rheumatoid arthritis. J. Cell. Biochem., 2018, 119(1), 478-487. doi: 10.1002/jcb.26205 PMID: 28598026
  24. Liu, N.K.; Xu, X.M. MicroRNA in central nervous system trauma and degenerative disorders. Physiol. Genomics, 2011, 43(10), 571-580. doi: 10.1152/physiolgenomics.00168.2010 PMID: 21385946
  25. Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells, 2020, 9(2), 276. doi: 10.3390/cells9020276 PMID: 31979244
  26. Morris, N.L.; Hammer, A.M.; Cannon, A.R.; Gagnon, R.C.; Li, X.; Choudhry, M.A. Dysregulation of microRNA biogenesis in the small intestine after ethanol and burn injury. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(10), 2645-2653. doi: 10.1016/j.bbadis.2017.03.025 PMID: 28404517
  27. Szilágyi, B.; Fejes, Z.; Pócsi, M.; Kappelmayer, J.; Nagy, B., Jr Role of sepsis modulated circulating microRNAs. EJIFCC, 2019, 30(2), 128-145. PMID: 31263389
  28. Bedreag, O.H.; Rogobete, A.F.; Dumache, R.; Sarandan, M.; Cradigati, A.C.; Papurica, M.; Craciunescu, M.C.; Popa, D.M.; Luca, L.; Nartita, R.; Sandesc, D. Use of circulating microRNAs as biomarkers in critically ill polytrauma patients. Biomark. Genom. Med., 2015, 7(4), 131-138. doi: 10.1016/j.bgm.2015.11.002
  29. Shukla, S.K.; Sharma, A.K.; Bharti, R.; Kulshrestha, V.; Kalonia, A.; Shaw, P. Can miRNAs serve as potential markers in thermal burn injury: An in silico approach. J. Burn Care Res., 2020, 41(1), 57-64. doi: 10.1093/jbcr/irz183 PMID: 31701154
  30. Lan, H; Lu, H; Wang, X; Jin, H. MicroRNAs as potential biomarkers in cancer: opportunities and challenges. Biomed. Res. Int., 2015, 2015, 125094. doi: 10.1155/2015/125094 PMID: 25874201
  31. Kreth, S.; Hübner, M.; Hinske, L.C. MicroRNAs as clinical biomarkers and therapeutic tools in perioperative medicine. Anesth. Analg., 2018, 126(2), 670-681. doi: 10.1213/ANE.0000000000002444 PMID: 28922229
  32. Terrinoni, A.; Calabrese, C.; Basso, D.; Aita, A.; Caporali, S.; Plebani, M.; Bernardini, S. The circulating miRNAs as diagnostic and prognostic markers. Clin. Chem. Lab. Med., 2019, 57(7), 932-953. doi: 10.1515/cclm-2018-0838 PMID: 30838832
  33. Kadir, R.R.A.; Alwjwaj, M.; Bayraktutan, U. MicroRNA: An emerging predictive, diagnostic, prognostic and therapeutic strategy in ischaemic stroke. Cell. Mol. Neurobiol., 2020, 42(5), 1301-1319. PMID: 33368054
  34. Giza, D.E.; Fuentes-Mattei, E.; Bullock, M.D.; Tudor, S.; Goblirsch, M.J.; Fabbri, M.; Lupu, F.; Yeung, S.C.J.; Vasilescu, C.; Calin, G.A. Cellular and viral microRNAs in sepsis: Mechanisms of action and clinical applications. Cell Death Differ., 2016, 23(12), 1906-1918. doi: 10.1038/cdd.2016.94 PMID: 27740627
  35. Dumache, R.; Rogobete, A.F.; Bedreag, O.H.; Sarandan, M.; Cradigati, A.C.; Papurica, M.; Dumbuleu, C.M.; Nartita, R.; Sandesc, D. Use of miRNAs as biomarkers in sepsis. Anal. Cell Pathol., 2015, 2015, 186716. doi: 10.1155/2015/186716 PMID: 26221578
  36. Abd-El-Fattah, A.A.; Sadik, N.A.H.; Shaker, O.G.; Aboulftouh, M.L. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem. Biophys., 2013, 67(3), 875-884. doi: 10.1007/s12013-013-9575-y PMID: 23559272
  37. Wang, J.; Chen, J.; Sen, S. MicroRNA as biomarkers and diagnostics. J. Cell. Physiol., 2016, 231(1), 25-30. doi: 10.1002/jcp.25056 PMID: 26031493
  38. Wiemer, E.A.C. Prognostic circulating MicroRNA biomarkers in early-stage non-small cell lung cancer: A role for miR-150. Clin. Pharmacol. Ther., 2018, 103(6), 968-970. doi: 10.1002/cpt.972 PMID: 29285749
  39. Wang, H.; Peng, R.; Wang, J.; Qin, Z.; Xue, L. Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage. Clin. Epigenetics, 2018, 10(1), 59. doi: 10.1186/s13148-018-0492-1 PMID: 29713393
  40. Saliminejad, K.; Khorram Khorshid, H.R.; Ghaffari, S.H. Why have microRNA biomarkers not been translated from bench to clinic?. Future Oncol., 2019, 15(8), 801-803. doi: 10.2217/fon-2018-0812 PMID: 30652506
  41. Benz, F.; Roy, S.; Trautwein, C.; Roderburg, C.; Luedde, T. Circulating MicroRNAs as biomarkers for sepsis. Int. J. Mol. Sci., 2016, 17(1), 78. doi: 10.3390/ijms17010078 PMID: 26761003
  42. Darden, D.B.; Stortz, J.A.; Hollen, M.K.; Cox, M.C.; Apple, C.G.; Hawkins, R.B.; Rincon, J.C.; Lopez, M.C.; Wang, Z.; Navarro, E.; Hagen, J.E.; Parvataneni, H.K.; Brusko, M.A.; Kladde, M.; Bacher, R.; Brumback, B.A.; Brakenridge, S.C.; Baker, H.V.; Cogle, C.R.; Mohr, A.M.; Efron, P.A. Identification of unique mRNA and miRNA expression patterns in bone marrow hematopoietic stem and progenitor cells after trauma in older adults. Front. Immunol., 2020, 11, 1289. doi: 10.3389/fimmu.2020.01289 PMID: 32670283
  43. Papurica, M.; Rogobete, A.F.; Sandesc, D.; Cradigati, C.A.; Sarandan, M.; Crisan, D.C.; Horhat, F.G.; Boruga, O.; Dumache, R.; Nilima, K.R.; Nitu, R.; Stanca, H.; Bedreag, O.H. The expression of nuclear transcription factor kappa B (NF-κB) in the case of critically Ill polytrauma patients with sepsis and its interactions with microRNAs. Biochem. Genet., 2016, 54(4), 337-347. doi: 10.1007/s10528-016-9727-z PMID: 27003424
  44. Zhu, J.; Chen, Z.; Meng, Z.; Ju, M.; Zhang, M.; Wu, G.; Guo, H.; Tian, Z. Electroacupuncture alleviates surgical trauma-induced hypothalamus pituitary adrenal axis hyperactivity via microRNA-142. Front. Mol. Neurosci., 2017, 10, 308. doi: 10.3389/fnmol.2017.00308 PMID: 29021740
  45. Bratu, L.; Rogobete, A.; Papurica, M.; Sandesc, D.; Cradigati, C.; Sarandan, M.; Dumache, R.; Popovici, S.; Crisan, D.; Stanca, H.; Tanasescu, S.; Bedreag, O. Literature research regarding miRNAs’ expression in the assessment and evaluation of the critically Ill polytrauma patient with traumatic brain and spinal cord injury. Clin. Lab., 2016, 62(10/2016), 2019-2024. doi: 10.7754/Clin.Lab.2016.160327 PMID: 28164531
  46. Strickland, E.R.; Woller, S.A.; Hook, M.A.; Grau, J.W.; Miranda, R.C. The association between spinal cord trauma-sensitive miRNAs and pain sensitivity, and their regulation by morphine. Neurochem. Int., 2014, 77, 40-49. doi: 10.1016/j.neuint.2014.05.005 PMID: 24867772
  47. Song, J.; Li, N.; Xia, Y.; Gao, Z.; Zou, S.F.; Yan, Y.H.; Li, S.H.; Wang, Y.; Meng, Y.K.; Yang, J.X.; Kang, T.G. Arctigenin confers neuroprotection against mechanical trauma injury in human neuroblastoma SH-SY5Y cells by regulating miRNA-16 and miRNA-199a expression to alleviate inflammation. J. Mol. Neurosci., 2016, 60(1), 115-129. doi: 10.1007/s12031-016-0784-x PMID: 27389368
  48. Wu, J.; Li, J.; Chen, W.K.; Liu, S.; Liu, J.H.; Zhang, J.S.; Fang, K.W. MicroRNA-214 affects fibroblast differentiation of adipose-derived mesenchymal stem cells by targeting mitofusin-2 during pelvic floor dysfunction in SD rats with birth trauma. Cell. Physiol. Biochem., 2017, 42(5), 1870-1887. doi: 10.1159/000479570 PMID: 28772265
  49. Simeoli, R.; Montague, K.; Jones, H.R.; Castaldi, L.; Chambers, D.; Kelleher, J.H.; Vacca, V.; Pitcher, T.; Grist, J.; Al-Ahdal, H.; Wong, L.F.; Perretti, M.; Lai, J.; Mouritzen, P.; Heppenstall, P.; Malcangio, M. Exosomal cargo including microRNA regulates sensory neuron to macrophage communication after nerve trauma. Nat. Commun., 2017, 8(1), 1778. doi: 10.1038/s41467-017-01841-5 PMID: 29176651
  50. Wang, W.; Tang, S.; Li, H.; Liu, R.; Su, Y.; Shen, L.; Sun, M.; Ning, B. MicroRNA-21a-5p promotes fibrosis in spinal fibroblasts after mechanical trauma. Exp. Cell Res., 2018, 370(1), 24-30. doi: 10.1016/j.yexcr.2018.06.002 PMID: 29883711
  51. Chen, L.; Dong, R.; Lu, Y.; Zhou, Y.; Li, K.; Zhang, Z.; Peng, M. MicroRNA-146a protects against cognitive decline induced by surgical trauma by suppressing hippocampal neuroinflammation in mice. Brain Behav. Immun., 2019, 78, 188-201. doi: 10.1016/j.bbi.2019.01.020 PMID: 30685530
  52. Luís, A.; Hackl, M.; Jafarmadar, M.; Keibl, C.; Jilge, J.M.; Grillari, J.; Bahrami, S.; Kozlov, A.V. Circulating miRNAs associated with ER stress and organ damage in a preclinical model of trauma hemorrhagic shock. Front. Med., 2020, 7, 568096. doi: 10.3389/fmed.2020.568096 PMID: 33072784
  53. Chen, LJ; Yang, L; Cheng, X; Xue, YK; Chen, LB Overexpression of miR-24 is involved in the formation of hypocoagulation state after severe trauma by inhibiting the synthesis of coagulation factor X. Dis. Markers, 2017, 2017, 3649693. doi: 10.1155/2017/3649693. PMID: 28694557
  54. Li, Z.; Ni, J. Role of microRNA-26a in the diagnosis of lower extremity deep vein thrombosis in patients with bone trauma. Exp. Ther. Med., 2017, 14(5), 5069-5074. doi: 10.3892/etm.2017.5183 PMID: 29201216
  55. Zhu, J.; Chen, Z.; Tian, J.; Meng, Z.; Ju, M.; Wu, G.; Tian, Z. miR-34b attenuates trauma-induced anxiety-like behavior by targeting CRHR1. Int. J. Mol. Med., 2017, 40(1), 90-100. doi: 10.3892/ijmm.2017.2981 PMID: 28498394
  56. Patel, M.; Cai, Q.; Ding, D.; Salvi, R.; Hu, Z.; Hu, B.H. The miR-183/Taok1 target pair is implicated in cochlear responses to acoustic trauma. PLoS One, 2013, 8(3), e58471. doi: 10.1371/journal.pone.0058471 PMID: 23472202
  57. Strickland, E.R.; Hook, M.A.; Balaraman, S.; Huie, J.R.; Grau, J.W.; Miranda, R.C. MicroRNA dysregulation following spinal cord contusion: Implications for neural plasticity and repair. Neuroscience, 2011, 186, 146-160. doi: 10.1016/j.neuroscience.2011.03.063 PMID: 21513774
  58. Chen, Y.; Sun, J.; Chen, W.; Wu, G.; Wang, Y.; Zhu, K.; Wang, J. miR-124/VAMP3 is a novel therapeutic target for mitigation of surgical trauma-induced microglial activation. Signal Transduct. Target. Ther., 2019, 4(1), 27. doi: 10.1038/s41392-019-0061-x PMID: 31637007
  59. Liang, P.; Lv, C.; Jiang, B.; Long, X.; Zhang, P.; Zhang, M.; Xie, T.; Huang, X. MicroRNA profiling in denatured dermis of deep burn patients. Burns, 2012, 38(4), 534-540. doi: 10.1016/j.burns.2011.10.014 PMID: 22360957
  60. Song, J.; Saeman, M.R.; Baer, L.A.; Cai, A.R.; Wade, C.E.; Wolf, S.E. Exercise altered the skeletal muscle MicroRNAs and gene expression profiles in burn rats with hindlimb unloading. J. Burn Care Res., 2017, 38(1), 11-19. doi: 10.1097/BCR.0000000000000444 PMID: 27753701
  61. Hu, D.; Yu, Y.; Wang, C.; Li, D.; Tai, Y.; Fang, L. microRNA-98 mediated microvascular hyperpermeability during burn shock phase via inhibiting FIH-1. Eur. J. Med. Res., 2015, 20(1), 51. doi: 10.1186/s40001-015-0141-5 PMID: 25903459
  62. Haijun, Z.; Yonghui, Y.; Jiake, C.; Hongjie, D. Detection of the microRNA expression profile in skeletal muscles of burn trauma at the early stage in rats. Ulus. Travma Acil Cerrahi Derg., 2015, 21(4), 241-247. PMID: 26374409
  63. Yu, Y.; Li, X.; Liu, L.; Chai, J.; Haijun, Z.; Chu, W.; Yin, H.; Ma, L.; Duan, H.; Xiao, M. miR-628 promotes burn-induced skeletal muscle atrophy via targeting IRS1. Int. J. Biol. Sci., 2016, 12(10), 1213-1224. doi: 10.7150/ijbs.15496 PMID: 27766036
  64. Zhou, J.; Lian, H.; Zhao, T.; Xu, G. MicroRNA-451 increases vascular permeability and suppresses angiogenesis in pulmonary burn injury in a rat model. Adv. Clin. Exp. Med., 2020, 29(11), 1241-1248. doi: 10.17219/acem/126299 PMID: 33269809
  65. Liu, J.S.; Du, J.; Cheng, X.; Zhang, X.Z.; Li, Y.; Chen, X.L. Exosomal miR-451 from human umbilical cord mesenchymal stem cells attenuates burn-induced acute lung injury. J. Chin. Med. Assoc., 2019, 82(12), 895-901. doi: 10.1097/JCMA.0000000000000189 PMID: 31800531
  66. Li, X.; Liu, L.; Yang, J.; Yu, Y.; Chai, J.; Wang, L.; Ma, L.; Yin, H. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine, 2016, 8, 72-82. doi: 10.1016/j.ebiom.2016.04.030 PMID: 27428420
  67. Ke, J.; Bian, X.; Liu, H.; Li, B.; Huo, R. Edaravone reduces oxidative stress and intestinal cell apoptosis after burn through up-regulating miR-320 expression. Mol. Med., 2019, 25(1), 54. doi: 10.1186/s10020-019-0122-1 PMID: 31829167
  68. Jiang, B.; Tang, Y.; Wang, H.; Chen, C.; Yu, W.; Sun, H.; Duan, M.; Lin, X.; Liang, P. Down-regulation of long non-coding RNA HOTAIR promotes angiogenesis via regulating miR-126/SCEL pathways in burn wound healing. Cell Death Dis., 2020, 11(1), 61. doi: 10.1038/s41419-020-2247-0 PMID: 31974341
  69. Yu, Y.; Chai, J.; Zhang, H.; Chu, W.; Liu, L.; Ma, L.; Duan, H.; Li, B.; Li, D. miR-194 Promotes burn-induced hyperglycemia via attenuating IGF-IR expression. Shock, 2014, 42(6), 578-584. doi: 10.1097/SHK.0000000000000258 PMID: 25186839
  70. Zhou, J.; Zhang, X.; Liang, P.; Ren, L.; Zeng, J.; Zhang, M.; Zhang, P.; Huang, X. Protective role of microRNA-29a in denatured dermis and skin fibroblast cells after thermal injury. Biol. Open, 2016, 5(3), 211-219. doi: 10.1242/bio.014910 PMID: 26794609
  71. Yan, Y.; Wu, R.; Bo, Y.; Zhang, M.; Chen, Y.; Wang, X.; Huang, M.; Liu, B.; Zhang, L. Induced pluripotent stem cells-derived microvesicles accelerate deep second-degree burn wound healing in mice through miR-16-5p-mediated promotion of keratinocytes migration. Theranostics, 2020, 10(22), 9970-9983. doi: 10.7150/thno.46639 PMID: 32929328
  72. Luo, J.; Zhan, J.; You, H.; Cheng, X. MicroRNA-146a/Toll-like receptor 4 signaling protects against severe burn-induced remote acute lung injury in rats via anti-inflammation. Mol. Med. Rep., 2018, 17(6), 8377-8384. doi: 10.3892/mmr.2018.8877 PMID: 29658581
  73. Liu, L.; Yin, H.; Hao, X.; Song, H.; Chai, J.; Duan, H.; Chang, Y.; Yang, L.; Wu, Y.; Han, S.; Wang, X.; Yue, X.; Chi, Y.; Liu, W.; Wang, Q.; Wang, H.; Bai, H.; Shi, X.; Li, S. Down-Regulation of miR-301a-3p reduces burn-induced vascular endothelial apoptosis by potentiating hMSC-secreted IGF-1 and PI3K/Akt/FOXO3a pathway. iScience, 2020, 23(8), 101383. doi: 10.1016/j.isci.2020.101383 PMID: 32745988
  74. Yu, Y.; Yang, L.; Han, S.; Wu, Y.; Liu, L.; Chang, Y.; Wang, X.; Chai, J. MIR-190B Alleviates cell autophagy and burn-induced Skeletal muscle wasting via modulating PHLPP1/Akt/FoxO3A signaling pathway. Shock, 2019, 52(5), 513-521. doi: 10.1097/SHK.0000000000001284 PMID: 30407372
  75. Shi, M.; Zong, X.; Chen, L.; Guo, X.; Ding, X. MiR-506-3p regulates autophagy and proliferation in post-burn skin fibroblasts through post-transcriptionally suppressing Beclin-1 expression. In Vitro Cell. Dev. Biol. Anim., 2020, 56(7), 522-532. doi: 10.1007/s11626-020-00472-3 PMID: 32754856
  76. Cao, W.; Feng, Y. LncRNA XIST promotes extracellular matrix synthesis, proliferation and migration by targeting miR-29b-3p/COL1A1 in human skin fibroblasts after thermal injury. Biol. Res., 2019, 52(1), 52. doi: 10.1186/s40659-019-0260-5 PMID: 31540582
  77. Podsiad, A.; Standiford, T.J.; Ballinger, M.N.; Eakin, R.; Park, P.; Kunkel, S.L.; Moore, B.B.; Bhan, U. MicroRNA-155 regulates host immune response to postviral bacterial pneumonia via IL-23/IL-17 pathway. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 310(5), L465-L475. doi: 10.1152/ajplung.00224.2015 PMID: 26589478
  78. Wu, X; Wu, C; Gu, W; Ji, H; Zhu, L. Serum exosomal micrornas predict acute respiratory distress syndrome events in patients with severe community-acquired pneumonia. Biomed. Res. Int., 2019, 2019, 3612020. doi: 10.1155/2019/3612020 PMID: 31467883
  79. Huang, S.; Feng, C.; Zhai, Y.Z.; Zhou, X.; Li, B.; Wang, L.L.; Chen, W.; Lv, F.Q.; Li, T.S. Identification of miRNA biomarkers of pneumonia using RNA-sequencing and bioinformatics analysis. Exp. Ther. Med., 2017, 13(4), 1235-1244. doi: 10.3892/etm.2017.4151 PMID: 28413462
  80. Liu, Z.; Yu, H.; Guo, Q. MicroRNA-20a promotes inflammation via the nuclear factor-κB signaling pathway in pediatric pneumonia. Mol. Med. Rep., 2018, 17(1), 612-617. PMID: 29115456
  81. Huang, F; Zhang, J; Yang, D; Zhang, Y; Huang, J; Yuan, Y; Li, X; Lu, G MicroRNA expression profile of whole blood is altered in adenovirus-infected pneumonia children. Mediators Inflamm., 2018, 2018, 2320640. doi: 10.1155/2018/2320640 PMID: 30405317
  82. Huang, F.; Bai, J.; Zhang, J.; Yang, D.; Fan, H.; Huang, L.; Shi, T.; Lu, G. Identification of potential diagnostic biomarkers for pneumonia caused by adenovirus infection in children by screening serum exosomal microRNAs. Mol. Med. Rep., 2019, 19(5), 4306-4314. doi: 10.3892/mmr.2019.10107 PMID: 30942467
  83. Hermann, S.; Brandes, F.; Kirchner, B.; Buschmann, D.; Borrmann, M.; Klein, M.; Kotschote, S.; Bonin, M.; Reithmair, M.; Kaufmann, I.; Schelling, G.; Pfaffl, M.W. Diagnostic potential of circulating cell-free microRNAs for community-acquired pneumonia and pneumonia-related sepsis. J. Cell. Mol. Med., 2020, 24(20), 12054-12064. doi: 10.1111/jcmm.15837 PMID: 32916773
  84. Wang, Y.; Li, H.; Shi, Y.; Wang, S.; Xu, Y.; Li, H.; Liu, D. miR-143-3p impacts on pulmonary inflammatory factors and cell apoptosis in mice with mycoplasmal pneumonia by regulating TLR4/MyD88/NF-κB pathway. Biosci. Rep., 2020, 40(7), BSR20193419. doi: 10.1042/BSR20193419
  85. Zhang, L.; Yan, H.; Wang, H.; Wang, L.; Bai, B.; Ma, Y.; Tie, Y.; Xi, Z. MicroRNA (miR)-429 promotes inflammatory injury by targeting kruppel-like factor 4 (KLF4) in neonatal pneumonia. Curr. Neurovasc. Res., 2020, 17(1), 102-109. doi: 10.2174/1567202617666200128143634 PMID: 32003671
  86. Chu, C.; Lei, X.; Li, Y.; Luo, Y.; Ding, Y.; Zhou, W.; Ji, W. High expression of miR-222-3p in children with Mycoplasma pneumoniae pneumonia. Ital. J. Pediatr., 2019, 45(1), 163. doi: 10.1186/s13052-019-0750-7 PMID: 31842954
  87. Fei, S.; Cao, L.; Pan, L. microRNA-3941 targets IGF2 to control LPS-induced acute pneumonia in A549 cells. Mol. Med. Rep., 2018, 17(3), 4019-4026. PMID: 29328418
  88. Gao, W.; Yang, H. MicroRNA-124-3p attenuates severe community-acquired pneumonia progression in macrophages by targeting tumor necrosis factor receptor-associated factor 6. Int. J. Mol. Med., 2019, 43(2), 1003-1010. PMID: 30535475
  89. Chen, C.; Lin, S.; Zhou, L.; Wang, J.; Chen, J.; Yu, R.; Luo, H.; Lu, J.; Xue, Z.; Chen, M. MicroRNA-127-5p attenuates severe pneumonia via tumor necrosis factor receptor-associated factor 1. Exp. Ther. Med., 2020, 20(3), 2856-2862. doi: 10.3892/etm.2020.8997 PMID: 32765782
  90. Guo, L.; Wang, Q.; Zhang, D. MicroRNA-4485 ameliorates severe influenza pneumonia via inhibition of the STAT3/PI3K/AKT signaling pathway. Oncol. Lett., 2020, 20(5), 1. doi: 10.3892/ol.2020.12078 PMID: 32963621
  91. Zhang, J.; Mao, F.; Zhao, G.; Wang, H.; Yan, X.; Zhang, Q. Long non-coding RNA SNHG16 promotes lipopolysaccharides-induced acute pneumonia in A549 cells via targeting miR-370-3p/IGF2 axis. Int. Immunopharmacol., 2020, 78, 106065. doi: 10.1016/j.intimp.2019.106065 PMID: 31841752
  92. Yin, L.; Ma, Y.; Wang, W.; Zhu, Y. The critical function of miR-1323/Il6 axis in children with Mycoplasma pneumoniae pneumonia. J. Pediatr., 2020, 97(5), 552-558. PMID: 33347836
  93. Li, S.; Cui, W.; Song, Q.; Zhou, Y.; Li, J. miRNA-302e attenuates inflammation in infantile pneumonia though the RelA/BRD4/NF-κB signaling pathway. Int. J. Mol. Med., 2019, 44(1), 47-56. doi: 10.3892/ijmm.2019.4194 PMID: 31115487
  94. Ruiz-Castilla, M.; Roca, O.; Masclans, J.R.; Barret, J.P. Recent advances in biomarkers in severe burns. Shock: Injury, Inflammation, and Sepsis. Lab. Clin. Approaches., 2016, 45(2), 117-125.
  95. Kaddoura, I.; Abu-Sittah, G.; Ibrahim, A.; Karamanoukian, R.; Papazian, N. Burn injury: Review of pathophysiology and therapeutic modalities in major burns. Ann. Burns Fire Disasters, 2017, 30(2), 95-102. PMID: 29021720
  96. Sonkoly, E.; Wei, T.; Janson, P.C.J.; Sääf, A.; Lundeberg, L.; Tengvall-Linder, M.; Norstedt, G.; Alenius, H.; Homey, B.; Scheynius, A.; Ståhle, M.; Pivarcsi, A. MicroRNAs: Novel regulators involved in the pathogenesis of psoriasis? PLoS One, 2007, 2(7), e610. doi: 10.1371/journal.pone.0000610 PMID: 17622355
  97. Pan, J.; Ye, Z.; Zhang, N.; Lou, T.; Cao, Z. MicroRNA-217 regulates interstitial pneumonia via IL-6. Biotechnol. Biotechnol. Equip., 2018, 32(6), 1541-1547. doi: 10.1080/13102818.2018.1519379
  98. Kingsley, S.M.K.; Bhat, B.V. Role of microRNAs in sepsis. Inflamm. Res., 2017, 66(7), 553-569. doi: 10.1007/s00011-017-1031-9 PMID: 28258291
  99. Van Looveren, K.; Van Wyngene, L.; Libert, C. An extracellular microRNA can rescue lives in sepsis. EMBO Rep., 2020, 21(1), e49193. doi: 10.15252/embr.201949193 PMID: 31724800
  100. Shankar-Hari, M.; Lord, G.M. How might a diagnostic microRNA signature be used to speed up the diagnosis of sepsis? Expert Rev. Mol. Diagn., 2014, 14(3), 249-251. doi: 10.1586/14737159.2014.899151 PMID: 24649814
  101. Søndergaard, E.S.; Alamili, M.; Coskun, M.; Gögenur, I. MicroRNA’s are novel biomarkers in sepsis – A systematic review. Trends Anaesth. Crit. Care., 2015, 5(5), 151-156. doi: 10.1016/j.tacc.2015.08.001
  102. Zhang, W.; Jia, J.; Liu, Z.; Si, D.; Ma, L.; Zhang, G. Circulating microRNAs as biomarkers for Sepsis secondary to pneumonia diagnosed via Sepsis 3.0. BMC Pulm. Med., 2019, 19(1), 93. doi: 10.1186/s12890-019-0836-4 PMID: 31088429
  103. Xu, R.; Shao, Z.; Cao, Q. MicroRNA-144-3p enhances LPS induced septic acute lung injury in mice through downregulating Caveolin-2. Immunol. Lett., 2021, 231, 18-25. doi: 10.1016/j.imlet.2020.12.015 PMID: 33418009
  104. Liu, D.; Wang, Z.; Wang, H.; Ren, F.; Li, Y.; Zou, S.; Xu, J.; Xie, L. The protective role of miR-223 in sepsis-induced mortality. Sci. Rep., 2020, 10(1), 17691. doi: 10.1038/s41598-020-74965-2 PMID: 33077816
  105. Dang, CP; Leelahavanichkul, A Over-expression of miR-223 induces M2 macrophage through glycolysis alteration and attenuates LPS-induced sepsis mouse model, the cell-based therapy in sepsis. PLoS One, 2020, 15(7), e0236038. doi: 10.1371/journal.pone.0236038 PMID: 32658933
  106. Wang, X.; Gu, H.; Qin, D.; Yang, L.; Huang, W.; Essandoh, K.; Wang, Y.; Caldwell, C.C.; Peng, T.; Zingarelli, B.; Fan, G.C. Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Sci. Rep., 2015, 5(1), 13721. doi: 10.1038/srep13721 PMID: 26348153
  107. Tong, L.; Tang, C.; Cai, C.; Guan, X. Upregulation of the microRNA rno-miR-146b-5p may be involved in the development of intestinal injury through inhibition of Kruppel- like factor 4 in intestinal sepsis. Bioengineered, 2020, 11(1), 1334-1349. doi: 10.1080/21655979.2020.1851476 PMID: 33200654
  108. Jiang, L.; Ni, J.; Shen, G.; Xia, Z.; Zhang, L.; Xia, S.; Pan, S.; Qu, H.; Li, X. Upregulation of endothelial cell-derived exosomal microRNA-125b-5p protects from sepsis-induced acute lung injury by inhibiting topoisomerase II alpha. Inflamm. Res., 2021, 70(2), 205-216. doi: 10.1007/s00011-020-01415-0 PMID: 33386874
  109. Zhu, H.C.; Song, W.W.; Zhao, M.L.; Zhang, R.M.; Tian, X. Effect of miR-132 on lung injury in sepsis rats via regulating Sirt1 expression. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(2), 1042-1049. PMID: 33577060
  110. An, R; Feng, J; Xi, C; Xu, J; Sun, L. MiR-146a attenuates sepsis-induced myocardial dysfunction by suppressing IRAK1 and TRAF6 via targeting ErbB4 expression. Oxid. Med. Cell Longev., 2018, 2018, 7163057. doi: 10.1155/2018/7163057 PMID: 30224945
  111. Gao, M.; Wang, X.; Zhang, X.; Ha, T.; Ma, H.; Liu, L.; Kalbfleisch, J.H.; Gao, X.; Kao, R.L.; Williams, D.L.; Li, C. Attenuation of cardiac dysfunction in polymicrobial sepsis by MicroRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. J. Immunol., 2015, 195(2), 672-682. doi: 10.4049/jimmunol.1403155 PMID: 26048146
  112. Funahashi, Y.; Kato, N.; Masuda, T.; Nishio, F.; Kitai, H.; Ishimoto, T.; Kosugi, T.; Tsuboi, N.; Matsuda, N.; Maruyama, S.; Kadomatsu, K. miR-146a targeted to splenic macrophages prevents sepsis-induced multiple organ injury. Lab. Invest., 2019, 99(8), 1130-1142. doi: 10.1038/s41374-019-0190-4 PMID: 30700845
  113. Song, Y.; Dou, H.; Li, X.; Zhao, X.; Li, Y.; Liu, D.; Ji, J.; Liu, F.; Ding, L.; Ni, Y.; Hou, Y. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis. Stem Cells, 2017, 35(5), 1208-1221. doi: 10.1002/stem.2564 PMID: 28090688
  114. Sang, Z; Zhang, P; Wei, Y; Dong, S. MiR-214-3p attenuates sepsis-induced myocardial dysfunction in mice by inhibiting autophagy through PTEN/AKT/mTOR pathway. Biomed. Res. Int., 2020, 2020, 1409038. doi: 10.1155/2020/1409038 PMID: 32714974
  115. Zheng, G; Qiu, G; Ge, M; Meng, J; Zhang, G; Wang, J; Huang, R; Shu, Q; Xu, J MiR-10a in peripheral blood mononuclear cells is a biomarker for sepsis and has anti-inflammatory function. Mediators Inflamm., 2020, 2020, 4370983. doi: 10.1155/2020/4370983 PMID: 32214905
  116. Du, X; Tian, D; Wei, J; Yan, C; Hu, P; Wu, X; Yang, W; Zhu, Z MiR-199a-5p exacerbated intestinal barrier dysfunction through inhibiting surfactant protein D and activating NF- κ B pathway in sepsis. Mediators Inflamm., 2020, 2020, 8275026. doi: 10.1155/2020/8275026 PMID: 32508527
  117. Qin, L.Y.; Wang, M.X.; Zhang, H. MiR-133a alleviates renal injury caused by sepsis by targeting BNIP3L. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(5), 2632-2639. PMID: 32196613
  118. Tacke, F.; Roderburg, C.; Benz, F.; Cardenas, D.V.; Luedde, M.; Hippe, H.J.; Frey, N.; Vucur, M.; Gautheron, J.; Koch, A.; Trautwein, C.; Luedde, T. Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Crit. Care Med., 2014, 42(5), 1096-1104. doi: 10.1097/CCM.0000000000000131 PMID: 24413579
  119. Chen, L.; Xie, W.; Wang, L.; Zhang, X.; Liu, E.; Kou, Q. MiRNA-133a aggravates inflammatory responses in sepsis by targeting SIRT1. Int. Immunopharmacol., 2020, 88, 106848. doi: 10.1016/j.intimp.2020.106848 PMID: 32771944
  120. Zhang, J.; Wang, C.J.; Tang, X.M.; Wei, Y.K. Urinary miR-26b as a potential biomarker for patients with sepsis-associated acute kidney injury: A Chinese population-based study. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(14), 4604-4610. PMID: 30058697
  121. Zhou, Y.; Song, Y.; Shaikh, Z.; Li, H.; Zhang, H.; Caudle, Y.; Zheng, S.; Yan, H.; Hu, D.; Stuart, C.; Yin, D. MicroRNA-155 attenuates late sepsis-induced cardiac dysfunction through JNK and β-arrestin 2. Oncotarget, 2017, 8(29), 47317-47329. doi: 10.18632/oncotarget.17636 PMID: 28525390
  122. Cao, Y.Y.; Wang, Z.; Wang, Z.H.; Jiang, X.G.; Lu, W.H. Inhibition of miR-155 alleviates sepsis-induced inflammation and intestinal barrier dysfunction by inactivating NF-κB signaling. Int. Immunopharmacol., 2021, 90, 107218. doi: 10.1016/j.intimp.2020.107218
  123. Vasques-Nóvoa, F.; Laundos, T.L.; Cerqueira, R.J.; Quina-Rodrigues, C.; Soares-dos-Reis, R.; Baganha, F.; Ribeiro, S.; Mendonça, L.; Gonçalves, F.; Reguenga, C.; Verhesen, W.; Carneiro, F.; Paiva, J.A.; Schroen, B.; Castro-Chaves, P.; Pinto-do-Ó, P.; Nascimento, D.S.; Heymans, S.; Leite-Moreira, A.F.; Roncon-Albuquerque, R., Jr MicroRNA-155 amplifies nitric oxide/cGMP signaling and impairs vascular angiotensin II reactivity in septic shock. Crit. Care Med., 2018, 46(9), e945-e954. doi: 10.1097/CCM.0000000000003296 PMID: 29979224
  124. Liu, J.; Shi, K.; Chen, M.; Xu, L.; Hong, J.; Hu, B.; Yang, X.; Sun, R. Elevated miR-155 expression induces immunosuppression via CD39 + regulatory T-cells in sepsis patient. Int. J. Infect. Dis., 2015, 40, 135-141. doi: 10.1016/j.ijid.2015.09.016 PMID: 26433115
  125. Lv, X.; Zhang, Y.; Cui, Y.; Ren, Y.; Li, R.; Rong, Q. Inhibition of microRNA-155 relieves sepsis-induced liver injury through inactivating the JAK/STAT pathway. Mol. Med. Rep., 2015, 12(4), 6013-6018. doi: 10.3892/mmr.2015.4188 PMID: 26251957
  126. Du, X; Wu, M; Tian, D; Zhou, J; Wang, L; Zhan, L. MicroRNA-21 contributes to acute liver injury in LPS-induced sepsis mice by inhibiting PPAR α expression. PPAR Res., 2020, 2020, 6633022. doi: 10.1155/2020/6633022 PMID: 33424957
  127. Sheng, B.; Zhao, L.; Zang, X.; Zhen, J.; Chen, W. miR-375 ameliorates sepsis by downregulating miR-21 level via inhibiting JAK2-STAT3 signaling. Biomed. Pharmacother., 2017, 86, 254-261. doi: 10.1016/j.biopha.2016.11.147 PMID: 28006751
  128. Fu, D.; Dong, J.; Li, P.; Tang, C.; Cheng, W.; Xu, Z.; Zhou, W.; Ge, J.; Xia, C.; Zhang, Z. MiRNA-21 has effects to protect kidney injury induced by sepsis. Biomed. Pharmacother., 2017, 94, 1138-1144. doi: 10.1016/j.biopha.2017.07.098 PMID: 28821165
  129. Wang, S.; Wang, J.; Zhang, Z.; Miao, H. Decreased miR-128 and increased miR-21 synergistically cause podocyte injury in sepsis. J. Nephrol., 2017, 30(4), 543-550. doi: 10.1007/s40620-017-0405-y PMID: 28497421
  130. van der Heide, V.; Möhnle, P.; Rink, J.; Briegel, J.; Kreth, S. Down-regulation of MicroRNA-31 in CD4+ T cells contributes to immunosuppression in human sepsis by promoting TH2skewing. Anesthesiology, 2016, 124(4), 908-922. doi: 10.1097/ALN.0000000000001031 PMID: 26978146
  131. Liu, Y.; Guan, H.; Zhang, J.L.; Zheng, Z.; Wang, H.T.; Tao, K.; Han, S.C.; Su, L.L.; Hu, D. Acute downregulation of miR-199a attenuates sepsis-induced acute lung injury by targeting SIRT1. Am. J. Physiol. Cell Physiol., 2018, 314(4), C449-C455. doi: 10.1152/ajpcell.00173.2017 PMID: 29351405
  132. Liu, L.; Li, T.M.; Liu, X.R.; Bai, Y.P.; Li, J.; Tang, N.; Wang, X.B. MicroRNA-140 inhibits skeletal muscle glycolysis and atrophy in endotoxin-induced sepsis in mice via the WNT signaling pathway. Am. J. Physiol. Cell Physiol., 2019, 317(2), C189-C199. doi: 10.1152/ajpcell.00419.2018 PMID: 31042421
  133. Sun, W.; Li, H.; Gu, J. Up-regulation of microRNA-574 attenuates lipopolysaccharide- or cecal ligation and puncture-induced sepsis associated with acute lung injury. Cell Biochem. Funct., 2020, 38(7), 847-858. doi: 10.1002/cbf.3496 PMID: 32090367
  134. Wang, H.; Zhang, P.; Chen, W.; Feng, D.; Jia, Y.; Xie, L. Evidence for serum miR-15a and miR-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects. Clin. Chem. Lab. Med., 2012, 50(8), 1423-1428. doi: 10.1515/cclm-2011-0826 PMID: 22868808
  135. Wang, H.J.; Deng, J.; Wang, J.Y.; Zhang, P.J.; Xin, Z.; Xiao, K.; Feng, D.; Jia, Y.H.; Liu, Y.N.; Xie, L.X. Serum miR-122 levels are related to coagulation disorders in sepsis patients. Clin. Chem. Lab. Med., 2014, 52(6), 927-933. doi: 10.1515/cclm-2013-0899 PMID: 24421215
  136. Gao, M.; Yu, T.; Liu, D.; Shi, Y.; Yang, P.; Zhang, J.; Wang, J.; Liu, Y.; Zhang, X. Sepsis plasma-derived exosomal miR-1-3p induces endothelial cell dysfunction by targeting SERP1. Clin. Sci., 2021, 135(2), 347-365. doi: 10.1042/CS20200573 PMID: 33416075
  137. Zhang, L.N.; Tian, H.; Zhou, X.L.; Tian, S.C.; Zhang, X.H.; Wu, T.J. Upregulation of microRNA-351 exerts protective effects during sepsis by ameliorating skeletal muscle wasting through the Tead- 4 -mediated blockade of the Hippo signaling pathway. FASEB J., 2018, 32(12), 6934-6947. doi: 10.1096/fj.201800151RR PMID: 30040486
  138. McClure, C.; McPeak, M.B.; Youssef, D.; Yao, Z.Q.; McCall, C.E.; El Gazzar, M. Stat3 and C/EBPβ synergize to induce miR-21 and miR-181b expression during sepsis. Immunol. Cell Biol., 2017, 95(1), 42-55. doi: 10.1038/icb.2016.63 PMID: 27430527
  139. Tod, P.; Róka, B.; Kaucsár, T.; Szatmári, K.; Vizovišek, M.; Vidmar, R.; Fonovič, M.; Szénási, G.; Hamar, P. Time-dependent mirna profile during septic acute kidney injury in mice. Int. J. Mol. Sci., 2020, 21(15), 5316. doi: 10.3390/ijms21155316 PMID: 32727087
  140. Zheng, D.; Yu, Y.; Li, M.; Wang, G.; Chen, R.; Fan, G.C.; Martin, C.; Xiong, S.; Peng, T. Inhibition of MicroRNA 195 prevents apoptosis and multiple-organ injury in mouse models of sepsis. J. Infect. Dis., 2016, 213(10), 1661-1670. doi: 10.1093/infdis/jiv760 PMID: 26704614
  141. Ma, H.; Wang, X.; Ha, T.; Gao, M.; Liu, L.; Wang, R.; Yu, K.; Kalbfleisch, J.H.; Kao, R.L.; Williams, D.L.; Li, C. MicroRNA-125b prevents cardiac dysfunction in polymicrobial sepsis by targeting TRAF6-mediated nuclear factor κb activation and p53-mediated apoptotic signaling. J. Infect. Dis., 2016, 214(11), 1773-1783. doi: 10.1093/infdis/jiw449 PMID: 27683819
  142. Zhang, H.; Li, H.; Shaikh, A.; Caudle, Y.; Yao, B.; Yin, D. Inhibition of MicroRNA-23b attenuates immunosuppression during late sepsis through NIK, TRAF1, and XIAP. J. Infect. Dis., 2018, 218(2), 300-311. doi: 10.1093/infdis/jiy116 PMID: 29506272
  143. Zhang, H.; Caudle, Y.; Shaikh, A.; Yao, B.; Yin, D. Inhibition of microRNA-23b prevents polymicrobial sepsis-induced cardiac dysfunction by modulating TGIF1 and PTEN. Biomed. Pharmacother., 2018, 103, 869-878. doi: 10.1016/j.biopha.2018.04.092 PMID: 29710503
  144. Cheng, D.L.; Fang, H.X.; Liang, Y.; Zhao, Y.; Shi, C. MicroRNA-34a promotes iNOS secretion from pulmonary macrophages in septic suckling rats through activating STAT3 pathway. Biomed. Pharmacother., 2018, 105, 1276-1282. doi: 10.1016/j.biopha.2018.06.063 PMID: 30021364
  145. Li, Y.; Ke, J.; Peng, C.; Wu, F.; Song, Y. microRNA-300/NAMPT regulates inflammatory responses through activation of AMPK/mTOR signaling pathway in neonatal sepsis. Biomed. Pharmacother., 2018, 108, 271-279. doi: 10.1016/j.biopha.2018.08.064 PMID: 30223098
  146. Zhen, J.; Chen, W.; Zhao, L.; Zang, X.; Liu, Y. A negative Smad2/miR-9/ANO1 regulatory loop is responsible for LPS-induced sepsis. Biomed. Pharmacother., 2019, 116, 109016. doi: 10.1016/j.biopha.2019.109016 PMID: 31174089
  147. Wang, Z.; Ruan, Z.; Mao, Y.; Dong, W.; Zhang, Y.; Yin, N.; Jiang, L. miR-27a is up regulated and promotes inflammatory response in sepsis. Cell. Immunol., 2014, 290(2), 190-195. doi: 10.1016/j.cellimm.2014.06.006 PMID: 25043848
  148. Gao, X.L.; Li, J.Q.; Dong, Y.T.; Cheng, E.J.; Gong, J.N.; Qin, Y.L.; Huang, Y.Q.; Yang, J.J.; Wang, S.J.; An, D.D. Upregulation of microRNA-335-5p reduces inflammatory responses by inhibiting FASN through the activation of AMPK/ULK1 signaling pathway in a septic mouse model. Cytokine, 2018, 110, 466-478. doi: 10.1016/j.cyto.2018.05.016 PMID: 29866515
  149. Zheng, G.; Pan, M.; Jin, W.; Jin, G.; Huang, Y. MicroRNA-135a is up-regulated and aggravates myocardial depression in sepsis via regulating p38 MAPK/NF-κB pathway. Int. Immunopharmacol., 2017, 45, 6-12. doi: 10.1016/j.intimp.2017.01.029 PMID: 28147298
  150. Ling, Y.; Li, Z.Z.; Zhang, J.F.; Zheng, X.W.; Lei, Z.Q.; Chen, R.Y.; Feng, J.H. RETRACTED: MicroRNA-494 inhibition alleviates acute lung injury through Nrf2 signaling pathway via NQO1 in sepsis-associated acute respiratory distress syndrome. Life Sci., 2018, 210, 1-8. doi: 10.1016/j.lfs.2018.08.037 PMID: 30121199
  151. Xu, F.; Yuan, J.; Tian, S.; Chen, Y.; Zhou, F. MicroRNA-92a serves as a risk factor in sepsis-induced ARDS and regulates apoptosis and cell migration in lipopolysaccharide-induced HPMEC and A549 cell injury. Life Sci., 2020, 256, 117957. doi: 10.1016/j.lfs.2020.117957 PMID: 32534035
  152. Wang, H.; Bei, Y.; Shen, S.; Huang, P.; Shi, J.; Zhang, J.; Sun, Q.; Chen, Y.; Yang, Y.; Xu, T.; Kong, X.; Xiao, J. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. J. Mol. Cell. Cardiol., 2016, 94, 43-53. doi: 10.1016/j.yjmcc.2016.03.014 PMID: 27033308
  153. Pfeiffer, D.; Roßmanith, E.; Lang, I.; Falkenhagen, D. miR-146a, miR-146b, and miR-155 increase expression of IL-6 and IL-8 and support HSP10 in an in vitro sepsis model. PLoS One, 2017, 12(6), e0179850. doi: 10.1371/journal.pone.0179850 PMID: 28662100
  154. Rahmel, T.; Schäfer, S.T.; Frey, U.H.; Adamzik, M.; Peters, J. Increased circulating microRNA-122 is a biomarker for discrimination and risk stratification in patients defined by sepsis-3 criteria. PLoS One, 2018, 13(5), e0197637. doi: 10.1371/journal.pone.0197637 PMID: 29782519
  155. Zhu, J.; Lin, X.; Yan, C.; Yang, S.; Zhu, Z. RETRACTED ARTICLE: microRNA-98 protects sepsis mice from cardiac dysfunction, liver and lung injury by negatively regulating HMGA2 through inhibiting NF-κB signaling pathway. Cell Cycle, 2019, 18(16), 1948-1964. doi: 10.1080/15384101.2019.1635869 PMID: 31234706
  156. Liu, Z.; Yang, D.; Gao, J.; Xiang, X.; Hu, X.; Li, S.; Wu, W.; Cai, J.; Tang, C.; Zhang, D.; Dong, Z. Discovery and validation of miR-452 as an effective biomarker for acute kidney injury in sepsis. Theranostics, 2020, 10(26), 11963-11975. doi: 10.7150/thno.50093 PMID: 33204323
  157. Chen, L.; Yu, L.; Zhang, R.; Zhu, L.; Shen, W. Correlation of microRNA-146a/b with disease risk, biochemical indices, inflammatory cytokines, overall disease severity, and prognosis of sepsis. Medicine, 2020, 99(22), e19754. doi: 10.1097/MD.0000000000019754 PMID: 32481361
  158. Huang, Z.; Xu, H. MicroRNA-181a-5p regulates inflammatory response of macrophages in sepsis. Open Med., 2019, 14(1), 899-908. doi: 10.1515/med-2019-0106 PMID: 31844680
  159. Younes, N.; Zhou, L.; Amatullah, H.; Mei, S.H.J.; Herrero, R.; Lorente, J.A.; Stewart, D.J.; Marsden, P.; Liles, W.C.; Hu, P.; dos Santos, C.C. Mesenchymal stromal/stem cells modulate response to experimental sepsis-induced lung injury via regulation of miR-27a-5p in recipient mice. Thorax, 2020, 75(7), 556-567. doi: 10.1136/thoraxjnl-2019-213561 PMID: 32546573
  160. Li, M.; Li, W.; Ren, F.Q.; Zhang, M. miRNA-186 improves sepsis induced renal injury via PTEN/PI3K/AKT/P53 pathway. Open Med., 2020, 15(1), 254-260. doi: 10.1515/med-2020-0036 PMID: 32292821
  161. Möhnle, P.; Hirschberger, S.; Hinske, L.C.; Briegel, J.; Hübner, M.; Weis, S.; Dimopoulos, G.; Bauer, M.; Giamarellos-Bourboulis, E.J.; Kreth, S. MicroRNAs 143 and 150 in whole blood enable detection of T-cell immunoparalysis in sepsis. Mol. Med., 2018, 24(1), 54. doi: 10.1186/s10020-018-0056-z PMID: 30332984
  162. Zhao, X.; Liu, D.; Gong, W.; Zhao, G.; Liu, L.; Yang, L.; Hou, Y. The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143. Stem Cells, 2014, 32(2), 521-533. doi: 10.1002/stem.1543 PMID: 24105952
  163. Wang, L.; Wang, K.; Tian, Z. miR-128-3p inhibits NRP1 expression and promotes inflammatory response to acute kidney injury in sepsis. Inflammation, 2020, 43(5), 1772-1779. doi: 10.1007/s10753-020-01251-8 PMID: 32500307
  164. Sun, J.; Sun, X.; Chen, J.; Liao, X.; He, Y.; Wang, J.; Chen, R.; Hu, S.; Qiu, C. microRNA-27b shuttled by mesenchymal stem cell-derived exosomes prevents sepsis by targeting JMJD3 and downregulating NF-κB signaling pathway. Stem Cell Res. Ther., 2021, 12(1), 14. doi: 10.1186/s13287-020-02068-w
  165. Ge, C.; Liu, J.; Dong, S. miRNA-214 protects sepsis-induced myocardial injury. Shock, 2018, 50(1), 112-118. doi: 10.1097/SHK.0000000000000978 PMID: 28858140
  166. Visitchanakun, P.; Tangtanatakul, P.; Trithiphen, O.; Soonthornchai, W.; Wongphoom, J.; Tachaboon, S.; Srisawat, N.; Leelahavanichkul, A. Plasma miR-370-3P as a biomarker of sepsis-associated encephalopathy, the transcriptomic profiling analysis of microrna-arrays from mouse brains. Shock, 2020, 54(3), 347-357. doi: 10.1097/SHK.0000000000001473 PMID: 31743302
  167. Yan, J.; Yang, F.; Wang, D.; Lu, Y.; Liu, L.; Wang, Z. MicroRNA-217 modulates inflammation, oxidative stress, and lung injury in septic mice via SIRT1. Free Radic. Res., 2020, 55(1), 1-10. PMID: 33207945
  168. Zhang, W; Lu, F; Xie, Y; Lin, Y; Zhao, T; Tao, S MiR-23b negatively regulates sepsis-induced inflammatory responses by targeting ADAM10 in human THP-1 monocytes. Mediators Inflamm., 2019, 2019, 5306541. doi: 10.1155/2019/5306541 PMID: 31780861
  169. Fatmi, A.; Rebiahi, S.A.; Chabni, N.; Zerrouki, H.; Azzaoui, H.; Elhabiri, Y.; Benmansour, S.; Ibáñez-Cabellos, J.S.; Smahi, M.C-E.; Aribi, M.; García-Giménez, J.L.; Pallardó, F.V. miRNA-23b as a biomarker of culture-positive neonatal sepsis. Mol. Med., 2020, 26(1), 94. doi: 10.1186/s10020-020-00217-8
  170. Yang, M; Zhao, L; Sun, M. Diagnostic Value of miR-103 in patients with sepsis and noninfectious SIRS and its regulatory role in LPS-induced inflammatory response by targeting TLR4. Int. J. Genomics, 2020, 2020, 2198308. doi: 10.1155/2020/2198308 PMID: 32455124
  171. Zhu, XG; Zhang, TN; Wen, R; Liu, CF Overexpression of miR-150-5p alleviates apoptosis in sepsis-induced myocardial depression. Biomed. Res. Int., 2020, 2020, 3023186. doi: 10.1155/2020/3023186 PMID: 32908879
  172. Wang, H.F.; Li, Y.; Wang, Y.Q.; Li, H.J.; Dou, L. MicroRNA-494-3p alleviates inflammatory response in sepsis by targeting TLR6. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(7), 2971-2977. PMID: 31002148
  173. Li, J.M.; Zhang, H.; Zuo, Y.J. MicroRNA-218 alleviates sepsis inflammation by negatively regulating VOPP1 via JAK/STAT pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(17), 5620-5626. PMID: 30229837
  174. Li, X.; Yao, L.; Zeng, X.; Hu, B.; Zhang, X.; Wang, J.; Zhu, R.; Yu, Q. miR-30c-5p alleviated pyroptosis during sepsis-induced acute kidney injury via targeting TXNIP. Inflammation, 2021, 44(1), 217-228. doi: 10.1007/s10753-020-01323-9 PMID: 32892306
  175. Chen, X.; Chen, Y.; Dai, L.; Wang, N. MiR-96-5p alleviates inflammatory responses by targeting NAMPT and regulating the NF-κB pathway in neonatal sepsis. Biosci. Rep., 2020, 40(7), BSR20201267. doi: 10.1042/BSR20201267
  176. Wang, X.; Wang, Y.; Kong, M.; Yang, J. MiR-22-3p suppresses sepsis-induced acute kidney injury by targeting PTEN. Biosci. Rep., 2020, 40(6), BSR20200527. doi: 10.1042/BSR20200527 PMID: 32412059
  177. Chen, S.; Ding, R.; Hu, Z.; Yin, X.; Xiao, F.; Zhang, W.; Yan, S.; Lv, C. MicroRNA-34a inhibition alleviates lung injury in cecal ligation and puncture induced septic mice. Front. Immunol., 2020, 11, 1829. doi: 10.3389/fimmu.2020.01829 PMID: 32903604
  178. Szilágyi, B.; Fejes, Z.; Póliska, S.; Pócsi, M.; Czimmerer, Z.; Patsalos, A.; Fenyvesi, F.; Rusznyák, Á.; Nagy, G.; Kerekes, G.; Berhés, M.; Szűcs, I.; Kunapuli, S.P.; Kappelmayer, J.; Nagy, B., Jr Reduced miR-26b expression in megakaryocytes and platelets contributes to elevated level of platelet activation status in Sepsis. Int. J. Mol. Sci., 2020, 21(3), 866. doi: 10.3390/ijms21030866 PMID: 32013235
  179. Wu, Y.; Li, P.; Goodwin, A.J.; Cook, J.A.; Halushka, P.V.; Zingarelli, B.; Fan, H. MiR-145a regulation of pericyte dysfunction in a Murine model of Sepsis. J. Infect. Dis., 2020, 222(6), 1037-1045. doi: 10.1093/infdis/jiaa184 PMID: 32285112
  180. Wang, J.; Yu, M.; Yu, G.; Bian, J.; Deng, X.; Wan, X.; Zhu, K. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem. Biophys. Res. Commun., 2010, 394(1), 184-188. doi: 10.1016/j.bbrc.2010.02.145 PMID: 20188071
  181. Ma, Y.; Liu, Y.; Hou, H.; Yao, Y.; Meng, H. MiR-150 predicts survival in patients with sepsis and inhibits LPS-induced inflammatory factors and apoptosis by targeting NF-κB1 in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun., 2018, 500(3), 828-837. doi: 10.1016/j.bbrc.2018.04.168 PMID: 29689269
  182. Vasilescu, C.; Rossi, S.; Shimizu, M.; Tudor, S.; Veronese, A.; Ferracin, M.; Nicoloso, M.S.; Barbarotto, E.; Popa, M.; Stanciulea, O.; Fernandez, M.H.; Tulbure, D.; Bueso-Ramos, C.E.; Negrini, M.; Calin, G.A. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS One, 2009, 4(10), e7405. doi: 10.1371/journal.pone.0007405 PMID: 19823581
  183. Roderburg, C.; Luedde, M.; Vargas Cardenas, D.; Vucur, M.; Scholten, D.; Frey, N.; Koch, A.; Trautwein, C.; Tacke, F.; Luedde, T. Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis. PLoS One, 2013, 8(1), e54612. doi: 10.1371/journal.pone.0054612 PMID: 23372743
  184. Liu, L.; Yan, L.N.; Sui, Z. MicroRNA-150 affects endoplasmic reticulum stress via MALAT1-miR-150 axis-mediated NF-κB pathway in LPS-challenged HUVECs and septic mice. Life Sci., 2021, 265, 118744. doi: 10.1016/j.lfs.2020.118744
  185. Ling, L.; Zhang, S.H.; Zhi, L.D.; Li, H.; Wen, Q.K.; Li, G.; Zhang, W.J. RETRACTED: MicroRNA-30e promotes hepatocyte proliferation and inhibits apoptosis in cecal ligation and puncture-induced sepsis through the JAK/STAT signaling pathway by binding to FOSL2. Biomed. Pharmacother., 2018, 104, 411-419. doi: 10.1016/j.biopha.2018.05.042 PMID: 29787988
  186. Cao, X.; Zhang, C.; Zhang, X.; Chen, Y.; Zhang, H. MiR-145 negatively regulates TGFBR2 signaling responsible for sepsis-induced acute lung injury. Biomed. Pharmacother., 2019, 111, 852-858. doi: 10.1016/j.biopha.2018.12.138 PMID: 30841464
  187. Pan, W.; Wei, N.; Xu, W.; Wang, G.; Gong, F.; Li, N. MicroRNA-124 alleviates the lung injury in mice with septic shock through inhibiting the activation of the MAPK signaling pathway by downregulating MAPK14. Int. Immunopharmacol., 2019, 76, 105835. doi: 10.1016/j.intimp.2019.105835 PMID: 31476692
  188. Ouyang, H.; Tan, Y.; Li, Q.; Xia, F.; Xiao, X.; Zheng, S.; Lu, J.; Zhong, J.; Hu, Y. RETRACTED: MicroRNA-208-5p regulates myocardial injury of sepsis mice via targeting SOCS2-mediated NF-κB/HIF-1α pathway. Int. Immunopharmacol., 2020, 81, 106204. doi: 10.1016/j.intimp.2020.106204 PMID: 32086130
  189. Yang, P.; Xiong, W.; Chen, X.; Liu, J.; Ye, Z. Overexpression of miR-129-5p mitigates sepsis-induced acute lung injury by targeting high mobility group Box 1. J. Surg. Res., 2020, 256, 23-30. doi: 10.1016/j.jss.2020.05.101 PMID: 32682121
  190. He, Z.; Wang, H.; Yue, L. Endothelial progenitor cells-secreted extracellular vesicles containing microRNA-93-5p confer protection against sepsis-induced acute kidney injury via the KDM6B/H3K27me3/TNF-α axis. Exp. Cell Res., 2020, 395(2), 112173. doi: 10.1016/j.yexcr.2020.112173 PMID: 32679234
  191. Chen, L.; Lu, Q.; Deng, F.; Peng, S.; Yuan, J.; Liu, C.; Du, X. miR-103a-3p could attenuate sepsis-induced liver injury by targeting HMGB1. Inflammation, 2020, 43(6), 2075-2086. doi: 10.1007/s10753-020-01275-0 PMID: 32556802
  192. Zhou, J.; Chaudhry, H.; Zhong, Y.; Ali, M.M.; Perkins, L.A.; Owens, W.B.; Morales, J.E.; McGuire, F.R.; Zumbrun, E.E.; Zhang, J.; Nagarkatti, P.S.; Nagarkatti, M. Dysregulation in microRNA expression in peripheral blood mononuclear cells of sepsis patients is associated with immunopathology. Cytokine, 2015, 71(1), 89-100. doi: 10.1016/j.cyto.2014.09.003 PMID: 25265569
  193. Wang, Y.; Wang, H.; Zhang, C.; Zhang, C.; Yang, H.; Gao, R.; Tong, Z. Plasma Hsa-miR-92a-3p in correlation with lipocalin-2 is associated with sepsis-induced coagulopathy. BMC Infect. Dis., 2020, 20(1), 155. doi: 10.1186/s12879-020-4853-y PMID: 32075600
  194. Zuo, T.; Tang, Q.; Zhang, X.; Shang, F. RETRACTED: MicroRNA-410-3p binds to TLR2 and alleviates myocardial mitochondrial dysfunction and chemokine production in LPS-induced sepsis. Mol. Ther. Nucleic Acids, 2020, 22, 273-284. doi: 10.1016/j.omtn.2020.07.031 PMID: 33230433
  195. Fang, H.; Li, H.F.; Yan, J.Y.; Yang, M.; Zhang, J.P. Dexmedetomidine-up-regulated microRNA-381 exerts anti-inflammatory effects in rats with cerebral ischaemic injury via the transcriptional factor IRF4. J. Cell. Mol. Med., 2020, 25(4), 2098-2109. PMID: 33314611
  196. Zhang, D.L.; Liu, X.; Wang, Q.; Li, N.; Wu, S.H.; Wang, C. Downregulation of microRNA-196a attenuates ischemic brain injury in rats by directly targeting HMGA1. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(2), 740-748. PMID: 30720182
  197. Pan, Q; Zheng, J; Du, D; Liao, X; Ma, C; Yang, Y; Chen, Y; Zhong, W; Ma, X MicroRNA-126 priming enhances functions of endothelial progenitor cells under physiological and hypoxic conditions and their therapeutic efficacy in cerebral ischemic damage. Stem. Cells Int., 2018, 2018, 2912347. doi: 10.1155/2018/2912347 PMID: 29760722
  198. Shan, C.; Ma, Y. MicroRNA-126/stromal cell-derived factor 1/C-X-C chemokine receptor type 7 signaling pathway promotes post-stroke angiogenesis of endothelial progenitor cell transplantation. Mol. Med. Rep., 2018, 17(4), 5300-5305. doi: 10.3892/mmr.2018.8513 PMID: 29393458
  199. Liu, P.; Han, Z.; Ma, Q.; Liu, T.; Wang, R.; Tao, Z.; Li, G.; Li, F.; Zhang, S.; Li, L.; Ji, X.; Zhao, H.; Luo, Y. Upregulation of microrna-128 in the peripheral blood of acute ischemic stroke patients is correlated with stroke severity partially through inhibition of neuronal cell cycle reentry. Cell Transplant., 2019, 28(7), 839-850. doi: 10.1177/0963689719846848 PMID: 31037985
  200. Chen, C.; Ling, C.; Gong, J.; Li, C.; Zhang, L.; Gao, S.; Li, Z.; Huang, T.; Wang, H.; Guo, Y. Increasing the expression of microRNA-126-5p in the temporal muscle can promote angiogenesis in the chronically ischemic brains of rats subjected to two-vessel occlusion plus encephalo-myo-synangiosis. Aging, 2020, 12(13), 13234-13254. doi: 10.18632/aging.103431 PMID: 32644942
  201. Sun, Y.; Gui, H.; Li, Q.; Luo, Z.M.; Zheng, M.J.; Duan, J.L.; Liu, X. MicroRNA-124 protects neurons against apoptosis in cerebral ischemic stroke. CNS Neurosci. Ther., 2013, 19(10), 813-819. doi: 10.1111/cns.12142 PMID: 23826665
  202. Liu, X.; Li, F.; Zhao, S.; Luo, Y.; Kang, J.; Zhao, H.; Yan, F.; Li, S.; Ji, X. MicroRNA-124-mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke. Stroke, 2013, 44(7), 1973-1980. doi: 10.1161/STROKEAHA.111.000613 PMID: 23696548
  203. Li, S.; Lu, G.; Wang, D.; He, J.L.; Zuo, L.; Wang, H.; Gu, Z.T.; Zhou, J.S.; Yan, F.L.; Deng, Q.W. MicroRNA-4443 regulates monocyte activation by targeting tumor necrosis factor receptor associated factor 4 in stroke-induced immunosuppression. Eur. J. Neurol., 2020, 27(8), 1625-1637. doi: 10.1111/ene.14282 PMID: 32337817
  204. Li, D.B.; Liu, J.L.; Wang, W.; Luo, X.M.; Zhou, X.; Li, J.P.; Cao, X.L.; Long, X.H.; Chen, J.G.; Qin, C. Plasma exosomal miRNA-122-5p and miR-300-3p as potential markers for transient ischaemic attack in rats. Front. Aging Neurosci., 2018, 10(FEB), 24. doi: 10.3389/fnagi.2018.00024 PMID: 29467645
  205. Chen, Y.; Song, Y.; Huang, J.; Qu, M.; Zhang, Y.; Geng, J.; Zhang, Z.; Liu, J.; Yang, G.Y. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke. Front. Neurol., 2017, 8(FEB), 57. doi: 10.3389/fneur.2017.00057 PMID: 28289400
  206. Wang, Z.Q.; Li, K.; Huang, J.; Huo, T.T.; Lv, P.Y. MicroRNA Let-7i Is a promising serum biomarker for post-stroke cognitive impairment and alleviated OGD-induced cell damage in vitro by regulating Bcl-2. Front. Neurosci., 2020, 14, 215. doi: 10.3389/fnins.2020.00215 PMID: 32265630
  207. Mo, J.L.; Liu, Q.; Kou, Z.W.; Wu, K.W.; Yang, P.; Chen, X.H.; Sun, F.Y. MicroRNA-365 modulates astrocyte conversion into neuron in adult rat brain after stroke by targeting Pax6. Glia, 2018, 66(7), 1346-1362. doi: 10.1002/glia.23308 PMID: 29451327
  208. Mo, J.L.; Pan, Z.G.; Chen, X.; Lei, Y.; Lv, L.L.; Qian, C.; Sun, F.Y. MicroRNA-365 knockdown prevents ischemic neuronal injury by activating oxidation resistance 1-mediated antioxidant signals. Neurosci. Bull., 2019, 35(5), 815-825. doi: 10.1007/s12264-019-00371-y PMID: 30977043
  209. Yan, Q.; Sun, S.; Yuan, S.; Wang, X.; Zhang, Z. Inhibition of MICRORNA -9-5p and MICRORNA -128-3p can inhibit ischemic stroke-related cell death in vitro and in vivo. IUBMB Life, 2020, 72(11), 2382-2390. doi: 10.1002/iub.2357 PMID: 32797712
  210. Buller, B.; Liu, X.; Wang, X.; Zhang, R.L.; Zhang, L.; Hozeska-Solgot, A.; Chopp, M.; Zhang, Z.G. MicroRNA-21 protects neurons from ischemic death. FEBS J., 2010, 277(20), 4299-4307. doi: 10.1111/j.1742-4658.2010.07818.x PMID: 20840605
  211. Fang, H.; Li, H.F.; Yang, M.; Wang, R.R.; Wang, Q.Y.; Zheng, P.C.; Zhang, F.X.; Zhang, J.P. RETRACTED: microRNA-128 enhances neuroprotective effects of dexmedetomidine on neonatal mice with hypoxic-ischemic brain damage by targeting WNT1. Biomed. Pharmacother., 2019, 113, 108671. doi: 10.1016/j.biopha.2019.108671 PMID: 30875657
  212. Chi, W.; Meng, F.; Li, Y.; Li, P.; Wang, G.; Cheng, H.; Han, S.; Li, J. Impact of microRNA-134 on neural cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by targeting HSPA12B. Brain Res., 2014, 1592, 22-33. doi: 10.1016/j.brainres.2014.09.072 PMID: 25304362
  213. Liu, N.N.; Dong, Z.L.; Han, L.L. MicroRNA-410 inhibition of the TIMP2-dependent MAPK pathway confers neuroprotection against oxidative stress-induced apoptosis after ischemic stroke in mice. Brain Res. Bull., 2018, 143, 45-57. doi: 10.1016/j.brainresbull.2018.09.009 PMID: 30240841
  214. Huang, L.; Ma, Q.; Li, Y.; Li, B.; Zhang, L. Inhibition of microRNA-210 suppresses pro-inflammatory response and reduces acute brain injury of ischemic stroke in mice. Exp. Neurol., 2018, 300, 41-50. doi: 10.1016/j.expneurol.2017.10.024 PMID: 29111308
  215. Ma, Q.; Dasgupta, C.; Li, Y.; Bajwa, N.M.; Xiong, F.; Harding, B.; Hartman, R.; Zhang, L. Inhibition of microRNA-210 provides neuroprotection in hypoxic–ischemic brain injury in neonatal rats. Neurobiol. Dis., 2016, 89, 202-212. doi: 10.1016/j.nbd.2016.02.011 PMID: 26875527
  216. Meng, Z.Y.; Kang, H.L.; Duan, W.; Zheng, J.; Li, Q.N.; Zhou, Z.J. MicroRNA-210 promotes accumulation of neural precursor cells around ischemic foci after cerebral ischemia by regulating the SOCS1-STAT3-VEGF-C pathway. J. Am. Heart Assoc., 2018, 7(5), e005052. doi: 10.1161/JAHA.116.005052 PMID: 29478968
  217. Ma, Q.; Dasgupta, C.; Shen, G.; Li, Y.; Zhang, L. MicroRNA-210 downregulates TET2 and contributes to inflammatory response in neonatal hypoxic-ischemic brain injury. J. Neuroinflammation, 2021, 18(1), 6. doi: 10.1186/s12974-020-02068-w PMID: 33402183
  218. Li, B.; Dasgupta, C.; Huang, L.; Meng, X.; Zhang, L. MiRNA-210 induces microglial activation and regulates microglia-mediated neuroinflammation in neonatal hypoxic-ischemic encephalopathy. Cell. Mol. Immunol., 2020, 17(9), 976-991. doi: 10.1038/s41423-019-0257-6 PMID: 31300734
  219. Cao, Y.; Zhang, H.; Lu, X.; Wang, J.; Zhang, X.; Sun, S.; Bao, Z.; Tian, W.; Ning, S.; Wang, L.; Cui, L. Overexpression of MicroRNA-9a-5p ameliorates nlrp1 inflammasome-mediated ischemic injury in rats following ischemic stroke. Neuroscience, 2020, 444, 106-117. doi: 10.1016/j.neuroscience.2020.01.008 PMID: 31954830
  220. Liu, X.S.; Chopp, M.; Wang, X.L.; Zhang, L.; Hozeska-Solgot, A.; Tang, T.; Kassis, H.; Zhang, R.L.; Chen, C.; Xu, J.; Zhang, Z.G. MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke. J. Biol. Chem., 2013, 288(18), 12478-12488. doi: 10.1074/jbc.M112.449025 PMID: 23511639
  221. Deng, W.; Fan, C.; Zhao, Y.; Mao, Y.; Li, J.; Zhang, Y.; Teng, J. MicroRNA-130a regulates neurological deficit and angiogenesis in rats with ischaemic stroke by targeting XIAP. J. Cell. Mol. Med., 2020, 24(18), 10987-11000. doi: 10.1111/jcmm.15732 PMID: 32790238
  222. Xu, X.; Wen, Z.; Zhao, N.; Xu, X.; Wang, F.; Gao, J.; Jiang, Y.; Liu, X. MicroRNA-1906, a novel regulator of toll-like receptor 4, ameliorates ischemic injury after experimental stroke in mice. J. Neurosci., 2017, 37(43), 10498-10515. doi: 10.1523/JNEUROSCI.1139-17.2017 PMID: 28924010
  223. Zhang, H.; Chen, G.; Qiu, W.; Pan, Q.; Chen, Y.; Chen, Y.; Ma, X. Plasma endothelial microvesicles and their carrying miRNA-155 serve as biomarkers for ischemic stroke. J. Neurosci. Res., 2020, 98(11), 2290-2301. doi: 10.1002/jnr.24696 PMID: 32725652
  224. Wen, Y.; Zhang, X.; Dong, L.; Zhao, J.; Zhang, C.; Zhu, C. Acetylbritannilactone modulates microRNA-155-mediated inflammatory response in ischemic cerebral tissues. Mol. Med., 2015, 21(1), 197-209. doi: 10.2119/molmed.2014.00199 PMID: 25811992
  225. Yao, K.; Yang, Q.; Li, Y.; Lan, T.; Yu, H.; Yu, Y. MicroRNA-9 mediated the protective effect of ferulic acid on hypoxic-ischemic brain damage in neonatal rats. PLoS One, 2020, 15(5), e0228825. doi: 10.1371/journal.pone.0228825 PMID: 32470970
  226. Dong, H.; Cui, B.; Hao, X. MicroRNA-22 alleviates inflammation in ischemic stroke via p38 MAPK pathways. Mol. Med. Rep., 2019, 20(1), 735-744. doi: 10.3892/mmr.2019.10269 PMID: 31115561
  227. Vinciguerra, A.; Formisano, L.; Cerullo, P.; Guida, N.; Cuomo, O.; Esposito, A.; Di Renzo, G.; Annunziato, L.; Pignataro, G. MicroRNA-103-1 selectively downregulates brain NCX1 and its inhibition by anti-miRNA ameliorates stroke damage and neurological deficits. Mol. Ther., 2014, 22(10), 1829-1838. doi: 10.1038/mt.2014.113 PMID: 24954474
  228. Bu, X.; Li, D.; Wang, F.; Sun, Q.; Zhang, Z. Protective role of astrocyte-derived exosomal microRNA-361 in cerebral ischemic-reperfusion injury by regulating the AMPK/MTOR signaling pathway and targeting CTSB. Neuropsychiatr. Dis. Treat., 2020, 16, 1863-1877. doi: 10.2147/NDT.S260748 PMID: 32801720
  229. Dhiraj, D.K.; Chrysanthou, E.; Mallucci, G.R.; Bushell, M. miRNAs-19b, -29b-2* and -339-5p show an early and sustained up-regulation in ischemic models of stroke. PLoS One, 2013, 8(12), e83717. doi: 10.1371/journal.pone.0083717 PMID: 24376737
  230. Chang, L.; Zhang, W.; Shi, S.; Peng, Y.; Wang, D.; Zhang, L.; Zhang, J. RETRACTED ARTICLE: microRNA-195 attenuates neuronal apoptosis in rats with ischemic stroke through inhibiting KLF5-mediated activation of the JNK signaling pathway. Mol. Med., 2020, 26(1), 31. doi: 10.1186/s10020-020-00150-w PMID: 32272873
  231. Wang, P.; Liang, J.; Li, Y.; Li, J.; Yang, X.; Zhang, X.; Han, S.; Li, S.; Li, J. Down-regulation of miRNA-30a alleviates cerebral ischemic injury through enhancing beclin 1-mediated autophagy. Neurochem. Res., 2014, 39(7), 1279-1291. doi: 10.1007/s11064-014-1310-6 PMID: 24771295
  232. Wang, P.; Liang, X.; Lu, Y.; Zhao, X.; Liang, J. MicroRNA-93 downregulation ameliorates cerebral ischemic injury through the Nrf2/HO-1 defense pathway. Neurochem. Res., 2016, 41(10), 2627-2635. doi: 10.1007/s11064-016-1975-0 PMID: 27300700
  233. Liu, X.S.; Chopp, M.; Pan, W.L.; Wang, X.L.; Fan, B.Y.; Zhang, Y.; Kassis, H.; Zhang, R.L.; Zhang, X.M.; Zhang, Z.G. MicroRNA-146a promotes oligodendrogenesis in stroke. Mol. Neurobiol., 2017, 54(1), 227-237. doi: 10.1007/s12035-015-9655-7 PMID: 26738853
  234. Bam, M.; Yang, X.; Sen, S.; Zumbrun, E.E.; Dennis, L.; Zhang, J.; Nagarkatti, P.S.; Nagarkatti, M. Characterization of dysregulated miRNA in peripheral blood mononuclear cells from ischemic stroke patients. Mol. Neurobiol., 2018, 55(2), 1419-1429. doi: 10.1007/s12035-016-0347-8 PMID: 28168424
  235. Vijayan, M.; Alamri, F.F.; Al Shoyaib, A.; Karamyan, V.T.; Reddy, P.H. Novel miRNA PC-5P-12969 in ischemic stroke. Mol. Neurobiol., 2019, 56(10), 6976-6985. doi: 10.1007/s12035-019-1562-x PMID: 30953313
  236. Casey, S.; Goasdoue, K.; Miller, S.M.; Brennan, G.P.; Cowin, G.; O’Mahony, A.G.; Burke, C.; Hallberg, B.; Boylan, G.B.; Sullivan, A.M.; Henshall, D.C.; O’Keeffe, G.W.; Mooney, C.; Bjorkman, T.; Murray, D.M. Temporally altered mirna expression in a piglet model of hypoxic ischemic brain injury. Mol. Neurobiol., 2020, 57(10), 4322-4344. doi: 10.1007/s12035-020-02018-w PMID: 32720074
  237. Peng, G.; Yuan, Y.; Wu, S.; He, F.; Hu, Y.; Luo, B. MicroRNA let-7e is a potential circulating biomarker of acute stage ischemic stroke. Transl. Stroke Res., 2015, 6(6), 437-445. doi: 10.1007/s12975-015-0422-x PMID: 26415639
  238. van Kralingen, J.C.; McFall, A.; Ord, E.N.J.; Coyle, T.F.; Bissett, M.; McClure, J.D.; McCabe, C.; Macrae, I.M.; Dawson, J.; Work, L.M. Altered extracellular vesicle microrna expression in ischemic stroke and small vessel disease. Transl. Stroke Res., 2019, 10(5), 495-508. doi: 10.1007/s12975-018-0682-3 PMID: 30617992
  239. Deng, Y.; Chen, D.; Gao, F.; Lv, H.; Zhang, G.; Sun, X.; Liu, L.; Mo, D.; Ma, N.; Song, L.; Huo, X.; Yan, T.; Zhang, J.; Miao, Z. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2. J. Biol. Eng., 2019, 13(1), 71. doi: 10.1186/s13036-019-0193-0 PMID: 31485266
  240. Li, Y.; Mao, L.; Gao, Y.; Baral, S.; Zhou, Y.; Hu, B. MicroRNA-107 contributes to post-stroke angiogenesis by targeting Dicer-1. Sci. Rep., 2015, 5(1), 13316. doi: 10.1038/srep13316 PMID: 26294080
  241. Yang, X.; Tang, X.; Sun, P.; Shi, Y.; Liu, K.; Hassan, S.H.; Stetler, R.A.; Chen, J.; Yin, K.J. MicroRNA-15a/16-1 antagomir ameliorates ischemic brain injury in experimental stroke. Stroke, 2017, 48(7), 1941-1947. doi: 10.1161/STROKEAHA.117.017284 PMID: 28546328
  242. Stanzione, R; Bianchi, F; Cotugno, M; Marchitti, S; Forte, M; Busceti, C; Ryskalin, L; Fornai, F; Volpe, M; Rubattu, S A decrease of brain MicroRNA-122 level is an early marker of cerebrovascular disease in the stroke-prone spontaneously hypertensive rat. Oxid. Med. Cell Longev., 2017, 2017, 1206420. doi: 10.1155/2017/1206420 PMID: 28751928
  243. Li, L; Dong, L; Zhao, J; He, W; Chu, B; Zhang, J; Wu, Z; Zhao, C; Cheng, J; Yao, W; Wang, H Circulating miRNA-3552 as a potential biomarker for ischemic stroke in rats. Biomed. Res. Int., 2020, 2020, 4501393. doi: 10.1155/2020/4501393 PMID: 32724801
  244. Tabet, F.; Lee, S.; Zhu, W.; Levin, M.G.; Toth, C.L.; Cuesta Torres, L.F.; Vinh, A.; Kim, H.A.; Chu, H.X.; Evans, M.A.; Kuzmich, M.E.; Drummond, G.R.; Remaley, A.T.; Rye, K.A.; Sobey, C.G.; Vickers, K.C. microRNA-367-3p regulation of GPRC5A is suppressed in ischemic stroke. J. Cereb. Blood Flow Metab., 2020, 40(6), 1300-1315. doi: 10.1177/0271678X19858637 PMID: 31296130
  245. Sun, L.Q.; Guo, G.L.; Zhang, S.; Yang, L.L. Effects of MicroRNA-592-5p on hippocampal neuron injury following hypoxic-ischemic brain damage in neonatal mice-involvement of PGD2/DP and PTGDR. Cell. Physiol. Biochem., 2018, 45(2), 458-473. doi: 10.1159/000486923 PMID: 29402808
  246. Song, H.; Zhang, X.; Chen, R.; Miao, J.; Wang, L.; Cui, L.; Ji, H.; Liu, Y. Cortical neuron-derived exosomal MicroRNA-181c-3p inhibits neuroinflammation by downregulating CXCL1 in astrocytes of a rat model with ischemic brain injury. Neuroimmunomodulation, 2019, 26(5), 217-233. doi: 10.1159/000502694 PMID: 31665717
  247. Fan, J.; Xu, W.; Nan, S.; Chang, M.; Zhang, Y. MicroRNA-384-5p promotes endothelial progenitor cell proliferation and angiogenesis in cerebral ischemic stroke through the delta-likeligand 4-mediated notch signaling pathway. Cerebrovasc. Dis., 2020, 49(1), 39-54. doi: 10.1159/000503950 PMID: 31927543
  248. Yong, Y.X.; Yang, H.; Lian, J.; Xu, X.W.; Han, K.; Hu, M.Y.; Wang, H.C.; Zhou, L.M. RETRACTED ARTICLE: Up-regulated microRNA-199b-3p represses the apoptosis of cerebral microvascular endothelial cells in ischemic stroke through down-regulation of MAPK/ERK/EGR1 axis. Cell Cycle, 2019, 18(16), 1868-1881. doi: 10.1080/15384101.2019.1632133 PMID: 31204565
  249. Ma, Q.; Zhao, H.; Tao, Z.; Wang, R.; Liu, P.; Han, Z.; Ma, S.; Luo, Y.; Jia, J. MicroRNA-181c exacerbates brain injury in acute Ischemic stroke. Aging Dis., 2016, 7(6), 705-714. doi: 10.14336/AD.2016.0320 PMID: 28053821
  250. Xie, K.; Cai, Y.; Yang, P.; Du, F.; Wu, K. Upregulating microRNA-874-3p inhibits CXCL12 expression to promote angiogenesis and suppress inflammatory response in ischemic stroke. Am. J. Physiol. Cell Physiol., 2020, 319(3), C579-C588. doi: 10.1152/ajpcell.00001.2020 PMID: 32608990
  251. Geng, W.; Tang, H.; Luo, S.; Lv, Y.; Liang, D.; Kang, X.; Hong, W. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am. J. Transl. Res., 2019, 11(2), 780-792. PMID: 30899379
  252. Huang, L.G.; Li, J.P.; Pang, X.M.; Chen, C.Y.; Xiang, H.Y.; Feng, L.B.; Su, S.Y.; Li, S.H.; Zhang, L.; Liu, J.L. MicroRNA-29c correlates with neuroprotection induced by FNS by targeting both birc2 and bak1 in rat brain after stroke. CNS Neurosci. Ther., 2015, 21(6), 496-503. doi: 10.1111/cns.12383 PMID: 25678279
  253. Du, L.; Jiang, Y.; Sun, Y. Astrocyte-derived exosomes carry microRNA-17-5p to protect neonatal rats from hypoxic-ischemic brain damage via inhibiting BNIP-2 expression. Neurotoxicology, 2021, 83, 28-39. doi: 10.1016/j.neuro.2020.12.006 PMID: 33309839
  254. Li, Q.; He, Q.; Baral, S.; Mao, L.; Li, Y.; Jin, H.; Chen, S.; An, T.; Xia, Y.; Hu, B. MicroRNA-493 regulates angiogenesis in a rat model of ischemic stroke by targeting MIF. FEBS J., 2016, 283(9), 1720-1733. doi: 10.1111/febs.13697 PMID: 26929185
  255. Si, W.; Li, Y.; Ye, S.; Li, Z.; Liu, Y.; Kuang, W.; Chen, D.; Zhu, M. Methyltransferase 3 Mediated miRNA m6A methylation promotes stress granule formation in the early stage of acute ischemic stroke. Front. Mol. Neurosci., 2020, 13, 103. doi: 10.3389/fnmol.2020.00103 PMID: 32581712
  256. Zhang, N.; Zhong, J.; Han, S.; Li, Y.; Yin, Y.; Li, J. MicroRNA-378 alleviates cerebral ischemic injury by negatively regulating apoptosis executioner caspase-3. Int. J. Mol. Sci., 2016, 17(9), 1427. doi: 10.3390/ijms17091427 PMID: 27598143
  257. Matsuoka, H.; Tamura, A.; Kinehara, M.; Shima, A.; Uda, A.; Tahara, H.; Michihara, A. Levels of tight junction protein CLDND1 are regulated by microRNA-124 in the cerebellum of stroke-prone spontaneously hypertensive rats. Biochem. Biophys. Res. Commun., 2018, 498(4), 817-823. doi: 10.1016/j.bbrc.2018.03.063 PMID: 29530526
  258. Miao, W.; Yan, Y.; Bao, T.; Jia, W.; Yang, F.; Wang, Y.; Zhu, Y.; Yin, M.; Han, J. Ischemic postconditioning exerts neuroprotective effect through negatively regulating PI3K/Akt2 signaling pathway by microRNA-124. Biomed. Pharmacother., 2020, 126, 109786. doi: 10.1016/j.biopha.2019.109786
  259. Zhou, X.; Su, S.; Li, S.; Pang, X.; Chen, C.; Li, J.; Liu, J. MicroRNA-146a down-regulation correlates with neuroprotection and targets pro-apoptotic genes in cerebral ischemic injury in vitro. Brain Res., 2016, 1648(Pt A), 136-143. doi: 10.1016/j.brainres.2016.07.034 PMID: 27449900
  260. Chen, Z.; Hu, Y.; Lu, R.; Ge, M.; Zhang, L. MicroRNA-374a-5p inhibits neuroinflammation in neonatal hypoxic-ischemic encephalopathy via regulating NLRP3 inflammasome targeted Smad6. Life Sci., 2020, 252, 117664. doi: 10.1016/j.lfs.2020.117664 PMID: 32304765
  261. O’Sullivan, M.P.; Looney, A.M.; Moloney, G.M.; Finder, M.; Hallberg, B.; Clarke, G.; Boylan, G.B.; Murray, D.M. Validation of altered umbilical cord blood microrna expression in neonatal hypoxic-ischemic encephalopathy. JAMA Neurol., 2019, 76(3), 333-341. doi: 10.1001/jamaneurol.2018.4182 PMID: 30592487
  262. Lusardi, T.A.; Farr, C.D.; Faulkner, C.L.; Pignataro, G.; Yang, T.; Lan, J.; Simon, R.P.; Saugstad, J.A. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. J. Cereb. Blood Flow Metab., 2010, 30(4), 744-756. doi: 10.1038/jcbfm.2009.253 PMID: 20010955
  263. Han, X.R.; Wen, X.; Wang, Y.J.; Wang, S.; Shen, M.; Zhang, Z.F.; Fan, S.H.; Shan, Q.; Wang, L.; Li, M.Q.; Hu, B.; Sun, C.H.; Wu, D.M.; Lu, J.; Zheng, Y.L. Retracted: Micro RNA -140-5p elevates cerebral protection of dexmedetomidine against hypoxic–ischaemic brain damage via the Wnt/β-catenin signalling pathway. J. Cell. Mol. Med., 2018, 22(6), 3167-3182. doi: 10.1111/jcmm.13597 PMID: 29536658
  264. Jiang, C.; Dong, N.; Feng, J.; Hao, M. MiRNA-190 exerts neuroprotective effects against ischemic stroke through Rho/Rho-kinase pathway. Pflugers Arch., 2021, 473(1), 121-130. doi: 10.1007/s00424-020-02490-2 PMID: 33196911
  265. Scherrer, N.; Fays, F.; Mueller, B.; Luft, A.; Fluri, F.; Christ-Crain, M.; Devaux, Y.; Katan, M. Microrna 150-5p improves risk classification for mortality within 90 days after acute ischemic stroke. J. Stroke, 2017, 19(3), 323-332. doi: 10.5853/jos.2017.00423 PMID: 29037006
  266. Pandi, G.; Nakka, V.P.; Dharap, A.; Roopra, A.; Vemuganti, R. MicroRNA miR-29c down-regulation leading to de-repression of its target DNA methyltransferase 3a promotes ischemic brain damage. PLoS One, 2013, 8(3), e58039. doi: 10.1371/journal.pone.0058039 PMID: 23516428
  267. Fei, S.; Cao, L.; Li, S. RETRACTED: microRNA-139-5p alleviates neurological deficit in hypoxic-ischemic brain damage via HDAC4 depletion and BCL-2 activation. Brain Res. Bull., 2021, 169, 73-80. doi: 10.1016/j.brainresbull.2020.12.020 PMID: 33400954
  268. Che, F.; Du, H.; Zhang, W.; Cheng, Z.; Tong, Y. MicroRNA-132 modifies angiogenesis in patients with ischemic cerebrovascular disease by suppressing the NF-κB and VEGF pathway. Mol. Med. Rep., 2018, 17(2), 2724-2730. PMID: 29207094
  269. Zhou, L.; Yang, W.; Yao, E.; Li, H.; Wang, J.; Wang, K.; Zhong, X.; Peng, Z.; Huang, X. Microrna-488-3p regulates neuronal cell death in cerebral ischemic stroke through vacuolar protein sorting 4b (VPS4B). Neuropsychiatr. Dis. Treat., 2021, 17, 41-55. doi: 10.2147/NDT.S255666 PMID: 33442254
  270. Song, W.; Wang, T.; Shi, B.; Wu, Z.; Wang, W.; Yang, Y. Neuroprotective effects of microRNA-140-5p on ischemic stroke in mice via regulation of the TLR4/NF-κB axis. Brain Res. Bull., 2021, 168, 8-16. doi: 10.1016/j.brainresbull.2020.10.020 PMID: 33246036
  271. Liu, X.S.; Chopp, M.; Zhang, R.L.; Tao, T.; Wang, X.L.; Kassis, H.; Hozeska-Solgot, A.; Zhang, L.; Chen, C.; Zhang, Z.G. MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS One, 2011, 6(8), e23461. doi: 10.1371/journal.pone.0023461 PMID: 21887253
  272. Li, J.; Lv, H.; Che, Y. microRNA-381-3p confers protection against ischemic stroke through promoting angiogenesis and inhibiting inflammation by suppressing cebpb and Map3k8. Cell. Mol. Neurobiol., 2020, 40(8), 1307-1319. doi: 10.1007/s10571-020-00815-4 PMID: 32297103
  273. Yoo, H.; Kim, J.; Lee, A.R.; Lee, J.M.; Kim, O.J.; Kim, J.K.; Oh, S.H. Alteration of microRNA 340-5p and arginase-1 expression in peripheral blood cells during acute ischemic stroke. Mol. Neurobiol., 2019, 56(5), 3211-3221. doi: 10.1007/s12035-018-1295-2 PMID: 30112629
  274. Hou, K.; Li, G.; Zhao, J.; Xu, B.; Zhang, Y.; Yu, J.; Xu, K. Correction to: Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J. Neuroinflammation, 2020, 17(1), 203. doi: 10.1186/s12974-020-01872-8
  275. Kim, T.; Mehta, S.L.; Morris-Blanco, K.C.; Chokkalla, A.K.; Chelluboina, B.; Lopez, M.; Sullivan, R.; Kim, H.T.; Cook, T.D.; Kim, J.Y.; Kim, H.; Kim, C.; Vemuganti, R. The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein. Sci. Signal., 2018, 11(560), eaat4285. doi: 10.1126/scisignal.aat4285 PMID: 30538177
  276. Wei, N.; Xiao, L.; Xue, R.; Zhang, D.; Zhou, J.; Ren, H.; Guo, S.; Xu, J. MicroRNA-9 mediates the cell apoptosis by targeting bcl2l11 in ischemic stroke. Mol. Neurobiol., 2016, 53(10), 6809-6817. doi: 10.1007/s12035-015-9605-4 PMID: 26660116
  277. Jickling, G.C.; Ander, B.P.; Shroff, N.; Orantia, M.; Stamova, B.; Dykstra-Aiello, C.; Hull, H.; Zhan, X.; Liu, D.; Sharp, F.R. Leukocyte response is regulated by microRNA let7i in patients with acute ischemic stroke. Neurology, 2016, 87(21), 2198-2205. doi: 10.1212/WNL.0000000000003354 PMID: 27784773
  278. Yu, X.; Li, X. microRNA-1906 protects cerebral ischemic injury through activating Janus kinase 2/signal transducer and activator of transcription 3 pathway in rats. Neuroreport, 2020, 31(12), 871-878. doi: 10.1097/WNR.0000000000001456 PMID: 32427806
  279. Zhao, H.; Li, G.; Wang, R.; Tao, Z.; Ma, Q.; Zhang, S.; Han, Z.; Yan, F.; Li, F.; Liu, P.; Ma, S.; Ji, X.; Luo, Y. Silencing of microRNA-494 inhibits the neurotoxic Th1 shift via regulating HDAC2-STAT4 cascade in ischaemic stroke. Br. J. Pharmacol., 2020, 177(1), 128-144. doi: 10.1111/bph.14852 PMID: 31465536
  280. Yu, P.; Chen, W. Advances in the diagnosis of exosomal miRNAs in ischemic stroke. Neuropsychiatr. Dis. Treat., 2019, 15, 2339-2343. doi: 10.2147/NDT.S216784 PMID: 31695378
  281. Vasudeva, K.; Munshi, A. miRNA dysregulation in ischaemic stroke: Focus on diagnosis, prognosis, therapeutic and protective biomarkers. Eur. J. Neurosci., 2020, 52(6), 3610-3627. doi: 10.1111/ejn.14695 PMID: 32022336
  282. Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S.S. Therapeutic advances of miRNAs: A preclinical and clinical update. J. Adv. Res., 2021, 28, 127-138. doi: 10.1016/j.jare.2020.08.012 PMID: 33364050
  283. Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; Rassenti, L.; Kipps, T.; Negrini, M.; Bullrich, F.; Croce, C.M. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci., 2002, 99(24), 15524-15529. doi: 10.1073/pnas.242606799 PMID: 12434020
  284. Romano, G.; Acunzo, M.; Nana-Sinkam, P. microRNAs as novel therapeutics in cancer. Cancers, 2021, 13(7), 1526. doi: 10.3390/cancers13071526 PMID: 33810332
  285. Fortunato, O.; Iorio, M.V. The therapeutic potential of MicroRNAs in cancer: Illusion or opportunity? Pharmaceuticals, 2020, 13(12), 438. doi: 10.3390/ph13120438 PMID: 33271894
  286. Chen, B.; Xia, Z.; Deng, Y.N.; Yang, Y.; Zhang, P.; Zhu, H.; Xu, N.; Liang, S. Emerging microRNA biomarkers for colorectal cancer diagnosis and prognosis. Open Biol., 2019, 9(1), 180212. doi: 10.1098/rsob.180212 PMID: 30958116
  287. Giridhar, K.V.; Kohli, M.; Wang, L. Is microRNA expression profile in prostate cancer dependent on clinicopathologic stage or cell subtype? Transl. Cancer Res., 2016, 5(S6), S1139-S1141. doi: 10.21037/tcr.2016.11.25
  288. Segal, M.; Slack, F.J. Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin. Drug Discov., 2020, 15(9), 987-992. doi: 10.1080/17460441.2020.1765770 PMID: 32421364
  289. Cui, M.; Wang, H.; Yao, X.; Zhang, D.; Xie, Y.; Cui, R.; Zhang, X. Circulating microRNAs in cancer: Potential and challenge. Front. Genet., 2019, 10, 626. doi: 10.3389/fgene.2019.00626 PMID: 31379918
  290. Zhang, S.; Cheng, Z.; Wang, Y.; Han, T. The risks of miRNA therapeutics: In a drug target perspective. Drug Des. Devel. Ther., 2021, 15, 721-733. doi: 10.2147/DDDT.S288859 PMID: 33654378
  291. Huang, D.T.; Ramirez, P. Biomarkers in the ICU: Less is more? Yes. Intensive Care Med., 2021, 47(1), 94-96. doi: 10.1007/s00134-020-06049-8 PMID: 32347324
  292. Bonneau, E.; Neveu, B.; Kostantin, E.; Tsongalis, G.J.; De Guire, V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC, 2019, 30(2), 114-127. PMID: 31263388

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers