Curcumin Derivatives Linked to a Reduction of Oxidative Stress in Mental Dysfunctions and Inflammatory Disorders


Cite item

Full Text

Abstract

:Stress is a critical factor in the etiology of inflammation and neurodegeneration. The risk factor for the majority of psychiatric disorders is oxidative stress-induced depression. Mitochondrial damage and oxidative stress are associated with the development of neurodegenerative disorders. During aging, the brain and associated regions become more susceptible due to oxidative stress. The leading cause of oxidative stress is the continuous generation of ROS (reactive oxygen species) and RNS (Reactive nitrogen species) endogenously or exogenously. In this review, discussion on a potent antioxidant natural constituent "curcumin" has been made to alleviate many pathological and neurological disorders. A focused compilation of vast and informative research on the potential of curcumin as a magical moiety used therapeutically has been done in search of its role in controlling the neurological and similar disorders induced by oxidative stress.

About the authors

Priyanka Dhiman

Department of Pharmaceutical Sciences, Chandigarh Group of Colleges (CGC)

Email: info@benthamscience.net

Neelam Malik

Department of Pharmaceutical Sciences, Panipat Institute of Engineering & Technology (PIET)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Juan, CA.; Perez de la Lastra, JM; Plou, FJ.; Pérez-Lebeña, E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci., 2021, 22(9), 4642.
  2. Singh, J.; Kumar, V.; Silakari, P.; Kumar, S. Pyridazinones: A versatile scaffold in the development of potential target-based novel anticancer agents. J. Heterocycl. Chem., 2022. doi: 10.1002/jhet.4589
  3. Singh, J.; Suryan, A.; Kumar, S.; Sharma, S. Phthalazinone scaffold: Emerging tool in the development of target based novel anticancer agents. Anticancer. Agents Med. Chem., 2020, 20(18), 2228-2245. doi: 10.2174/1871520620666200807220146 PMID: 32767957
  4. Quispe, C; Herrera-Bravo, J; Javed, Z; Khan, K; Raza, S; Gulsunoglu-Konuskan, Z; Daştan, S.D; Sytar, O; Martorell, M; Sharifi-Rad, J; Calina, D. Therapeutic applications of curcumin in diabetes: A review and perspective. Biomed. Res. Int., 2022, 2022, 1375892. doi: 10.1155/2022/1375892
  5. Sobhi, W.; Bisset, S.; Bensouici, C.; khenchouche, A. Antioxidant activity and inhibitory effect of curcumin on some enzymes involved in several diseases: Acetylcholinesterase, butyrylcholinesterase, α-glucosidase and tyrosinase. Curr. Enzym. Inhib., 2022, 18(3), 172-179. doi: 10.2174/1573408018666220602091615
  6. Sharma, S.; Advani, D.; Das, A.; Malhotra, N.; Khosla, A.; Arora, V.; Jha, A.; Yadav, M.; Ambasta, R.K.; Kumar, P. Pharmacological intervention in oxidative stress as a therapeutic target in neurological disorders. J. Pharm. Pharmacol., 2022, 74(4), 461-484. doi: 10.1093/jpp/rgab064 PMID: 34050648
  7. Bayo-Olugbami, A.A.; Babalola, K.M.; Imam-Fulani, A.O. Translational Neuroprotective Activity of Curcumin in Neurodegenerative Diseases: An Overview with Animal Models; Curative and Preventive Properties Medicinal Plants, 2023, pp. 125-138.
  8. Li, N.; Yan, X.; Huang, W.; Chu, M.; Dong, Y.; Song, H.; Peng, Y.; Shi, J.; Liu, Q. Curcumin protects against the age-related hearing loss by attenuating apoptosis and senescence via activating Nrf2 signaling in cochlear hair cells. Biochem. Pharmacol., 2023, 212, 115575. doi: 10.1016/j.bcp.2023.115575 PMID: 37334787
  9. Abrahams, S.; Haylett, W.L.; Johnson, G.; Carr, J.A.; Bardien, S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience, 2019, 406, 1-21. doi: 10.1016/j.neuroscience.2019.02.020 PMID: 30825584
  10. Dhiman, P.; Malik, N.; Khatkar, A. Lead optimization for promising monoamine oxidase inhibitor from eugenol for the treatment of neurological disorder: Synthesis and in silico based study. BMC Chem., 2019, 13(1), 38. doi: 10.1186/s13065-019-0552-4 PMID: 31384786
  11. Cox, F.F.; Misiou, A.; Vierkant, A.; Ale-Agha, N.; Grandoch, M.; Haendeler, J.; Altschmied, J. Protective effects of curcumin in cardiovascular diseases—Impact on oxidative stress and mitochondria. Cells, 2022, 11(3), 342. doi: 10.3390/cells11030342 PMID: 35159155
  12. Malik, N.; Dhiman, P.; Khatkar, A. In silico design and synthesis of targeted curcumin derivatives as xanthine oxidase inhibitors. Curr. Drug. Targets., 2019, 20(5), 593-603.
  13. Bateni, Z.; Behrouz, V.; Rahimi, H.R.; Hedayati, M.; Afsharian, S.; Sohrab, G. Effects of nano-curcumin supplementation on oxidative stress, systemic inflammation, adiponectin, and NF-κB in patients with metabolic syndrome: A randomized, double-blind clinical trial. J. Herb. Med., 2022, 31, 100531. doi: 10.1016/j.hermed.2021.100531
  14. Sabouni, N.; Marzouni, H.Z.; Palizban, S.; Meidaninikjeh, S.; Kesharwani, P.; Jamialahmadi, T.; Sahebkar, A. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J. Drug Target., 2023, 31(3), 243-260. doi: 10.1080/1061186X.2022.2141755 PMID: 36305097
  15. Harris, J.L.; Yeh, H.W.; Choi, I.Y. Neuroimaging biomarkers of oxidative stress in brain aging and injury. J. Int. Soc. Antioxidants Nutr. Health, 2016, 1, 233-235.
  16. Siswanto, S.; Arozal, W.; Juniantito, V.; Grace, A.; Agustini, F.D.; Nafrialdi The effect of mangiferin against brain damage caused by oxidative stress and inflammation induced by doxorubicin. Hayati J. Biosci., 2016, 23(2), 51-55. doi: 10.1016/j.hjb.2016.02.001
  17. Black, C.N.; Penninx, B.W.J.H.; Bot, M.; Odegaard, A.O.; Gross, M.D.; Matthews, K.A.; Jacobs, D.R., Jr Oxidative stress, anti-oxidants and the cross-sectional and longitudinal association with depressive symptoms: results from the CARDIA study. Transl. Psychiatry, 2016, 6(2), e743. doi: 10.1038/tp.2016.5 PMID: 26905415
  18. Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci., 2016, 8, 33-42. doi: 10.1016/j.cofs.2016.02.002
  19. Bar-Am, O.; Amit, T.; Youdim, M.B.; Weinreb, O. Neuroprotective and neurorestorative potential of propargylamine derivatives in ageing: Focus on mitochondrial targets. J. Neural Transm., 2016, 123(2), 125-135. doi: 10.1007/s00702-015-1395-3 PMID: 25859841
  20. Djiokeng Paka, G.; Doggui, S.; Zaghmi, A.; Safar, R.; Dao, L.; Reisch, A.; Klymchenko, A.; Roullin, V.G.; Joubert, O.; Ramassamy, C. Neuronal uptake and neuroprotective properties of curcumin-loaded nanoparticles on SK-N-SH cell line: Role of poly(lactide- co -glycolide) polymeric matrix composition. Mol. Pharm., 2016, 13(2), 391-403. doi: 10.1021/acs.molpharmaceut.5b00611 PMID: 26618861
  21. Estrada, M.; Herrera-Arozamena, C.; Pérez, C.; Viña, D.; Romero, A.; Morales-García, J.A.; Pérez-Castillo, A.; Rodríguez-Franco, M.I. New cinnamic – N-benzylpiperidine and cinnamic – N,N-dibenzyl(N-methyl)amine hybrids as Alzheimer-directed multitarget drugs with antioxidant, cholinergic, neuroprotective and neurogenic properties. Eur. J. Med. Chem., 2016, 121, 376-386. doi: 10.1016/j.ejmech.2016.05.055 PMID: 27267007
  22. Nisar, T.; Iqbal, M.; Raza, A.; Safdar, M.; Iftikhar, F.; Waheed, M. Turmeric: A promising spice for phytochemical and antimicrobial activities. Am.-Eurasian J. Agric. Environ. Sci., 2015, 15, 1278-1288.
  23. Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398. PMID: 12680238
  24. Masuda, T.; Hidaka, K.; Shinohara, A.; Maekawa, T.; Takeda, Y.; Yamaguchi, H. Chemical studies on antioxidant mechanism of curcuminoid: Analysis of radical reaction products from curcumin. J. Agric. Food Chem., 1999, 47(1), 71-77. doi: 10.1021/jf9805348 PMID: 10563852
  25. Negi, P.S.; Jayaprakasha, G.K.; Jagan Mohan Rao, L.; Sakariah, K.K. Antibacterial activity of turmeric oil: A byproduct from curcumin manufacture. J. Agric. Food Chem., 1999, 47(10), 4297-4300. doi: 10.1021/jf990308d PMID: 10552805
  26. Rai, D.; Singh, J.K.; Roy, N.; Panda, D. Curcumin inhibits FtsZ assembly: An attractive mechanism for its antibacterial activity. Biochem. J., 2008, 410(1), 147-155. doi: 10.1042/BJ20070891 PMID: 17953519
  27. Farombi, E.O.; Shrotriya, S.; Na, H.K.; Kim, S.H.; Surh, Y.J. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem. Toxicol., 2008, 46(4), 1279-1287. doi: 10.1016/j.fct.2007.09.095 PMID: 18006204
  28. Rajakrishnan, V.; Viswanathan, P.; Rajasekharan, K.N.; Menon, V.P. Neuroprotective role of curcumin from Curcuma longa on ethanol-induced brain damage. Phytother. Res., 1999, 13(7), 571-574. doi: 10.1002/(SICI)1099-1573(199911)13:73.0.CO;2-7 PMID: 10548748
  29. Thiyagarajan, M.; Sharma, S.S. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci., 2004, 74(8), 969-985. doi: 10.1016/j.lfs.2003.06.042 PMID: 14672754
  30. Cole, G.M.; Teter, B.; Frautschy, S.A. Neuroprotective effects of curcumin. Adv Exp Med Biol., 2007, 595, 197-212. doi: 10.1007/978-0-387-46401-5_8
  31. Miriyala, S.; Panchatcharam, M.; Rengarajulu, P. Cardioprotective effects of curcumin. In: The molecular targets and therapeutic uses of curcumin in health and disease; Springer US, 2007; pp. 359-377. doi: 10.1007/978-0-387-46401-5_16
  32. Srivastava, G.; Mehta, J.L. Currying the heart: Curcumin and cardioprotection. J. Cardiovasc. Pharmacol. Ther., 2009, 14(1), 22-27. doi: 10.1177/1074248408329608 PMID: 19153099
  33. Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care, 2012, 35(11), 2121-2127. doi: 10.2337/dc12-0116 PMID: 22773702
  34. Kim, T.; Davis, J.; Zhang, A.J.; He, X.; Mathews, S.T. Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochem. Biophys. Res. Commun., 2009, 388(2), 377-382. doi: 10.1016/j.bbrc.2009.08.018 PMID: 19665995
  35. Singh, S.; Jamwal, S.; Kumar, P. Piperine enhances the protective effect of curcumin against 3-NP induced neurotoxicity: Possible neurotransmitters modulation mechanism. Neurochem. Res., 2015, 40(8), 1758-1766. doi: 10.1007/s11064-015-1658-2 PMID: 26160706
  36. Samini, F.; Samarghandian, S.; Borji, A.; Mohammadi, G.; bakaian, M. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat. Pharmacol. Biochem. Behav., 2013, 110, 238-244. doi: 10.1016/j.pbb.2013.07.019 PMID: 23932920
  37. Lv, H.; Wang, Y.; Yang, X.; Ling, G.; Zhang, P. Application of curcumin nanoformulations in Alzheimer’s disease: Prevention, diagnosis and treatment. Nutr. Neurosci., 2022, 10, 1-6. PMID: 35694842
  38. Murugan, P.; Pari, L. Effect of tetrahydrocurcumin on lipid peroxidation and lipids in streptozotocin-nicotinamide-induced diabetic rats. Basic Clin. Pharmacol. Toxicol., 2006, 99(2), 122-127. doi: 10.1111/j.1742-7843.2006.pto_447.x PMID: 16918712
  39. Kruk, J.; Kubasik-Kladna, K.; Aboul-Enein, H.Y. The role oxidative stress in the pathogenesis of eye diseases: current status and a dual role of physical activity. Mini Rev. Med. Chem., 2015, 16(3), 241-257. doi: 10.2174/1389557516666151120114605 PMID: 26586128
  40. Kamat, P.K.; Kalani, A.; Rai, S.; Swarnkar, S.; Tota, S.; Nath, C.; Tyagi, N. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutic strategies. Mol. Neurobiol., 2016, 53(1), 648-661. doi: 10.1007/s12035-014-9053-6 PMID: 25511446
  41. Amirtharaj, G.J.; Natarajan, S.K.; Pulimood, A.; Balasubramanian, K.A.; Venkatraman, A.; Ramachandran, A. Role of oxygen free radicals, nitric oxide and mitochondria in mediating cardiac alterations during liver cirrhosis induced by thioacetamide. Cardiovasc. Toxicol., 2016, 30, 1-0. PMID: 27131982
  42. Garvey, J.; Ryan, S.; Taylor, C.T.; Mcnicholas, W.T. Oxidative Stress, Inflammation, and Vascular Function in Obstructive Sleep Apnea Syndrome. Sleep apnea: implications in cardiovascular and cerebrovascular disease; Informa healthcare: New York, London, 2016, 2, pp. 110-122.
  43. Donnez, J.; Binda, M.M.; Donnez, O.; Dolmans, M.M. Oxidative stress in the pelvic cavity and its role in the pathogenesis of endometriosis. Fertil. Steril., 2016, 106(5), 1011-1017. doi: 10.1016/j.fertnstert.2016.07.1075 PMID: 27521769
  44. Gamon, L.F.; Wille, U. Oxidative damage of biomolecules by the environmental pollutants NO2• and NO3•. Acc. Chem. Res., 2016, 49(10), 2136-2145. doi: 10.1021/acs.accounts.6b00219 PMID: 27668965
  45. Toyokuni, S. The origin and future of oxidative stress pathology: From the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy. Pathol. Int., 2016, 66(5), 245-259. doi: 10.1111/pin.12396 PMID: 26931176
  46. Singh, S.; Sharma, B. Oxidative stress in chronic pancreatitis. Oxidative stress and antioxidant protection. Science Free Radic Biol Dis, 2016, 15, 339-346.
  47. Khan, T.A.; Hassan, I.; Ahmad, A.; Perveen, A.; Aman, S.; Quddusi, S.; Alhazza, I.M.; Ashraf, G.M.; Aliev, G. Recent updates on the dynamic association between oxidative stress and neurodegenerative disorders. CNS Neurol. Disord. Drug Targets, 2016, 15(3), 310-320. doi: 10.2174/1871527315666160202124518 PMID: 26831262
  48. Loperena, R.; Harrison, D.G. Oxidative stress and hypertensive diseases. Med. Clin. North Am., 2017, 101(1), 169-193. doi: 10.1016/j.mcna.2016.08.004 PMID: 27884227
  49. Porres-Martínez, M.; González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. In vitro neuroprotective potential of the monoterpenes α-pinene and 1,8-cineole against H2O2 -induced oxidative stress in PC12 cells. Z. Naturforsch. C J. Biosci., 2016, 71(7-8), 191-199. doi: 10.1515/znc-2014-4135 PMID: 27352445
  50. Terman, A.; Brunk, U.T. Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid. Redox Signal., 2006, 8(1-2), 197-204. doi: 10.1089/ars.2006.8.197 PMID: 16487053
  51. Yuan, B.; Ohyama, K.; Bessho, T.; Uchide, N.; Toyoda, H. Imbalance between ROS production and elimination results in apoptosis induction in primary smooth chorion trophoblast cells prepared from human fetal membrane tissues. Life Sci., 2008, 82(11-12), 623-630. doi: 10.1016/j.lfs.2007.12.016 PMID: 18234233
  52. Okayama, Y. Oxidative stress in allergic and inflammatory skin diseases. Curr. Drug Targets Inflamm. Allergy, 2005, 4(4), 517-519. doi: 10.2174/1568010054526386 PMID: 16127829
  53. Desco, M.C.; Asensi, M.; Márquez, R.; Martínez-Valls, J.; Vento, M.; Pallardó, F.V.; Sastre, J.; Viña, J. Xanthine oxidase is involved in free radical production in type 1 diabetes: Protection by allopurinol. Diabetes., 2002, 51(4), 1118-1124. doi: 10.2337/diabetes.51.4.1118 PMID: 11916934
  54. Borghi, C.; Desideri, G. Urate-lowering drugs and prevention of cardiovascular disease. Hypertension., 2016, 67(3), 496-498. doi: 10.1161/HYPERTENSIONAHA.115.06531 PMID: 26865197
  55. Armstrong, D. Introduction to free radicals, inflammation, and recycling. Oxidative stress and antioxidant protection. Sci Free Radic Biol Disease, 2016, 4, 1-0.
  56. Borrowman, C.K.; Zhou, S.; Burrow, T.E.; Abbatt, J.P.D. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds. Phys. Chem. Chem. Phys., 2016, 18(1), 205-212. doi: 10.1039/C5CP05606C PMID: 26603953
  57. Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact., 2014, 224, 164-175. doi: 10.1016/j.cbi.2014.10.016 PMID: 25452175
  58. Gaspar, A.; Milhazes, N.; Santana, L.; Uriarte, E.; Borges, F.; Matos, M. Oxidative stress and neurodegenerative diseases: Looking for a therapeutic solution inspired on benzopyran chemistry. Curr. Top. Med. Chem., 2015, 15(5), 432-445. doi: 10.2174/1568026614666141229124141 PMID: 25658803
  59. Adam Daulatzai, M. Multifactorial pathologies promote inflammation and enhance vulnerability to late-onset Alzheimer’s disease: Implications for possible therapeutic targets. Front. Clin. Drug Res. - Alzheimer Disord., 2014, 2, 103-154. doi: 10.2174/9781608058709114020006
  60. Bhandari, R.; Kuhad, A. Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders. Life Sci., 2015, 141, 156-169. doi: 10.1016/j.lfs.2015.09.012 PMID: 26407474
  61. Xu, Y.; Ku, B.; Tie, L.; Yao, H.; Jiang, W.; Ma, X.; Li, X. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res., 2006, 1122(1), 56-64. doi: 10.1016/j.brainres.2006.09.009 PMID: 17022948
  62. Singhal, S.S.; Awasthi, S.; Pandya, U.; Piper, J.T.; Saini, M.K.; Cheng, J.Z.; Awasthi, Y.C. The effect of curcumin on glutathione-linked enzymes in K562 human leukemia cells. Toxicol. Lett., 1999, 109(1-2), 87-95. doi: 10.1016/S0378-4274(99)00124-1 PMID: 10514034
  63. Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377. doi: 10.1523/JNEUROSCI.21-21-08370.2001 PMID: 11606625
  64. Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901. doi: 10.1074/jbc.M404751200 PMID: 15590663
  65. Wu, A.; Noble, E.E.; Tyagi, E.; Ying, Z.; Zhuang, Y.; Gomez-Pinilla, F. Curcumin boosts DHA in the brain: Implications for the prevention of anxiety disorders. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(5), 951-961. doi: 10.1016/j.bbadis.2014.12.005 PMID: 25550171
  66. Tiwari, V.; Chopra, K. Attenuation of oxidative stress, neuroinflammation, and apoptosis by curcumin prevents cognitive deficits in rats postnatally exposed to ethanol. Psychopharmacology., 2012, 224(4), 519-535. doi: 10.1007/s00213-012-2779-9 PMID: 22790976
  67. Oz, A.; Çelik, O.; Ovey, İ.S. Effects of different doses of curcumin on apoptosis, mitochondrial oxidative stress and calcium influx in DBTRG glioblastoma cells. J. Cell. Neurosci, 2017, 9(2)
  68. Hovatta, I.; Tennant, R.S.; Helton, R.; Marr, R.A.; Singer, O.; Redwine, J.M.; Ellison, J.A.; Schadt, E.E.; Verma, I.M.; Lockhart, D.J.; Barlow, C. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature, 2005, 438(7068), 662-666. doi: 10.1038/nature04250 PMID: 16244648
  69. Thornalley, P.J. Unease on the role of glyoxalase 1 in high-anxiety-related behaviour. Trends Mol. Med., 2006, 12(5), 195-199. doi: 10.1016/j.molmed.2006.03.004 PMID: 16616641
  70. Landgraf, R.; Keßler, M.S.; Bunck, M.; Murgatroyd, C.; Spengler, D.; Zimbelmann, M.; Nußbaumer, M.; Czibere, L.; Turck, C.W.; Singewald, N.; Rujescu, D.; Frank, E. Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: Focus on vasopressin and glyoxalase-I. Neurosci. Biobehav. Rev., 2007, 31(1), 89-102. doi: 10.1016/j.neubiorev.2006.07.003 PMID: 16934871
  71. Ng, F.; Berk, M.; Dean, O.; Bush, A.I. Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. Int. J. Neuropsychopharmacol., 2008, 11(6), 851-876. doi: 10.1017/S1461145707008401 PMID: 18205981
  72. Brouwers, O.; Niessen, P.M.; Ferreira, I.; Miyata, T.; Scheffer, P.G.; Teerlink, T.; Schrauwen, P.; Brownlee, M.; Stehouwer, C.D.; Schalkwijk, C.G. Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats. J. Biol. Chem., 2011, 286(2), 1374-1380. doi: 10.1074/jbc.M110.144097 PMID: 21056979
  73. Williams, R.; Lim, J.E.; Harr, B.; Wing, C.; Walters, R.; Distler, M.G.; Teschke, M.; Wu, C.; Wiltshire, T.; Su, A.I.; Sokoloff, G.; Tarantino, L.M.; Borevitz, J.O.; Palmer, A.A. A common and unstable copy number variant is associated with differences in Glo1 expression and anxiety-like behavior. PLoS One, 2009, 4(3), e4649. doi: 10.1371/journal.pone.0004649
  74. Distler, M.G.; Plant, L.D.; Sokoloff, G.; Hawk, A.J.; Aneas, I.; Wuenschell, G.E.; Termini, J.; Meredith, S.C.; Nobrega, M.A.; Palmer, A.A. Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal. J. Clin. Invest., 2012, 122(6), 2306-2315. doi: 10.1172/JCI61319 PMID: 22585572
  75. Filiou, M.D.; Zhang, Y.; Teplytska, L.; Reckow, S.; Gormanns, P.; Maccarrone, G.; Frank, E.; Kessler, M.S.; Hambsch, B.; Nussbaumer, M.; Bunck, M.; Ludwig, T.; Yassouridis, A.; Holsboer, F.; Landgraf, R.; Turck, C.W. Proteomics and metabolomics analysis of a trait anxiety mouse model reveals divergent mitochondrial pathways. Biol. Psychiatry, 2011, 70(11), 1074-1082. doi: 10.1016/j.biopsych.2011.06.009 PMID: 21791337
  76. Rudrapal, M.; Eltayeb, W.A.; Rakshit, G.; El-Arabey, A.A.; Khan, J.; Aldosari, S.M.; Alshehri, B.; Abdalla, M. Dual synergistic inhibition of COX and LOX by potential chemicals from Indian daily spices investigated through detailed computational studies. Sci. Rep., 2023, 13(1), 8656. doi: 10.1038/s41598-023-35161-0 PMID: 37244921
  77. Bhattacharyya, S.; Ghosh, H.; Covarrubias-Zambrano, O.; Jain, K.; Swamy, K.V.; Kasi, A.; Hamza, A.; Anant, S.; VanSaun, M.; Weir, S.J.; Bossmann, S.H.; Padhye, S.B.; Dandawate, P. Anticancer activity of novel difluorinated curcumin analog and its inclusion complex with 2-hydroxypropyl-β-cyclodextrin against pancreatic cancer. International. Int. J. Mol. Sci., 2023, 24(7), 6336. doi: 10.3390/ijms24076336 PMID: 37047307
  78. Scomoroscenco, C.; Teodorescu, M.; Burlacu, S.G.; Gîfu, I.C.; Mihaescu, C.I.; Petcu, C.; Raducan, A.; Oancea, P.; Cinteza, L.O. Synergistic antioxidant activity and enhanced stability of curcumin encapsulated in vegetal oil-based microemulsion and gel microemulsions. Antioxidants, 2022, 11(5), 854. doi: 10.3390/antiox11050854 PMID: 35624718
  79. Hashemi, M.; Mirzaei, S.; Barati, M.; Hejazi, E.S.; Kakavand, A.; Entezari, M.; Salimimoghadam, S.; Kalbasi, A.; Rashidi, M.; Taheriazam, A.; Sethi, G. Curcumin in the treatment of urological cancers: Therapeutic targets, challenges and prospects. Life Sci., 2022, 309, 120984. doi: 10.1016/j.lfs.2022.120984 PMID: 36150461
  80. Zhang, Q.; Wu, L. In vitro and in vivo cardioprotective effects of curcumin against doxorubicin-induced cardiotoxicity: A systematic review. J. Oncol., 2022, 2022, 7277562.
  81. Marton, L.T.; Pescinini-e-Salzedas, L.M.; Camargo, M.E.C.; Barbalho, S.M.; Haber, J.F.S.; Sinatora, R.V.; Detregiachi, C.R.P.; Girio, R.J.S.; Buchaim, D.V.; Cincotto dos, S.B.P. The effects of curcumin on diabetes mellitus: A systematic review. Front. Endocrinol., 2021, 12, 669448. doi: 10.3389/fendo.2021.669448 PMID: 34012421
  82. Neyestani, Z.; Ebrahimi, S.A.; Ghazaghi, A.; Jalili, A.; Sahebkar, A.; Rahimi, H.R. Review of anti-bacterial activities of curcumin against Pseudomonas aeruginosa. Crit. Rev. Eukaryot. Gene Expr., 2019, 29(5), 377-385. doi: 10.1615/CritRevEukaryotGeneExpr.2019029088 PMID: 32421995
  83. Ratrey, P.; Dalvi, S.V; Mishra, A. Enhancing aqueous solubility and antibacterial activity of curcumin by complexing with cell-penetrating octaarginine. ACS omega., 2020, 5(30), 19004-19013. doi: 10.1021/acsomega.0c02321
  84. Shome, S.; Talukdar, A.D.; Upadhyaya, H. Antibacterial activity of curcumin and its essential nanoformulations against some clinically important bacterial pathogens: A comprehensive review. Biotechnol. Appl. Biochem., 2022, 69(6), 2357-2386. doi: 10.1002/bab.2289 PMID: 34826356
  85. Zarrinfar, H.; Behnam, M.; Hatamipour, M.; Sahebkar, A. Antifungal activities of curcuminoids and difluorinated curcumin against clinical dermatophyte isolates. Adv. Exp. Med. Biol., 2021, 1308, 101-107. doi: 10.1007/978-3-030-64872-5_8
  86. Layaida, H.; Hellal, A.; Chafai, N.; Haddadi, I.; Imene, K.; Anis, B.; Mouna, E.; Bensouici, C.; Sobhi, W.; Attoui, A.; Lilia, A. Synthesis, spectroscopic characterization, density functional theory study, antimicrobial and antioxidant activities of curcumin and alanine-curcumin Schiff base. J. Biomol. Struct. Dyn., 2022, 12, 1-16. doi: 10.1080/07391102.2022.2123043 PMID: 36120951
  87. Thimmulappa, R.K.; Mudnakudu-Nagaraju, K.K.; Shivamallu, C.; Subramaniam, K.J.T.; Radhakrishnan, A.; Bhojraj, S.; Kuppusamy, G. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon, 2021, 7(2), e06350. doi: 10.1016/j.heliyon.2021.e06350 PMID: 33655086
  88. Rubab, S.; Naeem, K.; Rana, I.; Khan, N.; Afridi, M.; Ullah, I.; Shah, F.A.; Sarwar, S.; Din, F.; Choi, H.I.; Lee, C.H.; Lim, C.W.; Alamro, A.A.; Kim, J.K.; Zeb, A. Enhanced neuroprotective and antidepressant activity of curcumin-loaded nanostructured lipid carriers in lipopolysaccharide-induced depression and anxiety rat model. Int. J. Pharm., 2021, 603, 120670. doi: 10.1016/j.ijpharm.2021.120670 PMID: 33964337
  89. Wang, Q.; Ye, C.; Sun, S.; Li, R.; Shi, X.; Wang, S.; Zeng, X.; Kuang, N.; Liu, Y.; Shi, Q.; Liu, R. Curcumin attenuates collagen-induced rat arthritis via anti-inflammatory and apoptotic effects. Int. Immunopharmacol., 2019, 72, 292-300. doi: 10.1016/j.intimp.2019.04.027 PMID: 31005039
  90. Naghdi, A.; Goodarzi, M.T.; Karimi, J.; Hashemnia, M.; Khodadadi, I. Effects of curcumin and metformin on oxidative stress and apoptosis in heart tissue of type 1 diabetic rats. J. Cardiovasc. Thorac. Res., 2022, 14(2), 128-137. doi: 10.34172/jcvtr.2022.23 PMID: 35935389
  91. Alvarez-Ricardo, Y.; Meza-Morales, W.; Obregón-Mendoza, M.A.; Toscano, R.A.; Núñez-Zarur, F.; Germán-Acacio, J.M.; Puentes-Díaz, N.; Alí-Torres, J.; Arenaza-Corona, A.; Ramírez-Apan, M.T.; Morales-Morales, D.; Enríquez, R.G. Synthesis, characterization, theoretical studies and antioxidant and cytotoxic evaluation of a series of Tetrahydrocurcumin (THC)-benzylated derivatives. J. Mol. Struct., 2023, 1273, 134355. doi: 10.1016/j.molstruc.2022.134355
  92. Lin, H.W.; Chen, T.C.; Yeh, J.H.; Tsou, S.C.; Wang, I.; Shen, T.J.; Chuang, C.J.; Chang, Y.Y. Suppressive effect of tetrahydrocurcumin on pseudomonas aeruginosa lipopolysaccharide-induced inflammation by suppressing JAK/STAT and Nrf2/HO-1 pathways in microglial cells. Oxid. Med. Cell. Longev., 2022, 2022, 4978556.
  93. Khazaeli, M.; Nunes, A.C.F.; Zhao, Y.; Khazaali, M.; Prudente, J.; Vaziri, N.D.; Singh, B.; Lau, W.L. Tetrahydrocurcumin Add-On therapy to losartan in a rat model of diabetic nephropathy decreases blood pressure and markers of kidney injury. Pharmacol. Res. Perspect., 2023, 11(2), e01079. doi: 10.1002/prp2.1079 PMID: 36971089
  94. Yuan, T.; Cai, D.; Hu, B.; Zhu, Y.; Qin, J. Therapeutic effects of curcumin on osteoarthritis and its protection of chondrocytes through the wnt/β-catenin signaling pathway. Altern. Ther. Health Med., 2022, 28(5), 28-37. PMID: 35452417
  95. Riyadi, S.A.; Abdullah, F.F.; Fadhilah, F.; Assidiqiah, N. Anticancer activity of curcuminoids against B16-F10 melanoma cell lines. Marine Pharmacopoeia Sci. J. Sandra Amalia Riyadi., 2022, 13(2), 152-163.
  96. Orhan, C.; Tuzcu, M.; Durmus, A.S.; Sahin, N.; Ozercan, I.H.; Deeh, P.B.D.; Morde, A.; Bhanuse, P.; Acharya, M.; Padigaru, M.; Sahin, K. Protective effect of a novel polyherbal formulation on experimentally induced osteoarthritis in a rat model. Biomed. Pharmacother., 2022, 151, 113052-, 151, 113052. doi: 10.1016/j.biopha.2022.113052 PMID: 35588576
  97. Pantiora, P.; Furlan, V.; Matiadis, D.; Mavroidi, B.; Perperopoulou, F.; Papageorgiou, A.C.; Sagnou, M.; Bren, U.; Pelecanou, M.; Labrou, N.E. Monocarbonyl curcumin analogues as potent inhibitors against human glutathione transferase P1-1. Antioxidants, 2022, 12(1), 63. doi: 10.3390/antiox12010063 PMID: 36670925
  98. Gagliardi, S.; Truffi, M.; Tinelli, V.; Garofalo, M.; Pandini, C.; Cotta Ramusino, M.; Perini, G.; Costa, A.; Negri, S.; Mazzucchelli, S.; Bonizzi, A.; Sitia, L.; Busacca, M.; Sevieri, M.; Mocchi, M.; Ricciardi, A.; Prosperi, D.; Corsi, F.; Cereda, C.; Morasso, C. Bisdemethoxycurcumin (BDC)-loaded H-ferritin-nanocages mediate the regulation of inflammation in Alzheimer’s disease patients. Int. J. Mol. Sci., 2022, 23(16), 9237. doi: 10.3390/ijms23169237 PMID: 36012501
  99. Gordon, B.A.; Blazey, T.; Morris, J.C.; Holtzman, D.M.; Fagan, A.M.; Benzinger, T.L.S. Longitudinal amyloid deposition and hippocampal volume in suspected non-Alzheimer pathophysiology and preclinical Alzheimer’s disease. Alzheimers Dement., 2016, 12(7S_Part_4), 191. doi: 10.1016/j.jalz.2016.06.332
  100. Bozzali, M.; Serra, L.; Cercignani, M. Quantitative MRI to understand Alzheimer’s disease pathophysiology. Curr. Opin. Neurol., 2016, 29(4), 437-444. doi: 10.1097/WCO.0000000000000345 PMID: 27228309
  101. Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s? -amyloid fibrils in vitro. J. Neurosci. Res., 2004, 75(6), 742-750. doi: 10.1002/jnr.20025 PMID: 14994335
  102. Ringman, J.; Frautschy, S.; Cole, G.; Masterman, D.; Cummings, J. A potential role of the curry spice curcumin in Alzheimer’s disease. Curr. Alzheimer Res., 2005, 2(2), 131-136. doi: 10.2174/1567205053585882 PMID: 15974909
  103. Begum, A.N.; Jones, M.R.; Lim, G.P.; Morihara, T.; Kim, P.; Heath, D.D.; Rock, C.L.; Pruitt, M.A.; Yang, F.; Hudspeth, B.; Hu, S.; Faull, K.F.; Teter, B.; Cole, G.M.; Frautschy, S.A. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimer’s disease. J. Pharmacol. Exp. Ther., 2008, 326(1), 196-208. doi: 10.1124/jpet.108.137455 PMID: 18417733
  104. Baum, L.; Ng, A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J. Alzheimers Dis., 2004, 6(4), 367-377. doi: 10.3233/JAD-2004-6403 PMID: 15345806
  105. Hamaguchi, T.; Ono, K.; Yamada, M. REVIEW: Curcumin and Alzheimer’s disease. CNS Neurosci. Ther., 2010, 16(5), 285-297. doi: 10.1111/j.1755-5949.2010.00147.x PMID: 20406252
  106. Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Kandimalla, R.; Kuruva, C.S. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer’s disease. J. Investig. Med., 2016, 64(8), 1220-1234. doi: 10.1136/jim-2016-000240 PMID: 27521081
  107. Shakeri, A.; Sahebkar, A. Optimized curcumin formulations for the treatment of Alzheimer’s disease: A patent evaluation. J. Neurosci. Res., 2016, 94(2), 111-113. doi: 10.1002/jnr.23696 PMID: 26577706
  108. Goozee, K.G.; Chatterjee, P.; Sohrabi, H.R.; Shen, K.K.; Ball, B.; Dave, P.; ManYan, C.; Asih, P.R.; Taddei, K.; Martins, R.N. Targeting preclinical stages of Alzheimer’s disease: a clinical trial to assess the efficacy of curcumin using brain biomarkers. Alzheimers Dement., 2016, 12(7S_Part_12), 61-67. doi: 10.1016/j.jalz.2016.06.1224
  109. Huang, H.C.; Zheng, B.W.; Guo, Y.; Zhao, J.; Zhao, J.Y.; Ma, X.W.; Jiang, Z.F. Antioxidative and neuroprotective effects of curcumin in an Alzheimer’s disease rat model co-treated with intracerebroventricular streptozotocin and subcutaneous D-galactose. J. Alzheimers Dis., 2016, 52(3), 899-911. doi: 10.3233/JAD-150872 PMID: 27060945
  110. Obulesu, M.; Jhansilakshmi, M. Neuroprotective role of nanoparticles against Alzheimer’s disease. Curr. Drug Metab., 2016, 17(2), 142-149. doi: 10.2174/138920021702160114160341 PMID: 26806041
  111. Dominguez, L.J.; Barbagallo, M. Dietary approaches and supplements in the prevention of cognitive decline and Alzheimer’s disease. Curr. Pharm. Des., 2016, 22(6), 688-700. doi: 10.2174/1381612822666151204000733 PMID: 26635270
  112. Shi, W.; Dolai, S.; Rizk, S.; Hussain, A.; Tariq, H.; Averick, S.; L’Amoreaux, W.; El Idrissi, A.; Banerjee, P.; Raja, K. Synthesis of monofunctional curcumin derivatives, clicked curcumin dimer, and a PAMAM dendrimer curcumin conjugate for therapeutic applications. Org. Lett., 2007, 9(26), 5461-5464. doi: 10.1021/ol702370m PMID: 18020348
  113. Sanmukhani, J.; Satodia, V.; Trivedi, J.; Patel, T.; Tiwari, D.; Panchal, B.; Goel, A.; Tripathi, C.B. Efficacy and safety of curcumin in major depressive disorder: A randomized controlled trial. Phytother. Res., 2014, 28(4), 579-585. doi: 10.1002/ptr.5025 PMID: 23832433
  114. Lopresti, A.L.; Maes, M.; Maker, G.L.; Hood, S.D.; Drummond, P.D. Curcumin for the treatment of major depression: A randomised, double-blind, placebo controlled study. J. Affect. Disord., 2014, 167, 368-375. doi: 10.1016/j.jad.2014.06.001 PMID: 25046624
  115. Gokce, E.C.; Kahveci, R.; Gokce, A.; Sargon, M.F.; Kisa, U.; Aksoy, N.; Cemil, B.; Erdogan, B. Curcumin attenuates inflammation, oxidative stress, and ultrastructural damage induced by spinal cord ischemia–reperfusion injury in rats. J. Stroke Cerebrovasc. Dis., 2016, 25(5), 1196-1207. doi: 10.1016/j.jstrokecerebrovasdis.2016.01.008 PMID: 26935117
  116. Gazal, M.; Valente, M.R.; Acosta, B.A.; Kaufmann, F.N.; Braganhol, E.; Lencina, C.L.; Stefanello, F.M.; Ghisleni, G.; Kaster, M.P. Neuroprotective and antioxidant effects of curcumin in a ketamine-induced model of mania in rats. Eur. J. Pharmacol., 2014, 724, 132-139. doi: 10.1016/j.ejphar.2013.12.028 PMID: 24384407
  117. Rinwa, P.; Kumar, A. Piperine potentiates the protective effects of curcumin against chronic unpredictable stress-induced cognitive impairment and oxidative damage in mice. Brain Res., 2012, 1488, 38-50. doi: 10.1016/j.brainres.2012.10.002 PMID: 23099054
  118. Motterlini, R.; Foresti, R.; Bassi, R.; Green, C.J. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic. Biol. Med., 2000, 28(8), 1303-1312. doi: 10.1016/S0891-5849(00)00294-X PMID: 10889462
  119. Somparn, P.; Phisalaphong, C.; Nakornchai, S.; Unchern, S.; Morales, N.P. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol. Pharm. Bull., 2007, 30(1), 74-78. doi: 10.1248/bpb.30.74 PMID: 17202663
  120. Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811. doi: 10.1089/ars.2009.3074 PMID: 20446769
  121. Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775. doi: 10.1038/nrn2214 PMID: 17882254
  122. Calabrese, E.J.; Iavicoli, I.; Calabrese, V. Hormesis: Why it is important to biogerontologists. Biogerontology, 2012, 13(3), 215-235. doi: 10.1007/s10522-012-9374-7 PMID: 22270337
  123. Rahman, M.A.; Shuvo, A.A.; Bepari, A.K.; Hasan Apu, M.; Shill, M.C.; Hossain, M.; Uddin, M.; Islam, M.R.; Bakshi, M.K.; Hasan, J.; Rahman, A.; Rahman, G.M.S.; Reza, H.M. Curcumin improves D-galactose and normal-aging associated memory impairment in mice: In vivo and in silico-based studies. PLoS One, 2022, 17(6), e0270123. doi: 10.1371/journal.pone.0270123 PMID: 35767571
  124. Trujillo, J.; Chirino, Y.I.; Molina-Jijón, E.; Andérica-Romero, A.C.; Tapia, E.; Pedraza-Chaverrí, J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol., 2013, 1(1), 448-456. doi: 10.1016/j.redox.2013.09.003 PMID: 24191240
  125. Mokgalaboni, K.; Ntamo, Y.; Ziqubu, K.; Nyambuya, T.M.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Gabuza, K.B.; Chellan, N.; Tiano, L.; Dludla, P.V. Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: updating the status of clinical evidence. Food Funct., 2021, 12(24), 12235-12249. doi: 10.1039/D1FO02696H PMID: 34847213
  126. Kuhad, A.; Pilkhwal, S.; Sharma, S.; Tirkey, N.; Chopra, K. Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity. J. Agric. Food Chem., 2007, 55(25), 10150-10155. doi: 10.1021/jf0723965 PMID: 18001039

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers