Curcumin Derivatives Linked to a Reduction of Oxidative Stress in Mental Dysfunctions and Inflammatory Disorders
- Authors: Dhiman P.1, Malik N.2
-
Affiliations:
- Department of Pharmaceutical Sciences, Chandigarh Group of Colleges (CGC)
- Department of Pharmaceutical Sciences, Panipat Institute of Engineering & Technology (PIET)
- Issue: Vol 31, No 41 (2024)
- Pages: 6826-6841
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645142
- DOI: https://doi.org/10.2174/0929867331666230821102431
- ID: 645142
Cite item
Full Text
Abstract
:Stress is a critical factor in the etiology of inflammation and neurodegeneration. The risk factor for the majority of psychiatric disorders is oxidative stress-induced depression. Mitochondrial damage and oxidative stress are associated with the development of neurodegenerative disorders. During aging, the brain and associated regions become more susceptible due to oxidative stress. The leading cause of oxidative stress is the continuous generation of ROS (reactive oxygen species) and RNS (Reactive nitrogen species) endogenously or exogenously. In this review, discussion on a potent antioxidant natural constituent "curcumin" has been made to alleviate many pathological and neurological disorders. A focused compilation of vast and informative research on the potential of curcumin as a magical moiety used therapeutically has been done in search of its role in controlling the neurological and similar disorders induced by oxidative stress.
About the authors
Priyanka Dhiman
Department of Pharmaceutical Sciences, Chandigarh Group of Colleges (CGC)
Email: info@benthamscience.net
Neelam Malik
Department of Pharmaceutical Sciences, Panipat Institute of Engineering & Technology (PIET)
Author for correspondence.
Email: info@benthamscience.net
References
- Juan, CA.; Perez de la Lastra, JM; Plou, FJ.; Pérez-Lebeña, E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci., 2021, 22(9), 4642.
- Singh, J.; Kumar, V.; Silakari, P.; Kumar, S. Pyridazinones: A versatile scaffold in the development of potential target-based novel anticancer agents. J. Heterocycl. Chem., 2022. doi: 10.1002/jhet.4589
- Singh, J.; Suryan, A.; Kumar, S.; Sharma, S. Phthalazinone scaffold: Emerging tool in the development of target based novel anticancer agents. Anticancer. Agents Med. Chem., 2020, 20(18), 2228-2245. doi: 10.2174/1871520620666200807220146 PMID: 32767957
- Quispe, C; Herrera-Bravo, J; Javed, Z; Khan, K; Raza, S; Gulsunoglu-Konuskan, Z; Daştan, S.D; Sytar, O; Martorell, M; Sharifi-Rad, J; Calina, D. Therapeutic applications of curcumin in diabetes: A review and perspective. Biomed. Res. Int., 2022, 2022, 1375892. doi: 10.1155/2022/1375892
- Sobhi, W.; Bisset, S.; Bensouici, C.; khenchouche, A. Antioxidant activity and inhibitory effect of curcumin on some enzymes involved in several diseases: Acetylcholinesterase, butyrylcholinesterase, α-glucosidase and tyrosinase. Curr. Enzym. Inhib., 2022, 18(3), 172-179. doi: 10.2174/1573408018666220602091615
- Sharma, S.; Advani, D.; Das, A.; Malhotra, N.; Khosla, A.; Arora, V.; Jha, A.; Yadav, M.; Ambasta, R.K.; Kumar, P. Pharmacological intervention in oxidative stress as a therapeutic target in neurological disorders. J. Pharm. Pharmacol., 2022, 74(4), 461-484. doi: 10.1093/jpp/rgab064 PMID: 34050648
- Bayo-Olugbami, A.A.; Babalola, K.M.; Imam-Fulani, A.O. Translational Neuroprotective Activity of Curcumin in Neurodegenerative Diseases: An Overview with Animal Models; Curative and Preventive Properties Medicinal Plants, 2023, pp. 125-138.
- Li, N.; Yan, X.; Huang, W.; Chu, M.; Dong, Y.; Song, H.; Peng, Y.; Shi, J.; Liu, Q. Curcumin protects against the age-related hearing loss by attenuating apoptosis and senescence via activating Nrf2 signaling in cochlear hair cells. Biochem. Pharmacol., 2023, 212, 115575. doi: 10.1016/j.bcp.2023.115575 PMID: 37334787
- Abrahams, S.; Haylett, W.L.; Johnson, G.; Carr, J.A.; Bardien, S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience, 2019, 406, 1-21. doi: 10.1016/j.neuroscience.2019.02.020 PMID: 30825584
- Dhiman, P.; Malik, N.; Khatkar, A. Lead optimization for promising monoamine oxidase inhibitor from eugenol for the treatment of neurological disorder: Synthesis and in silico based study. BMC Chem., 2019, 13(1), 38. doi: 10.1186/s13065-019-0552-4 PMID: 31384786
- Cox, F.F.; Misiou, A.; Vierkant, A.; Ale-Agha, N.; Grandoch, M.; Haendeler, J.; Altschmied, J. Protective effects of curcumin in cardiovascular diseasesImpact on oxidative stress and mitochondria. Cells, 2022, 11(3), 342. doi: 10.3390/cells11030342 PMID: 35159155
- Malik, N.; Dhiman, P.; Khatkar, A. In silico design and synthesis of targeted curcumin derivatives as xanthine oxidase inhibitors. Curr. Drug. Targets., 2019, 20(5), 593-603.
- Bateni, Z.; Behrouz, V.; Rahimi, H.R.; Hedayati, M.; Afsharian, S.; Sohrab, G. Effects of nano-curcumin supplementation on oxidative stress, systemic inflammation, adiponectin, and NF-κB in patients with metabolic syndrome: A randomized, double-blind clinical trial. J. Herb. Med., 2022, 31, 100531. doi: 10.1016/j.hermed.2021.100531
- Sabouni, N.; Marzouni, H.Z.; Palizban, S.; Meidaninikjeh, S.; Kesharwani, P.; Jamialahmadi, T.; Sahebkar, A. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J. Drug Target., 2023, 31(3), 243-260. doi: 10.1080/1061186X.2022.2141755 PMID: 36305097
- Harris, J.L.; Yeh, H.W.; Choi, I.Y. Neuroimaging biomarkers of oxidative stress in brain aging and injury. J. Int. Soc. Antioxidants Nutr. Health, 2016, 1, 233-235.
- Siswanto, S.; Arozal, W.; Juniantito, V.; Grace, A.; Agustini, F.D.; Nafrialdi The effect of mangiferin against brain damage caused by oxidative stress and inflammation induced by doxorubicin. Hayati J. Biosci., 2016, 23(2), 51-55. doi: 10.1016/j.hjb.2016.02.001
- Black, C.N.; Penninx, B.W.J.H.; Bot, M.; Odegaard, A.O.; Gross, M.D.; Matthews, K.A.; Jacobs, D.R., Jr Oxidative stress, anti-oxidants and the cross-sectional and longitudinal association with depressive symptoms: results from the CARDIA study. Transl. Psychiatry, 2016, 6(2), e743. doi: 10.1038/tp.2016.5 PMID: 26905415
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci., 2016, 8, 33-42. doi: 10.1016/j.cofs.2016.02.002
- Bar-Am, O.; Amit, T.; Youdim, M.B.; Weinreb, O. Neuroprotective and neurorestorative potential of propargylamine derivatives in ageing: Focus on mitochondrial targets. J. Neural Transm., 2016, 123(2), 125-135. doi: 10.1007/s00702-015-1395-3 PMID: 25859841
- Djiokeng Paka, G.; Doggui, S.; Zaghmi, A.; Safar, R.; Dao, L.; Reisch, A.; Klymchenko, A.; Roullin, V.G.; Joubert, O.; Ramassamy, C. Neuronal uptake and neuroprotective properties of curcumin-loaded nanoparticles on SK-N-SH cell line: Role of poly(lactide- co -glycolide) polymeric matrix composition. Mol. Pharm., 2016, 13(2), 391-403. doi: 10.1021/acs.molpharmaceut.5b00611 PMID: 26618861
- Estrada, M.; Herrera-Arozamena, C.; Pérez, C.; Viña, D.; Romero, A.; Morales-García, J.A.; Pérez-Castillo, A.; Rodríguez-Franco, M.I. New cinnamic N-benzylpiperidine and cinnamic N,N-dibenzyl(N-methyl)amine hybrids as Alzheimer-directed multitarget drugs with antioxidant, cholinergic, neuroprotective and neurogenic properties. Eur. J. Med. Chem., 2016, 121, 376-386. doi: 10.1016/j.ejmech.2016.05.055 PMID: 27267007
- Nisar, T.; Iqbal, M.; Raza, A.; Safdar, M.; Iftikhar, F.; Waheed, M. Turmeric: A promising spice for phytochemical and antimicrobial activities. Am.-Eurasian J. Agric. Environ. Sci., 2015, 15, 1278-1288.
- Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398. PMID: 12680238
- Masuda, T.; Hidaka, K.; Shinohara, A.; Maekawa, T.; Takeda, Y.; Yamaguchi, H. Chemical studies on antioxidant mechanism of curcuminoid: Analysis of radical reaction products from curcumin. J. Agric. Food Chem., 1999, 47(1), 71-77. doi: 10.1021/jf9805348 PMID: 10563852
- Negi, P.S.; Jayaprakasha, G.K.; Jagan Mohan Rao, L.; Sakariah, K.K. Antibacterial activity of turmeric oil: A byproduct from curcumin manufacture. J. Agric. Food Chem., 1999, 47(10), 4297-4300. doi: 10.1021/jf990308d PMID: 10552805
- Rai, D.; Singh, J.K.; Roy, N.; Panda, D. Curcumin inhibits FtsZ assembly: An attractive mechanism for its antibacterial activity. Biochem. J., 2008, 410(1), 147-155. doi: 10.1042/BJ20070891 PMID: 17953519
- Farombi, E.O.; Shrotriya, S.; Na, H.K.; Kim, S.H.; Surh, Y.J. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem. Toxicol., 2008, 46(4), 1279-1287. doi: 10.1016/j.fct.2007.09.095 PMID: 18006204
- Rajakrishnan, V.; Viswanathan, P.; Rajasekharan, K.N.; Menon, V.P. Neuroprotective role of curcumin from Curcuma longa on ethanol-induced brain damage. Phytother. Res., 1999, 13(7), 571-574. doi: 10.1002/(SICI)1099-1573(199911)13:73.0.CO;2-7 PMID: 10548748
- Thiyagarajan, M.; Sharma, S.S. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci., 2004, 74(8), 969-985. doi: 10.1016/j.lfs.2003.06.042 PMID: 14672754
- Cole, G.M.; Teter, B.; Frautschy, S.A. Neuroprotective effects of curcumin. Adv Exp Med Biol., 2007, 595, 197-212. doi: 10.1007/978-0-387-46401-5_8
- Miriyala, S.; Panchatcharam, M.; Rengarajulu, P. Cardioprotective effects of curcumin. In: The molecular targets and therapeutic uses of curcumin in health and disease; Springer US, 2007; pp. 359-377. doi: 10.1007/978-0-387-46401-5_16
- Srivastava, G.; Mehta, J.L. Currying the heart: Curcumin and cardioprotection. J. Cardiovasc. Pharmacol. Ther., 2009, 14(1), 22-27. doi: 10.1177/1074248408329608 PMID: 19153099
- Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care, 2012, 35(11), 2121-2127. doi: 10.2337/dc12-0116 PMID: 22773702
- Kim, T.; Davis, J.; Zhang, A.J.; He, X.; Mathews, S.T. Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochem. Biophys. Res. Commun., 2009, 388(2), 377-382. doi: 10.1016/j.bbrc.2009.08.018 PMID: 19665995
- Singh, S.; Jamwal, S.; Kumar, P. Piperine enhances the protective effect of curcumin against 3-NP induced neurotoxicity: Possible neurotransmitters modulation mechanism. Neurochem. Res., 2015, 40(8), 1758-1766. doi: 10.1007/s11064-015-1658-2 PMID: 26160706
- Samini, F.; Samarghandian, S.; Borji, A.; Mohammadi, G.; bakaian, M. Curcumin pretreatment attenuates brain lesion size and improves neurological function following traumatic brain injury in the rat. Pharmacol. Biochem. Behav., 2013, 110, 238-244. doi: 10.1016/j.pbb.2013.07.019 PMID: 23932920
- Lv, H.; Wang, Y.; Yang, X.; Ling, G.; Zhang, P. Application of curcumin nanoformulations in Alzheimers disease: Prevention, diagnosis and treatment. Nutr. Neurosci., 2022, 10, 1-6. PMID: 35694842
- Murugan, P.; Pari, L. Effect of tetrahydrocurcumin on lipid peroxidation and lipids in streptozotocin-nicotinamide-induced diabetic rats. Basic Clin. Pharmacol. Toxicol., 2006, 99(2), 122-127. doi: 10.1111/j.1742-7843.2006.pto_447.x PMID: 16918712
- Kruk, J.; Kubasik-Kladna, K.; Aboul-Enein, H.Y. The role oxidative stress in the pathogenesis of eye diseases: current status and a dual role of physical activity. Mini Rev. Med. Chem., 2015, 16(3), 241-257. doi: 10.2174/1389557516666151120114605 PMID: 26586128
- Kamat, P.K.; Kalani, A.; Rai, S.; Swarnkar, S.; Tota, S.; Nath, C.; Tyagi, N. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimers disease: understanding the therapeutic strategies. Mol. Neurobiol., 2016, 53(1), 648-661. doi: 10.1007/s12035-014-9053-6 PMID: 25511446
- Amirtharaj, G.J.; Natarajan, S.K.; Pulimood, A.; Balasubramanian, K.A.; Venkatraman, A.; Ramachandran, A. Role of oxygen free radicals, nitric oxide and mitochondria in mediating cardiac alterations during liver cirrhosis induced by thioacetamide. Cardiovasc. Toxicol., 2016, 30, 1-0. PMID: 27131982
- Garvey, J.; Ryan, S.; Taylor, C.T.; Mcnicholas, W.T. Oxidative Stress, Inflammation, and Vascular Function in Obstructive Sleep Apnea Syndrome. Sleep apnea: implications in cardiovascular and cerebrovascular disease; Informa healthcare: New York, London, 2016, 2, pp. 110-122.
- Donnez, J.; Binda, M.M.; Donnez, O.; Dolmans, M.M. Oxidative stress in the pelvic cavity and its role in the pathogenesis of endometriosis. Fertil. Steril., 2016, 106(5), 1011-1017. doi: 10.1016/j.fertnstert.2016.07.1075 PMID: 27521769
- Gamon, L.F.; Wille, U. Oxidative damage of biomolecules by the environmental pollutants NO2 and NO3. Acc. Chem. Res., 2016, 49(10), 2136-2145. doi: 10.1021/acs.accounts.6b00219 PMID: 27668965
- Toyokuni, S. The origin and future of oxidative stress pathology: From the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non-thermal plasma therapy. Pathol. Int., 2016, 66(5), 245-259. doi: 10.1111/pin.12396 PMID: 26931176
- Singh, S.; Sharma, B. Oxidative stress in chronic pancreatitis. Oxidative stress and antioxidant protection. Science Free Radic Biol Dis, 2016, 15, 339-346.
- Khan, T.A.; Hassan, I.; Ahmad, A.; Perveen, A.; Aman, S.; Quddusi, S.; Alhazza, I.M.; Ashraf, G.M.; Aliev, G. Recent updates on the dynamic association between oxidative stress and neurodegenerative disorders. CNS Neurol. Disord. Drug Targets, 2016, 15(3), 310-320. doi: 10.2174/1871527315666160202124518 PMID: 26831262
- Loperena, R.; Harrison, D.G. Oxidative stress and hypertensive diseases. Med. Clin. North Am., 2017, 101(1), 169-193. doi: 10.1016/j.mcna.2016.08.004 PMID: 27884227
- Porres-Martínez, M.; González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. In vitro neuroprotective potential of the monoterpenes α-pinene and 1,8-cineole against H2O2 -induced oxidative stress in PC12 cells. Z. Naturforsch. C J. Biosci., 2016, 71(7-8), 191-199. doi: 10.1515/znc-2014-4135 PMID: 27352445
- Terman, A.; Brunk, U.T. Oxidative stress, accumulation of biological garbage, and aging. Antioxid. Redox Signal., 2006, 8(1-2), 197-204. doi: 10.1089/ars.2006.8.197 PMID: 16487053
- Yuan, B.; Ohyama, K.; Bessho, T.; Uchide, N.; Toyoda, H. Imbalance between ROS production and elimination results in apoptosis induction in primary smooth chorion trophoblast cells prepared from human fetal membrane tissues. Life Sci., 2008, 82(11-12), 623-630. doi: 10.1016/j.lfs.2007.12.016 PMID: 18234233
- Okayama, Y. Oxidative stress in allergic and inflammatory skin diseases. Curr. Drug Targets Inflamm. Allergy, 2005, 4(4), 517-519. doi: 10.2174/1568010054526386 PMID: 16127829
- Desco, M.C.; Asensi, M.; Márquez, R.; Martínez-Valls, J.; Vento, M.; Pallardó, F.V.; Sastre, J.; Viña, J. Xanthine oxidase is involved in free radical production in type 1 diabetes: Protection by allopurinol. Diabetes., 2002, 51(4), 1118-1124. doi: 10.2337/diabetes.51.4.1118 PMID: 11916934
- Borghi, C.; Desideri, G. Urate-lowering drugs and prevention of cardiovascular disease. Hypertension., 2016, 67(3), 496-498. doi: 10.1161/HYPERTENSIONAHA.115.06531 PMID: 26865197
- Armstrong, D. Introduction to free radicals, inflammation, and recycling. Oxidative stress and antioxidant protection. Sci Free Radic Biol Disease, 2016, 4, 1-0.
- Borrowman, C.K.; Zhou, S.; Burrow, T.E.; Abbatt, J.P.D. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds. Phys. Chem. Chem. Phys., 2016, 18(1), 205-212. doi: 10.1039/C5CP05606C PMID: 26603953
- Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact., 2014, 224, 164-175. doi: 10.1016/j.cbi.2014.10.016 PMID: 25452175
- Gaspar, A.; Milhazes, N.; Santana, L.; Uriarte, E.; Borges, F.; Matos, M. Oxidative stress and neurodegenerative diseases: Looking for a therapeutic solution inspired on benzopyran chemistry. Curr. Top. Med. Chem., 2015, 15(5), 432-445. doi: 10.2174/1568026614666141229124141 PMID: 25658803
- Adam Daulatzai, M. Multifactorial pathologies promote inflammation and enhance vulnerability to late-onset Alzheimers disease: Implications for possible therapeutic targets. Front. Clin. Drug Res. - Alzheimer Disord., 2014, 2, 103-154. doi: 10.2174/9781608058709114020006
- Bhandari, R.; Kuhad, A. Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders. Life Sci., 2015, 141, 156-169. doi: 10.1016/j.lfs.2015.09.012 PMID: 26407474
- Xu, Y.; Ku, B.; Tie, L.; Yao, H.; Jiang, W.; Ma, X.; Li, X. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res., 2006, 1122(1), 56-64. doi: 10.1016/j.brainres.2006.09.009 PMID: 17022948
- Singhal, S.S.; Awasthi, S.; Pandya, U.; Piper, J.T.; Saini, M.K.; Cheng, J.Z.; Awasthi, Y.C. The effect of curcumin on glutathione-linked enzymes in K562 human leukemia cells. Toxicol. Lett., 1999, 109(1-2), 87-95. doi: 10.1016/S0378-4274(99)00124-1 PMID: 10514034
- Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377. doi: 10.1523/JNEUROSCI.21-21-08370.2001 PMID: 11606625
- Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901. doi: 10.1074/jbc.M404751200 PMID: 15590663
- Wu, A.; Noble, E.E.; Tyagi, E.; Ying, Z.; Zhuang, Y.; Gomez-Pinilla, F. Curcumin boosts DHA in the brain: Implications for the prevention of anxiety disorders. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(5), 951-961. doi: 10.1016/j.bbadis.2014.12.005 PMID: 25550171
- Tiwari, V.; Chopra, K. Attenuation of oxidative stress, neuroinflammation, and apoptosis by curcumin prevents cognitive deficits in rats postnatally exposed to ethanol. Psychopharmacology., 2012, 224(4), 519-535. doi: 10.1007/s00213-012-2779-9 PMID: 22790976
- Oz, A.; Çelik, O.; Ovey, İ.S. Effects of different doses of curcumin on apoptosis, mitochondrial oxidative stress and calcium influx in DBTRG glioblastoma cells. J. Cell. Neurosci, 2017, 9(2)
- Hovatta, I.; Tennant, R.S.; Helton, R.; Marr, R.A.; Singer, O.; Redwine, J.M.; Ellison, J.A.; Schadt, E.E.; Verma, I.M.; Lockhart, D.J.; Barlow, C. Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature, 2005, 438(7068), 662-666. doi: 10.1038/nature04250 PMID: 16244648
- Thornalley, P.J. Unease on the role of glyoxalase 1 in high-anxiety-related behaviour. Trends Mol. Med., 2006, 12(5), 195-199. doi: 10.1016/j.molmed.2006.03.004 PMID: 16616641
- Landgraf, R.; Keßler, M.S.; Bunck, M.; Murgatroyd, C.; Spengler, D.; Zimbelmann, M.; Nußbaumer, M.; Czibere, L.; Turck, C.W.; Singewald, N.; Rujescu, D.; Frank, E. Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: Focus on vasopressin and glyoxalase-I. Neurosci. Biobehav. Rev., 2007, 31(1), 89-102. doi: 10.1016/j.neubiorev.2006.07.003 PMID: 16934871
- Ng, F.; Berk, M.; Dean, O.; Bush, A.I. Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. Int. J. Neuropsychopharmacol., 2008, 11(6), 851-876. doi: 10.1017/S1461145707008401 PMID: 18205981
- Brouwers, O.; Niessen, P.M.; Ferreira, I.; Miyata, T.; Scheffer, P.G.; Teerlink, T.; Schrauwen, P.; Brownlee, M.; Stehouwer, C.D.; Schalkwijk, C.G. Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats. J. Biol. Chem., 2011, 286(2), 1374-1380. doi: 10.1074/jbc.M110.144097 PMID: 21056979
- Williams, R.; Lim, J.E.; Harr, B.; Wing, C.; Walters, R.; Distler, M.G.; Teschke, M.; Wu, C.; Wiltshire, T.; Su, A.I.; Sokoloff, G.; Tarantino, L.M.; Borevitz, J.O.; Palmer, A.A. A common and unstable copy number variant is associated with differences in Glo1 expression and anxiety-like behavior. PLoS One, 2009, 4(3), e4649. doi: 10.1371/journal.pone.0004649
- Distler, M.G.; Plant, L.D.; Sokoloff, G.; Hawk, A.J.; Aneas, I.; Wuenschell, G.E.; Termini, J.; Meredith, S.C.; Nobrega, M.A.; Palmer, A.A. Glyoxalase 1 increases anxiety by reducing GABAA receptor agonist methylglyoxal. J. Clin. Invest., 2012, 122(6), 2306-2315. doi: 10.1172/JCI61319 PMID: 22585572
- Filiou, M.D.; Zhang, Y.; Teplytska, L.; Reckow, S.; Gormanns, P.; Maccarrone, G.; Frank, E.; Kessler, M.S.; Hambsch, B.; Nussbaumer, M.; Bunck, M.; Ludwig, T.; Yassouridis, A.; Holsboer, F.; Landgraf, R.; Turck, C.W. Proteomics and metabolomics analysis of a trait anxiety mouse model reveals divergent mitochondrial pathways. Biol. Psychiatry, 2011, 70(11), 1074-1082. doi: 10.1016/j.biopsych.2011.06.009 PMID: 21791337
- Rudrapal, M.; Eltayeb, W.A.; Rakshit, G.; El-Arabey, A.A.; Khan, J.; Aldosari, S.M.; Alshehri, B.; Abdalla, M. Dual synergistic inhibition of COX and LOX by potential chemicals from Indian daily spices investigated through detailed computational studies. Sci. Rep., 2023, 13(1), 8656. doi: 10.1038/s41598-023-35161-0 PMID: 37244921
- Bhattacharyya, S.; Ghosh, H.; Covarrubias-Zambrano, O.; Jain, K.; Swamy, K.V.; Kasi, A.; Hamza, A.; Anant, S.; VanSaun, M.; Weir, S.J.; Bossmann, S.H.; Padhye, S.B.; Dandawate, P. Anticancer activity of novel difluorinated curcumin analog and its inclusion complex with 2-hydroxypropyl-β-cyclodextrin against pancreatic cancer. International. Int. J. Mol. Sci., 2023, 24(7), 6336. doi: 10.3390/ijms24076336 PMID: 37047307
- Scomoroscenco, C.; Teodorescu, M.; Burlacu, S.G.; Gîfu, I.C.; Mihaescu, C.I.; Petcu, C.; Raducan, A.; Oancea, P.; Cinteza, L.O. Synergistic antioxidant activity and enhanced stability of curcumin encapsulated in vegetal oil-based microemulsion and gel microemulsions. Antioxidants, 2022, 11(5), 854. doi: 10.3390/antiox11050854 PMID: 35624718
- Hashemi, M.; Mirzaei, S.; Barati, M.; Hejazi, E.S.; Kakavand, A.; Entezari, M.; Salimimoghadam, S.; Kalbasi, A.; Rashidi, M.; Taheriazam, A.; Sethi, G. Curcumin in the treatment of urological cancers: Therapeutic targets, challenges and prospects. Life Sci., 2022, 309, 120984. doi: 10.1016/j.lfs.2022.120984 PMID: 36150461
- Zhang, Q.; Wu, L. In vitro and in vivo cardioprotective effects of curcumin against doxorubicin-induced cardiotoxicity: A systematic review. J. Oncol., 2022, 2022, 7277562.
- Marton, L.T.; Pescinini-e-Salzedas, L.M.; Camargo, M.E.C.; Barbalho, S.M.; Haber, J.F.S.; Sinatora, R.V.; Detregiachi, C.R.P.; Girio, R.J.S.; Buchaim, D.V.; Cincotto dos, S.B.P. The effects of curcumin on diabetes mellitus: A systematic review. Front. Endocrinol., 2021, 12, 669448. doi: 10.3389/fendo.2021.669448 PMID: 34012421
- Neyestani, Z.; Ebrahimi, S.A.; Ghazaghi, A.; Jalili, A.; Sahebkar, A.; Rahimi, H.R. Review of anti-bacterial activities of curcumin against Pseudomonas aeruginosa. Crit. Rev. Eukaryot. Gene Expr., 2019, 29(5), 377-385. doi: 10.1615/CritRevEukaryotGeneExpr.2019029088 PMID: 32421995
- Ratrey, P.; Dalvi, S.V; Mishra, A. Enhancing aqueous solubility and antibacterial activity of curcumin by complexing with cell-penetrating octaarginine. ACS omega., 2020, 5(30), 19004-19013. doi: 10.1021/acsomega.0c02321
- Shome, S.; Talukdar, A.D.; Upadhyaya, H. Antibacterial activity of curcumin and its essential nanoformulations against some clinically important bacterial pathogens: A comprehensive review. Biotechnol. Appl. Biochem., 2022, 69(6), 2357-2386. doi: 10.1002/bab.2289 PMID: 34826356
- Zarrinfar, H.; Behnam, M.; Hatamipour, M.; Sahebkar, A. Antifungal activities of curcuminoids and difluorinated curcumin against clinical dermatophyte isolates. Adv. Exp. Med. Biol., 2021, 1308, 101-107. doi: 10.1007/978-3-030-64872-5_8
- Layaida, H.; Hellal, A.; Chafai, N.; Haddadi, I.; Imene, K.; Anis, B.; Mouna, E.; Bensouici, C.; Sobhi, W.; Attoui, A.; Lilia, A. Synthesis, spectroscopic characterization, density functional theory study, antimicrobial and antioxidant activities of curcumin and alanine-curcumin Schiff base. J. Biomol. Struct. Dyn., 2022, 12, 1-16. doi: 10.1080/07391102.2022.2123043 PMID: 36120951
- Thimmulappa, R.K.; Mudnakudu-Nagaraju, K.K.; Shivamallu, C.; Subramaniam, K.J.T.; Radhakrishnan, A.; Bhojraj, S.; Kuppusamy, G. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon, 2021, 7(2), e06350. doi: 10.1016/j.heliyon.2021.e06350 PMID: 33655086
- Rubab, S.; Naeem, K.; Rana, I.; Khan, N.; Afridi, M.; Ullah, I.; Shah, F.A.; Sarwar, S.; Din, F.; Choi, H.I.; Lee, C.H.; Lim, C.W.; Alamro, A.A.; Kim, J.K.; Zeb, A. Enhanced neuroprotective and antidepressant activity of curcumin-loaded nanostructured lipid carriers in lipopolysaccharide-induced depression and anxiety rat model. Int. J. Pharm., 2021, 603, 120670. doi: 10.1016/j.ijpharm.2021.120670 PMID: 33964337
- Wang, Q.; Ye, C.; Sun, S.; Li, R.; Shi, X.; Wang, S.; Zeng, X.; Kuang, N.; Liu, Y.; Shi, Q.; Liu, R. Curcumin attenuates collagen-induced rat arthritis via anti-inflammatory and apoptotic effects. Int. Immunopharmacol., 2019, 72, 292-300. doi: 10.1016/j.intimp.2019.04.027 PMID: 31005039
- Naghdi, A.; Goodarzi, M.T.; Karimi, J.; Hashemnia, M.; Khodadadi, I. Effects of curcumin and metformin on oxidative stress and apoptosis in heart tissue of type 1 diabetic rats. J. Cardiovasc. Thorac. Res., 2022, 14(2), 128-137. doi: 10.34172/jcvtr.2022.23 PMID: 35935389
- Alvarez-Ricardo, Y.; Meza-Morales, W.; Obregón-Mendoza, M.A.; Toscano, R.A.; Núñez-Zarur, F.; Germán-Acacio, J.M.; Puentes-Díaz, N.; Alí-Torres, J.; Arenaza-Corona, A.; Ramírez-Apan, M.T.; Morales-Morales, D.; Enríquez, R.G. Synthesis, characterization, theoretical studies and antioxidant and cytotoxic evaluation of a series of Tetrahydrocurcumin (THC)-benzylated derivatives. J. Mol. Struct., 2023, 1273, 134355. doi: 10.1016/j.molstruc.2022.134355
- Lin, H.W.; Chen, T.C.; Yeh, J.H.; Tsou, S.C.; Wang, I.; Shen, T.J.; Chuang, C.J.; Chang, Y.Y. Suppressive effect of tetrahydrocurcumin on pseudomonas aeruginosa lipopolysaccharide-induced inflammation by suppressing JAK/STAT and Nrf2/HO-1 pathways in microglial cells. Oxid. Med. Cell. Longev., 2022, 2022, 4978556.
- Khazaeli, M.; Nunes, A.C.F.; Zhao, Y.; Khazaali, M.; Prudente, J.; Vaziri, N.D.; Singh, B.; Lau, W.L. Tetrahydrocurcumin Add-On therapy to losartan in a rat model of diabetic nephropathy decreases blood pressure and markers of kidney injury. Pharmacol. Res. Perspect., 2023, 11(2), e01079. doi: 10.1002/prp2.1079 PMID: 36971089
- Yuan, T.; Cai, D.; Hu, B.; Zhu, Y.; Qin, J. Therapeutic effects of curcumin on osteoarthritis and its protection of chondrocytes through the wnt/β-catenin signaling pathway. Altern. Ther. Health Med., 2022, 28(5), 28-37. PMID: 35452417
- Riyadi, S.A.; Abdullah, F.F.; Fadhilah, F.; Assidiqiah, N. Anticancer activity of curcuminoids against B16-F10 melanoma cell lines. Marine Pharmacopoeia Sci. J. Sandra Amalia Riyadi., 2022, 13(2), 152-163.
- Orhan, C.; Tuzcu, M.; Durmus, A.S.; Sahin, N.; Ozercan, I.H.; Deeh, P.B.D.; Morde, A.; Bhanuse, P.; Acharya, M.; Padigaru, M.; Sahin, K. Protective effect of a novel polyherbal formulation on experimentally induced osteoarthritis in a rat model. Biomed. Pharmacother., 2022, 151, 113052-, 151, 113052. doi: 10.1016/j.biopha.2022.113052 PMID: 35588576
- Pantiora, P.; Furlan, V.; Matiadis, D.; Mavroidi, B.; Perperopoulou, F.; Papageorgiou, A.C.; Sagnou, M.; Bren, U.; Pelecanou, M.; Labrou, N.E. Monocarbonyl curcumin analogues as potent inhibitors against human glutathione transferase P1-1. Antioxidants, 2022, 12(1), 63. doi: 10.3390/antiox12010063 PMID: 36670925
- Gagliardi, S.; Truffi, M.; Tinelli, V.; Garofalo, M.; Pandini, C.; Cotta Ramusino, M.; Perini, G.; Costa, A.; Negri, S.; Mazzucchelli, S.; Bonizzi, A.; Sitia, L.; Busacca, M.; Sevieri, M.; Mocchi, M.; Ricciardi, A.; Prosperi, D.; Corsi, F.; Cereda, C.; Morasso, C. Bisdemethoxycurcumin (BDC)-loaded H-ferritin-nanocages mediate the regulation of inflammation in Alzheimers disease patients. Int. J. Mol. Sci., 2022, 23(16), 9237. doi: 10.3390/ijms23169237 PMID: 36012501
- Gordon, B.A.; Blazey, T.; Morris, J.C.; Holtzman, D.M.; Fagan, A.M.; Benzinger, T.L.S. Longitudinal amyloid deposition and hippocampal volume in suspected non-Alzheimer pathophysiology and preclinical Alzheimers disease. Alzheimers Dement., 2016, 12(7S_Part_4), 191. doi: 10.1016/j.jalz.2016.06.332
- Bozzali, M.; Serra, L.; Cercignani, M. Quantitative MRI to understand Alzheimers disease pathophysiology. Curr. Opin. Neurol., 2016, 29(4), 437-444. doi: 10.1097/WCO.0000000000000345 PMID: 27228309
- Ono, K.; Hasegawa, K.; Naiki, H.; Yamada, M. Curcumin has potent anti-amyloidogenic effects for Alzheimers? -amyloid fibrils in vitro. J. Neurosci. Res., 2004, 75(6), 742-750. doi: 10.1002/jnr.20025 PMID: 14994335
- Ringman, J.; Frautschy, S.; Cole, G.; Masterman, D.; Cummings, J. A potential role of the curry spice curcumin in Alzheimers disease. Curr. Alzheimer Res., 2005, 2(2), 131-136. doi: 10.2174/1567205053585882 PMID: 15974909
- Begum, A.N.; Jones, M.R.; Lim, G.P.; Morihara, T.; Kim, P.; Heath, D.D.; Rock, C.L.; Pruitt, M.A.; Yang, F.; Hudspeth, B.; Hu, S.; Faull, K.F.; Teter, B.; Cole, G.M.; Frautschy, S.A. Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and Alzheimers disease. J. Pharmacol. Exp. Ther., 2008, 326(1), 196-208. doi: 10.1124/jpet.108.137455 PMID: 18417733
- Baum, L.; Ng, A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimers disease animal models. J. Alzheimers Dis., 2004, 6(4), 367-377. doi: 10.3233/JAD-2004-6403 PMID: 15345806
- Hamaguchi, T.; Ono, K.; Yamada, M. REVIEW: Curcumin and Alzheimers disease. CNS Neurosci. Ther., 2010, 16(5), 285-297. doi: 10.1111/j.1755-5949.2010.00147.x PMID: 20406252
- Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Kandimalla, R.; Kuruva, C.S. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimers disease. J. Investig. Med., 2016, 64(8), 1220-1234. doi: 10.1136/jim-2016-000240 PMID: 27521081
- Shakeri, A.; Sahebkar, A. Optimized curcumin formulations for the treatment of Alzheimers disease: A patent evaluation. J. Neurosci. Res., 2016, 94(2), 111-113. doi: 10.1002/jnr.23696 PMID: 26577706
- Goozee, K.G.; Chatterjee, P.; Sohrabi, H.R.; Shen, K.K.; Ball, B.; Dave, P.; ManYan, C.; Asih, P.R.; Taddei, K.; Martins, R.N. Targeting preclinical stages of Alzheimers disease: a clinical trial to assess the efficacy of curcumin using brain biomarkers. Alzheimers Dement., 2016, 12(7S_Part_12), 61-67. doi: 10.1016/j.jalz.2016.06.1224
- Huang, H.C.; Zheng, B.W.; Guo, Y.; Zhao, J.; Zhao, J.Y.; Ma, X.W.; Jiang, Z.F. Antioxidative and neuroprotective effects of curcumin in an Alzheimers disease rat model co-treated with intracerebroventricular streptozotocin and subcutaneous D-galactose. J. Alzheimers Dis., 2016, 52(3), 899-911. doi: 10.3233/JAD-150872 PMID: 27060945
- Obulesu, M.; Jhansilakshmi, M. Neuroprotective role of nanoparticles against Alzheimers disease. Curr. Drug Metab., 2016, 17(2), 142-149. doi: 10.2174/138920021702160114160341 PMID: 26806041
- Dominguez, L.J.; Barbagallo, M. Dietary approaches and supplements in the prevention of cognitive decline and Alzheimers disease. Curr. Pharm. Des., 2016, 22(6), 688-700. doi: 10.2174/1381612822666151204000733 PMID: 26635270
- Shi, W.; Dolai, S.; Rizk, S.; Hussain, A.; Tariq, H.; Averick, S.; LAmoreaux, W.; El Idrissi, A.; Banerjee, P.; Raja, K. Synthesis of monofunctional curcumin derivatives, clicked curcumin dimer, and a PAMAM dendrimer curcumin conjugate for therapeutic applications. Org. Lett., 2007, 9(26), 5461-5464. doi: 10.1021/ol702370m PMID: 18020348
- Sanmukhani, J.; Satodia, V.; Trivedi, J.; Patel, T.; Tiwari, D.; Panchal, B.; Goel, A.; Tripathi, C.B. Efficacy and safety of curcumin in major depressive disorder: A randomized controlled trial. Phytother. Res., 2014, 28(4), 579-585. doi: 10.1002/ptr.5025 PMID: 23832433
- Lopresti, A.L.; Maes, M.; Maker, G.L.; Hood, S.D.; Drummond, P.D. Curcumin for the treatment of major depression: A randomised, double-blind, placebo controlled study. J. Affect. Disord., 2014, 167, 368-375. doi: 10.1016/j.jad.2014.06.001 PMID: 25046624
- Gokce, E.C.; Kahveci, R.; Gokce, A.; Sargon, M.F.; Kisa, U.; Aksoy, N.; Cemil, B.; Erdogan, B. Curcumin attenuates inflammation, oxidative stress, and ultrastructural damage induced by spinal cord ischemiareperfusion injury in rats. J. Stroke Cerebrovasc. Dis., 2016, 25(5), 1196-1207. doi: 10.1016/j.jstrokecerebrovasdis.2016.01.008 PMID: 26935117
- Gazal, M.; Valente, M.R.; Acosta, B.A.; Kaufmann, F.N.; Braganhol, E.; Lencina, C.L.; Stefanello, F.M.; Ghisleni, G.; Kaster, M.P. Neuroprotective and antioxidant effects of curcumin in a ketamine-induced model of mania in rats. Eur. J. Pharmacol., 2014, 724, 132-139. doi: 10.1016/j.ejphar.2013.12.028 PMID: 24384407
- Rinwa, P.; Kumar, A. Piperine potentiates the protective effects of curcumin against chronic unpredictable stress-induced cognitive impairment and oxidative damage in mice. Brain Res., 2012, 1488, 38-50. doi: 10.1016/j.brainres.2012.10.002 PMID: 23099054
- Motterlini, R.; Foresti, R.; Bassi, R.; Green, C.J. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic. Biol. Med., 2000, 28(8), 1303-1312. doi: 10.1016/S0891-5849(00)00294-X PMID: 10889462
- Somparn, P.; Phisalaphong, C.; Nakornchai, S.; Unchern, S.; Morales, N.P. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol. Pharm. Bull., 2007, 30(1), 74-78. doi: 10.1248/bpb.30.74 PMID: 17202663
- Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811. doi: 10.1089/ars.2009.3074 PMID: 20446769
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775. doi: 10.1038/nrn2214 PMID: 17882254
- Calabrese, E.J.; Iavicoli, I.; Calabrese, V. Hormesis: Why it is important to biogerontologists. Biogerontology, 2012, 13(3), 215-235. doi: 10.1007/s10522-012-9374-7 PMID: 22270337
- Rahman, M.A.; Shuvo, A.A.; Bepari, A.K.; Hasan Apu, M.; Shill, M.C.; Hossain, M.; Uddin, M.; Islam, M.R.; Bakshi, M.K.; Hasan, J.; Rahman, A.; Rahman, G.M.S.; Reza, H.M. Curcumin improves D-galactose and normal-aging associated memory impairment in mice: In vivo and in silico-based studies. PLoS One, 2022, 17(6), e0270123. doi: 10.1371/journal.pone.0270123 PMID: 35767571
- Trujillo, J.; Chirino, Y.I.; Molina-Jijón, E.; Andérica-Romero, A.C.; Tapia, E.; Pedraza-Chaverrí, J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol., 2013, 1(1), 448-456. doi: 10.1016/j.redox.2013.09.003 PMID: 24191240
- Mokgalaboni, K.; Ntamo, Y.; Ziqubu, K.; Nyambuya, T.M.; Nkambule, B.B.; Mazibuko-Mbeje, S.E.; Gabuza, K.B.; Chellan, N.; Tiano, L.; Dludla, P.V. Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: updating the status of clinical evidence. Food Funct., 2021, 12(24), 12235-12249. doi: 10.1039/D1FO02696H PMID: 34847213
- Kuhad, A.; Pilkhwal, S.; Sharma, S.; Tirkey, N.; Chopra, K. Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity. J. Agric. Food Chem., 2007, 55(25), 10150-10155. doi: 10.1021/jf0723965 PMID: 18001039
Supplementary files
