Marine Bacteria: A Source of Novel Bioactive Natural Products


Cite item

Full Text

Abstract

:Marine natural products have great pharmacological potential due to their unique and diverse chemical structures. The marine bacterial biodiversity and the unique marine environment lead to a high level of complexity and ecological interaction among marine species. This results in the production of metabolic pathways and adaptation mechanisms that are different from those of terrestrial organisms, which has drawn significant attention from researchers in the field of natural medicine. This review provides an analysis of the distribution and frequency of keywords in the literature on marine bacterial natural products as well as an overview of the new natural products isolated from the secondary metabolites of marine bacteria in recent years. Finally, it discusses the current research hotspots in this field and speculates on future directions and limitations.

About the authors

Xiangru Zha

Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine,, Hainan Medical University

Email: info@benthamscience.net

Rong Ji

Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine,, Hainan Medical University

Email: info@benthamscience.net

Songlin Zhou

Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine,, Hainan Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Deng, L.J.; Qi, M.; Li, N.; Lei, Y.H.; Zhang, D.M.; Chen, J.X. Natural products and their derivatives: Promising modulators of tumor immunotherapy. J. Leukoc. Biol., 2020, 108(2), 493-508. doi: 10.1002/JLB.3MR0320-444R PMID: 32678943
  2. Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 2003, 66(7), 1022-1037. doi: 10.1021/np030096l PMID: 12880330
  3. Daniel, R. The soil metagenome – a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol., 2004, 15(3), 199-204. doi: 10.1016/j.copbio.2004.04.005 PMID: 15193327
  4. Debbab, A.; Aly, A.H.; Lin, W.H.; Proksch, P. Bioactive compounds from marine bacteria and fungi. Microb. Biotechnol., 2010, 3(5), 544-563. doi: 10.1111/j.1751-7915.2010.00179.x PMID: 21255352
  5. Song, C.; Yang, J.; Zhang, M.; Ding, G.; Jia, C.; Qin, J.; Guo, L. Marine natural products: The important resource of biological insecticide. Chem. Biodivers., 2021, 18(5), e2001020. doi: 10.1002/cbdv.202001020 PMID: 33855815
  6. Lu, W.Y.; Li, H.J.; Li, Q.Y.; Wu, Y.C. Application of marine natural products in drug research. Bioorg. Med. Chem., 2021, 35, 116058. doi: 10.1016/j.bmc.2021.116058 PMID: 33588288
  7. Moghaddam, A.J.; Jautzus, T.; Alanjary, M.; Beemelmanns, C. Recent highlights of biosynthetic studies on marine natural products. Org. Biomol. Chem., 2021, 19(1), 123-140. doi: 10.1039/D0OB01677B PMID: 33216100
  8. Stincone, P.; Brandelli, A. Marine bacteria as source of antimicrobial compounds. Crit. Rev. Biotechnol., 2020, 40(3), 306-319. doi: 10.1080/07388551.2019.1710457 PMID: 31992085
  9. Parkes, R.J.; Cragg, B.A.; Bale, S.J.; Getlifff, J.M.; Goodman, K.; Rochelle, P.A.; Fry, J.C.; Weightman, A.J.; Harvey, S.M. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 1994, 371(6496), 410-413. doi: 10.1038/371410a0
  10. Simmons, T.L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W.H. Marine natural products as anticancer drugs. Mol. Cancer Ther., 2005, 4(2), 333-342. doi: 10.1158/1535-7163.333.4.2 PMID: 15713904
  11. Armstrong, E.; Yan, L.; Boyd, K.G.; Wright, P.C.; Burgess, J.G. The symbiotic role of marine microbes on living surfaces. Hydrobiologia, 2001, 461(1/3), 37-40. doi: 10.1023/A:1012756913566
  12. Zheng, L.; Han, X.; Chen, H.; Lin, W.; Yan, X. Marine bacteria associated with marine macroorganisms: The potential antimicrobial resources. Ann. Microbiol., 2005, 55(2), 119-124.
  13. Zakaria, N.N.; Convey, P.; Gomez-Fuentes, C.; Zulkharnain, A.; Sabri, S.; Shaharuddin, N.A.; Ahmad, S.A. Oil bioremediation in the marine environment of antarctica: A review and bibliometric keyword cluster analysis. Microorganisms, 2021, 9(2), 419. doi: 10.3390/microorganisms9020419 PMID: 33671443
  14. Venkatesan, M.I.; Ruth, E.; Kaplan, I.R. Triterpenols from sediments of Santa Monica Basin, Southern California Bight, U.S.A. Org. Geochem., 1990, 16(4-6), 1015-1024. doi: 10.1016/0146-6380(90)90138-P
  15. Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H-P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P.; van Wezel, G.P. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev., 2016, 80(1), 1-43. doi: 10.1128/MMBR.00019-15 PMID: 26609051
  16. Yang, Z.; He, J.; Wei, X.; Ju, J.; Ma, J. Exploration and genome mining of natural products from marine Streptomyces. Appl. Microbiol. Biotechnol., 2020, 104(1), 67-76. doi: 10.1007/s00253-019-10227-0 PMID: 31773207
  17. Wiese, J.; Imhoff, J.F. Marine bacteria and fungi as promising source for new antibiotics. Drug Dev. Res., 2019, 80(1), 24-27. doi: 10.1002/ddr.21482 PMID: 30370576
  18. Lu, S.; Wang, J.; Sheng, R.; Fang, Y.; Guo, R. Novel bioactive polyketides isolated from marine Actinomycetes: An update review from 2013 to 2019. Chem. Biodivers., 2020, 17(12), e2000562. doi: 10.1002/cbdv.202000562 PMID: 33206470
  19. Yang, L.J.; Peng, X.Y.; Zhang, Y.H.; Liu, Z.Q.; Li, X.; Gu, Y.C.; Shao, C.L.; Han, Z.; Wang, C.Y. Antimicrobial and antioxidant polyketides from a deep-sea-derived fungus Aspergillus versicolor SH0105. Mar. Drugs, 2020, 18(12), 636. doi: 10.3390/md18120636 PMID: 33322355
  20. Tang, M.; Hu, X.; Wang, Y.; Yao, X.; Zhang, W.; Yu, C.; Cheng, F.; Li, J.; Fang, Q. Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol. Res., 2021, 163, 105207. doi: 10.1016/j.phrs.2020.105207 PMID: 32971268
  21. Zhao, H.; Ji, R.; Zha, X.; Xu, Z.; Lin, Y.; Zhou, S. Investigation of the bactericidal mechanism of Penicilazaphilone C on Escherichia coli based on 4D label-free quantitative proteomic analysis. Eur. J. Pharm. Sci., 2022, 179, 106299. doi: 10.1016/j.ejps.2022.106299 PMID: 36179970
  22. Chen, C.; Ren, X.; Tao, H.; Cai, W.; Chen, Y.; Luo, X.; Guo, P.; Liu, Y. Anti-inflammatory polyketides from an alga-derived fungus Aspergillus ochraceopetaliformis SCSIO 41020. Mar. Drugs, 2022, 20(5), 295. doi: 10.3390/md20050295 PMID: 35621946
  23. Xie, C.L.; Chen, R.; Yang, S.; Xia, J.M.; Zhang, G.Y.; Chen, C.H.; Zhang, Y.; Yang, X.W. Nesteretal A, a novel class of cage-like polyketide from marine-derived Actinomycete Nesterenkonia halobia. Org. Lett., 2019, 21(20), 8174-8177. doi: 10.1021/acs.orglett.9b02634 PMID: 31423796
  24. Wang, Z.; Wen, Z.; Liu, L.; Zhu, X.; Shen, B.; Yan, X.; Duan, Y.; Huang, Y. Yangpumicins F and G, enediyne congeners from Micromonospora yangpuensis DSM 45577. J. Nat. Prod., 2019, 82(9), 2483-2488. doi: 10.1021/acs.jnatprod.9b00229 PMID: 31490685
  25. García-Salcedo, R.; Álvarez-Álvarez, R.; Olano, C.; Cañedo, L.; Braña, A.; Méndez, C.; de la Calle, F.; Salas, J. Characterization of the jomthonic acids biosynthesis pathway and isolation of novel analogues in Streptomyces caniferus GUA-06-05-006A. Mar. Drugs, 2018, 16(8), 259. doi: 10.3390/md16080259 PMID: 30065171
  26. Kanoh, S.; Rubin, B.K. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin. Microbiol. Rev., 2010, 23(3), 590-615. doi: 10.1128/CMR.00078-09 PMID: 20610825
  27. Al-Fadhli, A.A.; Threadgill, M.D.; Mohammed, F.; Sibley, P.; Al-Ariqi, W.; Parveen, I. Macrolides from rare actinomycetes: Structures and bioactivities. Int. J. Antimicrob. Agents, 2022, 59(2), 106523. doi: 10.1016/j.ijantimicag.2022.106523 PMID: 35041941
  28. Lenz, K.D.; Klosterman, K.E.; Mukundan, H.; Kubicek-Sutherland, J.Z. Macrolides: From toxins to therapeutics. Toxins (Basel), 2021, 13(5), 347. doi: 10.3390/toxins13050347 PMID: 34065929
  29. Pérez-Victoria, I.; Oves-Costales, D.; Lacret, R.; Martín, J.; Sánchez-Hidalgo, M.; Díaz, C.; Cautain, B.; Vicente, F.; Genilloud, O.; Reyes, F. Structure elucidation and biosynthetic gene cluster analysis of caniferolides A–D, new bioactive 36-membered macrolides from the marine-derived Streptomyces caniferus CA-271066. Org. Biomol. Chem., 2019, 17(11), 2954-2971. doi: 10.1039/C8OB03115K PMID: 30806648
  30. Zhang, B.; Wang, K.B.; Wang, W.; Bi, S.F.; Mei, Y.N.; Deng, X.Z.; Jiao, R.H.; Tan, R.X.; Ge, H.M. Discovery, biosynthesis, and heterologous production of streptoseomycin, an anti-microaerophilic bacteria macrodilactone. Org. Lett., 2018, 20(10), 2967-2971. doi: 10.1021/acs.orglett.8b01006 PMID: 29697266
  31. Chen, J.; Xu, L.; Zhou, Y.; Han, B. Natural products from actinomycetes associated with marine organisms. Mar. Drugs, 2021, 19(11), 629. doi: 10.3390/md19110629 PMID: 34822500
  32. Anjum, K.; Kaleem, S.; Yi, W.; Zheng, G.; Lian, X.; Zhang, Z. Novel antimicrobial indolepyrazines A and B from the marine-associated Acinetobacter sp. ZZ1275. Mar. Drugs, 2019, 17(2), 89. doi: 10.3390/md17020089 PMID: 30717135
  33. Anh, C.V.; Kang, J.S.; Lee, H.S.; Trinh, P.T.H.; Heo, C.S.; Shin, H.J. New glycosylated secondary metabolites from marine-derived bacteria. Mar. Drugs, 2022, 20(7), 464. doi: 10.3390/md20070464 PMID: 35877757
  34. Zhou, B.; Qin, L.L.; Ding, W.J.; Ma, Z.J. Cytotoxic indolocarbazoles alkaloids from the streptomyces sp. A65. Tetrahedron, 2018, 74(7), 726-730. doi: 10.1016/j.tet.2017.12.048
  35. Zheng, L.; Xu, Y.; Lin, X.; Yuan, Z.; Liu, M.; Cao, S.; Zhang, F.; Linhardt, R.J. Recent progress of marine polypeptides as anticancer agents. Recent Patents Anticancer Drug Discov., 2018, 13(4), 445-454. doi: 10.2174/1574892813666180430110033 PMID: 29708076
  36. Just-Baringo, X.; Albericio, F.; Álvarez, M. Thiopeptide engineering: A multidisciplinary effort towards future drugs. Angew. Chem. Int. Ed., 2014, 53(26), 6602-6616. doi: 10.1002/anie.201307288 PMID: 24861213
  37. Gogineni, V.; Hamann, M.T. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(1), 81-196. doi: 10.1016/j.bbagen.2017.08.014 PMID: 28844981
  38. Iniyan, A.M.; Sudarman, E.; Wink, J.; Kannan, R.R.; Vincent, S.G.P. Ala-geninthiocin, a new broad spectrum thiopeptide antibiotic, produced by a marine Streptomyces sp. ICN19. J. Antibiot. (Tokyo), 2019, 72(2), 99-105. doi: 10.1038/s41429-018-0115-2 PMID: 30356080
  39. Lee, J.; Gamage, C.D.B.; Kim, G.J.; Hillman, P.F.; Lee, C.; Lee, E.Y.; Choi, H.; Kim, H.; Nam, S.J.; Fenical, W. Androsamide, a cyclic tetrapeptide from a marine Nocardiopsis sp., suppresses motility of colorectal cancer cells. J. Nat. Prod., 2020, 83(10), 3166-3172. doi: 10.1021/acs.jnatprod.0c00815 PMID: 32985880
  40. Stewart, A.K.; Ravindra, R.; Van Wagoner, R.M.; Wright, J.L.C. Metabolomics-guided discovery of microginin peptides from cultures of the cyanobacterium Microcystis aeruginosa. J. Nat. Prod., 2018, 81(2), 349-355. doi: 10.1021/acs.jnatprod.7b00829 PMID: 29405714
  41. Wiese, J.; Abdelmohsen, U.R.; Motiei, A.; Humeida, U.H.; Imhoff, J.F. Bacicyclin, a new antibacterial cyclic hexapeptide from Bacillus sp. strain BC028 isolated from Mytilus edulis. Bioorg. Med. Chem. Lett., 2018, 28(4), 558-561. doi: 10.1016/j.bmcl.2018.01.062 PMID: 29422389
  42. El-Baba, C.; Baassiri, A.; Kiriako, G.; Dia, B.; Fadlallah, S.; Moodad, S.; Darwiche, N. Terpenoids’ anti-cancer effects: Focus on autophagy. Apoptosis, 2021, 26(9-10), 491-511. doi: 10.1007/s10495-021-01684-y PMID: 34269920
  43. Rudolf, J.D.; Alsup, T.A.; Xu, B.; Li, Z. Bacterial terpenome. Nat. Prod. Rep., 2021, 38(5), 905-980. doi: 10.1039/D0NP00066C PMID: 33169126
  44. Hoshino, Y.; Gaucher, E.A. On the origin of isoprenoid biosynthesis. Mol. Biol. Evol., 2018, 35(9), 2185-2197. doi: 10.1093/molbev/msy120 PMID: 29905874
  45. Frank, A.; Groll, M. The methylerythritol phosphate pathway to isoprenoids. Chem. Rev., 2017, 117(8), 5675-5703. doi: 10.1021/acs.chemrev.6b00537 PMID: 27995802
  46. Miziorko, H.M. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch. Biochem. Biophys., 2011, 505(2), 131-143. doi: 10.1016/j.abb.2010.09.028 PMID: 20932952
  47. Kuzuyama, T.; Seto, H. Diversity of the biosynthesis of the isoprene units. Nat. Prod. Rep., 2003, 20(2), 171-183. doi: 10.1039/b109860h PMID: 12735695
  48. Le, T.; Lee, E.; Lee, J.; Hong, A.; Yim, C.Y.; Yang, I.; Choi, H.; Chin, J.; Cho, S.; Ko, J.; Hwang, H.; Nam, S.J.; Fenical, W. Saccharoquinoline, a cytotoxic alkaloidal meroterpenoid from marine-derived bacterium Saccharomonospora sp. Mar. Drugs, 2019, 17(2), 98. doi: 10.3390/md17020098 PMID: 30717397
  49. Huo, L.; Hug, J.J.; Fu, C.; Bian, X.; Zhang, Y.; Müller, R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat. Prod. Rep., 2019, 36(10), 1412-1436. doi: 10.1039/C8NP00091C PMID: 30620035
  50. Walsh, C.T.; Tang, Y. Recent advances in enzymatic complexity generation: Cyclization reactions. Biochemistry, 2018, 57(22), 3087-3104. doi: 10.1021/acs.biochem.7b01161 PMID: 29236467
  51. Hetrick, K.J.; van der Donk, W.A. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr. Opin. Chem. Biol., 2017, 38, 36-44. doi: 10.1016/j.cbpa.2017.02.005 PMID: 28260651
  52. Dickschat, J.S. Bacterial diterpene biosynthesis. Angew. Chem. Int. Ed., 2019, 58(45), 15964-15976. doi: 10.1002/anie.201905312 PMID: 31183935
  53. Dickschat, J.S. Bacterial terpene cyclases. Nat. Prod. Rep., 2016, 33(1), 87-110. doi: 10.1039/C5NP00102A PMID: 26563452
  54. Mitsuhashi, T.; Abe, I. Chimeric terpene synthases possessing both terpene cyclization and prenyltransfer activities. ChemBioChem, 2018, 19(11), 1106-1114. doi: 10.1002/cbic.201800120 PMID: 29675947
  55. Minami, A.; Ozaki, T.; Liu, C.; Oikawa, H. Cyclopentane-forming di/sesterterpene synthases: Widely distributed enzymes in bacteria, fungi, and plants. Nat. Prod. Rep., 2018, 35(12), 1330-1346. doi: 10.1039/C8NP00026C PMID: 29855001
  56. Rinkel, J.; Dickschat, J.S. Characterization of micromonocyclol synthase from the marine actinomycete Micromonospora marina. Org. Lett., 2019, 21(23), 9442-9445. doi: 10.1021/acs.orglett.9b03654 PMID: 31702158
  57. Ma, L.F.; Chen, M.J.; Liang, D.E.; Shi, L.M.; Ying, Y.M.; Shan, W.G.; Li, G.Q.; Zhan, Z.J. Streptomyces albogriseolus SY67903 produces eunicellin diterpenoids structurally similar to terpenes of the gorgonian Muricella sibogae, the bacterial source. J. Nat. Prod., 2020, 83(5), 1641-1645. doi: 10.1021/acs.jnatprod.0c00147 PMID: 32367724
  58. Hamed, A.; Abdel-Razek, A.; Frese, M.; Stammler, H.; El-Haddad, A.; Ibrahim, T.; Sewald, N.; Shaaban, M. Terretonin N: A new meroterpenoid from Nocardiopsis sp. Molecules, 2018, 23(2), 299. doi: 10.3390/molecules23020299 PMID: 29385078
  59. Carmichael, J.R.; Zhou, H.; Butler, A. A suite of asymmetric citrate siderophores isolated from a marine Shewanella species. J. Inorg. Biochem., 2019, 198, 110736. doi: 10.1016/j.jinorgbio.2019.110736 PMID: 31203087
  60. MacIntyre, L.W.; Charles, M.J.; Haltli, B.A.; Marchbank, D.H.; Kerr, R.G. An ichip-domesticated sponge bacterium produces an N-acyltyrosine bearing an α-methyl substituent. Org. Lett., 2019, 21(19), 7768-7771. doi: 10.1021/acs.orglett.9b02710 PMID: 31524403
  61. Lacoske, M.H.; Theodorakis, E.A. Spirotetronate polyketides as leads in drug discovery. J. Nat. Prod., 2015, 78(3), 562-575. doi: 10.1021/np500757w PMID: 25434976
  62. Gong, T.; Zhen, X.; Li, X.L.; Chen, J.J.; Chen, T.J.; Yang, J.L.; Zhu, P. Tetrocarcin Q, a new spirotetronate with a unique glycosyl group from a marine-derived actinomycete Micromonospora carbonacea LS276. Mar. Drugs, 2018, 16(2), 74. doi: 10.3390/md16020074 PMID: 29495293

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers