Marine Bacteria: A Source of Novel Bioactive Natural Products
- Authors: Zha X.1, Ji R.1, Zhou S.1
-
Affiliations:
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine,, Hainan Medical University
- Issue: Vol 31, No 41 (2024)
- Pages: 6842-6854
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645143
- DOI: https://doi.org/10.2174/0929867331666230821102521
- ID: 645143
Cite item
Full Text
Abstract
:Marine natural products have great pharmacological potential due to their unique and diverse chemical structures. The marine bacterial biodiversity and the unique marine environment lead to a high level of complexity and ecological interaction among marine species. This results in the production of metabolic pathways and adaptation mechanisms that are different from those of terrestrial organisms, which has drawn significant attention from researchers in the field of natural medicine. This review provides an analysis of the distribution and frequency of keywords in the literature on marine bacterial natural products as well as an overview of the new natural products isolated from the secondary metabolites of marine bacteria in recent years. Finally, it discusses the current research hotspots in this field and speculates on future directions and limitations.
About the authors
Xiangru Zha
Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine,, Hainan Medical University
Email: info@benthamscience.net
Rong Ji
Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine,, Hainan Medical University
Email: info@benthamscience.net
Songlin Zhou
Key Laboratory of Tropical Translational Medicine of Ministry of Education, Key Laboratory of Tropical Molecular Pharmacology and Advanced Diagnostic Technology, School of Tropical Medicine,, Hainan Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Deng, L.J.; Qi, M.; Li, N.; Lei, Y.H.; Zhang, D.M.; Chen, J.X. Natural products and their derivatives: Promising modulators of tumor immunotherapy. J. Leukoc. Biol., 2020, 108(2), 493-508. doi: 10.1002/JLB.3MR0320-444R PMID: 32678943
- Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 2003, 66(7), 1022-1037. doi: 10.1021/np030096l PMID: 12880330
- Daniel, R. The soil metagenome a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol., 2004, 15(3), 199-204. doi: 10.1016/j.copbio.2004.04.005 PMID: 15193327
- Debbab, A.; Aly, A.H.; Lin, W.H.; Proksch, P. Bioactive compounds from marine bacteria and fungi. Microb. Biotechnol., 2010, 3(5), 544-563. doi: 10.1111/j.1751-7915.2010.00179.x PMID: 21255352
- Song, C.; Yang, J.; Zhang, M.; Ding, G.; Jia, C.; Qin, J.; Guo, L. Marine natural products: The important resource of biological insecticide. Chem. Biodivers., 2021, 18(5), e2001020. doi: 10.1002/cbdv.202001020 PMID: 33855815
- Lu, W.Y.; Li, H.J.; Li, Q.Y.; Wu, Y.C. Application of marine natural products in drug research. Bioorg. Med. Chem., 2021, 35, 116058. doi: 10.1016/j.bmc.2021.116058 PMID: 33588288
- Moghaddam, A.J.; Jautzus, T.; Alanjary, M.; Beemelmanns, C. Recent highlights of biosynthetic studies on marine natural products. Org. Biomol. Chem., 2021, 19(1), 123-140. doi: 10.1039/D0OB01677B PMID: 33216100
- Stincone, P.; Brandelli, A. Marine bacteria as source of antimicrobial compounds. Crit. Rev. Biotechnol., 2020, 40(3), 306-319. doi: 10.1080/07388551.2019.1710457 PMID: 31992085
- Parkes, R.J.; Cragg, B.A.; Bale, S.J.; Getlifff, J.M.; Goodman, K.; Rochelle, P.A.; Fry, J.C.; Weightman, A.J.; Harvey, S.M. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 1994, 371(6496), 410-413. doi: 10.1038/371410a0
- Simmons, T.L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W.H. Marine natural products as anticancer drugs. Mol. Cancer Ther., 2005, 4(2), 333-342. doi: 10.1158/1535-7163.333.4.2 PMID: 15713904
- Armstrong, E.; Yan, L.; Boyd, K.G.; Wright, P.C.; Burgess, J.G. The symbiotic role of marine microbes on living surfaces. Hydrobiologia, 2001, 461(1/3), 37-40. doi: 10.1023/A:1012756913566
- Zheng, L.; Han, X.; Chen, H.; Lin, W.; Yan, X. Marine bacteria associated with marine macroorganisms: The potential antimicrobial resources. Ann. Microbiol., 2005, 55(2), 119-124.
- Zakaria, N.N.; Convey, P.; Gomez-Fuentes, C.; Zulkharnain, A.; Sabri, S.; Shaharuddin, N.A.; Ahmad, S.A. Oil bioremediation in the marine environment of antarctica: A review and bibliometric keyword cluster analysis. Microorganisms, 2021, 9(2), 419. doi: 10.3390/microorganisms9020419 PMID: 33671443
- Venkatesan, M.I.; Ruth, E.; Kaplan, I.R. Triterpenols from sediments of Santa Monica Basin, Southern California Bight, U.S.A. Org. Geochem., 1990, 16(4-6), 1015-1024. doi: 10.1016/0146-6380(90)90138-P
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H-P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P.; van Wezel, G.P. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol. Mol. Biol. Rev., 2016, 80(1), 1-43. doi: 10.1128/MMBR.00019-15 PMID: 26609051
- Yang, Z.; He, J.; Wei, X.; Ju, J.; Ma, J. Exploration and genome mining of natural products from marine Streptomyces. Appl. Microbiol. Biotechnol., 2020, 104(1), 67-76. doi: 10.1007/s00253-019-10227-0 PMID: 31773207
- Wiese, J.; Imhoff, J.F. Marine bacteria and fungi as promising source for new antibiotics. Drug Dev. Res., 2019, 80(1), 24-27. doi: 10.1002/ddr.21482 PMID: 30370576
- Lu, S.; Wang, J.; Sheng, R.; Fang, Y.; Guo, R. Novel bioactive polyketides isolated from marine Actinomycetes: An update review from 2013 to 2019. Chem. Biodivers., 2020, 17(12), e2000562. doi: 10.1002/cbdv.202000562 PMID: 33206470
- Yang, L.J.; Peng, X.Y.; Zhang, Y.H.; Liu, Z.Q.; Li, X.; Gu, Y.C.; Shao, C.L.; Han, Z.; Wang, C.Y. Antimicrobial and antioxidant polyketides from a deep-sea-derived fungus Aspergillus versicolor SH0105. Mar. Drugs, 2020, 18(12), 636. doi: 10.3390/md18120636 PMID: 33322355
- Tang, M.; Hu, X.; Wang, Y.; Yao, X.; Zhang, W.; Yu, C.; Cheng, F.; Li, J.; Fang, Q. Ivermectin, a potential anticancer drug derived from an antiparasitic drug. Pharmacol. Res., 2021, 163, 105207. doi: 10.1016/j.phrs.2020.105207 PMID: 32971268
- Zhao, H.; Ji, R.; Zha, X.; Xu, Z.; Lin, Y.; Zhou, S. Investigation of the bactericidal mechanism of Penicilazaphilone C on Escherichia coli based on 4D label-free quantitative proteomic analysis. Eur. J. Pharm. Sci., 2022, 179, 106299. doi: 10.1016/j.ejps.2022.106299 PMID: 36179970
- Chen, C.; Ren, X.; Tao, H.; Cai, W.; Chen, Y.; Luo, X.; Guo, P.; Liu, Y. Anti-inflammatory polyketides from an alga-derived fungus Aspergillus ochraceopetaliformis SCSIO 41020. Mar. Drugs, 2022, 20(5), 295. doi: 10.3390/md20050295 PMID: 35621946
- Xie, C.L.; Chen, R.; Yang, S.; Xia, J.M.; Zhang, G.Y.; Chen, C.H.; Zhang, Y.; Yang, X.W. Nesteretal A, a novel class of cage-like polyketide from marine-derived Actinomycete Nesterenkonia halobia. Org. Lett., 2019, 21(20), 8174-8177. doi: 10.1021/acs.orglett.9b02634 PMID: 31423796
- Wang, Z.; Wen, Z.; Liu, L.; Zhu, X.; Shen, B.; Yan, X.; Duan, Y.; Huang, Y. Yangpumicins F and G, enediyne congeners from Micromonospora yangpuensis DSM 45577. J. Nat. Prod., 2019, 82(9), 2483-2488. doi: 10.1021/acs.jnatprod.9b00229 PMID: 31490685
- García-Salcedo, R.; Álvarez-Álvarez, R.; Olano, C.; Cañedo, L.; Braña, A.; Méndez, C.; de la Calle, F.; Salas, J. Characterization of the jomthonic acids biosynthesis pathway and isolation of novel analogues in Streptomyces caniferus GUA-06-05-006A. Mar. Drugs, 2018, 16(8), 259. doi: 10.3390/md16080259 PMID: 30065171
- Kanoh, S.; Rubin, B.K. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin. Microbiol. Rev., 2010, 23(3), 590-615. doi: 10.1128/CMR.00078-09 PMID: 20610825
- Al-Fadhli, A.A.; Threadgill, M.D.; Mohammed, F.; Sibley, P.; Al-Ariqi, W.; Parveen, I. Macrolides from rare actinomycetes: Structures and bioactivities. Int. J. Antimicrob. Agents, 2022, 59(2), 106523. doi: 10.1016/j.ijantimicag.2022.106523 PMID: 35041941
- Lenz, K.D.; Klosterman, K.E.; Mukundan, H.; Kubicek-Sutherland, J.Z. Macrolides: From toxins to therapeutics. Toxins (Basel), 2021, 13(5), 347. doi: 10.3390/toxins13050347 PMID: 34065929
- Pérez-Victoria, I.; Oves-Costales, D.; Lacret, R.; Martín, J.; Sánchez-Hidalgo, M.; Díaz, C.; Cautain, B.; Vicente, F.; Genilloud, O.; Reyes, F. Structure elucidation and biosynthetic gene cluster analysis of caniferolides AD, new bioactive 36-membered macrolides from the marine-derived Streptomyces caniferus CA-271066. Org. Biomol. Chem., 2019, 17(11), 2954-2971. doi: 10.1039/C8OB03115K PMID: 30806648
- Zhang, B.; Wang, K.B.; Wang, W.; Bi, S.F.; Mei, Y.N.; Deng, X.Z.; Jiao, R.H.; Tan, R.X.; Ge, H.M. Discovery, biosynthesis, and heterologous production of streptoseomycin, an anti-microaerophilic bacteria macrodilactone. Org. Lett., 2018, 20(10), 2967-2971. doi: 10.1021/acs.orglett.8b01006 PMID: 29697266
- Chen, J.; Xu, L.; Zhou, Y.; Han, B. Natural products from actinomycetes associated with marine organisms. Mar. Drugs, 2021, 19(11), 629. doi: 10.3390/md19110629 PMID: 34822500
- Anjum, K.; Kaleem, S.; Yi, W.; Zheng, G.; Lian, X.; Zhang, Z. Novel antimicrobial indolepyrazines A and B from the marine-associated Acinetobacter sp. ZZ1275. Mar. Drugs, 2019, 17(2), 89. doi: 10.3390/md17020089 PMID: 30717135
- Anh, C.V.; Kang, J.S.; Lee, H.S.; Trinh, P.T.H.; Heo, C.S.; Shin, H.J. New glycosylated secondary metabolites from marine-derived bacteria. Mar. Drugs, 2022, 20(7), 464. doi: 10.3390/md20070464 PMID: 35877757
- Zhou, B.; Qin, L.L.; Ding, W.J.; Ma, Z.J. Cytotoxic indolocarbazoles alkaloids from the streptomyces sp. A65. Tetrahedron, 2018, 74(7), 726-730. doi: 10.1016/j.tet.2017.12.048
- Zheng, L.; Xu, Y.; Lin, X.; Yuan, Z.; Liu, M.; Cao, S.; Zhang, F.; Linhardt, R.J. Recent progress of marine polypeptides as anticancer agents. Recent Patents Anticancer Drug Discov., 2018, 13(4), 445-454. doi: 10.2174/1574892813666180430110033 PMID: 29708076
- Just-Baringo, X.; Albericio, F.; Álvarez, M. Thiopeptide engineering: A multidisciplinary effort towards future drugs. Angew. Chem. Int. Ed., 2014, 53(26), 6602-6616. doi: 10.1002/anie.201307288 PMID: 24861213
- Gogineni, V.; Hamann, M.T. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(1), 81-196. doi: 10.1016/j.bbagen.2017.08.014 PMID: 28844981
- Iniyan, A.M.; Sudarman, E.; Wink, J.; Kannan, R.R.; Vincent, S.G.P. Ala-geninthiocin, a new broad spectrum thiopeptide antibiotic, produced by a marine Streptomyces sp. ICN19. J. Antibiot. (Tokyo), 2019, 72(2), 99-105. doi: 10.1038/s41429-018-0115-2 PMID: 30356080
- Lee, J.; Gamage, C.D.B.; Kim, G.J.; Hillman, P.F.; Lee, C.; Lee, E.Y.; Choi, H.; Kim, H.; Nam, S.J.; Fenical, W. Androsamide, a cyclic tetrapeptide from a marine Nocardiopsis sp., suppresses motility of colorectal cancer cells. J. Nat. Prod., 2020, 83(10), 3166-3172. doi: 10.1021/acs.jnatprod.0c00815 PMID: 32985880
- Stewart, A.K.; Ravindra, R.; Van Wagoner, R.M.; Wright, J.L.C. Metabolomics-guided discovery of microginin peptides from cultures of the cyanobacterium Microcystis aeruginosa. J. Nat. Prod., 2018, 81(2), 349-355. doi: 10.1021/acs.jnatprod.7b00829 PMID: 29405714
- Wiese, J.; Abdelmohsen, U.R.; Motiei, A.; Humeida, U.H.; Imhoff, J.F. Bacicyclin, a new antibacterial cyclic hexapeptide from Bacillus sp. strain BC028 isolated from Mytilus edulis. Bioorg. Med. Chem. Lett., 2018, 28(4), 558-561. doi: 10.1016/j.bmcl.2018.01.062 PMID: 29422389
- El-Baba, C.; Baassiri, A.; Kiriako, G.; Dia, B.; Fadlallah, S.; Moodad, S.; Darwiche, N. Terpenoids anti-cancer effects: Focus on autophagy. Apoptosis, 2021, 26(9-10), 491-511. doi: 10.1007/s10495-021-01684-y PMID: 34269920
- Rudolf, J.D.; Alsup, T.A.; Xu, B.; Li, Z. Bacterial terpenome. Nat. Prod. Rep., 2021, 38(5), 905-980. doi: 10.1039/D0NP00066C PMID: 33169126
- Hoshino, Y.; Gaucher, E.A. On the origin of isoprenoid biosynthesis. Mol. Biol. Evol., 2018, 35(9), 2185-2197. doi: 10.1093/molbev/msy120 PMID: 29905874
- Frank, A.; Groll, M. The methylerythritol phosphate pathway to isoprenoids. Chem. Rev., 2017, 117(8), 5675-5703. doi: 10.1021/acs.chemrev.6b00537 PMID: 27995802
- Miziorko, H.M. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch. Biochem. Biophys., 2011, 505(2), 131-143. doi: 10.1016/j.abb.2010.09.028 PMID: 20932952
- Kuzuyama, T.; Seto, H. Diversity of the biosynthesis of the isoprene units. Nat. Prod. Rep., 2003, 20(2), 171-183. doi: 10.1039/b109860h PMID: 12735695
- Le, T.; Lee, E.; Lee, J.; Hong, A.; Yim, C.Y.; Yang, I.; Choi, H.; Chin, J.; Cho, S.; Ko, J.; Hwang, H.; Nam, S.J.; Fenical, W. Saccharoquinoline, a cytotoxic alkaloidal meroterpenoid from marine-derived bacterium Saccharomonospora sp. Mar. Drugs, 2019, 17(2), 98. doi: 10.3390/md17020098 PMID: 30717397
- Huo, L.; Hug, J.J.; Fu, C.; Bian, X.; Zhang, Y.; Müller, R. Heterologous expression of bacterial natural product biosynthetic pathways. Nat. Prod. Rep., 2019, 36(10), 1412-1436. doi: 10.1039/C8NP00091C PMID: 30620035
- Walsh, C.T.; Tang, Y. Recent advances in enzymatic complexity generation: Cyclization reactions. Biochemistry, 2018, 57(22), 3087-3104. doi: 10.1021/acs.biochem.7b01161 PMID: 29236467
- Hetrick, K.J.; van der Donk, W.A. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr. Opin. Chem. Biol., 2017, 38, 36-44. doi: 10.1016/j.cbpa.2017.02.005 PMID: 28260651
- Dickschat, J.S. Bacterial diterpene biosynthesis. Angew. Chem. Int. Ed., 2019, 58(45), 15964-15976. doi: 10.1002/anie.201905312 PMID: 31183935
- Dickschat, J.S. Bacterial terpene cyclases. Nat. Prod. Rep., 2016, 33(1), 87-110. doi: 10.1039/C5NP00102A PMID: 26563452
- Mitsuhashi, T.; Abe, I. Chimeric terpene synthases possessing both terpene cyclization and prenyltransfer activities. ChemBioChem, 2018, 19(11), 1106-1114. doi: 10.1002/cbic.201800120 PMID: 29675947
- Minami, A.; Ozaki, T.; Liu, C.; Oikawa, H. Cyclopentane-forming di/sesterterpene synthases: Widely distributed enzymes in bacteria, fungi, and plants. Nat. Prod. Rep., 2018, 35(12), 1330-1346. doi: 10.1039/C8NP00026C PMID: 29855001
- Rinkel, J.; Dickschat, J.S. Characterization of micromonocyclol synthase from the marine actinomycete Micromonospora marina. Org. Lett., 2019, 21(23), 9442-9445. doi: 10.1021/acs.orglett.9b03654 PMID: 31702158
- Ma, L.F.; Chen, M.J.; Liang, D.E.; Shi, L.M.; Ying, Y.M.; Shan, W.G.; Li, G.Q.; Zhan, Z.J. Streptomyces albogriseolus SY67903 produces eunicellin diterpenoids structurally similar to terpenes of the gorgonian Muricella sibogae, the bacterial source. J. Nat. Prod., 2020, 83(5), 1641-1645. doi: 10.1021/acs.jnatprod.0c00147 PMID: 32367724
- Hamed, A.; Abdel-Razek, A.; Frese, M.; Stammler, H.; El-Haddad, A.; Ibrahim, T.; Sewald, N.; Shaaban, M. Terretonin N: A new meroterpenoid from Nocardiopsis sp. Molecules, 2018, 23(2), 299. doi: 10.3390/molecules23020299 PMID: 29385078
- Carmichael, J.R.; Zhou, H.; Butler, A. A suite of asymmetric citrate siderophores isolated from a marine Shewanella species. J. Inorg. Biochem., 2019, 198, 110736. doi: 10.1016/j.jinorgbio.2019.110736 PMID: 31203087
- MacIntyre, L.W.; Charles, M.J.; Haltli, B.A.; Marchbank, D.H.; Kerr, R.G. An ichip-domesticated sponge bacterium produces an N-acyltyrosine bearing an α-methyl substituent. Org. Lett., 2019, 21(19), 7768-7771. doi: 10.1021/acs.orglett.9b02710 PMID: 31524403
- Lacoske, M.H.; Theodorakis, E.A. Spirotetronate polyketides as leads in drug discovery. J. Nat. Prod., 2015, 78(3), 562-575. doi: 10.1021/np500757w PMID: 25434976
- Gong, T.; Zhen, X.; Li, X.L.; Chen, J.J.; Chen, T.J.; Yang, J.L.; Zhu, P. Tetrocarcin Q, a new spirotetronate with a unique glycosyl group from a marine-derived actinomycete Micromonospora carbonacea LS276. Mar. Drugs, 2018, 16(2), 74. doi: 10.3390/md16020074 PMID: 29495293
Supplementary files
