From Plants to Therapies: Exploring the Pharmacology of Coumestrol for Neurological Conditions


Cite item

Full Text

Abstract

:Neurological disorders are possibly the most prevalent and have been identified to occur among individuals with autism beyond chance. These disorders encompass a diverse range of consequences with neurological causes and have been regarded as a major threat to public mental health. There is no tried-and-true approach for completely protecting the nervous system. Therefore, plant-derived compounds have developed significantly nowadays. Coumestrol (CML) is a potent isoflavone phytoestrogen with a protective effect against neurological dysfunction and has been discovered to be structurally and functionally similar to estrogen. In recent years, more research has been undertaken on phytoestrogens. This research demonstrates the biological complexity of phytoestrogens, which consist of multiple chemical families and function in various ways. This review aimed to explore recent findings on the most significant pharmacological advantages of CML by emphasising neurological benefits. Numerous CML extraction strategies and their pharmacological effects on various neurological disorders, including PD, AD, HD, anxiety, and cognitive impairments, were also documented.

About the authors

Madhav Singla

Chitkara College of Pharmacy, Chitkara University

Email: info@benthamscience.net

Smriti Verma

Chitkara College of Pharmacy, Chitkara University

Email: info@benthamscience.net

Kiran Thakur

Chitkara College of Pharmacy, Chitkara University

Email: info@benthamscience.net

Ahsas Goyal

Department of Pharmacy, Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Vishal Sharma

M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University)

Email: info@benthamscience.net

Diksha Sharma

Department of Pharmacy, Institute of Pharmaceutical Sciences, Kurukshetra University

Email: info@benthamscience.net

Omji Porwal

Department of Pharmacognosy, Faculty of Pharmac

Email: info@benthamscience.net

Vetriselvan Subramaniyan

Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University

Email: info@benthamscience.net

Tapan Behl

Department of Pharmacy, School of Health Science and Technology, University of Petroleum Science and Energy Studies

Email: info@benthamscience.net

Sachin Kumar Singh

School of Pharmaceutical Sciences, Lovely Professional University

Email: info@benthamscience.net

Kamal Dua

Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney

Email: info@benthamscience.net

Gaurav Gupta

School of Pharmacy, Suresh Gyan Vihar University

Author for correspondence.
Email: info@benthamscience.net

Saurabh Gupta

Chitkara College of Pharmacy, Chitkara University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Thakur, K.T.; Albanese, E.; Giannakopoulos, P.; Jette, N.; Linde, M.; Prince, M. J. Mental, neurological, and substance use disorders. In: Disease Control Priorities; The International Bank for Reconstruction and Development / The World Bank: Washington (DC), 2016.
  2. Siuly, S.; Zhang, Y. Medical big data: Neurological diseases diagnosis through medical data analysis. DSE, 2016, 1(2), 54-64. doi: 10.1007/s41019-016-0011-3
  3. Raggi, A.; Monasta, L.; Beghi, E.; Caso, V.; Castelpietra, G.; Mondello, S.; Giussani, G.; Logroscino, G.; Magnani, F.G.; Piccininni, M.; Pupillo, E.; Ricci, S.; Ronfani, L.; Santalucia, P.; Sattin, D.; Schiavolin, S.; Toppo, C.; Traini, E.; Steinmetz, J.; Nichols, E.; Ma, R.; Vos, T.; Feigin, V.; Leonardi, M. Incidence, prevalence and disability associated with neurological disorders in Italy between 1990 and 2019: An analysis based on the global burden of disease study 2019. J. Neurol., 2022, 269(4), 2080-2098. doi: 10.1007/s00415-021-10774-5 PMID: 34498172
  4. Bertolote, J.M. Neurological disorders affect millions globally: WHO report. World Neurol., 2007, 22(1)
  5. Jang, C.H.; Oh, J.; Lim, J.S.; Kim, H.J.; Kim, J.S. Fermented soy products: Beneficial potential in neurodegenerative diseases. Foods, 2021, 10(3), 636. doi: 10.3390/foods10030636 PMID: 33803607
  6. Pistollato, F.; Battino, M. Role of plant-based diets in the prevention and regression of metabolic syndrome and neurodegenerative diseases. Trends Food Sci. Technol., 2014, 40(1), 62-81. doi: 10.1016/j.tifs.2014.07.012
  7. Berlin, J.; Dewick, P.M.; Barz, W.; Grisebach, H. Biosynthesis of coumestrol in Phaseolus aureus. Phytochemistry, 1972, 11(5), 1689-1693. doi: 10.1016/0031-9422(72)85020-9
  8. Phytoestrogens in functional foods; Yildiz, F., Ed.; CRC Press, 2019. doi: 10.1201/9780429113802
  9. Sonnenschein, C.; Soto, A.M. An updated review of environmental estrogen and androgen mimics and antagonists. J. Steroid Biochem. Mol. Biol., 1998, 65(1-6), 143-150. doi: 10.1016/S0960-0760(98)00027-2 PMID: 9699867
  10. Whitten, P.L.; Lewis, C.; Russell, E.; Naftolin, F. Potential adverse effects of phytoestrogens. J. Nutr., 1995, 125(S3), 771S-776S. PMID: 7884563
  11. Thomas, B.F.; Zeisel, S.H.; Busby, M.G.; Hill, J.M.; Mitchell, R.A.; Scheffler, N.M.; Brown, S.S.; Bloeden, L.T.; Dix, K.J.; Jeffcoat, A.R. Quantitative analysis of the principle soy isoflavones genistein, daidzein and glycitein, and their primary conjugated metabolites in human plasma and urine using reversed-phase high-performance liquid chromatography with ultraviolet detection. J. Chromatogr., Biomed. Appl., 2001, 760(2), 191-205. doi: 10.1016/S0378-4347(01)00269-9 PMID: 11530977
  12. Thompson, L.U.; Boucher, B.A.; Liu, Z.; Cotterchio, M.; Kreiger, N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr. Cancer, 2006, 54(2), 184-201. doi: 10.1207/s15327914nc5402_5 PMID: 16898863
  13. Branham, W.S.; Dial, S.L.; Moland, C.L.; Hass, B.S.; Blair, R.M.; Sheehan, D.M.; Fang, H.; Shi, L.; Tong, W.; Perkins, R.G. Phytoestrogens and mycoestrogens bind to the rat uterine estrogen receptor. J. Nutr., 2002, 132(4), 658-664. doi: 10.1093/jn/132.4.658 PMID: 11925457
  14. Wang, T.; Wang, Y.; Zhuang, X.; Luan, F.; Zhao, C.; Cordeiro, M.N.D.S. Interaction of coumarin phytoestrogens with ERα and ERβ: A molecular dynamics simulation study. Molecules, 2020, 25(5), 1165. doi: 10.3390/molecules25051165 PMID: 32150902
  15. Bingol, Z.; Kızıltaş, H.; Gören, A.C.; Kose, L.P.; Topal, M.; Durmaz, L.; Alwasel, S.H.; Gulcin, İ. Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed (Convulvulus betonicifolia Miller subsp.) – profiling of phenolic compounds by LC-HRMS. Heliyon, 2021, 7(5), e06986. doi: 10.1016/j.heliyon.2021.e06986 PMID: 34027185
  16. Whitten, P.L.; Patisaul, H.B.; Young, L.J. Neurobehavioral actions of coumestrol and related isoflavonoids in rodents. Neurotoxicol. Teratol., 2002, 24(1), 47-54. doi: 10.1016/S0892-0362(01)00192-1 PMID: 11836071
  17. Koirala, P.; Seong, S.H.; Jung, H.A.; Choi, J.S. Comparative molecular docking studies of lupeol and lupenone isolated from Pueraria lobata that inhibits BACE1: Probable remedies for Alzheimer’s disease. Asian Pac. J. Trop. Med., 2017, 10(12), 1117-1122. doi: 10.1016/j.apjtm.2017.10.018 PMID: 29268966
  18. Jantaratnotai, N.; Utaisincharoen, P.; Sanvarinda, P.; Thampithak, A.; Sanvarinda, Y. Phytoestrogens mediated anti-inflammatory effect through suppression of IRF-1 and pSTAT1 expressions in lipopolysaccharide-activated microglia. Int. Immunopharmacol., 2013, 17(2), 483-488. doi: 10.1016/j.intimp.2013.07.013 PMID: 23938252
  19. Pogačnik, L.; Ota, A.; Poklar Ulrih, N. An overview of crucial dietary substances and their modes of action for prevention of neurodegenerative diseases. Cells, 2020, 9(3), 576. doi: 10.3390/cells9030576 PMID: 32121302
  20. Fekri, K.; Nayebi, A.M.; Mahmoudi, J.; Sadigh-Eteghad, S. The novel pharmacological approaches to coumestrol: focusing on the psychiatric and neurological benefits and the newly identified receptor interactions. Pharm. Sci., 2022, 29(2), 135-143.
  21. Walf, A.A.; Frye, C.A. Administration of estrogen receptor beta-specific selective estrogen receptor modulators to the hippocampus decrease anxiety and depressive behavior of ovariectomized rats. Pharmacol. Biochem. Behav., 2007, 86(2), 407-414. doi: 10.1016/j.pbb.2006.07.003 PMID: 16916539
  22. Michel, T.; Halabalaki, M.; Skaltsounis, A.L. New concepts, experimental approaches, and dereplication strategies for the discovery of novel phytoestrogens from natural sources. Planta Med., 2013, 79(7), 514-532. doi: 10.1055/s-0032-1328300 PMID: 23479392
  23. Taujenis, L.; Padarauskas, A.; Cesevičienė, J.; Lemežienė, N.; Butkutė, B. Determination of coumestrol in lucerne by ultra-high pressure liquid chromatography-mass spectrometry. Chemija, 2016, 27(1), 60-64.
  24. Martin, L.M.; Castilho, M.C.; Silveira, M.I.; Abreu, J.M. Liquid chromatographic validation of a quantitation method for phytoestrogens, biochanin-a, coumestrol, daidzein, formononetin, and genistein, in lucerne. J. Liq. Chromatogr. Relat. Technol., 2006, 29(19), 2875-2884. doi: 10.1080/10826070600961076
  25. Moravcová, J.; Kleinová, T.; Loučka, R. The determination of coumestrol in alfalfa (Medicago sativa) by capillary electrophoresis. Plant Soil Environ., 2002, 48(5), 224-229. doi: 10.17221/4230-PSE
  26. Knuckles, B.E.; Miller, R.E.; Bickoff, E.M. Quantitative determination of coumestrol in dried alfalfa and alfalfa leaf protein concentrates containing chlorophyll. J. Assoc. Off. Anal. Chem., 1975, 58(5), 983-986. doi: 10.1093/jaoac/58.5.983 PMID: 1158842
  27. Livingston, A.L.; Bickoff, E.M.; Guggolz, J.; Thompson, C.R. Alfalfa estrogens, quantitative determination of coumestrol in fresh and dried alfalfa. J. Agric. Food Chem., 1961, 9(2), 135-137. doi: 10.1021/jf60114a013
  28. Bickoff, E.M.; Livingston, A.L.; Witt, S.C.; Knuckles, B.F.; Guggolz, J.; Spencer, R.R. Isolation of coumestrol and other phenolics from alfalfa by countercurrent distribution. J. Pharm. Sci., 1964, 53(12), 1496-1499. doi: 10.1002/jps.2600531213 PMID: 14255129
  29. Knuckles, B.E.; DeFremery, D.; Kohler, G.O. Coumestrol content of fractions obtained during wet processing of alfalfa. J. Agric. Food Chem., 1976, 24(6), 1177-1180. doi: 10.1021/jf60208a034 PMID: 12201
  30. Lee, E.J.; Jiménez, Z.; Seo, K.H.; Nam, G.B.; Kang, Y.G.; Lee, T.R.; Kim, D.; Yang, D.C. Mass production of coumestrol from soybean (Glycine max) adventitious roots through bioreactor: effect on collagen production. Plant Biotechnol. Rep., 2020, 14(1), 99-110. doi: 10.1007/s11816-019-00589-2
  31. Hutabarat, L.S.; Greenfield, H.; Mulholland, M. Quantitative determination of isoflavones and coumestrol in soybean by column liquid chromatography. J. Chromatogr. A, 2000, 886(1-2), 55-63. doi: 10.1016/S0021-9673(00)00444-1 PMID: 10950275
  32. Lookhart, G.L. Note on an improved method of extracting and quantitating coumestrol from soybeans. Cereal Chem., 1979, 56(4), 386-388.
  33. Habib, R.; Noureen, N.; Nadeem, N. Decoding common features of neurodegenerative disorders: from differentially expressed genes to pathways. Curr. Genomics, 2018, 19(4), 300-312. doi: 10.2174/1389202918666171005100549 PMID: 29755292
  34. Alafuzoff, I.; Ince, P.G.; Arzberger, T.; Al-Sarraj, S.; Bell, J.; Bodi, I.; Bogdanovic, N.; Bugiani, O.; Ferrer, I.; Gelpi, E.; Gentleman, S.; Giaccone, G.; Ironside, J.W.; Kavantzas, N.; King, A.; Korkolopoulou, P.; Kovács, G.G.; Meyronet, D.; Monoranu, C.; Parchi, P.; Parkkinen, L.; Patsouris, E.; Roggendorf, W.; Rozemuller, A.; Stadelmann-Nessler, C.; Streichenberger, N.; Thal, D.R.; Kretzschmar, H. Staging/typing of Lewy body related α-synuclein pathology: A study of the BrainNet Europe Consortium. Acta Neuropathol., 2009, 117(6), 635-652. doi: 10.1007/s00401-009-0523-2 PMID: 19330340
  35. Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70. doi: 10.1111/ene.13439 PMID: 28872215
  36. Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185. doi: 10.1126/science.1566067 PMID: 1566067
  37. Vergara, C.; Houben, S.; Suain, V.; Yilmaz, Z.; De Decker, R.; Vanden Dries, V.; Boom, A.; Mansour, S.; Leroy, K.; Ando, K.; Brion, J.P. Amyloid-β pathology enhances pathological fibrillary tau seeding induced by Alzheimer PHF in vivo. Acta Neuropathol., 2019, 137(3), 397-412. doi: 10.1007/s00401-018-1953-5 PMID: 30599077
  38. Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol., 1999, 56(3), 303-308. doi: 10.1001/archneur.56.3.303 PMID: 10190820
  39. Carmasin, J.S.; Roth, R.M.; Rabin, L.A.; Englert, J.J.; Flashman, L.A.; Saykin, A.J. Stability of subjective executive functioning in older adults with aMCI and subjective cognitive decline. Arch. Clin. Neuropsychol., 2021, 36(6), 1012-1018. doi: 10.1093/arclin/acaa129 PMID: 33454755
  40. Seidel, K.; Mahlke, J.; Siswanto, S.; Krüger, R.; Heinsen, H.; Auburger, G.; Bouzrou, M.; Grinberg, L.T.; Wicht, H.; Korf, H.W.; den Dunnen, W.; Rüb, U. The brainstem pathologies of Parkinson’s disease and dementia with Lewy bodies. Brain Pathol., 2015, 25(2), 121-135. doi: 10.1111/bpa.12168 PMID: 24995389
  41. Dickson, D.W.; Fujishiro, H.; DelleDonne, A.; Menke, J.; Ahmed, Z.; Klos, K.J.; Josephs, K.A.; Frigerio, R.; Burnett, M.; Parisi, J.E.; Ahlskog, J.E. Evidence that incidental Lewy body disease is pre-symptomatic Parkinson’s disease. Acta Neuropathol., 2008, 115(4), 437-444. doi: 10.1007/s00401-008-0345-7 PMID: 18264713
  42. Trovato, B.; Magrì, B.; Castorina, A.; Maugeri, G.; D’Agata, V.; Musumeci, G. Effects of exercise on skeletal muscle pathophysiology in Huntington’s disease. J. Funct. Morphol. Kinesiol., 2022, 7(2), 40. doi: 10.3390/jfmk7020040 PMID: 35645302
  43. Craufurd, D.; Thompson, J.C.; Snowden, J.S. Behavioral changes in Huntington disease. Neuropsychiatry Neuropsychol. Behav. Neurol., 2001, 14(4), 219-226. PMID: 11725215
  44. Chaturvedi, R.K.; Adhihetty, P.; Shukla, S.; Hennessy, T.; Calingasan, N.; Yang, L.; Starkov, A.; Kiaei, M.; Cannella, M.; Sassone, J.; Ciammola, A.; Squitieri, F.; Beal, M.F. Impaired PGC-1α function in muscle in Huntington’s disease. Hum. Mol. Genet., 2009, 18(16), 3048-3065. doi: 10.1093/hmg/ddp243 PMID: 19460884
  45. Castro, C.C.; Pagnussat, A.S.; Moura, N.; da Cunha, M.J.; Machado, F.R.; Wyse, A.T.S.; Netto, C.A. Coumestrol treatment prevents Na +, K + -ATPase inhibition and affords histological neuroprotection to male rats receiving cerebral global ischemia. Neurol. Res., 2014, 36(3), 198-206. doi: 10.1179/1743132813Y.0000000286 PMID: 24512013
  46. Wang, J.; Pantopoulos, K. Regulation of cellular iron metabolism. Biochem. J., 2011, 434(3), 365-381. doi: 10.1042/BJ20101825 PMID: 21348856
  47. Busl, K.M.; Greer, D.M. Hypoxic-ischemic brain injury: Pathophysiology, neuropathology and mechanisms. NeuroRehabilitation, 2010, 26(1), 5-13. doi: 10.3233/NRE-2010-0531 PMID: 20130351
  48. Orrenius, S.; McCabe, M.J., Jr; Nicotera, P. Ca2+-dependent mechanisms of cytotoxicity and programmed cell death. Toxicol. Lett., 1992, 64-65(Spec No), 357-364. doi: 10.1016/0378-4274(92)90208-2 PMID: 1335178
  49. Chand, S.P.; Marwaha, R.; Bender, R.M. Anxiety (Nursing). In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2023. PMID: 33760520
  50. Stein, M.B.; Steckler, T. Behavioral Neurobiology of Anxiety and Its treatment. Springer: Berlin, Heidelberg, 2010. doi: 10.1007/978-3-642-02912-7
  51. Jongen-Rêlo, A.L.; Amaral, D.G. Evidence for a GABAergic projection from the central nucleus of the amygdala to the brainstem of the macaque monkey: a combined retrograde tracing and in situ hybridization study. Eur. J. Neurosci., 1998, 10(9), 2924-2933. doi: 10.1111/j.1460-9568.1998.00299.x PMID: 9758162
  52. Lim, W.; Jeong, M.; Bazer, F.W.; Song, G. Coumestrol inhibits proliferation and migration of prostate cancer cells by regulating AKT, ERK1/2, and JNK MAPK cell signaling cascades. J. Cell. Physiol., 2017, 232(4), 862-871. doi: 10.1002/jcp.25494 PMID: 27431052
  53. Cooke, P.S.; Nanjappa, M.K.; Ko, C.; Prins, G.S.; Hess, R.A. Estrogens in male physiology. Physiol. Rev., 2017, 97(3), 995-1043. doi: 10.1152/physrev.00018.2016 PMID: 28539434
  54. Durmaz, L.; Erturk, A.; Akyüz, M.; Polat Kose, L.; Uc, E.M.; Bingol, Z.; Saglamtas, R.; Alwasel, S.; Gulcin, İ. Screening of carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzyme inhibition effects and antioxidant activity of coumestrol. Molecules, 2022, 27(10), 3091. doi: 10.3390/molecules27103091 PMID: 35630566
  55. Gandhi, S.; Abramov, A.Y.; Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. Front. Aging Neurosci., 2012, 24, 83-85.
  56. Zuo, L.; Zhou, T.; Pannell, B.K.; Ziegler, A.C.; Best, T.M. Biological and physiological role of reactive oxygen species - the good, the bad and the ugly. Acta Physiol., 2015, 214(3), 329-348. doi: 10.1111/apha.12515 PMID: 25912260
  57. Montero, G.; Arriagada, F.; Günther, G.; Bollo, S.; Mura, F.; Berríos, E.; Morales, J. Phytoestrogen coumestrol: Antioxidant capacity and its loading in albumin nanoparticles. Int. J. Pharm., 2019, 562, 86-95. doi: 10.1016/j.ijpharm.2019.03.029 PMID: 30885651
  58. Ahmad, A.; Ramasamy, K.; Majeed, A.B.A.; Mani, V. Enhancement of β-secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones. Pharm. Biol., 2015, 53(5), 758-766. doi: 10.3109/13880209.2014.942791 PMID: 25756802
  59. Liu, M.H.; Tsuang, F.Y.; Sheu, S.Y.; Sun, J.S.; Shih, C.M. The protective effects of coumestrol against amyloid-β peptide- and lipopolysaccharide-induced toxicity on mice astrocytes. Neurol. Res., 2011, 33(6), 663-672. doi: 10.1179/1743132810Y.0000000029 PMID: 21708076
  60. Kim, D.C. Investigation of coumestrol as a potent IKK-beta inhibitor using microglia cell system and computer aided drug design technology. Int. J. Eng. Res. Technol., 2018, 11(1), 41-50.
  61. You, J.S.; Cho, I.A.; Kang, K.R.; Oh, J.S.; Yu, S.J.; Lee, G.J.; Seo, Y.S.; Kim, S.G.; Kim, C.S.; Kim, D.K.; Im, H.J.; Kim, J.S. Coumestrol counteracts interleukin-1β-induced catabolic effects by suppressing inflammation in primary rat chondrocytes. Inflammation, 2017, 40(1), 79-91. doi: 10.1007/s10753-016-0455-7 PMID: 27709316
  62. Juárez-Chairez, M.F.; Meza-Márquez, O.G.; Márquez-Flores, Y.K.; Jiménez-Martínez, C. Potential anti-inflammatory effects of legumes: A review. Br. J. Nutr., 2022, 128(11), 2158-2169. doi: 10.1017/S0007114522000137 PMID: 35042569
  63. Gào, X.; Schöttker, B. Reduction-oxidation pathways involved in cancer development: A systematic review of literature reviews. Oncotarget, 2017, 8(31), 51888-51906. doi: 10.18632/oncotarget.17128 PMID: 28881698
  64. Qin, M.; Zhang, J.; Xu, C.; Peng, P.; Tan, L.; Liu, S.; Huang, J. Knockdown of NIK and IKKβ-binding protein (NIBP) reduces colorectal cancer metastasis through down-regulation of the canonical NF-κBsignaling pathway and suppression of MAPK signaling mediated through ERK and JNK. PLoS One, 2017, 12(1), e0170595. doi: 10.1371/journal.pone.0170595 PMID: 28125661
  65. Sharma, V.K.; Mehta, V.; Singh, T.G. Alzheimer’s disorder: Epigenetic connection and associated risk factors. Curr. Neuropharmacol., 2020, 18(8), 740-753. doi: 10.2174/1570159X18666200128125641 PMID: 31989902
  66. Sharma, V.K.; Singh, T.G. CREB: A multifaceted target for Alzheimer’s disease. Curr. Alzheimer Res., 2021, 17(14), 1280-1293. doi: 10.2174/1567205018666210218152253 PMID: 33602089
  67. Kwak, Y.D.; Wang, R.; Li, J.J.; Zhang, Y.W.; Xu, H.; Liao, F.F. Differential regulation of BACE1 expression by oxidative and nitrosative signals. Mol. Neurodegener., 2011, 6(1), 17. doi: 10.1186/1750-1326-6-17 PMID: 21371311
  68. Mangialasche, F.; Polidori, M.C.; Monastero, R.; Ercolani, S.; Camarda, C.; Cecchetti, R.; Mecocci, P. Biomarkers of oxidative and nitrosative damage in Alzheimer’s disease and mild cognitive impairment. Ageing Res. Rev., 2009, 8(4), 285-305. doi: 10.1016/j.arr.2009.04.002 PMID: 19376275
  69. Koirala, P.; Seong, S.; Jung, H.; Choi, J. comparative evaluation of the antioxidant and anti-Alzheimer’s disease potential of coumestrol and puerarol isolated from Pueraria lobata using molecular modeling studies. Molecules, 2018, 23(4), 785. doi: 10.3390/molecules23040785 PMID: 29597336
  70. Moreira, A.C.; Silva, A.M.; Branco, A.F.; Baldeiras, I.; Pereira, G.C.; Seiça, R.; Santos, M.S.; Sardão, V.A. Phytoestrogen coumestrol improves mitochondrial activity and decreases oxidative stress in the brain of ovariectomized Wistar-Han rats. J. Funct. Foods, 2017, 34, 329-339. doi: 10.1016/j.jff.2017.05.002
  71. Belcher, S.M.; Zsarnovszky, A. Estrogenic actions in the brain: Estrogen, phytoestrogens, and rapid intracellular signaling mechanisms. J. Pharmacol. Exp. Ther., 2001, 299(2), 408-414. PMID: 11602649
  72. Merrill, J.E.; Ignarro, L.J.; Sherman, M.P.; Melinek, J.; Lane, T.E. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J. Immunol., 1993, 151(4), 2132-2141. doi: 10.4049/jimmunol.151.4.2132 PMID: 8102159
  73. Chao, C.C.; Hu, S.; Molitor, T.W.; Shaskan, E.G.; Peterson, P.K. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J. Immunol., 1992, 149(8), 2736-2741. doi: 10.4049/jimmunol.149.8.2736 PMID: 1383325
  74. Kamijo, R.; Harada, H.; Matsuyama, T.; Bosland, M.; Gerecitano, J.; Shapiro, D.; Le, J.; Koh, S.I.; Kimura, T.; Green, S.J.; Mak, T.W.; Taniguchi, T.; Vilček, J. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science, 1994, 263(5153), 1612-1615. doi: 10.1126/science.7510419 PMID: 7510419
  75. Lennikov, A.; Mirabelli, P.; Mukwaya, A.; Schaupper, M.; Thangavelu, M.; Lachota, M.; Ali, Z.; Jensen, L.; Lagali, N. Selective IKK2 inhibitor IMD0354 disrupts NF-κB signaling to suppress corneal inflammation and angiogenesis. Angiogenesis, 2018, 21(2), 267-285. doi: 10.1007/s10456-018-9594-9 PMID: 29332242
  76. Wisniewski, D.; LoGrasso, P.; Calaycay, J.; Marcy, A. Assay for IkappaB kinases using an in vivo biotinylated IkappaB protein substrate. Anal. Biochem., 1999, 274(2), 220-228. doi: 10.1006/abio.1999.4287 PMID: 10527519
  77. Ping, H.; Yang, F.; Wang, M.; Niu, Y.; Xing, N. IKK inhibitor suppresses epithelial-mesenchymal transition and induces cell death in prostate cancer. Oncol. Rep., 2016, 36(3), 1658-1664. doi: 10.3892/or.2016.4915 PMID: 27432067
  78. Bahar, E.; Kim, J.Y.; Yoon, H. Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-κB and HO-1/Nrf2 pathways. Int. J. Mol. Sci., 2017, 18(9), 1989. doi: 10.3390/ijms18091989 PMID: 28914791
  79. Narayanan, K.B.; Park, H.H. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis, 2015, 20(2), 196-209. doi: 10.1007/s10495-014-1073-1 PMID: 25563856
  80. Morale, M.C.; Serra, P.A.; L’Episcopo, F.; Tirolo, C.; Caniglia, S.; Testa, N.; Gennuso, F.; Giaquinta, G.; Rocchitta, G.; Desole, M.S.; Miele, E.; Marchetti, B. Estrogen, neuroinflammation and neuroprotection in Parkinson’s disease: Glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience, 2006, 138(3), 869-878. doi: 10.1016/j.neuroscience.2005.07.060 PMID: 16337092
  81. Eriksson, G.; Zetterström, M.; Cortes Toro, V.; Bartfai, T.; Iverfeldt, K. Hypersensitive cytokine response to beta-amyloid 25-35 in astroglial cells from IL-1 receptor type I-deficient mice. Int. J. Mol. Med., 1998, 1(1), 201-206. doi: 10.3892/ijmm.1.1.201 PMID: 9852220
  82. GaoTaslimi, P.; Aslan, H.E.; Demir, Y.; Oztaskin, N.; Maraş, A.; Gulçin, İ.; Goksu, S. Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Int. J. Biol. Macromol., 2018, 119, 857-863.
  83. Schedin-Weiss, S.; Inoue, M.; Hromadkova, L.; Teranishi, Y.; Yamamoto, N.G.; Wiehager, B.; Bogdanovic, N.; Winblad, B.; Sandebring-Matton, A.; Frykman, S.; Tjernberg, L.O. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res. Ther., 2017, 9(1), 57. doi: 10.1186/s13195-017-0279-1 PMID: 28764767
  84. Seong, S.H.; Kim, B.R.; Cho, M.L.; Kim, T.S.; Im, S.; Han, S.; Jeong, J.W.; Jung, H.A.; Choi, J.S. Phytoestrogen coumestrol selectively inhibits monoamine oxidase-a and amyloid β self-aggregation. Nutrients, 2022, 14(18), 3822. doi: 10.3390/nu14183822 PMID: 36145197
  85. Olanow, C.W.; Tatton, W.G. Etiology and pathogenesis of Parkinson’s disease. Annu. Rev. Neurosci., 1999, 22(1), 123-144. doi: 10.1146/annurev.neuro.22.1.123 PMID: 10202534
  86. Zhu, J.; Chu, C.T. Mitochondrial dysfunction in Parkinson’s disease. J. Alzheimers Dis., 2010, 20(S2), S325-S334. doi: 10.3233/JAD-2010-100363 PMID: 20442495
  87. Stefanis, L. α-synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med., 2012, 2(2), a009399. doi: 10.1101/cshperspect.a009399 PMID: 22355802
  88. Hirsch, E.C.; Hunot, S. Neuroinflammation in Parkinson’s disease: A target for neuroprotection? Lancet Neurol., 2009, 8(4), 382-397. doi: 10.1016/S1474-4422(09)70062-6 PMID: 19296921
  89. Liu, B.; Gao, H.M.; Wang, J.Y.; Jeohn, G.H.; Cooper, C.L.; Hong, J.S. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann. N. Y. Acad. Sci., 2002, 962(1), 318-331. doi: 10.1111/j.1749-6632.2002.tb04077.x PMID: 12076984
  90. Kim, I.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants, 2021, 10(7), 1064. doi: 10.3390/antiox10071064 PMID: 34209224
  91. Chen, H.Q.; Wang, X.J.; Jin, Z.Y.; Xu, X.M.; Zhao, J.W.; Xie, Z.J. Protective effect of isoflavones from Trifolium pratense on dopaminergic neurons. Neurosci. Res., 2008, 62(2), 123-130. doi: 10.1016/j.neures.2008.07.001 PMID: 18675857
  92. Lubbers, L.S.; Zafian, P.T.; Gautreaux, C.; Gordon, M.; Alves, S.E.; Correa, L.; Lorrain, D.S.; Hickey, G.J.; Luine, V. Estrogen receptor (ER) subtype agonists alter monoamine levels in the female rat brain. J. Steroid Biochem. Mol. Biol., 2010, 122(5), 310-317. doi: 10.1016/j.jsbmb.2010.08.005 PMID: 20800684
  93. Lee, D.; Yoon, S.; Lee, J.; Lim, D.; Yoon, C.; Im, H.; Lee, K. Amyloid fibril formation of α-synuclein is modulated via the estrogen receptor ligand binding domain of estrogen receptor α bound with tamoxifen-based small molecules. Bull. Korean Chem. Soc., 2020, 41(3), 274-278. doi: 10.1002/bkcs.11956
  94. Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013, 3(4), 461-491. doi: 10.3233/JPD-130230 PMID: 24252804
  95. Gorzkiewicz, J.; Bartosz, G.; Sadowska-Bartosz, I. The potential effects of phytoestrogens: The role in neuroprotection. Molecules, 2021, 26(10), 2954. doi: 10.3390/molecules26102954 PMID: 34065647
  96. Chen, C.M. Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington’s disease. Chang Gung Med. J., 2011, 34(2), 135-152. PMID: 21539755
  97. Anastacio, J.B.R.; Sanches, E.F.; Nicola, F.; Odorcyk, F.; Fabres, R.B.; Netto, C.A. Phytoestrogen coumestrol attenuates brain mitochondrial dysfunction and long-term cognitive deficits following neonatal hypoxia–ischemia. Int. J. Dev. Neurosci., 2019, 79(1), 86-95. doi: 10.1016/j.ijdevneu.2019.10.009 PMID: 31693927
  98. Kumar, A.; Ratan, R.R. Oxidative stress and Huntington’s disease: The good, the bad, and the ugly. J. Huntingtons Dis., 2016, 5(3), 217-237. doi: 10.3233/JHD-160205 PMID: 27662334
  99. Pavese, N.; Gerhard, A.; Tai, Y.F.; Ho, A.K.; Turkheimer, F.; Barker, R.A.; Brooks, D.J.; Piccini, P. Microglial activation correlates with severity in Huntington disease: A clinical and PET study. Neurology, 2006, 66(11), 1638-1643. doi: 10.1212/01.wnl.0000222734.56412.17 PMID: 16769933
  100. Politis, M.; Pavese, N.; Tai, Y.F.; Kiferle, L.; Mason, S.L.; Brooks, D.J.; Tabrizi, S.J.; Barker, R.A.; Piccini, P. Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: A multimodal imaging study. Hum. Brain Mapp., 2011, 32(2), 258-270. doi: 10.1002/hbm.21008 PMID: 21229614
  101. Björkqvist, M.; Wild, E.J.; Thiele, J.; Silvestroni, A.; Andre, R.; Lahiri, N.; Raibon, E.; Lee, R.V.; Benn, C.L.; Soulet, D.; Magnusson, A.; Woodman, B.; Landles, C.; Pouladi, M.A.; Hayden, M.R.; Khalili-Shirazi, A.; Lowdell, M.W.; Brundin, P.; Bates, G.P.; Leavitt, B.R.; Möller, T.; Tabrizi, S.J. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J. Exp. Med., 2008, 205(8), 1869-1877. doi: 10.1084/jem.20080178 PMID: 18625748
  102. Hsiao, H.Y.; Chen, Y.C.; Chen, H.M.; Tu, P.H.; Chern, Y. A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntington’s disease. Hum. Mol. Genet., 2013, 22(9), 1826-1842. doi: 10.1093/hmg/ddt036 PMID: 23372043
  103. Dhakal, A.; Bobrin, B.D. Cognitive Deficits. StatPearls; StatPearls Publishing, 2021.
  104. Belanoff, J.K.; Gross, K.; Yager, A.; Schatzberg, A.F. Corticosteroids and cognition. J. Psychiatr. Res., 2001, 35(3), 127-145. doi: 10.1016/S0022-3956(01)00018-8 PMID: 11461709
  105. Kalachnik, J.E.; Hanzel, T.E.; Sevenich, R.; Harder, S.R. Benzodiazepine behavioral side effects: Review and implications for individuals with mental retardation. Am. J. Ment. Retard., 2002, 107(5), 376-410. doi: 10.1352/0895-8017(2002)1072.0.CO;2 PMID: 12186578
  106. Fitzpatrick, J.L.; Mize, A.L.; Wade, C.B.; Harris, J.A.; Shapiro, R.A.; Dorsa, D.M. Estrogen-mediated neuroprotection against β-amyloid toxicity requires expression of estrogen receptor α or β and activation of the MAPK pathway. J. Neurochem., 2002, 82(3), 674-682. doi: 10.1046/j.1471-4159.2002.01000.x PMID: 12153491
  107. Aguirre, C.; Jayaraman, A.; Pike, C.; Baudry, M. Progesterone inhibits estrogen-mediated neuroprotection against excitotoxicity by down-regulating estrogen receptor-β. J. Neurochem., 2010, 115(5), 1277-1287. doi: 10.1111/j.1471-4159.2010.07038.x PMID: 20977477
  108. Moyano, P.; Sanjuan, J.; García, J.M.; Anadon, M.J.; Lobo, M.; Pelayo, A.; García, J.; Frejo, M.T.; del Pino, J. Primary hippocampal estrogenic dysfunction induces synaptic proteins alteration and neuronal cell death after single and repeated paraquat exposure. Food Chem. Toxicol., 2020, 136, 110961. doi: 10.1016/j.fct.2019.110961 PMID: 31715309
  109. Iwasaki, Y.; Hosoya, T.; Takebayashi, H.; Ogawa, Y.; Hotta, Y.; Ikenaka, K. The potential to induce glial differentiation is conserved between Drosophila and mammalian glial cells missing genes. Development, 2003, 130(24), 6027-6035.
  110. Fekri, K.; Mahmoudi, J.; Sadigh-Eteghad, S.; Farajdokht, F.; Mohajjel Nayebi, A. Coumestrol alleviates oxidative stress, apoptosis and cognitive impairments through hippocampal estrogen receptor-beta in male mouse model of chronic restraint stress. Ulum-i Daruyi, 2021, 28(2), 260-274. doi: 10.34172/PS.2021.44
  111. Linford, N.J.; Dorsa, D.M. 17β-Estradiol and the phytoestrogen genistein attenuate neuronal apoptosis induced by the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin. Steroids, 2002, 67(13-14), 1029-1040. doi: 10.1016/S0039-128X(02)00062-4 PMID: 12441188
  112. Zhao, P.; Yue-wei LEE, D.; Ma, Z.; Huang, L.; Sun, L.; Li, Y.; Chen, J.; Niu, J. The antioxidant effect of carnosol in bovine aortic endothelial cells is mainly mediated via estrogen receptor α pathway. Biol. Pharm. Bull., 2012, 35(11), 1947-1955. doi: 10.1248/bpb.b12-00325 PMID: 22971524
  113. Angelova, P.R.; Abramov, A.Y. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett., 2018, 592(5), 692-702. doi: 10.1002/1873-3468.12964 PMID: 29292494
  114. Bebbington, P.; Hurry, J.; Tennant, C.; Sturt, E.; Wing, J.K. Epidemiology of mental disorders in Camberwell. Psychol. Med., 1981, 11(3), 561-579. doi: 10.1017/S0033291700052879 PMID: 6973770
  115. Jenkins, R. Sex differences in depression. Br. J. Hosp. Med., 1987, 38(5), 485-486. PMID: 3690086
  116. Walf, A.A.; Frye, C.A. A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology, 2006, 31(6), 1097-1111. doi: 10.1038/sj.npp.1301067 PMID: 16554740
  117. Walf, A.A.; Koonce, C.J.; Frye, C.A. Estradiol or diarylpropionitrile decrease anxiety-like behavior of wildtype, but not estrogen receptor beta knockout, mice. Behav. Neurosci., 2008, 122(5), 974-981. doi: 10.1037/a0012749 PMID: 18823154
  118. Fekri, K.; Mohajjel Nayebi, A.; Mahmoudi, J.; Sadigh-Eteghad, S. The novel pharmacological approaches to coumestrol: focusing on the psychiatric and neurological benefits and the newly identified receptor interactions. Ulum-i Daruyi, 2023, 29(2), 135-143. doi: 10.34172/PS.2022.22
  119. Nitatori, T.; Sato, N.; Waguri, S.; Karasawa, Y.; Araki, H.; Shibanai, K.; Kominami, E.; Uchiyama, Y. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J. Neurosci., 1995, 15(2), 1001-1011. doi: 10.1523/JNEUROSCI.15-02-01001.1995 PMID: 7869078
  120. de Souza Wyse, A.T.; Streck, E.L.; Worm, P.; Wajner, A.; Ritter, F.; Netto, C.A. Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem. Res., 2000, 25(7), 971-975. doi: 10.1023/A:1007504525301 PMID: 10959493
  121. Blomgren, K.; Hagberg, H. Free radicals, mitochondria, and hypoxia–ischemia in the developing brain. Free Radic. Biol. Med., 2006, 40(3), 388-397. doi: 10.1016/j.freeradbiomed.2005.08.040 PMID: 16443153
  122. Silachev, D.; Plotnikov, E.; Pevzner, I.; Zorova, L.; Balakireva, A.; Gulyaev, M.; Pirogov, Y.; Skulachev, V.; Zorov, D. Neuroprotective effects of mitochondria-targeted plastoquinone in a rat model of neonatal hypoxic–ischemic brain injury. Molecules, 2018, 23(8), 1871. doi: 10.3390/molecules23081871 PMID: 30060443
  123. Canal Castro, C.; Pagnussat, A.S.; Orlandi, L.; Worm, P.; Moura, N.; Etgen, A.M.; Alexandre Netto, C. Coumestrol has neuroprotective effects before and after global cerebral ischemia in female rats. Brain Res., 2012, 1474, 82-90. doi: 10.1016/j.brainres.2012.07.025 PMID: 22824334
  124. Castro, C. C.; de Souza, P.A.; Munhoz, C. D. Coumestrol pre-treatment improves spatial learning and memory deficits following transient cerebral ischemia recruiting hippocampal GluR2 AMPA receptors. Hippocampus, 2022, 32(6), 413-418.
  125. Sharma, V.; Singh, T.; Garg, N.; Dhiman, S.; Gupta, S.; Rahman, M.; Najda, A.; Walasek-Janusz, M.; Kamel, M.; Albadrani, G.; Akhtar, M.; Saleem, A.; Altyar, A.; Abdel-Daim, M. Dysbiosis and Alzheimer’s Disease: A role for chronic stress? Biomolecules, 2021, 11(5), 678. doi: 10.3390/biom11050678 PMID: 33946488
  126. Vishwas, S.; Gulati, M.; Kapoor, B.; Gupta, S.; Singh, S.K.; Awasthi, A.; Khan, A.; Goyal, A.; Bansal, A.; Baishnab, S.; Singh, T.G.; Arora, S.; Porwal, O.; Kumar, A.; Kumar, V. Expanding the arsenal against Huntington’s disease-herbal drugs and their nanoformulations. Curr. Neuropharmacol., 2021, 19(7), 957-989. doi: 10.2174/1570159X18666201109090824 PMID: 33167841
  127. Gupta, S.; Khan, A.; Vishwas, S.; Gulati, M.; Gurjeet Singh, T.; Dua, K.; Kumar Singh, S.; Najda, A.; Sayed, A.A.; Almeer, R.; Abdel-Daim, M.M. Demethyleneberberine: A possible treatment for Huntington’s disease. Med. Hypotheses, 2021, 153, 110639. doi: 10.1016/j.mehy.2021.110639 PMID: 34229236
  128. Saklani, P.; Khan, H.; Singh, T.G.; Gupta, S.; Grewal, A.K. Demethyleneberberine, a potential therapeutic agent in neurodegenerative disorders: A proposed mechanistic insight. Mol. Biol. Rep., 2022, 49(10), 10101-10113. doi: 10.1007/s11033-022-07594-9 PMID: 35657450

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers