From Plants to Therapies: Exploring the Pharmacology of Coumestrol for Neurological Conditions
- Authors: Singla M.1, Verma S.1, Thakur K.1, Goyal A.2, Sharma V.3, Sharma D.4, Porwal O.5, Subramaniyan V.6, Behl T.7, Singh S.K.8, Dua K.9, Gupta G.10, Gupta S.1
-
Affiliations:
- Chitkara College of Pharmacy, Chitkara University
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University)
- Department of Pharmacy, Institute of Pharmaceutical Sciences, Kurukshetra University
- Department of Pharmacognosy, Faculty of Pharmac
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University
- Department of Pharmacy, School of Health Science and Technology, University of Petroleum Science and Energy Studies
- School of Pharmaceutical Sciences, Lovely Professional University
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney
- School of Pharmacy, Suresh Gyan Vihar University
- Issue: Vol 31, No 41 (2024)
- Pages: 6855-6870
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645144
- DOI: https://doi.org/10.2174/0109298673250784231011094322
- ID: 645144
Cite item
Full Text
Abstract
:Neurological disorders are possibly the most prevalent and have been identified to occur among individuals with autism beyond chance. These disorders encompass a diverse range of consequences with neurological causes and have been regarded as a major threat to public mental health. There is no tried-and-true approach for completely protecting the nervous system. Therefore, plant-derived compounds have developed significantly nowadays. Coumestrol (CML) is a potent isoflavone phytoestrogen with a protective effect against neurological dysfunction and has been discovered to be structurally and functionally similar to estrogen. In recent years, more research has been undertaken on phytoestrogens. This research demonstrates the biological complexity of phytoestrogens, which consist of multiple chemical families and function in various ways. This review aimed to explore recent findings on the most significant pharmacological advantages of CML by emphasising neurological benefits. Numerous CML extraction strategies and their pharmacological effects on various neurological disorders, including PD, AD, HD, anxiety, and cognitive impairments, were also documented.
Keywords
About the authors
Madhav Singla
Chitkara College of Pharmacy, Chitkara University
Email: info@benthamscience.net
Smriti Verma
Chitkara College of Pharmacy, Chitkara University
Email: info@benthamscience.net
Kiran Thakur
Chitkara College of Pharmacy, Chitkara University
Email: info@benthamscience.net
Ahsas Goyal
Department of Pharmacy, Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Vishal Sharma
M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University)
Email: info@benthamscience.net
Diksha Sharma
Department of Pharmacy, Institute of Pharmaceutical Sciences, Kurukshetra University
Email: info@benthamscience.net
Omji Porwal
Department of Pharmacognosy, Faculty of Pharmac
Email: info@benthamscience.net
Vetriselvan Subramaniyan
Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University
Email: info@benthamscience.net
Tapan Behl
Department of Pharmacy, School of Health Science and Technology, University of Petroleum Science and Energy Studies
Email: info@benthamscience.net
Sachin Kumar Singh
School of Pharmaceutical Sciences, Lovely Professional University
Email: info@benthamscience.net
Kamal Dua
Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney
Email: info@benthamscience.net
Gaurav Gupta
School of Pharmacy, Suresh Gyan Vihar University
Author for correspondence.
Email: info@benthamscience.net
Saurabh Gupta
Chitkara College of Pharmacy, Chitkara University
Author for correspondence.
Email: info@benthamscience.net
References
- Thakur, K.T.; Albanese, E.; Giannakopoulos, P.; Jette, N.; Linde, M.; Prince, M. J. Mental, neurological, and substance use disorders. In: Disease Control Priorities; The International Bank for Reconstruction and Development / The World Bank: Washington (DC), 2016.
- Siuly, S.; Zhang, Y. Medical big data: Neurological diseases diagnosis through medical data analysis. DSE, 2016, 1(2), 54-64. doi: 10.1007/s41019-016-0011-3
- Raggi, A.; Monasta, L.; Beghi, E.; Caso, V.; Castelpietra, G.; Mondello, S.; Giussani, G.; Logroscino, G.; Magnani, F.G.; Piccininni, M.; Pupillo, E.; Ricci, S.; Ronfani, L.; Santalucia, P.; Sattin, D.; Schiavolin, S.; Toppo, C.; Traini, E.; Steinmetz, J.; Nichols, E.; Ma, R.; Vos, T.; Feigin, V.; Leonardi, M. Incidence, prevalence and disability associated with neurological disorders in Italy between 1990 and 2019: An analysis based on the global burden of disease study 2019. J. Neurol., 2022, 269(4), 2080-2098. doi: 10.1007/s00415-021-10774-5 PMID: 34498172
- Bertolote, J.M. Neurological disorders affect millions globally: WHO report. World Neurol., 2007, 22(1)
- Jang, C.H.; Oh, J.; Lim, J.S.; Kim, H.J.; Kim, J.S. Fermented soy products: Beneficial potential in neurodegenerative diseases. Foods, 2021, 10(3), 636. doi: 10.3390/foods10030636 PMID: 33803607
- Pistollato, F.; Battino, M. Role of plant-based diets in the prevention and regression of metabolic syndrome and neurodegenerative diseases. Trends Food Sci. Technol., 2014, 40(1), 62-81. doi: 10.1016/j.tifs.2014.07.012
- Berlin, J.; Dewick, P.M.; Barz, W.; Grisebach, H. Biosynthesis of coumestrol in Phaseolus aureus. Phytochemistry, 1972, 11(5), 1689-1693. doi: 10.1016/0031-9422(72)85020-9
- Phytoestrogens in functional foods; Yildiz, F., Ed.; CRC Press, 2019. doi: 10.1201/9780429113802
- Sonnenschein, C.; Soto, A.M. An updated review of environmental estrogen and androgen mimics and antagonists. J. Steroid Biochem. Mol. Biol., 1998, 65(1-6), 143-150. doi: 10.1016/S0960-0760(98)00027-2 PMID: 9699867
- Whitten, P.L.; Lewis, C.; Russell, E.; Naftolin, F. Potential adverse effects of phytoestrogens. J. Nutr., 1995, 125(S3), 771S-776S. PMID: 7884563
- Thomas, B.F.; Zeisel, S.H.; Busby, M.G.; Hill, J.M.; Mitchell, R.A.; Scheffler, N.M.; Brown, S.S.; Bloeden, L.T.; Dix, K.J.; Jeffcoat, A.R. Quantitative analysis of the principle soy isoflavones genistein, daidzein and glycitein, and their primary conjugated metabolites in human plasma and urine using reversed-phase high-performance liquid chromatography with ultraviolet detection. J. Chromatogr., Biomed. Appl., 2001, 760(2), 191-205. doi: 10.1016/S0378-4347(01)00269-9 PMID: 11530977
- Thompson, L.U.; Boucher, B.A.; Liu, Z.; Cotterchio, M.; Kreiger, N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr. Cancer, 2006, 54(2), 184-201. doi: 10.1207/s15327914nc5402_5 PMID: 16898863
- Branham, W.S.; Dial, S.L.; Moland, C.L.; Hass, B.S.; Blair, R.M.; Sheehan, D.M.; Fang, H.; Shi, L.; Tong, W.; Perkins, R.G. Phytoestrogens and mycoestrogens bind to the rat uterine estrogen receptor. J. Nutr., 2002, 132(4), 658-664. doi: 10.1093/jn/132.4.658 PMID: 11925457
- Wang, T.; Wang, Y.; Zhuang, X.; Luan, F.; Zhao, C.; Cordeiro, M.N.D.S. Interaction of coumarin phytoestrogens with ERα and ERβ: A molecular dynamics simulation study. Molecules, 2020, 25(5), 1165. doi: 10.3390/molecules25051165 PMID: 32150902
- Bingol, Z.; Kızıltaş, H.; Gören, A.C.; Kose, L.P.; Topal, M.; Durmaz, L.; Alwasel, S.H.; Gulcin, İ. Antidiabetic, anticholinergic and antioxidant activities of aerial parts of shaggy bindweed (Convulvulus betonicifolia Miller subsp.) profiling of phenolic compounds by LC-HRMS. Heliyon, 2021, 7(5), e06986. doi: 10.1016/j.heliyon.2021.e06986 PMID: 34027185
- Whitten, P.L.; Patisaul, H.B.; Young, L.J. Neurobehavioral actions of coumestrol and related isoflavonoids in rodents. Neurotoxicol. Teratol., 2002, 24(1), 47-54. doi: 10.1016/S0892-0362(01)00192-1 PMID: 11836071
- Koirala, P.; Seong, S.H.; Jung, H.A.; Choi, J.S. Comparative molecular docking studies of lupeol and lupenone isolated from Pueraria lobata that inhibits BACE1: Probable remedies for Alzheimers disease. Asian Pac. J. Trop. Med., 2017, 10(12), 1117-1122. doi: 10.1016/j.apjtm.2017.10.018 PMID: 29268966
- Jantaratnotai, N.; Utaisincharoen, P.; Sanvarinda, P.; Thampithak, A.; Sanvarinda, Y. Phytoestrogens mediated anti-inflammatory effect through suppression of IRF-1 and pSTAT1 expressions in lipopolysaccharide-activated microglia. Int. Immunopharmacol., 2013, 17(2), 483-488. doi: 10.1016/j.intimp.2013.07.013 PMID: 23938252
- Pogačnik, L.; Ota, A.; Poklar Ulrih, N. An overview of crucial dietary substances and their modes of action for prevention of neurodegenerative diseases. Cells, 2020, 9(3), 576. doi: 10.3390/cells9030576 PMID: 32121302
- Fekri, K.; Nayebi, A.M.; Mahmoudi, J.; Sadigh-Eteghad, S. The novel pharmacological approaches to coumestrol: focusing on the psychiatric and neurological benefits and the newly identified receptor interactions. Pharm. Sci., 2022, 29(2), 135-143.
- Walf, A.A.; Frye, C.A. Administration of estrogen receptor beta-specific selective estrogen receptor modulators to the hippocampus decrease anxiety and depressive behavior of ovariectomized rats. Pharmacol. Biochem. Behav., 2007, 86(2), 407-414. doi: 10.1016/j.pbb.2006.07.003 PMID: 16916539
- Michel, T.; Halabalaki, M.; Skaltsounis, A.L. New concepts, experimental approaches, and dereplication strategies for the discovery of novel phytoestrogens from natural sources. Planta Med., 2013, 79(7), 514-532. doi: 10.1055/s-0032-1328300 PMID: 23479392
- Taujenis, L.; Padarauskas, A.; Cesevičienė, J.; Lemeienė, N.; Butkutė, B. Determination of coumestrol in lucerne by ultra-high pressure liquid chromatography-mass spectrometry. Chemija, 2016, 27(1), 60-64.
- Martin, L.M.; Castilho, M.C.; Silveira, M.I.; Abreu, J.M. Liquid chromatographic validation of a quantitation method for phytoestrogens, biochanin-a, coumestrol, daidzein, formononetin, and genistein, in lucerne. J. Liq. Chromatogr. Relat. Technol., 2006, 29(19), 2875-2884. doi: 10.1080/10826070600961076
- Moravcová, J.; Kleinová, T.; Loučka, R. The determination of coumestrol in alfalfa (Medicago sativa) by capillary electrophoresis. Plant Soil Environ., 2002, 48(5), 224-229. doi: 10.17221/4230-PSE
- Knuckles, B.E.; Miller, R.E.; Bickoff, E.M. Quantitative determination of coumestrol in dried alfalfa and alfalfa leaf protein concentrates containing chlorophyll. J. Assoc. Off. Anal. Chem., 1975, 58(5), 983-986. doi: 10.1093/jaoac/58.5.983 PMID: 1158842
- Livingston, A.L.; Bickoff, E.M.; Guggolz, J.; Thompson, C.R. Alfalfa estrogens, quantitative determination of coumestrol in fresh and dried alfalfa. J. Agric. Food Chem., 1961, 9(2), 135-137. doi: 10.1021/jf60114a013
- Bickoff, E.M.; Livingston, A.L.; Witt, S.C.; Knuckles, B.F.; Guggolz, J.; Spencer, R.R. Isolation of coumestrol and other phenolics from alfalfa by countercurrent distribution. J. Pharm. Sci., 1964, 53(12), 1496-1499. doi: 10.1002/jps.2600531213 PMID: 14255129
- Knuckles, B.E.; DeFremery, D.; Kohler, G.O. Coumestrol content of fractions obtained during wet processing of alfalfa. J. Agric. Food Chem., 1976, 24(6), 1177-1180. doi: 10.1021/jf60208a034 PMID: 12201
- Lee, E.J.; Jiménez, Z.; Seo, K.H.; Nam, G.B.; Kang, Y.G.; Lee, T.R.; Kim, D.; Yang, D.C. Mass production of coumestrol from soybean (Glycine max) adventitious roots through bioreactor: effect on collagen production. Plant Biotechnol. Rep., 2020, 14(1), 99-110. doi: 10.1007/s11816-019-00589-2
- Hutabarat, L.S.; Greenfield, H.; Mulholland, M. Quantitative determination of isoflavones and coumestrol in soybean by column liquid chromatography. J. Chromatogr. A, 2000, 886(1-2), 55-63. doi: 10.1016/S0021-9673(00)00444-1 PMID: 10950275
- Lookhart, G.L. Note on an improved method of extracting and quantitating coumestrol from soybeans. Cereal Chem., 1979, 56(4), 386-388.
- Habib, R.; Noureen, N.; Nadeem, N. Decoding common features of neurodegenerative disorders: from differentially expressed genes to pathways. Curr. Genomics, 2018, 19(4), 300-312. doi: 10.2174/1389202918666171005100549 PMID: 29755292
- Alafuzoff, I.; Ince, P.G.; Arzberger, T.; Al-Sarraj, S.; Bell, J.; Bodi, I.; Bogdanovic, N.; Bugiani, O.; Ferrer, I.; Gelpi, E.; Gentleman, S.; Giaccone, G.; Ironside, J.W.; Kavantzas, N.; King, A.; Korkolopoulou, P.; Kovács, G.G.; Meyronet, D.; Monoranu, C.; Parchi, P.; Parkkinen, L.; Patsouris, E.; Roggendorf, W.; Rozemuller, A.; Stadelmann-Nessler, C.; Streichenberger, N.; Thal, D.R.; Kretzschmar, H. Staging/typing of Lewy body related α-synuclein pathology: A study of the BrainNet Europe Consortium. Acta Neuropathol., 2009, 117(6), 635-652. doi: 10.1007/s00401-009-0523-2 PMID: 19330340
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimers disease. Eur. J. Neurol., 2018, 25(1), 59-70. doi: 10.1111/ene.13439 PMID: 28872215
- Hardy, J.A.; Higgins, G.A. Alzheimers disease: The amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185. doi: 10.1126/science.1566067 PMID: 1566067
- Vergara, C.; Houben, S.; Suain, V.; Yilmaz, Z.; De Decker, R.; Vanden Dries, V.; Boom, A.; Mansour, S.; Leroy, K.; Ando, K.; Brion, J.P. Amyloid-β pathology enhances pathological fibrillary tau seeding induced by Alzheimer PHF in vivo. Acta Neuropathol., 2019, 137(3), 397-412. doi: 10.1007/s00401-018-1953-5 PMID: 30599077
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild cognitive impairment: Clinical characterization and outcome. Arch. Neurol., 1999, 56(3), 303-308. doi: 10.1001/archneur.56.3.303 PMID: 10190820
- Carmasin, J.S.; Roth, R.M.; Rabin, L.A.; Englert, J.J.; Flashman, L.A.; Saykin, A.J. Stability of subjective executive functioning in older adults with aMCI and subjective cognitive decline. Arch. Clin. Neuropsychol., 2021, 36(6), 1012-1018. doi: 10.1093/arclin/acaa129 PMID: 33454755
- Seidel, K.; Mahlke, J.; Siswanto, S.; Krüger, R.; Heinsen, H.; Auburger, G.; Bouzrou, M.; Grinberg, L.T.; Wicht, H.; Korf, H.W.; den Dunnen, W.; Rüb, U. The brainstem pathologies of Parkinsons disease and dementia with Lewy bodies. Brain Pathol., 2015, 25(2), 121-135. doi: 10.1111/bpa.12168 PMID: 24995389
- Dickson, D.W.; Fujishiro, H.; DelleDonne, A.; Menke, J.; Ahmed, Z.; Klos, K.J.; Josephs, K.A.; Frigerio, R.; Burnett, M.; Parisi, J.E.; Ahlskog, J.E. Evidence that incidental Lewy body disease is pre-symptomatic Parkinsons disease. Acta Neuropathol., 2008, 115(4), 437-444. doi: 10.1007/s00401-008-0345-7 PMID: 18264713
- Trovato, B.; Magrì, B.; Castorina, A.; Maugeri, G.; DAgata, V.; Musumeci, G. Effects of exercise on skeletal muscle pathophysiology in Huntingtons disease. J. Funct. Morphol. Kinesiol., 2022, 7(2), 40. doi: 10.3390/jfmk7020040 PMID: 35645302
- Craufurd, D.; Thompson, J.C.; Snowden, J.S. Behavioral changes in Huntington disease. Neuropsychiatry Neuropsychol. Behav. Neurol., 2001, 14(4), 219-226. PMID: 11725215
- Chaturvedi, R.K.; Adhihetty, P.; Shukla, S.; Hennessy, T.; Calingasan, N.; Yang, L.; Starkov, A.; Kiaei, M.; Cannella, M.; Sassone, J.; Ciammola, A.; Squitieri, F.; Beal, M.F. Impaired PGC-1α function in muscle in Huntingtons disease. Hum. Mol. Genet., 2009, 18(16), 3048-3065. doi: 10.1093/hmg/ddp243 PMID: 19460884
- Castro, C.C.; Pagnussat, A.S.; Moura, N.; da Cunha, M.J.; Machado, F.R.; Wyse, A.T.S.; Netto, C.A. Coumestrol treatment prevents Na +, K + -ATPase inhibition and affords histological neuroprotection to male rats receiving cerebral global ischemia. Neurol. Res., 2014, 36(3), 198-206. doi: 10.1179/1743132813Y.0000000286 PMID: 24512013
- Wang, J.; Pantopoulos, K. Regulation of cellular iron metabolism. Biochem. J., 2011, 434(3), 365-381. doi: 10.1042/BJ20101825 PMID: 21348856
- Busl, K.M.; Greer, D.M. Hypoxic-ischemic brain injury: Pathophysiology, neuropathology and mechanisms. NeuroRehabilitation, 2010, 26(1), 5-13. doi: 10.3233/NRE-2010-0531 PMID: 20130351
- Orrenius, S.; McCabe, M.J., Jr; Nicotera, P. Ca2+-dependent mechanisms of cytotoxicity and programmed cell death. Toxicol. Lett., 1992, 64-65(Spec No), 357-364. doi: 10.1016/0378-4274(92)90208-2 PMID: 1335178
- Chand, S.P.; Marwaha, R.; Bender, R.M. Anxiety (Nursing). In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2023. PMID: 33760520
- Stein, M.B.; Steckler, T. Behavioral Neurobiology of Anxiety and Its treatment. Springer: Berlin, Heidelberg, 2010. doi: 10.1007/978-3-642-02912-7
- Jongen-Rêlo, A.L.; Amaral, D.G. Evidence for a GABAergic projection from the central nucleus of the amygdala to the brainstem of the macaque monkey: a combined retrograde tracing and in situ hybridization study. Eur. J. Neurosci., 1998, 10(9), 2924-2933. doi: 10.1111/j.1460-9568.1998.00299.x PMID: 9758162
- Lim, W.; Jeong, M.; Bazer, F.W.; Song, G. Coumestrol inhibits proliferation and migration of prostate cancer cells by regulating AKT, ERK1/2, and JNK MAPK cell signaling cascades. J. Cell. Physiol., 2017, 232(4), 862-871. doi: 10.1002/jcp.25494 PMID: 27431052
- Cooke, P.S.; Nanjappa, M.K.; Ko, C.; Prins, G.S.; Hess, R.A. Estrogens in male physiology. Physiol. Rev., 2017, 97(3), 995-1043. doi: 10.1152/physrev.00018.2016 PMID: 28539434
- Durmaz, L.; Erturk, A.; Akyüz, M.; Polat Kose, L.; Uc, E.M.; Bingol, Z.; Saglamtas, R.; Alwasel, S.; Gulcin, İ. Screening of carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzyme inhibition effects and antioxidant activity of coumestrol. Molecules, 2022, 27(10), 3091. doi: 10.3390/molecules27103091 PMID: 35630566
- Gandhi, S.; Abramov, A.Y.; Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. Front. Aging Neurosci., 2012, 24, 83-85.
- Zuo, L.; Zhou, T.; Pannell, B.K.; Ziegler, A.C.; Best, T.M. Biological and physiological role of reactive oxygen species - the good, the bad and the ugly. Acta Physiol., 2015, 214(3), 329-348. doi: 10.1111/apha.12515 PMID: 25912260
- Montero, G.; Arriagada, F.; Günther, G.; Bollo, S.; Mura, F.; Berríos, E.; Morales, J. Phytoestrogen coumestrol: Antioxidant capacity and its loading in albumin nanoparticles. Int. J. Pharm., 2019, 562, 86-95. doi: 10.1016/j.ijpharm.2019.03.029 PMID: 30885651
- Ahmad, A.; Ramasamy, K.; Majeed, A.B.A.; Mani, V. Enhancement of β-secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones. Pharm. Biol., 2015, 53(5), 758-766. doi: 10.3109/13880209.2014.942791 PMID: 25756802
- Liu, M.H.; Tsuang, F.Y.; Sheu, S.Y.; Sun, J.S.; Shih, C.M. The protective effects of coumestrol against amyloid-β peptide- and lipopolysaccharide-induced toxicity on mice astrocytes. Neurol. Res., 2011, 33(6), 663-672. doi: 10.1179/1743132810Y.0000000029 PMID: 21708076
- Kim, D.C. Investigation of coumestrol as a potent IKK-beta inhibitor using microglia cell system and computer aided drug design technology. Int. J. Eng. Res. Technol., 2018, 11(1), 41-50.
- You, J.S.; Cho, I.A.; Kang, K.R.; Oh, J.S.; Yu, S.J.; Lee, G.J.; Seo, Y.S.; Kim, S.G.; Kim, C.S.; Kim, D.K.; Im, H.J.; Kim, J.S. Coumestrol counteracts interleukin-1β-induced catabolic effects by suppressing inflammation in primary rat chondrocytes. Inflammation, 2017, 40(1), 79-91. doi: 10.1007/s10753-016-0455-7 PMID: 27709316
- Juárez-Chairez, M.F.; Meza-Márquez, O.G.; Márquez-Flores, Y.K.; Jiménez-Martínez, C. Potential anti-inflammatory effects of legumes: A review. Br. J. Nutr., 2022, 128(11), 2158-2169. doi: 10.1017/S0007114522000137 PMID: 35042569
- Gào, X.; Schöttker, B. Reduction-oxidation pathways involved in cancer development: A systematic review of literature reviews. Oncotarget, 2017, 8(31), 51888-51906. doi: 10.18632/oncotarget.17128 PMID: 28881698
- Qin, M.; Zhang, J.; Xu, C.; Peng, P.; Tan, L.; Liu, S.; Huang, J. Knockdown of NIK and IKKβ-binding protein (NIBP) reduces colorectal cancer metastasis through down-regulation of the canonical NF-κBsignaling pathway and suppression of MAPK signaling mediated through ERK and JNK. PLoS One, 2017, 12(1), e0170595. doi: 10.1371/journal.pone.0170595 PMID: 28125661
- Sharma, V.K.; Mehta, V.; Singh, T.G. Alzheimers disorder: Epigenetic connection and associated risk factors. Curr. Neuropharmacol., 2020, 18(8), 740-753. doi: 10.2174/1570159X18666200128125641 PMID: 31989902
- Sharma, V.K.; Singh, T.G. CREB: A multifaceted target for Alzheimers disease. Curr. Alzheimer Res., 2021, 17(14), 1280-1293. doi: 10.2174/1567205018666210218152253 PMID: 33602089
- Kwak, Y.D.; Wang, R.; Li, J.J.; Zhang, Y.W.; Xu, H.; Liao, F.F. Differential regulation of BACE1 expression by oxidative and nitrosative signals. Mol. Neurodegener., 2011, 6(1), 17. doi: 10.1186/1750-1326-6-17 PMID: 21371311
- Mangialasche, F.; Polidori, M.C.; Monastero, R.; Ercolani, S.; Camarda, C.; Cecchetti, R.; Mecocci, P. Biomarkers of oxidative and nitrosative damage in Alzheimers disease and mild cognitive impairment. Ageing Res. Rev., 2009, 8(4), 285-305. doi: 10.1016/j.arr.2009.04.002 PMID: 19376275
- Koirala, P.; Seong, S.; Jung, H.; Choi, J. comparative evaluation of the antioxidant and anti-Alzheimers disease potential of coumestrol and puerarol isolated from Pueraria lobata using molecular modeling studies. Molecules, 2018, 23(4), 785. doi: 10.3390/molecules23040785 PMID: 29597336
- Moreira, A.C.; Silva, A.M.; Branco, A.F.; Baldeiras, I.; Pereira, G.C.; Seiça, R.; Santos, M.S.; Sardão, V.A. Phytoestrogen coumestrol improves mitochondrial activity and decreases oxidative stress in the brain of ovariectomized Wistar-Han rats. J. Funct. Foods, 2017, 34, 329-339. doi: 10.1016/j.jff.2017.05.002
- Belcher, S.M.; Zsarnovszky, A. Estrogenic actions in the brain: Estrogen, phytoestrogens, and rapid intracellular signaling mechanisms. J. Pharmacol. Exp. Ther., 2001, 299(2), 408-414. PMID: 11602649
- Merrill, J.E.; Ignarro, L.J.; Sherman, M.P.; Melinek, J.; Lane, T.E. Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J. Immunol., 1993, 151(4), 2132-2141. doi: 10.4049/jimmunol.151.4.2132 PMID: 8102159
- Chao, C.C.; Hu, S.; Molitor, T.W.; Shaskan, E.G.; Peterson, P.K. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J. Immunol., 1992, 149(8), 2736-2741. doi: 10.4049/jimmunol.149.8.2736 PMID: 1383325
- Kamijo, R.; Harada, H.; Matsuyama, T.; Bosland, M.; Gerecitano, J.; Shapiro, D.; Le, J.; Koh, S.I.; Kimura, T.; Green, S.J.; Mak, T.W.; Taniguchi, T.; Vilček, J. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science, 1994, 263(5153), 1612-1615. doi: 10.1126/science.7510419 PMID: 7510419
- Lennikov, A.; Mirabelli, P.; Mukwaya, A.; Schaupper, M.; Thangavelu, M.; Lachota, M.; Ali, Z.; Jensen, L.; Lagali, N. Selective IKK2 inhibitor IMD0354 disrupts NF-κB signaling to suppress corneal inflammation and angiogenesis. Angiogenesis, 2018, 21(2), 267-285. doi: 10.1007/s10456-018-9594-9 PMID: 29332242
- Wisniewski, D.; LoGrasso, P.; Calaycay, J.; Marcy, A. Assay for IkappaB kinases using an in vivo biotinylated IkappaB protein substrate. Anal. Biochem., 1999, 274(2), 220-228. doi: 10.1006/abio.1999.4287 PMID: 10527519
- Ping, H.; Yang, F.; Wang, M.; Niu, Y.; Xing, N. IKK inhibitor suppresses epithelial-mesenchymal transition and induces cell death in prostate cancer. Oncol. Rep., 2016, 36(3), 1658-1664. doi: 10.3892/or.2016.4915 PMID: 27432067
- Bahar, E.; Kim, J.Y.; Yoon, H. Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-κB and HO-1/Nrf2 pathways. Int. J. Mol. Sci., 2017, 18(9), 1989. doi: 10.3390/ijms18091989 PMID: 28914791
- Narayanan, K.B.; Park, H.H. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis, 2015, 20(2), 196-209. doi: 10.1007/s10495-014-1073-1 PMID: 25563856
- Morale, M.C.; Serra, P.A.; LEpiscopo, F.; Tirolo, C.; Caniglia, S.; Testa, N.; Gennuso, F.; Giaquinta, G.; Rocchitta, G.; Desole, M.S.; Miele, E.; Marchetti, B. Estrogen, neuroinflammation and neuroprotection in Parkinsons disease: Glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience, 2006, 138(3), 869-878. doi: 10.1016/j.neuroscience.2005.07.060 PMID: 16337092
- Eriksson, G.; Zetterström, M.; Cortes Toro, V.; Bartfai, T.; Iverfeldt, K. Hypersensitive cytokine response to beta-amyloid 25-35 in astroglial cells from IL-1 receptor type I-deficient mice. Int. J. Mol. Med., 1998, 1(1), 201-206. doi: 10.3892/ijmm.1.1.201 PMID: 9852220
- GaoTaslimi, P.; Aslan, H.E.; Demir, Y.; Oztaskin, N.; Maraş, A.; Gulçin, İ.; Goksu, S. Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Int. J. Biol. Macromol., 2018, 119, 857-863.
- Schedin-Weiss, S.; Inoue, M.; Hromadkova, L.; Teranishi, Y.; Yamamoto, N.G.; Wiehager, B.; Bogdanovic, N.; Winblad, B.; Sandebring-Matton, A.; Frykman, S.; Tjernberg, L.O. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers Res. Ther., 2017, 9(1), 57. doi: 10.1186/s13195-017-0279-1 PMID: 28764767
- Seong, S.H.; Kim, B.R.; Cho, M.L.; Kim, T.S.; Im, S.; Han, S.; Jeong, J.W.; Jung, H.A.; Choi, J.S. Phytoestrogen coumestrol selectively inhibits monoamine oxidase-a and amyloid β self-aggregation. Nutrients, 2022, 14(18), 3822. doi: 10.3390/nu14183822 PMID: 36145197
- Olanow, C.W.; Tatton, W.G. Etiology and pathogenesis of Parkinsons disease. Annu. Rev. Neurosci., 1999, 22(1), 123-144. doi: 10.1146/annurev.neuro.22.1.123 PMID: 10202534
- Zhu, J.; Chu, C.T. Mitochondrial dysfunction in Parkinsons disease. J. Alzheimers Dis., 2010, 20(S2), S325-S334. doi: 10.3233/JAD-2010-100363 PMID: 20442495
- Stefanis, L. α-synuclein in Parkinsons disease. Cold Spring Harb. Perspect. Med., 2012, 2(2), a009399. doi: 10.1101/cshperspect.a009399 PMID: 22355802
- Hirsch, E.C.; Hunot, S. Neuroinflammation in Parkinsons disease: A target for neuroprotection? Lancet Neurol., 2009, 8(4), 382-397. doi: 10.1016/S1474-4422(09)70062-6 PMID: 19296921
- Liu, B.; Gao, H.M.; Wang, J.Y.; Jeohn, G.H.; Cooper, C.L.; Hong, J.S. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann. N. Y. Acad. Sci., 2002, 962(1), 318-331. doi: 10.1111/j.1749-6632.2002.tb04077.x PMID: 12076984
- Kim, I.S. Current perspectives on the beneficial effects of soybean isoflavones and their metabolites for humans. Antioxidants, 2021, 10(7), 1064. doi: 10.3390/antiox10071064 PMID: 34209224
- Chen, H.Q.; Wang, X.J.; Jin, Z.Y.; Xu, X.M.; Zhao, J.W.; Xie, Z.J. Protective effect of isoflavones from Trifolium pratense on dopaminergic neurons. Neurosci. Res., 2008, 62(2), 123-130. doi: 10.1016/j.neures.2008.07.001 PMID: 18675857
- Lubbers, L.S.; Zafian, P.T.; Gautreaux, C.; Gordon, M.; Alves, S.E.; Correa, L.; Lorrain, D.S.; Hickey, G.J.; Luine, V. Estrogen receptor (ER) subtype agonists alter monoamine levels in the female rat brain. J. Steroid Biochem. Mol. Biol., 2010, 122(5), 310-317. doi: 10.1016/j.jsbmb.2010.08.005 PMID: 20800684
- Lee, D.; Yoon, S.; Lee, J.; Lim, D.; Yoon, C.; Im, H.; Lee, K. Amyloid fibril formation of α-synuclein is modulated via the estrogen receptor ligand binding domain of estrogen receptor α bound with tamoxifen-based small molecules. Bull. Korean Chem. Soc., 2020, 41(3), 274-278. doi: 10.1002/bkcs.11956
- Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinsons disease. J. Parkinsons Dis., 2013, 3(4), 461-491. doi: 10.3233/JPD-130230 PMID: 24252804
- Gorzkiewicz, J.; Bartosz, G.; Sadowska-Bartosz, I. The potential effects of phytoestrogens: The role in neuroprotection. Molecules, 2021, 26(10), 2954. doi: 10.3390/molecules26102954 PMID: 34065647
- Chen, C.M. Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntingtons disease. Chang Gung Med. J., 2011, 34(2), 135-152. PMID: 21539755
- Anastacio, J.B.R.; Sanches, E.F.; Nicola, F.; Odorcyk, F.; Fabres, R.B.; Netto, C.A. Phytoestrogen coumestrol attenuates brain mitochondrial dysfunction and long-term cognitive deficits following neonatal hypoxiaischemia. Int. J. Dev. Neurosci., 2019, 79(1), 86-95. doi: 10.1016/j.ijdevneu.2019.10.009 PMID: 31693927
- Kumar, A.; Ratan, R.R. Oxidative stress and Huntingtons disease: The good, the bad, and the ugly. J. Huntingtons Dis., 2016, 5(3), 217-237. doi: 10.3233/JHD-160205 PMID: 27662334
- Pavese, N.; Gerhard, A.; Tai, Y.F.; Ho, A.K.; Turkheimer, F.; Barker, R.A.; Brooks, D.J.; Piccini, P. Microglial activation correlates with severity in Huntington disease: A clinical and PET study. Neurology, 2006, 66(11), 1638-1643. doi: 10.1212/01.wnl.0000222734.56412.17 PMID: 16769933
- Politis, M.; Pavese, N.; Tai, Y.F.; Kiferle, L.; Mason, S.L.; Brooks, D.J.; Tabrizi, S.J.; Barker, R.A.; Piccini, P. Microglial activation in regions related to cognitive function predicts disease onset in Huntingtons disease: A multimodal imaging study. Hum. Brain Mapp., 2011, 32(2), 258-270. doi: 10.1002/hbm.21008 PMID: 21229614
- Björkqvist, M.; Wild, E.J.; Thiele, J.; Silvestroni, A.; Andre, R.; Lahiri, N.; Raibon, E.; Lee, R.V.; Benn, C.L.; Soulet, D.; Magnusson, A.; Woodman, B.; Landles, C.; Pouladi, M.A.; Hayden, M.R.; Khalili-Shirazi, A.; Lowdell, M.W.; Brundin, P.; Bates, G.P.; Leavitt, B.R.; Möller, T.; Tabrizi, S.J. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntingtons disease. J. Exp. Med., 2008, 205(8), 1869-1877. doi: 10.1084/jem.20080178 PMID: 18625748
- Hsiao, H.Y.; Chen, Y.C.; Chen, H.M.; Tu, P.H.; Chern, Y. A critical role of astrocyte-mediated nuclear factor-κB-dependent inflammation in Huntingtons disease. Hum. Mol. Genet., 2013, 22(9), 1826-1842. doi: 10.1093/hmg/ddt036 PMID: 23372043
- Dhakal, A.; Bobrin, B.D. Cognitive Deficits. StatPearls; StatPearls Publishing, 2021.
- Belanoff, J.K.; Gross, K.; Yager, A.; Schatzberg, A.F. Corticosteroids and cognition. J. Psychiatr. Res., 2001, 35(3), 127-145. doi: 10.1016/S0022-3956(01)00018-8 PMID: 11461709
- Kalachnik, J.E.; Hanzel, T.E.; Sevenich, R.; Harder, S.R. Benzodiazepine behavioral side effects: Review and implications for individuals with mental retardation. Am. J. Ment. Retard., 2002, 107(5), 376-410. doi: 10.1352/0895-8017(2002)1072.0.CO;2 PMID: 12186578
- Fitzpatrick, J.L.; Mize, A.L.; Wade, C.B.; Harris, J.A.; Shapiro, R.A.; Dorsa, D.M. Estrogen-mediated neuroprotection against β-amyloid toxicity requires expression of estrogen receptor α or β and activation of the MAPK pathway. J. Neurochem., 2002, 82(3), 674-682. doi: 10.1046/j.1471-4159.2002.01000.x PMID: 12153491
- Aguirre, C.; Jayaraman, A.; Pike, C.; Baudry, M. Progesterone inhibits estrogen-mediated neuroprotection against excitotoxicity by down-regulating estrogen receptor-β. J. Neurochem., 2010, 115(5), 1277-1287. doi: 10.1111/j.1471-4159.2010.07038.x PMID: 20977477
- Moyano, P.; Sanjuan, J.; García, J.M.; Anadon, M.J.; Lobo, M.; Pelayo, A.; García, J.; Frejo, M.T.; del Pino, J. Primary hippocampal estrogenic dysfunction induces synaptic proteins alteration and neuronal cell death after single and repeated paraquat exposure. Food Chem. Toxicol., 2020, 136, 110961. doi: 10.1016/j.fct.2019.110961 PMID: 31715309
- Iwasaki, Y.; Hosoya, T.; Takebayashi, H.; Ogawa, Y.; Hotta, Y.; Ikenaka, K. The potential to induce glial differentiation is conserved between Drosophila and mammalian glial cells missing genes. Development, 2003, 130(24), 6027-6035.
- Fekri, K.; Mahmoudi, J.; Sadigh-Eteghad, S.; Farajdokht, F.; Mohajjel Nayebi, A. Coumestrol alleviates oxidative stress, apoptosis and cognitive impairments through hippocampal estrogen receptor-beta in male mouse model of chronic restraint stress. Ulum-i Daruyi, 2021, 28(2), 260-274. doi: 10.34172/PS.2021.44
- Linford, N.J.; Dorsa, D.M. 17β-Estradiol and the phytoestrogen genistein attenuate neuronal apoptosis induced by the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin. Steroids, 2002, 67(13-14), 1029-1040. doi: 10.1016/S0039-128X(02)00062-4 PMID: 12441188
- Zhao, P.; Yue-wei LEE, D.; Ma, Z.; Huang, L.; Sun, L.; Li, Y.; Chen, J.; Niu, J. The antioxidant effect of carnosol in bovine aortic endothelial cells is mainly mediated via estrogen receptor α pathway. Biol. Pharm. Bull., 2012, 35(11), 1947-1955. doi: 10.1248/bpb.b12-00325 PMID: 22971524
- Angelova, P.R.; Abramov, A.Y. Role of mitochondrial ROS in the brain: From physiology to neurodegeneration. FEBS Lett., 2018, 592(5), 692-702. doi: 10.1002/1873-3468.12964 PMID: 29292494
- Bebbington, P.; Hurry, J.; Tennant, C.; Sturt, E.; Wing, J.K. Epidemiology of mental disorders in Camberwell. Psychol. Med., 1981, 11(3), 561-579. doi: 10.1017/S0033291700052879 PMID: 6973770
- Jenkins, R. Sex differences in depression. Br. J. Hosp. Med., 1987, 38(5), 485-486. PMID: 3690086
- Walf, A.A.; Frye, C.A. A review and update of mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology, 2006, 31(6), 1097-1111. doi: 10.1038/sj.npp.1301067 PMID: 16554740
- Walf, A.A.; Koonce, C.J.; Frye, C.A. Estradiol or diarylpropionitrile decrease anxiety-like behavior of wildtype, but not estrogen receptor beta knockout, mice. Behav. Neurosci., 2008, 122(5), 974-981. doi: 10.1037/a0012749 PMID: 18823154
- Fekri, K.; Mohajjel Nayebi, A.; Mahmoudi, J.; Sadigh-Eteghad, S. The novel pharmacological approaches to coumestrol: focusing on the psychiatric and neurological benefits and the newly identified receptor interactions. Ulum-i Daruyi, 2023, 29(2), 135-143. doi: 10.34172/PS.2022.22
- Nitatori, T.; Sato, N.; Waguri, S.; Karasawa, Y.; Araki, H.; Shibanai, K.; Kominami, E.; Uchiyama, Y. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J. Neurosci., 1995, 15(2), 1001-1011. doi: 10.1523/JNEUROSCI.15-02-01001.1995 PMID: 7869078
- de Souza Wyse, A.T.; Streck, E.L.; Worm, P.; Wajner, A.; Ritter, F.; Netto, C.A. Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem. Res., 2000, 25(7), 971-975. doi: 10.1023/A:1007504525301 PMID: 10959493
- Blomgren, K.; Hagberg, H. Free radicals, mitochondria, and hypoxiaischemia in the developing brain. Free Radic. Biol. Med., 2006, 40(3), 388-397. doi: 10.1016/j.freeradbiomed.2005.08.040 PMID: 16443153
- Silachev, D.; Plotnikov, E.; Pevzner, I.; Zorova, L.; Balakireva, A.; Gulyaev, M.; Pirogov, Y.; Skulachev, V.; Zorov, D. Neuroprotective effects of mitochondria-targeted plastoquinone in a rat model of neonatal hypoxicischemic brain injury. Molecules, 2018, 23(8), 1871. doi: 10.3390/molecules23081871 PMID: 30060443
- Canal Castro, C.; Pagnussat, A.S.; Orlandi, L.; Worm, P.; Moura, N.; Etgen, A.M.; Alexandre Netto, C. Coumestrol has neuroprotective effects before and after global cerebral ischemia in female rats. Brain Res., 2012, 1474, 82-90. doi: 10.1016/j.brainres.2012.07.025 PMID: 22824334
- Castro, C. C.; de Souza, P.A.; Munhoz, C. D. Coumestrol pre-treatment improves spatial learning and memory deficits following transient cerebral ischemia recruiting hippocampal GluR2 AMPA receptors. Hippocampus, 2022, 32(6), 413-418.
- Sharma, V.; Singh, T.; Garg, N.; Dhiman, S.; Gupta, S.; Rahman, M.; Najda, A.; Walasek-Janusz, M.; Kamel, M.; Albadrani, G.; Akhtar, M.; Saleem, A.; Altyar, A.; Abdel-Daim, M. Dysbiosis and Alzheimers Disease: A role for chronic stress? Biomolecules, 2021, 11(5), 678. doi: 10.3390/biom11050678 PMID: 33946488
- Vishwas, S.; Gulati, M.; Kapoor, B.; Gupta, S.; Singh, S.K.; Awasthi, A.; Khan, A.; Goyal, A.; Bansal, A.; Baishnab, S.; Singh, T.G.; Arora, S.; Porwal, O.; Kumar, A.; Kumar, V. Expanding the arsenal against Huntingtons disease-herbal drugs and their nanoformulations. Curr. Neuropharmacol., 2021, 19(7), 957-989. doi: 10.2174/1570159X18666201109090824 PMID: 33167841
- Gupta, S.; Khan, A.; Vishwas, S.; Gulati, M.; Gurjeet Singh, T.; Dua, K.; Kumar Singh, S.; Najda, A.; Sayed, A.A.; Almeer, R.; Abdel-Daim, M.M. Demethyleneberberine: A possible treatment for Huntingtons disease. Med. Hypotheses, 2021, 153, 110639. doi: 10.1016/j.mehy.2021.110639 PMID: 34229236
- Saklani, P.; Khan, H.; Singh, T.G.; Gupta, S.; Grewal, A.K. Demethyleneberberine, a potential therapeutic agent in neurodegenerative disorders: A proposed mechanistic insight. Mol. Biol. Rep., 2022, 49(10), 10101-10113. doi: 10.1007/s11033-022-07594-9 PMID: 35657450
Supplementary files
