Evidence from Machine Learning, Diagnostic Hub Genes in Sepsis and Diagnostic Models based on Xgboost Models, Novel Molecular Models for the Diagnosis of Sepsis
- Authors: Yu Y.1, Li J.2, Li J.1, Zen X.1, Fu Q.3
-
Affiliations:
- Department of Geriatrics, Tianjin Nankai Hospital
- Department of Cardiology, Tianjin Nankai Hospital
- Department of Critical Medicine, Tianjin Fourth Central Hospital
- Issue: Vol 31, No 41 (2024)
- Pages: 6889-6901
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645146
- DOI: https://doi.org/10.2174/0109298673273009231017061448
- ID: 645146
Cite item
Full Text
Abstract
Background:Systemic multi-organ dysfunction resulting from dysregulated immune responses in the host triggered by microbial infection or other factors is a major cause of death in sepsis, and secretory pathways play an important role in it.
Methods:GSE57065, GSE65682, GSE145227, and GSE54514 from Gene Expression Omnibus (GEO) were derived for this study. Secretory pathways single sample gene set enrichment analysis (ssGSEA) scores in sepsis and normal samples were exposed. Gene modules associated with secretory pathways were selected by weighted gene coexpression network analysis (WGCNA) for Protein-Protein Interaction Networks (PPI) assessment, and crossover genes in both were evaluated by eXtreme Gradient Boosting (XGBoost) model in feature selection to identify hub genes in sepsis. In addition, we explored the immune cells and signaling pathways regulated by hub genes.
Results:Remarkable dysregulation of secretory pathways was demonstrated in sepsis. The secretory pathways-associated gene modules were intimately involved in cytokine and immune responses in infection. Four crossover genes (CD163, FCER1G, C3AR1, ARG1) were present in WGCNA and PPI, and training in the XGBoost model revealed the best diagnostic performance of these 4 genes, meaning that these genes were the hub genes for sepsis. The 4-hub genes showed a significant negative correlation with T cell activity and a significant positive correlation with inflammatory immune cells. In addition, we found that the 4-hub genes markedly positively regulated INFLAMMATORY RESPONSE, IL6 JAK STAT3 SIGNALING.
Conclusion:Based on WGCNA, PPI, and XGBoost models, we identified hub genes that play an important regulatory role in sepsis. We also developed novel molecular models for the diagnosis of sepsis.
Keywords
About the authors
Yangzi Yu
Department of Geriatrics, Tianjin Nankai Hospital
Email: info@benthamscience.net
Jing Li
Department of Cardiology, Tianjin Nankai Hospital
Email: info@benthamscience.net
Jiarui Li
Department of Geriatrics, Tianjin Nankai Hospital
Email: info@benthamscience.net
Xianming Zen
Department of Geriatrics, Tianjin Nankai Hospital
Email: info@benthamscience.net
Qiang Fu
Department of Critical Medicine, Tianjin Fourth Central Hospital
Author for correspondence.
Email: info@benthamscience.net
References
- Farrah, K.; McIntyre, L.; Doig, C.J.; Talarico, R.; Taljaard, M.; Krahn, M.; Fergusson, D.; Forster, A.J.; Coyle, D.; Thavorn, K. Sepsis-associated mortality, resource use, and healthcare costs: A propensity-matched cohort study. Crit. Care Med., 2021, 49(2), 215-227. doi: 10.1097/CCM.0000000000004777 PMID: 33372748
- Arora, J.; Mendelson, A.A.; Fox-Robichaud, A. Sepsis: Network pathophysiology and implications for early diagnosis. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2023, 324(5), R613-R624. doi: 10.1152/ajpregu.00003.2023 PMID: 36878489
- Dong, J.; Chen, R.; Song, X.; Guo, Z.; Sun, W. Quality of life and mortality in older adults with sepsis after one-year follow up: A prospective cohort study demonstrating the significant impact of frailty. Heart Lung, 2023, 60, 74-80. doi: 10.1016/j.hrtlng.2023.03.002 PMID: 36931009
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; Hotchkiss, R.S.; Levy, M.M.; Marshall, J.C.; Martin, G.S.; Opal, S.M.; Rubenfeld, G.D.; van der Poll, T.; Vincent, J.L.; Angus, D.C. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 2016, 315(8), 801-810. doi: 10.1001/jama.2016.0287 PMID: 26903338
- Leligdowicz, A.; Matthay, M.A. Heterogeneity in sepsis: New biological evidence with clinical applications. Crit. Care, 2019, 23(1), 80. doi: 10.1186/s13054-019-2372-2 PMID: 30850013
- Póvoa, P.; Coelho, L.; Dal-Pizzol, F.; Ferrer, R.; Huttner, A.; Conway Morris, A.; Nobre, V.; Ramirez, P.; Rouze, A.; Salluh, J.; Singer, M.; Sweeney, D.A.; Torres, A.; Waterer, G.; Kalil, A.C. How to use biomarkers of infection or sepsis at the bedside: Guide to clinicians. Intensive Care Med., 2023, 49(2), 142-153. doi: 10.1007/s00134-022-06956-y PMID: 36592205
- Torres, M.; Hussain, H.; Dickson, A.J. The secretory pathway the key for unlocking the potential of Chinese hamster ovary cell factories for manufacturing therapeutic proteins. Crit. Rev. Biotechnol., 2023, 43(4), 628-645. doi: 10.1080/07388551.2022.2047004 PMID: 35465810
- Jiao, Y.; Zhang, T.; Zhang, C.; Ji, H.; Tong, X.; Xia, R.; Wang, W.; Ma, Z.; Shi, X. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit. Care, 2021, 25(1), 356. doi: 10.1186/s13054-021-03775-3 PMID: 34641966
- Rodriguez, A.E.; Ducker, G.S.; Billingham, L.K.; Martinez, C.A.; Mainolfi, N.; Suri, V.; Friedman, A.; Manfredi, M.G.; Weinberg, S.E.; Rabinowitz, J.D.; Chandel, N.S. Serine metabolism supports macrophage IL-1β production. Cell Metab., 2019, 29(4), 1003-1011.e4. doi: 10.1016/j.cmet.2019.01.014 PMID: 30773464
- Huang, M.; Cai, S.; Su, J. The pathogenesis of sepsis and potential therapeutic targets. Int. J. Mol. Sci., 2019, 20(21), 5376. doi: 10.3390/ijms20215376 PMID: 31671729
- Shen, W.; Song, Z.; Zhong, X.; Huang, M.; Shen, D.; Gao, P.; Qian, X.; Wang, M.; He, X.; Wang, T.; Li, S.; Song, X. Sangerbox: A comprehensive, interaction‐friendly clinical bioinformatics analysis platform. iMeta, 2022, 1(3), e36. doi: 10.1002/imt2.36
- Barbie, D.A.; Tamayo, P.; Boehm, J.S.; Kim, S.Y.; Moody, S.E.; Dunn, I.F.; Schinzel, A.C.; Sandy, P.; Meylan, E.; Scholl, C.; Fröhling, S.; Chan, E.M.; Sos, M.L.; Michel, K.; Mermel, C.; Silver, S.J.; Weir, B.A.; Reiling, J.H.; Sheng, Q.; Gupta, P.B.; Wadlow, R.C.; Le, H.; Hoersch, S.; Wittner, B.S.; Ramaswamy, S.; Livingston, D.M.; Sabatini, D.M.; Meyerson, M.; Thomas, R.K.; Lander, E.S.; Mesirov, J.P.; Root, D.E.; Gilliland, D.G.; Jacks, T.; Hahn, W.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462(7269), 108-112. doi: 10.1038/nature08460 PMID: 19847166
- Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics, 2013, 14(1), 7. doi: 10.1186/1471-2105-14-7 PMID: 23323831
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47. doi: 10.1093/nar/gkv007 PMID: 25605792
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res., 2019, 47(W1), W199-W205. doi: 10.1093/nar/gkz401 PMID: 31114916
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9(1), 559. doi: 10.1186/1471-2105-9-559 PMID: 19114008
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable proteinprotein networks, and functional characterization of user-uploaded gene/measrement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612. doi: 10.1093/nar/gkaa1074 PMID: 33237311
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. doi: 10.1101/gr.1239303 PMID: 14597658
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V. Bayesian additive main effects and multiplicative interaction models using tensor regression for multi-environmental trials. 2019.
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785-794. doi: 10.1145/2939672.2939785
- Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612. doi: 10.1038/ncomms3612 PMID: 24113773
- Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol., 2018, 1711, 243-259. doi: 10.1007/978-1-4939-7493-1_12 PMID: 29344893
- Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautès-Fridman, C.; Fridman, W.H.; de Reyniès, A. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol., 2016, 17(1), 218. doi: 10.1186/s13059-016-1070-5 PMID: 27765066
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.L. Biomarkers of sepsis: Time for a reappraisal. Crit. Care, 2020, 24(1), 287. doi: 10.1186/s13054-020-02993-5 PMID: 32503670
- Wang, D.; Yu, S.; Zhang, Y.; Huang, L.; Luo, R.; Tang, Y.; Zhao, K.; Lu, B. Caspse-11-GSDMD pathway is required for serum ferritin secretion in sepsis. Clin. Immunol., 2019, 205, 148-152. doi: 10.1016/j.clim.2018.11.005 PMID: 30731209
- Li, H.; Qiu, D.; Yang, H.; Yuan, Y.; Wu, L.; Chu, L.; Zhan, B.; Wang, X.; Sun, Y.; Xu, W.; Yang, X. Therapeutic efficacy of excretory-secretory products of Trichinella spiralis adult worms on sepsis-induced acute lung injury in a mouse model. Front. Cell. Infect. Microbiol., 2021, 11, 653843. doi: 10.3389/fcimb.2021.653843 PMID: 33842398
- Karakike, E.; Giamarellos-Bourboulis, E.J. Macrophage activation-like syndrome: A distinct entity leading to early death in sepsis. Front. Immunol., 2019, 10, 55. doi: 10.3389/fimmu.2019.00055 PMID: 30766533
- Napier, B.A.; Brubaker, S.W.; Sweeney, T.E.; Monette, P.; Rothmeier, G.H.; Gertsvolf, N.A.; Puschnik, A.; Carette, J.E.; Khatri, P.; Monack, D.M. Complement pathway amplifies caspase-11dependent cell death and endotoxin-induced sepsis severity. J. Exp. Med., 2016, 213(11), 2365-2382. doi: 10.1084/jem.20160027 PMID: 27697835
- Zhang, J.X.; Xu, W.H.; Xing, X.H.; Chen, L.L.; Zhao, Q.J.; Wang, Y. ARG1 as a promising biomarker for sepsis diagnosis and prognosis: Evidence from WGCNA and PPI network. Hereditas, 2022, 159(1), 27. doi: 10.1186/s41065-022-00240-1 PMID: 35739592
- Podgórska, D.; Cieśla, M.; Kolarz, B. FCER1G gene hypomethylation in patients with rheumatoid arthritis. J. Clin. Med., 2022, 11(16), 4664. doi: 10.3390/jcm11164664 PMID: 36012903
- Mikhaylenko, D.S.; Nemtsova, M.V.; Bure, I.V.; Kuznetsova, E.B.; Alekseeva, E.A.; Tarasov, V.V.; Lukashev, A.N.; Beloukhova, M.I.; Deviatkin, A.A.; Zamyatnin, A.A., Jr Genetic polymorphisms associated with rheumatoid arthritis development and antirheumatic therapy response. Int. J. Mol. Sci., 2020, 21(14), 4911. doi: 10.3390/ijms21144911 PMID: 32664585
Supplementary files
