Single-cell RNA Sequencing Analysis Reveals the Role of Cancerassociated Fibroblasts in Skin Melanoma
- Authors: Lian W.1, Xiang P.2, Ye C.3, Xiong J.4
-
Affiliations:
- Department of Oral and Maxillofacial Surgery,Guangzhou Women and Childrens Medical Center, Guangzhou Medical University
- Nephrology Department,Beijing Ditan Hospital, Capital Medical University
- Department of Burns and Plastic Surgery, Zhejiang Quhua Hospital
- Department of Obstetrics and Gynaecology,Guangzhou Women and Childrens Medical Center, Guangzhou Medical University
- Issue: Vol 31, No 42 (2024)
- Pages: 7015-7029
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645154
- DOI: https://doi.org/10.2174/0109298673282799231211113347
- ID: 645154
Cite item
Full Text
Abstract
Aims:Mechanism of fibroblasts in skin melanoma (SKME) revealed by single-cell RNA sequencing data.
Background:SKME is responsible for more than 80% of skin-related cancer deaths. Cancer-associated fibroblasts (CAFs) generate inflammatory factors, growth factors and extracellular matrix proteins to facilitate cancer cell growth, metastasis, drug resistance and immune exclusion. However, molecular mechanisms of CAFs in SKME are still lacking.
Objective:Our goal was to reveal the role of CAFs in SKME.
Methods:We downloaded the single-cell RNA sequencing (scRNA-seq) dataset from the Gene Expression Omnibus (GSE215120) database. Then, the Seurat package was applied to analyze the single-cell atlas of SKME data, and cell subsets were annotated with the CellMarker database. The molecular mechanisms of CAFs in SKME were disclosed via differential gene expression and enrichment analysis, Cellchat and SCENIC methods.
Results:Using scRNA-seq data, three SKME cases were used and downscaled and clustered to identify 11 cell subgroups and 5 CAF subsets. The enrichment of highly expressed genes among the 5 CAF subsets suggests that cell migration-inducing hyaluronan-binding protein (CEMIP) + fibroblasts and naked cuticle homolog 1 (NKD1) + fibroblasts were closely associated with epithelial to mesenchymal transition. Cellchat analysis revealed that CAF subpopulations promoted melanocyte proliferation through Jagged1 (JAG1)-Notch homolog 1 (NOTCH1), JAG1-NOTCH3 and migration through pleiotrophin (PTN)-syndecan-3 (SDC3) receptor-ligand pairs. The SCENIC analysis identified that most of the transcription factors in each CAF subpopulation played a certain role in the metastasis of melanoma and were highly expressed in metastatic SKME samples. Specifically, we observed that CEMIP+ fibroblasts and NKD1+ fibroblasts had potential roles in participating in immune therapy resistance. Collectively, we uncovered a single-- cell atlas of SKME and revealed the molecular mechanisms of CAFs in SKME development, providing a base for immune therapy and prognosis assessment.
Conclusion:Our study reveals that 5 CAFs in SKME have a promoting effect on melanocyte proliferation and metastasis. More importantly, CEMIP+ fibroblasts and NKD1+ fibroblasts displayed close connections with immune therapy resistance. These findings help provide a good basis for future immune therapy and prognosis assessment targeting CAFs in SKME.
About the authors
Wenqin Lian
Department of Oral and Maxillofacial Surgery,Guangzhou Women and Childrens Medical Center, Guangzhou Medical University
Email: info@benthamscience.net
Pan Xiang
Nephrology Department,Beijing Ditan Hospital, Capital Medical University
Email: info@benthamscience.net
Chunjiang Ye
Department of Burns and Plastic Surgery, Zhejiang Quhua Hospital
Author for correspondence.
Email: info@benthamscience.net
Jian Xiong
Department of Obstetrics and Gynaecology,Guangzhou Women and Childrens Medical Center, Guangzhou Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Guy, G.P., Jr; Thomas, C.C.; Thompson, T.; Watson, M.; Massetti, G.M.; Richardson, L.C. Vital signs: melanoma incidence and mortality trends and projections - United States, 1982-2030. MMWR Morb. Mortal. Wkly. Rep., 2015, 64(21), 591-596. PMID: 26042651
- Bolick, N.L.; Geller, A.C. Epidemiology of melanoma. Hematol. Oncol. Clin. North Am., 2021, 35(1), 57-72. doi: 10.1016/j.hoc.2020.08.011 PMID: 33759773
- Bozkurt, I.; Yasar, B.; Baran Uslu, M.; Bozdogan, N. A primary sacral melanoma of unknown origin: A case report. Oncologie, 2022, 24(1), 163-171. doi: 10.32604/oncologie.2022.019263
- Costanzo, R.; Parmar, V.; Marrone, S.; Gerardo Iacopino, D.; Federico Nicoletti, G.; Emmanuele Umana, G.; Scalia, G. Differential diagnosis between primary intracranial melanoma and cerebral cavernoma in crohns disease: A case report and literature review. Oncologie, 2022, 24(4), 937-942. doi: 10.32604/oncologie.2022.027155
- Rashid, S.; Shaughnessy, M.; Tsao, H. Melanoma classification and management in the era of molecular medicine. Dermatol. Clin., 2023, 41(1), 49-63. doi: 10.1016/j.det.2022.07.017 PMID: 36410983
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Seguin, N.; Bastholt, L.; Bataille, V.; del Marmol, V.; Dréno, B.; Fargnoli, M.C.; Forsea, A.M.; Grob, J.J.; Hoeller, C.; Kaufmann, R.; Kelleners-Smeets, N.; Lallas, A.; Lebbé, C.; Lytvynenko, B.; Malvehy, J.; Moreno-Ramirez, D.; Nathan, P.; Pellacani, G.; Saiag, P.; Stratigos, A.J.; Van Akkooi, A.C.J.; Vieira, R.; Zalaudek, I.; Lorigan, P. European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment - Update 2022. Eur. J. Cancer, 2022, 170, 256-284. doi: 10.1016/j.ejca.2022.04.018 PMID: 35623961
- Leonardi, G.C.; Falzone, L.; Salemi, R.; Zanghì, A.; Spandidos, D.A.; Mccubrey, J.A.; Candido, S.; Libra, M. Cutaneous melanoma: From pathogenesis to therapy (Review). Int. J. Oncol., 2018, 52(4), 1071-1080. doi: 10.3892/ijo.2018.4287 PMID: 29532857
- Gao, L.; Gui, R.; Zheng, X.; Wang, Y.; Gong, Y.; Hua Wang, T.; Wang, J.; Huang, J.; Liao, X. Topical application of houttuynia cordata thunb ethanol extracts increases tumor infiltrating cd8+ /treg cells ratio and inhibits cutaneous squamous cell carcinoma in vivo. Oncologie, 2022, 24(3), 565-577. doi: 10.32604/oncologie.2022.022454
- Arslanbaeva, L.R.; Santoro, M.M. Adaptive redox homeostasis in cutaneous melanoma. Redox Biol., 2020, 37, 101753. doi: 10.1016/j.redox.2020.101753 PMID: 33091721
- Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greten, F.R.; Hingorani, S.R.; Hunter, T.; Hynes, R.O.; Jain, R.K.; Janowitz, T.; Jorgensen, C.; Kimmelman, A.C.; Kolonin, M.G.; Maki, R.G.; Powers, R.S.; Puré, E.; Ramirez, D.C.; Scherz-Shouval, R.; Sherman, M.H.; Stewart, S.; Tlsty, T.D.; Tuveson, D.A.; Watt, F.M.; Weaver, V.; Weeraratna, A.T.; Werb, Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer, 2020, 20(3), 174-186. doi: 10.1038/s41568-019-0238-1 PMID: 31980749
- Glabman, R.A.; Choyke, P.L.; Sato, N. Cancer-associated fibroblasts: Tumorigenicity and targeting for cancer therapy. Cancers, 2022, 14(16), 3906. doi: 10.3390/cancers14163906 PMID: 36010899
- Monteran, L.; Erez, N. The dark side of fibroblasts: Cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front. Immunol., 2019, 10, 1835. doi: 10.3389/fimmu.2019.01835 PMID: 31428105
- Bellei, B.; Migliano, E.; Picardo, M. A framework of major tumor-promoting signal transduction pathways implicated in melanoma-fibroblast dialogue. Cancers, 2020, 12(11), 3400. doi: 10.3390/cancers12113400 PMID: 33212834
- Morales, D.; Vigneron, P.; Ferreira, I.; Hamitou, W.; Magnano, M.; Mahenthiran, L.; Lok, C.; Vayssade, M. Fibroblasts influence metastatic melanoma cell sensitivity to combined BRAF and MEK inhibition. Cancers, 2021, 13(19), 4761. doi: 10.3390/cancers13194761 PMID: 34638245
- Papalexi, E.; Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol., 2018, 18(1), 35-45. doi: 10.1038/nri.2017.76 PMID: 28787399
- Joanito, I.; Wirapati, P.; Zhao, N.; Nawaz, Z.; Yeo, G.; Lee, F.; Eng, C.L.P.; Macalinao, D.C.; Kahraman, M.; Srinivasan, H.; Lakshmanan, V.; Verbandt, S.; Tsantoulis, P.; Gunn, N.; Venkatesh, P.N.; Poh, Z.W.; Nahar, R.; Oh, H.L.J.; Loo, J.M.; Chia, S.; Cheow, L.F.; Cheruba, E.; Wong, M.T.; Kua, L.; Chua, C.; Nguyen, A.; Golovan, J.; Gan, A.; Lim, W.J.; Guo, Y.A.; Yap, C.K.; Tay, B.; Hong, Y.; Chong, D.Q.; Chok, A.Y.; Park, W.Y.; Han, S.; Chang, M.H.; Seow-En, I.; Fu, C.; Mathew, R.; Toh, E.L.; Hong, L.Z.; Skanderup, A.J.; DasGupta, R.; Ong, C.A.J.; Lim, K.H.; Tan, E.K.W.; Koo, S.L.; Leow, W.Q.; Tejpar, S.; Prabhakar, S.; Tan, I.B. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat. Genet., 2022, 54(7), 963-975. doi: 10.1038/s41588-022-01100-4 PMID: 35773407
- Gong, L.; Kwong, D.L.W.; Dai, W.; Wu, P.; Li, S.; Yan, Q.; Zhang, Y.; Zhang, B.; Fang, X.; Liu, L.; Luo, M.; Liu, B.; Chow, L.K.Y.; Chen, Q.; Huang, J.; Lee, V.H.F.; Lam, K.O.; Lo, A.W.I.; Chen, Z.; Wang, Y.; Lee, A.W.M.; Guan, X.Y. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma. Nat. Commun., 2021, 12(1), 1540. doi: 10.1038/s41467-021-21795-z PMID: 33750785
- Liu, Y.; Zhang, H.; Mao, Y.; Shi, Y.; Wang, X.; Shi, S.; Hu, D.; Liu, S. Bulk and single-cell RNA-sequencing analyses along with abundant machine learning methods identify a novel monocyte signature in SKCM. Front. Immunol., 2023, 14, 1094042. doi: 10.3389/fimmu.2023.1094042 PMID: 37304304
- Zhang, C.; Shen, H.; Yang, T.; Li, T.; Liu, X.; Wang, J.; Liao, Z.; Wei, J.; Lu, J.; Liu, H.; Xiang, L.; Yang, Y.; Yang, M.; Wang, D.; Li, Y.; Xing, R.; Teng, S.; Zhao, J.; Yang, Y.; Zhao, G.; Chen, K.; Li, X.; Yang, J. A single-cell analysis reveals tumor heterogeneity and immune environment of acral melanoma. Nat. Commun., 2022, 13(1), 7250. doi: 10.1038/s41467-022-34877-3 PMID: 36433984
- Riaz, N.; Havel, J.J.; Makarov, V.; Desrichard, A.; Urba, W.J.; Sims, J.S.; Hodi, F.S.; Martín-Algarra, S.; Mandal, R.; Sharfman, W.H.; Bhatia, S.; Hwu, W.J.; Gajewski, T.F.; Slingluff, C.L., Jr; Chowell, D.; Kendall, S.M.; Chang, H.; Shah, R.; Kuo, F.; Morris, L.G.T.; Sidhom, J.W.; Schneck, J.P.; Horak, C.E.; Weinhold, N.; Chan, T.A. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell, 2017, 171(4), 934-949.e16. doi: 10.1016/j.cell.2017.09.028 PMID: 29033130
- Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol., 2018, 36(5), 411-420. doi: 10.1038/nbt.4096 PMID: 29608179
- Hafemeister, C.; Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol., 2019, 20(1), 296. doi: 10.1186/s13059-019-1874-1 PMID: 31870423
- Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and analysis of cell-cell communication using Cell Chat. Nat. Commun., 2021, 12(1), 1088. doi: 10.1038/s41467-021-21246-9 PMID: 33597522
- Aibar, S.; González-Blas, C.B.; Moerman, T.; Huynh-Thu, V.A.; Imrichova, H.; Hulselmans, G.; Rambow, F.; Marine, J.C.; Geurts, P.; Aerts, J.; van den Oord, J.; Atak, Z.K.; Wouters, J.; Aerts, S. SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods, 2017, 14(11), 1083-1086. doi: 10.1038/nmeth.4463 PMID: 28991892
- Qi, X.; Chen, Y.; Liu, S.; Liu, L.; Yu, Z.; Yin, L.; Fu, L.; Deng, M.; Liang, S.; Lü, M. Sanguinarine inhibits melanoma invasion and migration by targeting the FAK/PI3K/AKT/mTOR signalling pathway. Pharm. Biol., 2023, 61(1), 696-709. doi: 10.1080/13880209.2023.2200787 PMID: 37092313
- Domanegg, K.; Sleeman, J.P.; Schmaus, A. CEMIP, a promising biomarker that promotes the progression and metastasis of colorectal and other types of cancer. Cancers, 2022, 14(20), 5093. doi: 10.3390/cancers14205093 PMID: 36291875
- Kwa, M.Q.; Herum, K.M.; Brakebusch, C. Cancer-associated fibroblasts: How do they contribute to metastasis? Clin. Exp. Metastasis, 2019, 36(2), 71-86. doi: 10.1007/s10585-019-09959-0 PMID: 30847799
- Bobos, M. Histopathologic classification and prognostic factors of melanoma: A 2021 update. Ital. J. Dermatol. Venereol., 2021, 156(3), 300-321. doi: 10.23736/S2784-8671.21.06958-3 PMID: 33982546
- Romano, V.; Belviso, I.; Venuta, A.; Ruocco, M.R.; Masone, S.; Aliotta, F.; Fiume, G.; Montagnani, S.; Avagliano, A.; Arcucci, A. Influence of tumor microenvironment and fibroblast population plasticity on melanoma growth, therapy resistance and immunoescape. Int. J. Mol. Sci., 2021, 22(10), 5283. doi: 10.3390/ijms22105283 PMID: 34067929
- Sunami, Y.; Rebelo, A.; Kleeff, J. Lipid metabolism and lipid droplets in pancreatic cancer and stellate cells. Cancers, 2017, 10(1), 3. doi: 10.3390/cancers10010003 PMID: 29295482
- Sunami, Y.; Häußler, J.; Kleeff, J. Cellular heterogeneity of pancreatic stellate cells, mesenchymal stem cells, and cancer-associated fibroblasts in pancreatic cancer. Cancers, 2020, 12(12), 3770. doi: 10.3390/cancers12123770 PMID: 33333727
- Busch, S.; Andersson, D.; Bom, E.; Walsh, C.; Ståhlberg, A.; Landberg, G. Cellular organization and molecular differentiation model of breast cancer-associated fibroblasts. Mol. Cancer, 2017, 16(1), 73. doi: 10.1186/s12943-017-0642-7 PMID: 28372546
- Patel, A.K.; Vipparthi, K.; Thatikonda, V.; Arun, I.; Bhattacharjee, S.; Sharan, R.; Arun, P.; Singh, S. A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma. Oncogenesis, 2018, 7(10), 78. doi: 10.1038/s41389-018-0087-x PMID: 30287850
- Su, S.; Chen, J.; Yao, H.; Liu, J.; Yu, S.; Lao, L.; Wang, M.; Luo, M.; Xing, Y.; Chen, F.; Huang, D.; Zhao, J.; Yang, L.; Liao, D.; Su, F.; Li, M.; Liu, Q.; Song, E. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell, 2018, 172(4), 841-856.e16. doi: 10.1016/j.cell.2018.01.009 PMID: 29395328
- Rigi-Ladiz, M.A. DNA methylation and expression status of glutamate receptor genes in patients with oral squamous cell carcinoma. Meta Gene, 2019, 20.
- Zhang, Q.; Teow, J.Y.; Kerishnan, J.P.; Abd Halim, A.A.; Chen, Y. Clusterin and its isoforms in oral squamous cell carcinoma and their potential as biomarkers: A comprehensive review. Biomedicines, 2023, 11(5), 1458. doi: 10.3390/biomedicines11051458 PMID: 37239129
- Liu, Q.; Jiang, J.; Zhang, X.; Zhang, M.; Fu, Y. Comprehensive analysis of IGFBPs as biomarkers in gastric cancer. Front. Oncol., 2021, 11, 723131. doi: 10.3389/fonc.2021.723131 PMID: 34745945
- Dai, Y.; Liu, J.; Li, X.; Deng, J.; Zeng, C.; Lu, W.; Hou, Y.; Sheng, Y.; Wu, H.; Liu, Q. Let-7b-5p inhibits colon cancer progression by prohibiting APC ubiquitination degradation and the Wnt pathway by targeting NKD1. Cancer Sci., 2023, 114(5), 1882-1897. doi: 10.1111/cas.15678 PMID: 36445120
- Cirri, P.; Chiarugi, P. Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression. Cancer Metastasis Rev., 2012, 31(1-2), 195-208. doi: 10.1007/s10555-011-9340-x PMID: 22101652
- Duda, D.G.; Duyverman, A.M.M.J.; Kohno, M.; Snuderl, M.; Steller, E.J.A.; Fukumura, D.; Jain, R.K. Malignant cells facilitate lung metastasis by bringing their own soil. Proc. Natl. Acad. Sci., 2010, 107(50), 21677-21682. doi: 10.1073/pnas.1016234107 PMID: 21098274
- Petersen, O.W.; Nielsen, H.L.; Gudjonsson, T.; Villadsen, R.; Rank, F.; Niebuhr, E.; Bissell, M.J.; Rønnov-Jessen, L. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am. J. Pathol., 2003, 162(2), 391-402. doi: 10.1016/S0002-9440(10)63834-5 PMID: 12547698
- Ding, Y.; Tan, X.; Abasi, A.; Dai, Y.; Wu, R.; Zhang, T.; Li, K.; Yan, M.; Huang, X. LncRNA TRPM2-AS promotes ovarian cancer progression and cisplatin resistance by sponging miR-138-5p to release SDC3 mRNA. Aging, 2021, 13(5), 6832-6848. doi: 10.18632/aging.202541 PMID: 33621194
- Sun, J.; Pan, S.; Cui, H.; Li, H. CircRNA SCARB1 promotes renal cell carcinoma progression via Mir- 510-5p/SDC3 Axis. Curr. Cancer Drug Targets, 2020, 20(6), 461-470. doi: 10.2174/1568009620666200409130032 PMID: 32271695
- Yao, J.; Li, W.Y.; Li, S.G.; Feng, X.S.; Gao, S.G. Midkine promotes perineural invasion in human pancreatic cancer. World J. Gastroenterol., 2014, 20(11), 3018-3024. doi: 10.3748/wjg.v20.i11.3018 PMID: 24659893
- Owen, J.S.; Clayton, A.; Pearson, H.B. Cancer-associated fibroblast heterogeneity, activation and function: Implications for prostate cancer. Biomolecules, 2022, 13(1), 67. doi: 10.3390/biom13010067 PMID: 36671452
- Pancewicz, J.; Nicot, C. Current views on the role of notch signaling and the pathogenesis of human leukemia. BMC Cancer, 2011, 11(1), 502. doi: 10.1186/1471-2407-11-502 PMID: 22128846
- Kunanopparat, A.; Hirankarn, N.; Issara-Amphorn, J.; Tangkijvanich, P.; Sanpavat, A. The expression profile of Jagged1 and Delta-like 4 in hepatocellular carcinoma. Asian Pac. J. Allergy Immunol., 2021, 39(1), 44-52. PMID: 30660174
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med., 2009, 6(7), e1000097. doi: 10.1371/journal.pmed.1000097 PMID: 19621072
- Jubb, A.M.; Browning, L.; Campo, L.; Turley, H.; Steers, G.; Thurston, G.; Harris, A.L.; Ansorge, O. Expression of vascular notch ligands delta-like 4 and Jagged-1 in glioblastoma. Histopathology, 2012, 60(5), 740-747. doi: 10.1111/j.1365-2559.2011.04138.x PMID: 22296176
- Pancewicz, J.; Niklinska, W.; Eljaszewicz, A. Anti-Jagged-1 immunotherapy in cancer. Adv. Med. Sci., 2022, 67(2), 196-202. doi: 10.1016/j.advms.2022.04.001 PMID: 35421813
- Strell, C.; Paulsson, J.; Jin, S.B.; Tobin, N.P.; Mezheyeuski, A.; Roswall, P.; Mutgan, C.; Mitsios, N.; Johansson, H.; Wickberg, S.M.; Svedlund, J.; Nilsson, M.; Hall, P.; Mulder, J.; Radisky, D.C.; Pietras, K.; Bergh, J.; Lendahl, U.; Wärnberg, F.; Östman, A. Impact of epithelialstromal interactions on peritumoral fibroblasts in ductal carcinoma in situ. J. Natl. Cancer Inst., 2019, 111(9), 983-995. doi: 10.1093/jnci/djy234 PMID: 30816935
- Dai, Y.; Wilson, G.; Huang, B.; Peng, M.; Teng, G.; Zhang, D.; Zhang, R.; Ebert, M.P.A.; Chen, J.; Wong, B.C.Y.; Chan, K.W.; George, J.; Qiao, L. Silencing of Jagged1 inhibits cell growth and invasion in colorectal cancer. Cell Death Dis., 2014, 5(4), e1170. doi: 10.1038/cddis.2014.137 PMID: 24722295
- Huang, B.; Han, W.; Sheng, Z.F.; Shen, G.L. Identification of immune-related biomarkers associated with tumorigenesis and prognosis in cutaneous melanoma patients. Cancer Cell Int., 2020, 20(1), 195. doi: 10.1186/s12935-020-01271-2 PMID: 32508531
- Hassan, Z.; Schneeweis, C.; Wirth, M.; Müller, S.; Geismann, C.; Neuß, T.; Steiger, K.; Krämer, O.H.; Schmid, R.M.; Rad, R.; Arlt, A.; Reichert, M.; Saur, D.; Schneider, G. Important role of Nfkb2 in the KrasG12D-driven carcinogenesis in the pancreas. Pancreatology, 2021, 21(5), 912-919. doi: 10.1016/j.pan.2021.03.012 PMID: 33824054
- Ishibashi, K.; Koguchi, T.; Matsuoka, K.; Onagi, A.; Tanji, R.; Takinami-Honda, R.; Hoshi, S.; Onoda, M.; Kurimura, Y.; Hata, J.; Sato, Y.; Kataoka, M.; Ogawsa, S.; Haga, N.; Kojima, Y. Interleukin-6 induces drug resistance in renal cell carcinoma. Fukushima J. Med. Sci., 2018, 64(3), 103-110. doi: 10.5387/fms.2018-15 PMID: 30369518
- Wang, T.; Fahrmann, J.F.; Lee, H.; Li, Y.J.; Tripathi, S.C.; Yue, C.; Zhang, C.; Lifshitz, V.; Song, J.; Yuan, Y.; Somlo, G.; Jandial, R.; Ann, D.; Hanash, S.; Jove, R.; Yu, H. JAK/STAT3-Regulated Fatty Acid β-Oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab., 2018, 27(1), 136-150.e5. doi: 10.1016/j.cmet.2017.11.001 PMID: 29249690
- Priego, N.; Zhu, L.; Monteiro, C.; Mulders, M.; Wasilewski, D.; Bindeman, W.; Doglio, L.; Martínez, L.; Martínez-Saez, E.; Ramón y Cajal, S.; Megías, D.; Hernández-Encinas, E.; Blanco-Aparicio, C.; Martínez, L.; Zarzuela, E.; Muñoz, J.; Fustero-Torre, C.; Piñeiro-Yáñez, E.; Hernández-Laín, A.; Bertero, L.; Poli, V.; Sanchez-Martinez, M.; Menendez, J.A.; Soffietti, R.; Bosch-Barrera, J.; Valiente, M. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat. Med., 2018, 24(7), 1024-1035. doi: 10.1038/s41591-018-0044-4 PMID: 29892069
- Albrengues, J.; Bertero, T.; Grasset, E.; Bonan, S.; Maiel, M.; Bourget, I.; Philippe, C.; Herraiz Serrano, C.; Benamar, S.; Croce, O.; Sanz-Moreno, V.; Meneguzzi, G.; Feral, C.C.; Cristofari, G.; Gaggioli, C. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat. Commun., 2015, 6(1), 10204. doi: 10.1038/ncomms10204 PMID: 26667266
- Yang, X.; Lin, Y.; Shi, Y.; Li, B.; Liu, W.; Yin, W.; Dang, Y.; Chu, Y.; Fan, J.; He, R. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3CCL2 signaling. Cancer Res., 2016, 76(14), 4124-4135. doi: 10.1158/0008-5472.CAN-15-2973 PMID: 27216177
- Li, X.; Xu, Q.; Wu, Y.; Li, J.; Tang, D.; Han, L.; Fan, Q. A CCL2/ROS autoregulation loop is critical for cancer-associated fibroblasts-enhanced tumor growth of oral squamous cell carcinoma. Carcinogenesis, 2014, 35(6), 1362-1370. doi: 10.1093/carcin/bgu046 PMID: 24531940
- Heichler, C.; Scheibe, K.; Schmied, A.; Geppert, C.I.; Schmid, B.; Wirtz, S.; Thoma, O.M.; Kramer, V.; Waldner, M.J.; Büttner, C.; Farin, H.F.; Peić, M.; Knieling, F.; Merkel, S.; Grüneboom, A.; Gunzer, M.; Grützmann, R.; Rose-John, S.; Koralov, S.B.; Kollias, G.; Vieth, M.; Hartmann, A.; Greten, F.R.; Neurath, M.F.; Neufert, C. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut, 2020, 69(7), 1269-1282. doi: 10.1136/gutjnl-2019-319200 PMID: 31685519
- Hirata, E.; Girotti, M.R.; Viros, A.; Hooper, S.; Spencer-Dene, B.; Matsuda, M.; Larkin, J.; Marais, R.; Sahai, E. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell, 2015, 27(4), 574-588. doi: 10.1016/j.ccell.2015.03.008 PMID: 25873177
- Jayson, G.C.; Kerbel, R.; Ellis, L.M.; Harris, A.L. Antiangiogenic therapy in oncology: Current status and future directions. Lancet, 2016, 388(10043), 518-529. doi: 10.1016/S0140-6736(15)01088-0 PMID: 26853587
- Feig, C.; Jones, J.O.; Kraman, M.; Wells, R.J.B.; Deonarine, A.; Chan, D.S.; Connell, C.M.; Roberts, E.W.; Zhao, Q.; Caballero, O.L.; Teichmann, S.A.; Janowitz, T.; Jodrell, D.I.; Tuveson, D.A.; Fearon, D.T. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with antiPD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci., 2013, 110(50), 20212-20217. doi: 10.1073/pnas.1320318110 PMID: 24277834
Supplementary files
