Single-cell RNA Sequencing Analysis Reveals the Role of Cancerassociated Fibroblasts in Skin Melanoma


Cite item

Full Text

Abstract

Aims:Mechanism of fibroblasts in skin melanoma (SKME) revealed by single-cell RNA sequencing data.

Background:SKME is responsible for more than 80% of skin-related cancer deaths. Cancer-associated fibroblasts (CAFs) generate inflammatory factors, growth factors and extracellular matrix proteins to facilitate cancer cell growth, metastasis, drug resistance and immune exclusion. However, molecular mechanisms of CAFs in SKME are still lacking.

Objective:Our goal was to reveal the role of CAFs in SKME.

Methods:We downloaded the single-cell RNA sequencing (scRNA-seq) dataset from the Gene Expression Omnibus (GSE215120) database. Then, the Seurat package was applied to analyze the single-cell atlas of SKME data, and cell subsets were annotated with the CellMarker database. The molecular mechanisms of CAFs in SKME were disclosed via differential gene expression and enrichment analysis, Cellchat and SCENIC methods.

Results:Using scRNA-seq data, three SKME cases were used and downscaled and clustered to identify 11 cell subgroups and 5 CAF subsets. The enrichment of highly expressed genes among the 5 CAF subsets suggests that cell migration-inducing hyaluronan-binding protein (CEMIP) + fibroblasts and naked cuticle homolog 1 (NKD1) + fibroblasts were closely associated with epithelial to mesenchymal transition. Cellchat analysis revealed that CAF subpopulations promoted melanocyte proliferation through Jagged1 (JAG1)-Notch homolog 1 (NOTCH1), JAG1-NOTCH3 and migration through pleiotrophin (PTN)-syndecan-3 (SDC3) receptor-ligand pairs. The SCENIC analysis identified that most of the transcription factors in each CAF subpopulation played a certain role in the metastasis of melanoma and were highly expressed in metastatic SKME samples. Specifically, we observed that CEMIP+ fibroblasts and NKD1+ fibroblasts had potential roles in participating in immune therapy resistance. Collectively, we uncovered a single-- cell atlas of SKME and revealed the molecular mechanisms of CAFs in SKME development, providing a base for immune therapy and prognosis assessment.

Conclusion:Our study reveals that 5 CAFs in SKME have a promoting effect on melanocyte proliferation and metastasis. More importantly, CEMIP+ fibroblasts and NKD1+ fibroblasts displayed close connections with immune therapy resistance. These findings help provide a good basis for future immune therapy and prognosis assessment targeting CAFs in SKME.

About the authors

Wenqin Lian

Department of Oral and Maxillofacial Surgery,Guangzhou Women and Children’s Medical Center, Guangzhou Medical University

Email: info@benthamscience.net

Pan Xiang

Nephrology Department,Beijing Ditan Hospital, Capital Medical University

Email: info@benthamscience.net

Chunjiang Ye

Department of Burns and Plastic Surgery, Zhejiang Quhua Hospital

Author for correspondence.
Email: info@benthamscience.net

Jian Xiong

Department of Obstetrics and Gynaecology,Guangzhou Women and Children’s Medical Center, Guangzhou Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Guy, G.P., Jr; Thomas, C.C.; Thompson, T.; Watson, M.; Massetti, G.M.; Richardson, L.C. Vital signs: melanoma incidence and mortality trends and projections - United States, 1982-2030. MMWR Morb. Mortal. Wkly. Rep., 2015, 64(21), 591-596. PMID: 26042651
  2. Bolick, N.L.; Geller, A.C. Epidemiology of melanoma. Hematol. Oncol. Clin. North Am., 2021, 35(1), 57-72. doi: 10.1016/j.hoc.2020.08.011 PMID: 33759773
  3. Bozkurt, I.; Yasar, B.; Baran Uslu, M.; Bozdogan, N. A primary sacral melanoma of unknown origin: A case report. Oncologie, 2022, 24(1), 163-171. doi: 10.32604/oncologie.2022.019263
  4. Costanzo, R.; Parmar, V.; Marrone, S.; Gerardo Iacopino, D.; Federico Nicoletti, G.; Emmanuele Umana, G.; Scalia, G. Differential diagnosis between primary intracranial melanoma and cerebral cavernoma in crohn’s disease: A case report and literature review. Oncologie, 2022, 24(4), 937-942. doi: 10.32604/oncologie.2022.027155
  5. Rashid, S.; Shaughnessy, M.; Tsao, H. Melanoma classification and management in the era of molecular medicine. Dermatol. Clin., 2023, 41(1), 49-63. doi: 10.1016/j.det.2022.07.017 PMID: 36410983
  6. Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Seguin, N.; Bastholt, L.; Bataille, V.; del Marmol, V.; Dréno, B.; Fargnoli, M.C.; Forsea, A.M.; Grob, J.J.; Hoeller, C.; Kaufmann, R.; Kelleners-Smeets, N.; Lallas, A.; Lebbé, C.; Lytvynenko, B.; Malvehy, J.; Moreno-Ramirez, D.; Nathan, P.; Pellacani, G.; Saiag, P.; Stratigos, A.J.; Van Akkooi, A.C.J.; Vieira, R.; Zalaudek, I.; Lorigan, P. European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment - Update 2022. Eur. J. Cancer, 2022, 170, 256-284. doi: 10.1016/j.ejca.2022.04.018 PMID: 35623961
  7. Leonardi, G.C.; Falzone, L.; Salemi, R.; Zanghì, A.; Spandidos, D.A.; Mccubrey, J.A.; Candido, S.; Libra, M. Cutaneous melanoma: From pathogenesis to therapy (Review). Int. J. Oncol., 2018, 52(4), 1071-1080. doi: 10.3892/ijo.2018.4287 PMID: 29532857
  8. Gao, L.; Gui, R.; Zheng, X.; Wang, Y.; Gong, Y.; Hua Wang, T.; Wang, J.; Huang, J.; Liao, X. Topical application of houttuynia cordata thunb ethanol extracts increases tumor infiltrating cd8+ /treg cells ratio and inhibits cutaneous squamous cell carcinoma in vivo. Oncologie, 2022, 24(3), 565-577. doi: 10.32604/oncologie.2022.022454
  9. Arslanbaeva, L.R.; Santoro, M.M. Adaptive redox homeostasis in cutaneous melanoma. Redox Biol., 2020, 37, 101753. doi: 10.1016/j.redox.2020.101753 PMID: 33091721
  10. Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greten, F.R.; Hingorani, S.R.; Hunter, T.; Hynes, R.O.; Jain, R.K.; Janowitz, T.; Jorgensen, C.; Kimmelman, A.C.; Kolonin, M.G.; Maki, R.G.; Powers, R.S.; Puré, E.; Ramirez, D.C.; Scherz-Shouval, R.; Sherman, M.H.; Stewart, S.; Tlsty, T.D.; Tuveson, D.A.; Watt, F.M.; Weaver, V.; Weeraratna, A.T.; Werb, Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer, 2020, 20(3), 174-186. doi: 10.1038/s41568-019-0238-1 PMID: 31980749
  11. Glabman, R.A.; Choyke, P.L.; Sato, N. Cancer-associated fibroblasts: Tumorigenicity and targeting for cancer therapy. Cancers, 2022, 14(16), 3906. doi: 10.3390/cancers14163906 PMID: 36010899
  12. Monteran, L.; Erez, N. The dark side of fibroblasts: Cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front. Immunol., 2019, 10, 1835. doi: 10.3389/fimmu.2019.01835 PMID: 31428105
  13. Bellei, B.; Migliano, E.; Picardo, M. A framework of major tumor-promoting signal transduction pathways implicated in melanoma-fibroblast dialogue. Cancers, 2020, 12(11), 3400. doi: 10.3390/cancers12113400 PMID: 33212834
  14. Morales, D.; Vigneron, P.; Ferreira, I.; Hamitou, W.; Magnano, M.; Mahenthiran, L.; Lok, C.; Vayssade, M. Fibroblasts influence metastatic melanoma cell sensitivity to combined BRAF and MEK inhibition. Cancers, 2021, 13(19), 4761. doi: 10.3390/cancers13194761 PMID: 34638245
  15. Papalexi, E.; Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol., 2018, 18(1), 35-45. doi: 10.1038/nri.2017.76 PMID: 28787399
  16. Joanito, I.; Wirapati, P.; Zhao, N.; Nawaz, Z.; Yeo, G.; Lee, F.; Eng, C.L.P.; Macalinao, D.C.; Kahraman, M.; Srinivasan, H.; Lakshmanan, V.; Verbandt, S.; Tsantoulis, P.; Gunn, N.; Venkatesh, P.N.; Poh, Z.W.; Nahar, R.; Oh, H.L.J.; Loo, J.M.; Chia, S.; Cheow, L.F.; Cheruba, E.; Wong, M.T.; Kua, L.; Chua, C.; Nguyen, A.; Golovan, J.; Gan, A.; Lim, W.J.; Guo, Y.A.; Yap, C.K.; Tay, B.; Hong, Y.; Chong, D.Q.; Chok, A.Y.; Park, W.Y.; Han, S.; Chang, M.H.; Seow-En, I.; Fu, C.; Mathew, R.; Toh, E.L.; Hong, L.Z.; Skanderup, A.J.; DasGupta, R.; Ong, C.A.J.; Lim, K.H.; Tan, E.K.W.; Koo, S.L.; Leow, W.Q.; Tejpar, S.; Prabhakar, S.; Tan, I.B. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat. Genet., 2022, 54(7), 963-975. doi: 10.1038/s41588-022-01100-4 PMID: 35773407
  17. Gong, L.; Kwong, D.L.W.; Dai, W.; Wu, P.; Li, S.; Yan, Q.; Zhang, Y.; Zhang, B.; Fang, X.; Liu, L.; Luo, M.; Liu, B.; Chow, L.K.Y.; Chen, Q.; Huang, J.; Lee, V.H.F.; Lam, K.O.; Lo, A.W.I.; Chen, Z.; Wang, Y.; Lee, A.W.M.; Guan, X.Y. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma. Nat. Commun., 2021, 12(1), 1540. doi: 10.1038/s41467-021-21795-z PMID: 33750785
  18. Liu, Y.; Zhang, H.; Mao, Y.; Shi, Y.; Wang, X.; Shi, S.; Hu, D.; Liu, S. Bulk and single-cell RNA-sequencing analyses along with abundant machine learning methods identify a novel monocyte signature in SKCM. Front. Immunol., 2023, 14, 1094042. doi: 10.3389/fimmu.2023.1094042 PMID: 37304304
  19. Zhang, C.; Shen, H.; Yang, T.; Li, T.; Liu, X.; Wang, J.; Liao, Z.; Wei, J.; Lu, J.; Liu, H.; Xiang, L.; Yang, Y.; Yang, M.; Wang, D.; Li, Y.; Xing, R.; Teng, S.; Zhao, J.; Yang, Y.; Zhao, G.; Chen, K.; Li, X.; Yang, J. A single-cell analysis reveals tumor heterogeneity and immune environment of acral melanoma. Nat. Commun., 2022, 13(1), 7250. doi: 10.1038/s41467-022-34877-3 PMID: 36433984
  20. Riaz, N.; Havel, J.J.; Makarov, V.; Desrichard, A.; Urba, W.J.; Sims, J.S.; Hodi, F.S.; Martín-Algarra, S.; Mandal, R.; Sharfman, W.H.; Bhatia, S.; Hwu, W.J.; Gajewski, T.F.; Slingluff, C.L., Jr; Chowell, D.; Kendall, S.M.; Chang, H.; Shah, R.; Kuo, F.; Morris, L.G.T.; Sidhom, J.W.; Schneck, J.P.; Horak, C.E.; Weinhold, N.; Chan, T.A. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell, 2017, 171(4), 934-949.e16. doi: 10.1016/j.cell.2017.09.028 PMID: 29033130
  21. Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol., 2018, 36(5), 411-420. doi: 10.1038/nbt.4096 PMID: 29608179
  22. Hafemeister, C.; Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol., 2019, 20(1), 296. doi: 10.1186/s13059-019-1874-1 PMID: 31870423
  23. Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and analysis of cell-cell communication using Cell Chat. Nat. Commun., 2021, 12(1), 1088. doi: 10.1038/s41467-021-21246-9 PMID: 33597522
  24. Aibar, S.; González-Blas, C.B.; Moerman, T.; Huynh-Thu, V.A.; Imrichova, H.; Hulselmans, G.; Rambow, F.; Marine, J.C.; Geurts, P.; Aerts, J.; van den Oord, J.; Atak, Z.K.; Wouters, J.; Aerts, S. SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods, 2017, 14(11), 1083-1086. doi: 10.1038/nmeth.4463 PMID: 28991892
  25. Qi, X.; Chen, Y.; Liu, S.; Liu, L.; Yu, Z.; Yin, L.; Fu, L.; Deng, M.; Liang, S.; Lü, M. Sanguinarine inhibits melanoma invasion and migration by targeting the FAK/PI3K/AKT/mTOR signalling pathway. Pharm. Biol., 2023, 61(1), 696-709. doi: 10.1080/13880209.2023.2200787 PMID: 37092313
  26. Domanegg, K.; Sleeman, J.P.; Schmaus, A. CEMIP, a promising biomarker that promotes the progression and metastasis of colorectal and other types of cancer. Cancers, 2022, 14(20), 5093. doi: 10.3390/cancers14205093 PMID: 36291875
  27. Kwa, M.Q.; Herum, K.M.; Brakebusch, C. Cancer-associated fibroblasts: How do they contribute to metastasis? Clin. Exp. Metastasis, 2019, 36(2), 71-86. doi: 10.1007/s10585-019-09959-0 PMID: 30847799
  28. Bobos, M. Histopathologic classification and prognostic factors of melanoma: A 2021 update. Ital. J. Dermatol. Venereol., 2021, 156(3), 300-321. doi: 10.23736/S2784-8671.21.06958-3 PMID: 33982546
  29. Romano, V.; Belviso, I.; Venuta, A.; Ruocco, M.R.; Masone, S.; Aliotta, F.; Fiume, G.; Montagnani, S.; Avagliano, A.; Arcucci, A. Influence of tumor microenvironment and fibroblast population plasticity on melanoma growth, therapy resistance and immunoescape. Int. J. Mol. Sci., 2021, 22(10), 5283. doi: 10.3390/ijms22105283 PMID: 34067929
  30. Sunami, Y.; Rebelo, A.; Kleeff, J. Lipid metabolism and lipid droplets in pancreatic cancer and stellate cells. Cancers, 2017, 10(1), 3. doi: 10.3390/cancers10010003 PMID: 29295482
  31. Sunami, Y.; Häußler, J.; Kleeff, J. Cellular heterogeneity of pancreatic stellate cells, mesenchymal stem cells, and cancer-associated fibroblasts in pancreatic cancer. Cancers, 2020, 12(12), 3770. doi: 10.3390/cancers12123770 PMID: 33333727
  32. Busch, S.; Andersson, D.; Bom, E.; Walsh, C.; Ståhlberg, A.; Landberg, G. Cellular organization and molecular differentiation model of breast cancer-associated fibroblasts. Mol. Cancer, 2017, 16(1), 73. doi: 10.1186/s12943-017-0642-7 PMID: 28372546
  33. Patel, A.K.; Vipparthi, K.; Thatikonda, V.; Arun, I.; Bhattacharjee, S.; Sharan, R.; Arun, P.; Singh, S. A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma. Oncogenesis, 2018, 7(10), 78. doi: 10.1038/s41389-018-0087-x PMID: 30287850
  34. Su, S.; Chen, J.; Yao, H.; Liu, J.; Yu, S.; Lao, L.; Wang, M.; Luo, M.; Xing, Y.; Chen, F.; Huang, D.; Zhao, J.; Yang, L.; Liao, D.; Su, F.; Li, M.; Liu, Q.; Song, E. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell, 2018, 172(4), 841-856.e16. doi: 10.1016/j.cell.2018.01.009 PMID: 29395328
  35. Rigi-Ladiz, M.A. DNA methylation and expression status of glutamate receptor genes in patients with oral squamous cell carcinoma. Meta Gene, 2019, 20.
  36. Zhang, Q.; Teow, J.Y.; Kerishnan, J.P.; Abd Halim, A.A.; Chen, Y. Clusterin and its isoforms in oral squamous cell carcinoma and their potential as biomarkers: A comprehensive review. Biomedicines, 2023, 11(5), 1458. doi: 10.3390/biomedicines11051458 PMID: 37239129
  37. Liu, Q.; Jiang, J.; Zhang, X.; Zhang, M.; Fu, Y. Comprehensive analysis of IGFBPs as biomarkers in gastric cancer. Front. Oncol., 2021, 11, 723131. doi: 10.3389/fonc.2021.723131 PMID: 34745945
  38. Dai, Y.; Liu, J.; Li, X.; Deng, J.; Zeng, C.; Lu, W.; Hou, Y.; Sheng, Y.; Wu, H.; Liu, Q. Let-7b-5p inhibits colon cancer progression by prohibiting APC ubiquitination degradation and the Wnt pathway by targeting NKD1. Cancer Sci., 2023, 114(5), 1882-1897. doi: 10.1111/cas.15678 PMID: 36445120
  39. Cirri, P.; Chiarugi, P. Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression. Cancer Metastasis Rev., 2012, 31(1-2), 195-208. doi: 10.1007/s10555-011-9340-x PMID: 22101652
  40. Duda, D.G.; Duyverman, A.M.M.J.; Kohno, M.; Snuderl, M.; Steller, E.J.A.; Fukumura, D.; Jain, R.K. Malignant cells facilitate lung metastasis by bringing their own soil. Proc. Natl. Acad. Sci., 2010, 107(50), 21677-21682. doi: 10.1073/pnas.1016234107 PMID: 21098274
  41. Petersen, O.W.; Nielsen, H.L.; Gudjonsson, T.; Villadsen, R.; Rank, F.; Niebuhr, E.; Bissell, M.J.; Rønnov-Jessen, L. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am. J. Pathol., 2003, 162(2), 391-402. doi: 10.1016/S0002-9440(10)63834-5 PMID: 12547698
  42. Ding, Y.; Tan, X.; Abasi, A.; Dai, Y.; Wu, R.; Zhang, T.; Li, K.; Yan, M.; Huang, X. LncRNA TRPM2-AS promotes ovarian cancer progression and cisplatin resistance by sponging miR-138-5p to release SDC3 mRNA. Aging, 2021, 13(5), 6832-6848. doi: 10.18632/aging.202541 PMID: 33621194
  43. Sun, J.; Pan, S.; Cui, H.; Li, H. CircRNA SCARB1 promotes renal cell carcinoma progression via Mir- 510-5p/SDC3 Axis. Curr. Cancer Drug Targets, 2020, 20(6), 461-470. doi: 10.2174/1568009620666200409130032 PMID: 32271695
  44. Yao, J.; Li, W.Y.; Li, S.G.; Feng, X.S.; Gao, S.G. Midkine promotes perineural invasion in human pancreatic cancer. World J. Gastroenterol., 2014, 20(11), 3018-3024. doi: 10.3748/wjg.v20.i11.3018 PMID: 24659893
  45. Owen, J.S.; Clayton, A.; Pearson, H.B. Cancer-associated fibroblast heterogeneity, activation and function: Implications for prostate cancer. Biomolecules, 2022, 13(1), 67. doi: 10.3390/biom13010067 PMID: 36671452
  46. Pancewicz, J.; Nicot, C. Current views on the role of notch signaling and the pathogenesis of human leukemia. BMC Cancer, 2011, 11(1), 502. doi: 10.1186/1471-2407-11-502 PMID: 22128846
  47. Kunanopparat, A.; Hirankarn, N.; Issara-Amphorn, J.; Tangkijvanich, P.; Sanpavat, A. The expression profile of Jagged1 and Delta-like 4 in hepatocellular carcinoma. Asian Pac. J. Allergy Immunol., 2021, 39(1), 44-52. PMID: 30660174
  48. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med., 2009, 6(7), e1000097. doi: 10.1371/journal.pmed.1000097 PMID: 19621072
  49. Jubb, A.M.; Browning, L.; Campo, L.; Turley, H.; Steers, G.; Thurston, G.; Harris, A.L.; Ansorge, O. Expression of vascular notch ligands delta-like 4 and Jagged-1 in glioblastoma. Histopathology, 2012, 60(5), 740-747. doi: 10.1111/j.1365-2559.2011.04138.x PMID: 22296176
  50. Pancewicz, J.; Niklinska, W.; Eljaszewicz, A. Anti-Jagged-1 immunotherapy in cancer. Adv. Med. Sci., 2022, 67(2), 196-202. doi: 10.1016/j.advms.2022.04.001 PMID: 35421813
  51. Strell, C.; Paulsson, J.; Jin, S.B.; Tobin, N.P.; Mezheyeuski, A.; Roswall, P.; Mutgan, C.; Mitsios, N.; Johansson, H.; Wickberg, S.M.; Svedlund, J.; Nilsson, M.; Hall, P.; Mulder, J.; Radisky, D.C.; Pietras, K.; Bergh, J.; Lendahl, U.; Wärnberg, F.; Östman, A. Impact of epithelial–stromal interactions on peritumoral fibroblasts in ductal carcinoma in situ. J. Natl. Cancer Inst., 2019, 111(9), 983-995. doi: 10.1093/jnci/djy234 PMID: 30816935
  52. Dai, Y.; Wilson, G.; Huang, B.; Peng, M.; Teng, G.; Zhang, D.; Zhang, R.; Ebert, M.P.A.; Chen, J.; Wong, B.C.Y.; Chan, K.W.; George, J.; Qiao, L. Silencing of Jagged1 inhibits cell growth and invasion in colorectal cancer. Cell Death Dis., 2014, 5(4), e1170. doi: 10.1038/cddis.2014.137 PMID: 24722295
  53. Huang, B.; Han, W.; Sheng, Z.F.; Shen, G.L. Identification of immune-related biomarkers associated with tumorigenesis and prognosis in cutaneous melanoma patients. Cancer Cell Int., 2020, 20(1), 195. doi: 10.1186/s12935-020-01271-2 PMID: 32508531
  54. Hassan, Z.; Schneeweis, C.; Wirth, M.; Müller, S.; Geismann, C.; Neuß, T.; Steiger, K.; Krämer, O.H.; Schmid, R.M.; Rad, R.; Arlt, A.; Reichert, M.; Saur, D.; Schneider, G. Important role of Nfkb2 in the KrasG12D-driven carcinogenesis in the pancreas. Pancreatology, 2021, 21(5), 912-919. doi: 10.1016/j.pan.2021.03.012 PMID: 33824054
  55. Ishibashi, K.; Koguchi, T.; Matsuoka, K.; Onagi, A.; Tanji, R.; Takinami-Honda, R.; Hoshi, S.; Onoda, M.; Kurimura, Y.; Hata, J.; Sato, Y.; Kataoka, M.; Ogawsa, S.; Haga, N.; Kojima, Y. Interleukin-6 induces drug resistance in renal cell carcinoma. Fukushima J. Med. Sci., 2018, 64(3), 103-110. doi: 10.5387/fms.2018-15 PMID: 30369518
  56. Wang, T.; Fahrmann, J.F.; Lee, H.; Li, Y.J.; Tripathi, S.C.; Yue, C.; Zhang, C.; Lifshitz, V.; Song, J.; Yuan, Y.; Somlo, G.; Jandial, R.; Ann, D.; Hanash, S.; Jove, R.; Yu, H. JAK/STAT3-Regulated Fatty Acid β-Oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab., 2018, 27(1), 136-150.e5. doi: 10.1016/j.cmet.2017.11.001 PMID: 29249690
  57. Priego, N.; Zhu, L.; Monteiro, C.; Mulders, M.; Wasilewski, D.; Bindeman, W.; Doglio, L.; Martínez, L.; Martínez-Saez, E.; Ramón y Cajal, S.; Megías, D.; Hernández-Encinas, E.; Blanco-Aparicio, C.; Martínez, L.; Zarzuela, E.; Muñoz, J.; Fustero-Torre, C.; Piñeiro-Yáñez, E.; Hernández-Laín, A.; Bertero, L.; Poli, V.; Sanchez-Martinez, M.; Menendez, J.A.; Soffietti, R.; Bosch-Barrera, J.; Valiente, M. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat. Med., 2018, 24(7), 1024-1035. doi: 10.1038/s41591-018-0044-4 PMID: 29892069
  58. Albrengues, J.; Bertero, T.; Grasset, E.; Bonan, S.; Maiel, M.; Bourget, I.; Philippe, C.; Herraiz Serrano, C.; Benamar, S.; Croce, O.; Sanz-Moreno, V.; Meneguzzi, G.; Feral, C.C.; Cristofari, G.; Gaggioli, C. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat. Commun., 2015, 6(1), 10204. doi: 10.1038/ncomms10204 PMID: 26667266
  59. Yang, X.; Lin, Y.; Shi, Y.; Li, B.; Liu, W.; Yin, W.; Dang, Y.; Chu, Y.; Fan, J.; He, R. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3–CCL2 signaling. Cancer Res., 2016, 76(14), 4124-4135. doi: 10.1158/0008-5472.CAN-15-2973 PMID: 27216177
  60. Li, X.; Xu, Q.; Wu, Y.; Li, J.; Tang, D.; Han, L.; Fan, Q. A CCL2/ROS autoregulation loop is critical for cancer-associated fibroblasts-enhanced tumor growth of oral squamous cell carcinoma. Carcinogenesis, 2014, 35(6), 1362-1370. doi: 10.1093/carcin/bgu046 PMID: 24531940
  61. Heichler, C.; Scheibe, K.; Schmied, A.; Geppert, C.I.; Schmid, B.; Wirtz, S.; Thoma, O.M.; Kramer, V.; Waldner, M.J.; Büttner, C.; Farin, H.F.; Pešić, M.; Knieling, F.; Merkel, S.; Grüneboom, A.; Gunzer, M.; Grützmann, R.; Rose-John, S.; Koralov, S.B.; Kollias, G.; Vieth, M.; Hartmann, A.; Greten, F.R.; Neurath, M.F.; Neufert, C. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut, 2020, 69(7), 1269-1282. doi: 10.1136/gutjnl-2019-319200 PMID: 31685519
  62. Hirata, E.; Girotti, M.R.; Viros, A.; Hooper, S.; Spencer-Dene, B.; Matsuda, M.; Larkin, J.; Marais, R.; Sahai, E. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell, 2015, 27(4), 574-588. doi: 10.1016/j.ccell.2015.03.008 PMID: 25873177
  63. Jayson, G.C.; Kerbel, R.; Ellis, L.M.; Harris, A.L. Antiangiogenic therapy in oncology: Current status and future directions. Lancet, 2016, 388(10043), 518-529. doi: 10.1016/S0140-6736(15)01088-0 PMID: 26853587
  64. Feig, C.; Jones, J.O.; Kraman, M.; Wells, R.J.B.; Deonarine, A.; Chan, D.S.; Connell, C.M.; Roberts, E.W.; Zhao, Q.; Caballero, O.L.; Teichmann, S.A.; Janowitz, T.; Jodrell, D.I.; Tuveson, D.A.; Fearon, D.T. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci., 2013, 110(50), 20212-20217. doi: 10.1073/pnas.1320318110 PMID: 24277834

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers