Kidney Injury: Focus on Molecular Signaling Pathways


如何引用文章

全文:

详细

Acute kidney injury (AKI) is a syndrome in which kidney function reduces suddenly. This syndrome which includes both structural changes and loss of function may lead to chronic kidney disease (CKD). Kidney regeneration capacity depends on the cell type and severity of the injury. However, novel studies indicated that regeneration mostly relies on endogenous tubular cells that survive after AKI. Regenerative pharmacology requires a great knowledge of fundamental processes involved in the development and endogenous regeneration, leading to a necessity for investigating related signaling molecules in this process. Regulatory non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) are currently known as critical regulators of gene expression in various cellular processes, and this regulatory function is also observed in nephrotic tissue, following damaging insults, which may promote or inhibit the progression of damage. Thus, studying signaling molecules and pathways involved in renal injury and repair results in a comprehensive prospect of these processes. Moreover, these studies can lead to new opportunities for discovering and enhancing therapeutic approaches to renal diseases. Herein, we review studies dealing with the role of different signaling pathways involved in renal injury. Besides, we discuss how some signaling pathways are useful for the repair process following AKI.

作者简介

Wei Liu

Department of Physical Education, Xidian University

Email: info@benthamscience.net

MengDi Hu

, Shaanxi Province Hospital of Chinese Medicine

Email: info@benthamscience.net

Le Wang

Health Care Department, The Third Division, 971st Navy Hospital of the People’s Liberation Army

编辑信件的主要联系方式.
Email: info@benthamscience.net

Hamed Mirzaei

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Preuss, H.G. Basics of renal anatomy and physiology. Clin. Lab. Med., 1993, 13(1), 1-11. doi: 10.1016/S0272-2712(18)30456-6 PMID: 8462252
  2. Hoste, E.A.J.; Kellum, J.A.; Selby, N.M.; Zarbock, A.; Palevsky, P.M.; Bagshaw, S.M.; Goldstein, S.L.; Cerdá, J.; Chawla, L.S. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol., 2018, 14(10), 607-625. doi: 10.1038/s41581-018-0052-0 PMID: 30135570
  3. Lv, J.C.; Zhang, L.X. Prevalence and disease burden of chronic kidney disease. Adv. Exp. Med. Biol., 2019, 1165, 3-15. doi: 10.1007/978-981-13-8871-2_1 PMID: 31399958
  4. Chung, B.H. Use of mesenchymal stem cells for chronic kidney disease. Kidney Res. Clin. Pract., 2019, 38(2), 131-134. doi: 10.23876/j.krcp.19.051 PMID: 31189218
  5. Murugan, R.; Kellum, J.A. Acute kidney injury: What’s the prognosis? Nat. Rev. Nephrol., 2011, 7(4), 209-217. doi: 10.1038/nrneph.2011.13 PMID: 21343898
  6. Janssen, M.J.; Masereeuw, R. An introduction to the pharmacology of kidney regeneration. Eur. J. Pharmacol., 2016, 790, 1-2. doi: 10.1016/j.ejphar.2016.06.055 PMID: 27375079
  7. Yang, H.C.; Liu, S.J.; Fogo, A.B. Kidney regeneration in mammals. Nephron, Exp. Nephrol., 2014, 126(2), 50-53. doi: 10.1159/000360661 PMID: 24854640
  8. Yokoo, T.; Fukui, A.; Kobayashi, E. Application of regenerative medicine for kidney diseases. Organogenesis, 2007, 3(1), 34-43. doi: 10.4161/org.3.1.3961 PMID: 19279698
  9. Maeshima, A.; Nakasatomi, M.; Nojima, Y. Regenerative medicine for the kidney: Renotropic factors, renal stem/progenitor cells, and stem cell therapy. BioMed Res. Int., 2014, 2014, 1-10. doi: 10.1155/2014/595493 PMID: 24895592
  10. Christ, G.J.; Saul, J.M.; Furth, M.E.; Andersson, K.E. The pharmacology of regenerative medicine. Pharmacol. Rev., 2013, 65(3), 1091-1133. doi: 10.1124/pr.112.007393 PMID: 23818131
  11. Bali, K.K.; Kuner, R. Noncoding RNAs: Key molecules in understanding and treating pain. Trends Mol. Med., 2014, 20(8), 437-448. doi: 10.1016/j.molmed.2014.05.006 PMID: 24986063
  12. Kato, M. Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease. Kidney Res. Clin. Pract., 2018, 37(3), 197-209. doi: 10.23876/j.krcp.2018.37.3.197 PMID: 30254844
  13. Kota, S.K.; Kota, S.B. Noncoding RNA and epigenetic gene regulation in renal diseases. Drug Discov. Today, 2017, 22(7), 1112-1122. doi: 10.1016/j.drudis.2017.04.020 PMID: 28487070
  14. Vallone, C.; Rigon, G.; Gulia, C.; Baffa, A.; Votino, R.; Morosetti, G.; Zaami, S.; Briganti, V.; Catania, F.; Gaffi, M.; Nucciotti, R.; Costantini, F.; Piergentili, R.; Putignani, L.; Signore, F. Non-Coding RNAs and endometrial cancer. Genes, 2018, 9(4), 187. doi: 10.3390/genes9040187 PMID: 29596364
  15. Brandenburger, T.; Salgado Somoza, A.; Devaux, Y.; Lorenzen, J.M. Noncoding RNAs in acute kidney injury. Kidney Int., 2018, 94(5), 870-881. doi: 10.1016/j.kint.2018.06.033 PMID: 30348304
  16. Guo, C.; Dong, G.; Liang, X.; Dong, Z. Epigenetic regulation in AKI and kidney repair: Mechanisms and therapeutic implications. Nat. Rev. Nephrol., 2019, 15(4), 220-239. doi: 10.1038/s41581-018-0103-6 PMID: 30651611
  17. Ortiz, A. RICORS2040: The need for collaborative research in chronic kidney disease; Oxford University Press, 2022, pp. 372-387.
  18. Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med., 2014, 371(1), 58-66. doi: 10.1056/NEJMra1214243 PMID: 24988558
  19. Ruiz-Ortega, M.; Rayego-Mateos, S.; Lamas, S.; Ortiz, A.; Rodrigues-Diez, R.R. Targeting the progression of chronic kidney disease. Nat. Rev. Nephrol., 2020, 16(5), 269-288. doi: 10.1038/s41581-019-0248-y PMID: 32060481
  20. Linkermann, A.; Stockwell, B.R.; Krautwald, S.; Anders, H.J. Regulated cell death and inflammation: An auto-amplification loop causes organ failure. Nat. Rev. Immunol., 2014, 14(11), 759-767. doi: 10.1038/nri3743 PMID: 25324125
  21. Rayego-Mateos, S; Campillo, S; Rodrigues-Diez, RR; Tejera-Muñoz, A; Marquez-Exposito, L; Goldschmeding, R Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin. Sci., 2021, 135(16), 1999-2029. doi: 10.1042/CS20201016
  22. Melk, A.; Schmidt, B.M.W.; Takeuchi, O.; Sawitzki, B.; Rayner, D.C.; Halloran, P.F. Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int., 2004, 65(2), 510-520. doi: 10.1111/j.1523-1755.2004.00438.x PMID: 14717921
  23. Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol., 2014, 15(7), 482-496. doi: 10.1038/nrm3823 PMID: 24954210
  24. Knoppert, S.N.; Valentijn, F.A.; Nguyen, T.Q.; Goldschmeding, R.; Falke, L.L. Cellular senescence and the kidney: Potential therapeutic targets and tools. Front. Pharmacol., 2019, 10, 770. doi: 10.3389/fphar.2019.00770 PMID: 31354486
  25. Valentijn, F.A.; Falke, L.L.; Nguyen, T.Q.; Goldschmeding, R. Cellular senescence in the aging and diseased kidney. J. Cell Commun. Signal., 2018, 12(1), 69-82. doi: 10.1007/s12079-017-0434-2 PMID: 29260442
  26. Komiya, Y.; Habas, R. Wnt signal transduction pathways. Organogenesis, 2008, 4(2), 68-75. doi: 10.4161/org.4.2.5851 PMID: 19279717
  27. Tai, D.; Wells, K.; Arcaroli, J.; Vanderbilt, C.; Aisner, D.L.; Messersmith, W.A.; Lieu, C.H. Targeting the WNT signaling pathway in cancer therapeutics. Oncologist, 2015, 20(10), 1189-1198. doi: 10.1634/theoncologist.2015-0057 PMID: 26306903
  28. Steinhart, Z.; Angers, S. Wnt signaling in development and tissue homeostasis. Development, 2018, 145(11), dev146589. doi: 10.1242/dev.146589 PMID: 29884654
  29. Tan, R.J.; Zhou, D.; Zhou, L.; Liu, Y. Wnt/beta-catenin signaling and kidney fibrosis. Kidney Int. Suppl., 2014, 4(1), 84-90.
  30. Shkreli, M.; Sarin, K.Y.; Pech, M.F.; Papeta, N.; Chang, W.; Brockman, S.A.; Cheung, P.; Lee, E.; Kuhnert, F.; Olson, J.L.; Kuo, C.J.; Gharavi, A.G.; D’Agati, V.D.; Artandi, S.E. Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nat. Med., 2012, 18(1), 111-119. doi: 10.1038/nm.2550 PMID: 22138751
  31. Brossa, A.; Papadimitriou, E.; Collino, F.; Incarnato, D.; Oliviero, S.; Camussi, G.; Bussolati, B. Role of CD133 molecule in wnt response and renal repair. Stem Cells Transl. Med., 2018, 7(3), 283-294. doi: 10.1002/sctm.17-0158 PMID: 29431914
  32. Dai, C.; Stolz, D.B.; Kiss, L.P.; Monga, S.P.; Holzman, L.B.; Liu, Y. Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. J. Am. Soc. Nephrol., 2009, 20(9), 1997-2008. doi: 10.1681/ASN.2009010019 PMID: 19628668
  33. Terada, Y.; Tanaka, H.; Okado, T.; Shimamura, H.; Inoshita, S.; Kuwahara, M.; Sasaki, S. Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats. J. Am. Soc. Nephrol., 2003, 14(5), 1223-1233. doi: 10.1097/01.ASN.0000060577.94532.06 PMID: 12707392
  34. Lin, S.L.; Li, B.; Rao, S.; Yeo, E.J.; Hudson, T.E.; Nowlin, B.T.; Pei, H.; Chen, L.; Zheng, J.J.; Carroll, T.J.; Pollard, J.W.; McMahon, A.P.; Lang, R.A.; Duffield, J.S. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc. Natl. Acad. Sci., 2010, 107(9), 4194-4199. doi: 10.1073/pnas.0912228107 PMID: 20160075
  35. Zhou, D.; Li, Y.; Lin, L.; Zhou, L.; Igarashi, P.; Liu, Y. Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice. Kidney Int., 2012, 82(5), 537-547. doi: 10.1038/ki.2012.173 PMID: 22622501
  36. Yamamoto, S.; Schulze, K.L.; Bellen, H.J. Introduction to Notch signaling. Methods Mol. Biol., 2014, 1187, 1-14. doi: 10.1007/978-1-4939-1139-4_1 PMID: 25053477
  37. Penton, A.L.; Leonard, L.D.; Spinner, N.B. Notch signaling in human development and disease. Semin. Cell Dev. Biol., 2012, 23(4), 450-457. doi: 10.1016/j.semcdb.2012.01.010 PMID: 22306179
  38. Sirin, Y.; Susztak, K. Notch in the kidney: Development and disease. J. Pathol., 2012, 226(2), 394-403. doi: 10.1002/path.2967 PMID: 21952830
  39. Chung, E.; Deacon, P.; Marable, S.; Shin, J.; Park, J.S. Notch signaling promotes nephrogenesis by downregulating Six2. Development, 2016, 143(21), dev.143503. doi: 10.1242/dev.143503 PMID: 27633993
  40. Bonegio, R.; Susztak, K. Notch signaling in diabetic nephropathy. Exp. Cell Res., 2012, 318(9), 986-992. doi: 10.1016/j.yexcr.2012.02.036 PMID: 22414874
  41. Murea, M.; Park, J.K.; Sharma, S.; Kato, H.; Gruenwald, A.; Niranjan, T.; Si, H.; Thomas, D.B.; Pullman, J.M.; Melamed, M.L.; Susztak, K. Expression of Notch pathway proteins correlates with albuminuria, glomerulosclerosis, and renal function. Kidney Int., 2010, 78(5), 514-522. doi: 10.1038/ki.2010.172 PMID: 20531454
  42. Bhagat, T.D.; Zou, Y.; Huang, S.; Park, J.; Palmer, M.B.; Hu, C.; Li, W.; Shenoy, N.; Giricz, O.; Choudhary, G.; Yu, Y.; Ko, Y.A.; Izquierdo, M.C.; Park, A.S.D.; Vallumsetla, N.; Laurence, R.; Lopez, R.; Suzuki, M.; Pullman, J.; Kaner, J.; Gartrell, B.; Hakimi, A.A.; Greally, J.M.; Patel, B.; Benhadji, K.; Pradhan, K.; Verma, A.; Susztak, K. Notch pathway is activated via genetic and epigenetic alterations and is a therapeutic target in clear cell renal cancer. J. Biol. Chem., 2017, 292(3), 837-846. doi: 10.1074/jbc.M116.745208 PMID: 27909050
  43. Xiao, W.; Gao, Z.; Duan, Y.; Yuan, W.; Ke, Y. Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma. J. Exp. Clin. Cancer Res., 2017, 36(1), 41. doi: 10.1186/s13046-017-0507-3 PMID: 28279221
  44. Ma, Q.; Wang, Y.; Zhang, T.; Zuo, W. Notch-mediated Sox9 + cell activation contributes to kidney repair after partial nephrectomy. Life Sci., 2018, 193, 104-109. doi: 10.1016/j.lfs.2017.11.041 PMID: 29198839
  45. Gupta, S.; Li, S.; Abedin, M.J.; Wang, L.; Schneider, E.; Najafian, B.; Rosenberg, M. Effect of Notch activation on the regenerative response to acute renal failure. Am. J. Physiol. Renal Physiol., 2010, 298(1), F209-F215. doi: 10.1152/ajprenal.00451.2009 PMID: 19828677
  46. Kramer, J.; Schwanbeck, R.; Pagel, H.; Cakiroglu, F.; Rohwedel, J.; Just, U. Inhibition of notch signaling ameliorates acute kidney failure and downregulates platelet-derived growth factor receptor β in the mouse model. Cells Tissues Organs, 2016, 201(2), 109-117. doi: 10.1159/000442463 PMID: 26939110
  47. Turner, N.; Grose, R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer, 2010, 10(2), 116-129. doi: 10.1038/nrc2780 PMID: 20094046
  48. Katoh, M. Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol. Sci., 2016, 37(12), 1081-1096. doi: 10.1016/j.tips.2016.10.003 PMID: 27992319
  49. Bates, C.M. Role of fibroblast growth factor receptor signaling in kidney development. Pediatr. Nephrol., 2011, 26(9), 1373-1379. doi: 10.1007/s00467-010-1747-z PMID: 21222001
  50. Gallegos, T.F.; Kamei, C.N.; Rohly, M.; Drummond, I.A. Fibroblast growth factor signaling mediates progenitor cell aggregation and nephron regeneration in the adult zebrafish kidney. Dev. Biol., 2019, 454(1), 44-51. doi: 10.1016/j.ydbio.2019.06.011 PMID: 31220433
  51. Qiao, J.; Bush, K.T.; Steer, D.L.; Stuart, R.O.; Sakurai, H.; Wachsman, W.; Nigam, S.K. Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mech. Dev., 2001, 109(2), 123-135. doi: 10.1016/S0925-4773(01)00592-5 PMID: 11731227
  52. Ichimura, T.; Maier, J.A.; Maciag, T.; Zhang, G.; Stevens, J.L. FGF-1 in normal and regenerating kidney: Expression in mononuclear, interstitial, and regenerating epithelial cells. Am. J. Physiol., 1995, 269(5 Pt 2), F653-F662. PMID: 7503231
  53. Kirov, A.; Duarte, M.; Guay, J.; Karolak, M.; Yan, C.; Oxburgh, L.; Prudovsky, I. Transgenic expression of nonclassically secreted FGF suppresses kidney repair. PLoS One, 2012, 7(5), e36485. doi: 10.1371/journal.pone.0036485 PMID: 22606265
  54. Villanueva, S.; Cespedes, C.; Gonzalez, A.; Vio, C.P. bFGF induces an earlier expression of nephrogenic proteins after ischemic acute renal failure. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, 291(6), R1677-R1687. doi: 10.1152/ajpregu.00023.2006 PMID: 16873559
  55. Vasko, R.; Koziolek, M.; Ikehata, M.; Rastaldi, M.P.; Jung, K.; Schmid, H.; Kretzler, M.; Müller, G.A.; Strutz, F. Role of basic fibroblast growth factor (FGF-2) in diabetic nephropathy and mechanisms of its induction by hyperglycemia in human renal fibroblasts. Am. J. Physiol. Renal Physiol., 2009, 296(6), F1452-F1463. doi: 10.1152/ajprenal.90352.2008 PMID: 19279131
  56. Tan, X.H.; Zheng, X.M.; Yu, L.X.; He, J.; Zhu, H.M.; Ge, X.P.; Ren, X.L.; Ye, F.Q.; Bellusci, S.; Xiao, J.; Li, X.K.; Zhang, J.S. Fibroblast growth factor 2 protects against renal ischaemia/reperfusion injury by attenuating mitochondrial damage and proinflammatory signalling. J. Cell. Mol. Med., 2017, 21(11), 2909-2925. doi: 10.1111/jcmm.13203 PMID: 28544332
  57. Mattison, P.C.; Soler-García, Á.A.; Das, J.R.; Jerebtsova, M.; Perazzo, S.; Tang, P.; Ray, P.E. Role of circulating fibroblast growth factor-2 in lipopolysaccharide-induced acute kidney injury in mice. Pediatr. Nephrol., 2012, 27(3), 469-483. doi: 10.1007/s00467-011-2001-z PMID: 21959768
  58. Tan, X.; Zhu, H.; Tao, Q.; Guo, L.; Jiang, T.; Xu, L.; Yang, R.; Wei, X.; Wu, J.; Li, X.; Zhang, J.S. FGF10 protects against renal ischemia/reperfusion injury by regulating autophagy and inflammatory signaling. Front. Genet., 2018, 9, 556. doi: 10.3389/fgene.2018.00556 PMID: 30532765
  59. Christov, M.; Neyra, J.A.; Gupta, S.; Leaf, D.E. Fibroblast Growth Factor 23 and Klotho in AKI. Semin. Nephrol., 2019, 39(1), 57-75. doi: 10.1016/j.semnephrol.2018.10.005 PMID: 30606408
  60. Kim, H.W.; Lee, J.E.; Cha, J.J.; Hyun, Y.Y.; Kim, J.E.; Lee, M.H.; Song, H.K.; Nam, D.H.; Han, J.Y.; Han, S.Y.; Han, K.H.; Kang, Y.S.; Cha, D.R. Fibroblast growth factor 21 improves insulin resistance and ameliorates renal injury in db/db mice. Endocrinology, 2013, 154(9), 3366-3376. doi: 10.1210/en.2012-2276 PMID: 23825123
  61. Brazil, D.P.; Church, R.H.; Surae, S.; Godson, C.; Martin, F. BMP signalling: Agony and antagony in the family. Trends Cell Biol., 2015, 25(5), 249-264. doi: 10.1016/j.tcb.2014.12.004 PMID: 25592806
  62. Miyazono, K.; Maeda, S.; Imamura, T. BMP receptor signaling: Transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev., 2005, 16(3), 251-263. doi: 10.1016/j.cytogfr.2005.01.009 PMID: 15871923
  63. Nishinakamura, R.; Sakaguchi, M. BMP signaling and its modifiers in kidney development. Pediatr. Nephrol., 2014, 29(4), 681-686. doi: 10.1007/s00467-013-2671-9 PMID: 24217785
  64. Wetzel, P.; Haag, J.; Câmpean, V.; Goldschmeding, R.; Atalla, A.; Amann, K.; Aigner, T. Bone morphogenetic protein-7 expression and activity in the human adult normal kidney is predominently localized to the distal nephron. Kidney Int., 2006, 70(4), 717-723. doi: 10.1038/sj.ki.5001653 PMID: 16807538
  65. Ivanac-Janković, R.; Ćorić, M.; Furić-Čunko, V.; Lovičić, V.; Bašić-Jukić, N.; Kes, P. Bmp-7 protein expression is downregulated in human diabetic nephropathy. Acta Clin. Croat., 2015, 54(2), 164-168. PMID: 26415312
  66. Nichols, L.A.; Slusarz, A.; Grunz-Borgmann, E.A.; Parrish, A.R. α(E)-catenin regulates BMP-7 expression and migration in renal epithelial cells. Am. J. Nephrol., 2014, 39(5), 409-417. doi: 10.1159/000362250 PMID: 24818804
  67. Zeisberg, M.; Hanai, J.; Sugimoto, H.; Mammoto, T.; Charytan, D.; Strutz, F.; Kalluri, R. BMP-7 counteracts TGF-β1–induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med., 2003, 9(7), 964-968. doi: 10.1038/nm888 PMID: 12808448
  68. Higgins, D.F.; Ewart, L.M.; Masterson, E.; Tennant, S.; Grebnev, G.; Prunotto, M.; Pomposiello, S.; Conde-Knape, K.; Martin, F.M.; Godson, C. BMP7-induced-Pten inhibits Akt and prevents renal fibrosis. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(12), 3095-3104. doi: 10.1016/j.bbadis.2017.09.011 PMID: 28923783
  69. Yao, E.; Chuang, P.T. Hedgehog signaling: From basic research to clinical applications. J. Formos. Med. Assoc., 2015, 114(7), 569-576. doi: 10.1016/j.jfma.2015.01.005 PMID: 25701396
  70. Le, H.; Kleinerman, R.; Lerman, O.Z.; Brown, D.; Galiano, R.; Gurtner, G.C.; Warren, S.M.; Levine, J.P.; Saadeh, P.B. Hedgehog signaling is essential for normal wound healing. Wound Repair Regen., 2008, 16(6), 768-773. doi: 10.1111/j.1524-475X.2008.00430.x PMID: 19128247
  71. Varjosalo, M.; Taipale, J. Hedgehog: Functions and mechanisms. Genes Dev., 2008, 22(18), 2454-2472. doi: 10.1101/gad.1693608 PMID: 18794343
  72. Robbins, D.J.; Fei, D.L.; Riobo, N.A. The Hedgehog signal transduction network. Sci. Signal., 2012, 5(246), re6. doi: 10.1126/scisignal.2002906 PMID: 23074268
  73. Zhou, D.; Fu, H.; Liu, S.; Zhang, L.; Xiao, L.; Bastacky, S.I.; Liu, Y. Early activation of fibroblasts is required for kidney repair and regeneration after injury. FASEB J., 2019, 33(11), 12576-12587. doi: 10.1096/fj.201900651RR PMID: 31461626
  74. Ding, H.; Zhou, D.; Hao, S.; Zhou, L.; He, W.; Nie, J.; Hou, F.F.; Liu, Y. Sonic hedgehog signaling mediates epithelial-mesenchymal communication and promotes renal fibrosis. J. Am. Soc. Nephrol., 2012, 23(5), 801-813. doi: 10.1681/ASN.2011060614 PMID: 22302193
  75. Zhou, D.; Li, Y.; Zhou, L.; Tan, R.J.; Xiao, L.; Liang, M.; Hou, F.F.; Liu, Y. Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J. Am. Soc. Nephrol., 2014, 25(10), 2187-2200. doi: 10.1681/ASN.2013080893 PMID: 24744439
  76. Fabian, S.L.; Penchev, R.R.; St-Jacques, B.; Rao, A.N.; Sipilä, P.; West, K.A.; McMahon, A.P.; Humphreys, B.D. Hedgehog-Gli pathway activation during kidney fibrosis. Am. J. Pathol., 2012, 180(4), 1441-1453. doi: 10.1016/j.ajpath.2011.12.039 PMID: 22342522
  77. Kramann, R.; Fleig, S.V.; Schneider, R.K.; Fabian, S.L.; DiRocco, D.P.; Maarouf, O.; Wongboonsin, J.; Ikeda, Y.; Heckl, D.; Chang, S.L.; Rennke, H.G.; Waikar, S.S.; Humphreys, B.D. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J. Clin. Invest., 2015, 125(8), 2935-2951. doi: 10.1172/JCI74929 PMID: 26193634
  78. Bai, Y.; Lu, H.; Lin, C.; Xu, Y.; Hu, D.; Liang, Y.; Hong, W.; Chen, B. Sonic hedgehog-mediated epithelial-mesenchymal transition in renal tubulointerstitial fibrosis. Int. J. Mol. Med., 2016, 37(5), 1317-1327. doi: 10.3892/ijmm.2016.2546 PMID: 27035418
  79. Teicher, B.A.; Fricker, S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res., 2010, 16(11), 2927-2931. doi: 10.1158/1078-0432.CCR-09-2329 PMID: 20484021
  80. Petit, I.; Jin, D.; Rafii, S. The SDF-1–CXCR4 signaling pathway: A molecular hub modulating neo-angiogenesis. Trends Immunol., 2007, 28(7), 299-307. doi: 10.1016/j.it.2007.05.007 PMID: 17560169
  81. Chen, L.H.; Advani, S.L.; Thai, K.; Kabir, M.G.; Sood, M.M.; Gibson, I.W.; Yuen, D.A.; Connelly, K.A.; Marsden, P.A.; Kelly, D.J.; Gilbert, R.E.; Advani, A. SDF-1/CXCR4 signaling preserves microvascular integrity and renal function in chronic kidney disease. PLoS One, 2014, 9(3), e92227. doi: 10.1371/journal.pone.0092227 PMID: 24637920
  82. Tögel, F.; Isaac, J.; Hu, Z.; Weiss, K.; Westenfelder, C. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int., 2005, 67(5), 1772-1784. doi: 10.1111/j.1523-1755.2005.00275.x PMID: 15840024
  83. Stokman, G.; Stroo, I.; Claessen, N.; Teske, G.J.D.; Florquin, S.; Leemans, J.C. SDF-1 provides morphological and functional protection against renal ischaemia/reperfusion injury. Nephrol. Dial. Transplant., 2010, 25(12), 3852-3859. doi: 10.1093/ndt/gfq311 PMID: 20519232
  84. Ge, G.; Zhang, H.; Li, R.; Liu, H. The function of SDF-1-CXCR4 axis in sp cells-mediated protective role for renal ischemia/reperfusion injury by SHH/GLI1-ABCG2 pathway. Shock, 2017, 47(2), 251-259. doi: 10.1097/SHK.0000000000000694 PMID: 27454381
  85. Ghyselinck, N.B.; Duester, G. Retinoic acid signaling pathways. Development, 2019, 146(13), dev167502. doi: 10.1242/dev.167502 PMID: 31273085
  86. Gudas, L.J. Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2012, 1821(1), 213-221. doi: 10.1016/j.bbalip.2011.08.002 PMID: 21855651
  87. Wagner, J.U.C.D.R.G.E.N.; Dechow, C.; Morath, C.; Lehrke, I.; Amann, K.; Waldherr, R.U.C.D.D.I.G.E.R.; Floege, J.U.C.D.R.G.E.N.; Ritz, E. Retinoic acid reduces glomerular injury in a rat model of glomerular damage. J. Am. Soc. Nephrol., 2000, 11(8), 1479-1487. doi: 10.1681/ASN.V1181479 PMID: 10906161
  88. Chiba, T.; Skrypnyk, N.I.; Skvarca, L.B.; Penchev, R.; Zhang, K.X.; Rochon, E.R.; Fall, J.L.; Paueksakon, P.; Yang, H.; Alford, C.E.; Roman, B.L.; Zhang, M.Z.; Harris, R.; Hukriede, N.A.; de Caestecker, M.P. Retinoic acid signaling coordinates macrophage-dependent injury and repair after AKI. J. Am. Soc. Nephrol., 2016, 27(2), 495-508. doi: 10.1681/ASN.2014111108 PMID: 26109319
  89. Han, S.Y.; So, G.A.; Jee, Y.H.; Han, K.H.; Kang, Y.S.; Kim, H.K.; Kang, S.W.; Han, D.S.; Han, J.Y.; Cha, D.R. Effect of retinoic acid in experimental diabetic nephropathy. Immunol. Cell Biol., 2004, 82(6), 568-576. doi: 10.1111/j.1440-1711.2004.01287.x PMID: 15550114
  90. Ratnam, K.K.; Feng, X.; Chuang, P.Y.; Verma, V.; Lu, T.C.; Wang, J.; Jin, Y.; Farias, E.F.; Napoli, J.L.; Chen, N.; Kaufman, L.; Takano, T.; D’Agati, V.D.; Klotman, P.E.; He, J.C. Role of the retinoic acid receptor-α in HIV-associated nephropathy. Kidney Int., 2011, 79(6), 624-634. doi: 10.1038/ki.2010.470 PMID: 21150871
  91. He, J.C.; Lu, T.C.; Fleet, M.; Sunamoto, M.; Husain, M.; Fang, W.; Neves, S.; Chen, Y.; Shankland, S.; Iyengar, R.; Klotman, P.E. Retinoic acid inhibits HIV-1-induced podocyte proliferation through the cAMP pathway. J. Am. Soc. Nephrol., 2007, 18(1), 93-102. doi: 10.1681/ASN.2006070727 PMID: 17182884
  92. Lin, F.; Xu, L.; Yuan, R.; Han, S.; Xie, J.; Jiang, K.; Li, B.; Yu, W.; Rao, T.; Zhou, X.; Cheng, F. Identification of inflammatory response and alternative splicing in acute kidney injury and experimental verification of the involvement of RNA-binding protein RBFOX1 in this disease. Int. J. Mol. Med., 2022, 49(3), 32. doi: 10.3892/ijmm.2022.5087 PMID: 35059728
  93. Li, T.; Yu, C.; Zhuang, S. Histone methyltransferase EZH2: A potential therapeutic target for kidney diseases. Front. Physiol., 2021, 12, 640700. doi: 10.3389/fphys.2021.640700 PMID: 33679454
  94. Liu, Z.; Wang, Y.; Shu, S.; Cai, J.; Tang, C.; Dong, Z. Non-coding RNAs in kidney injury and repair. Am. J. Physiol. Cell Physiol., 2019, 317(2), C177-C188. doi: 10.1152/ajpcell.00048.2019 PMID: 30969781
  95. Cech, T.R.; Steitz, J.A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell, 2014, 157(1), 77-94. doi: 10.1016/j.cell.2014.03.008 PMID: 24679528
  96. Ren, G.L.; Zhu, J.; Li, J.; Meng, X.M. Noncoding RNAs in acute kidney injury. J. Cell. Physiol., 2019, 234(3), 2266-2276. doi: 10.1002/jcp.27203 PMID: 30146769
  97. Wei, Q.; Bhatt, K.; He, H.Z.; Mi, Q.S.; Haase, V.H.; Dong, Z. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol., 2010, 21(5), 756-761. doi: 10.1681/ASN.2009070718 PMID: 20360310
  98. Lan, Y.F.; Chen, H.H.; Lai, P.F.; Cheng, C.F.; Huang, Y.T.; Lee, Y.C.; Chen, T.W.; Lin, H. MicroRNA-494 reduces ATF3 expression and promotes AKI. J. Am. Soc. Nephrol., 2012, 23(12), 2012-2023. doi: 10.1681/ASN.2012050438 PMID: 23160513
  99. Yang, C.; Yang, C.; Huang, Z.; Zhang, J.; Chen, N.; Guo, Y.; Zahoor, A.; Deng, G. Reduced expression of MiR-125a-5p aggravates LPS-induced experimental acute kidney injury pathology by targeting TRAF6. Life Sci., 2022, 288, 119657. doi: 10.1016/j.lfs.2021.119657 PMID: 34048808
  100. Huang, X; Hou, X; Chuan, L; Wei, S; Wang, J; Yang, X miR-129-5p alleviates LPS-induced acute kidney injury via targeting HMGB1/TLRs/NF-kappaB pathway. Int. Immunopharmacol., 2020, 89((Pt A)), 107016.
  101. zhang, L.; He, S.; Wang, Y.; Zhu, X.; Shao, W.; Xu, Q.; Cui, Z. miRNA-20a suppressed lipopolysaccharide-induced HK-2 cells injury via NFκB and ERK1/2 signaling by targeting CXCL12. Mol. Immunol., 2020, 118, 117-123. doi: 10.1016/j.molimm.2019.12.009 PMID: 31874343
  102. Iskander, K.N.; Osuchowski, M.F.; Stearns-Kurosawa, D.J.; Kurosawa, S.; Stepien, D.; Valentine, C.; Remick, D.G. Sepsis: Multiple abnormalities, heterogeneous responses, and evolving understanding. Physiol. Rev., 2013, 93(3), 1247-1288. doi: 10.1152/physrev.00037.2012 PMID: 23899564
  103. Safari, S.; Hashemi, B.; Forouzanfar, M.M.; Shahhoseini, M.; Heidari, M. Epidemiology and outcome of patients with acute kidney injury in emergency department; a cross-sectional study. emergency, 2018, 6(1), e30. PMID: 30009232
  104. Colbert, J.F.; Ford, J.A.; Haeger, S.M.; Yang, Y.; Dailey, K.L.; Allison, K.C.; Neudecker, V.; Evans, C.M.; Richardson, V.L.; Brodsky, K.S.; Faubel, S.; Eltzschig, H.K.; Schmidt, E.P.; Ginde, A.A. A model-specific role of microRNA-223 as a mediator of kidney injury during experimental sepsis. Am. J. Physiol. Renal Physiol., 2017, 313(2), F553-F559. doi: 10.1152/ajprenal.00493.2016 PMID: 28515178
  105. Bhatt, K.; Wei, Q.; Pabla, N.; Dong, G.; Mi, Q.S.; Liang, M.; Mei, C.; Dong, Z. MicroRNA-687 induced by hypoxia-inducible factor-1 targets phosphatase and tensin homolog in renal ischemia-reperfusion injury. J. Am. Soc. Nephrol., 2015, 26(7), 1588-1596. doi: 10.1681/ASN.2014050463 PMID: 25587068
  106. Lorenzen, J.M.; Kaucsar, T.; Schauerte, C.; Schmitt, R.; Rong, S.; Hübner, A.; Scherf, K.; Fiedler, J.; Martino, F.; Kumarswamy, R.; Kölling, M.; Sörensen, I.; Hinz, H.; Heineke, J.; van Rooij, E.; Haller, H.; Thum, T. MicroRNA-24 antagonism prevents renal ischemia reperfusion injury. J. Am. Soc. Nephrol., 2014, 25(12), 2717-2729. doi: 10.1681/ASN.2013121329 PMID: 24854275
  107. Wei, Q.; Liu, Y.; Liu, P.; Hao, J.; Liang, M.; Mi, Q.; Chen, J.K.; Dong, Z. MicroRNA-489 induction by hypoxia–inducible factor–1 protects against ischemic kidney injury. J. Am. Soc. Nephrol., 2016, 27(9), 2784-2796. doi: 10.1681/ASN.2015080870 PMID: 26975439
  108. Hao, J.; Wei, Q.; Mei, S.; Li, L.; Su, Y.; Mei, C.; Dong, Z. Induction of microRNA-17-5p by p53 protects against renal ischemia-reperfusion injury by targeting death receptor 6. Kidney Int., 2017, 91(1), 106-118. doi: 10.1016/j.kint.2016.07.017 PMID: 27622990
  109. Amrouche, L.; Desbuissons, G.; Rabant, M.; Sauvaget, V.; Nguyen, C.; Benon, A.; Barre, P.; Rabaté, C.; Lebreton, X.; Gallazzini, M.; Legendre, C.; Terzi, F.; Anglicheau, D. MicroRNA-146a in human and experimental ischemic AKI: CXCL8-dependent mechanism of action. J. Am. Soc. Nephrol., 2017, 28(2), 479-493. doi: 10.1681/ASN.2016010045 PMID: 27444565
  110. Xu, X.; Kriegel, A.J.; Liu, Y.; Usa, K.; Mladinov, D.; Liu, H.; Fang, Y.; Ding, X.; Liang, M. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int., 2012, 82(11), 1167-1175. doi: 10.1038/ki.2012.241 PMID: 22785173
  111. Wei, Q.; Sun, H.; Song, S.; Liu, Y.; Liu, P.; Livingston, M.J.; Wang, J.; Liang, M.; Mi, Q.S.; Huo, Y.; Nahman, N.S.; Mei, C.; Dong, Z. MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury. J. Clin. Invest., 2018, 128(12), 5448-5464. doi: 10.1172/JCI121859 PMID: 30325740
  112. Bijkerk, R.; van Solingen, C.; de Boer, H.C.; van der Pol, P.; Khairoun, M.; de Bruin, R.G.; van Oeveren-Rietdijk, A.M.; Lievers, E.; Schlagwein, N.; van Gijlswijk, D.J.; Roeten, M.K.; Neshati, Z.; de Vries, A.A.F.; Rodijk, M.; Pike-Overzet, K.; van den Berg, Y.W.; van der Veer, E.P.; Versteeg, H.H.; Reinders, M.E.J.; Staal, F.J.T.; van Kooten, C.; Rabelink, T.J.; van Zonneveld, A.J. Hematopoietic microRNA-126 protects against renal ischemia/reperfusion injury by promoting vascular integrity. J. Am. Soc. Nephrol., 2014, 25(8), 1710-1722. doi: 10.1681/ASN.2013060640 PMID: 24610930
  113. Qiu, Z.; Zhong, Z.; Zhang, Y.; Tan, H.; Deng, B.; Meng, G. Human umbilical cord mesenchymal stem cell-derived exosomal miR-335-5p attenuates the inflammation and tubular epithelial–myofibroblast transdifferentiation of renal tubular epithelial cells by reducing ADAM19 protein levels. Stem Cell Res. Ther., 2022, 13(1), 373. doi: 10.1186/s13287-022-03071-z PMID: 35902972
  114. Hao, J. MicroRNA-375 is induced in cisplatin nephrotoxicity to repress hepatocyte nuclear factor 1-β. J. Biol. Chem., 2017, 292(11), 4571-4582.
  115. Bhatt, K.; Zhou, L.; Mi, Q.S.; Huang, S.; She, J.X.; Dong, Z. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol. Med., 2010, 16(9-10), 409-416. doi: 10.2119/molmed.2010.00002 PMID: 20386864
  116. Lee, C.G.; Kim, J.G.; Kim, H.J.; Kwon, H.K.; Cho, I.J.; Choi, D.W.; Lee, W.H.; Kim, W.D.; Hwang, S.J.; Choi, S.; Kim, S.G. Discovery of an integrative network of microRNAs and transcriptomics changes for acute kidney injury. Kidney Int., 2014, 86(5), 943-953. doi: 10.1038/ki.2014.117 PMID: 24759152
  117. Pellegrini, K.L.; Han, T.; Bijol, V.; Saikumar, J.; Craciun, F.L.; Chen, W.W.; Fuscoe, J.C.; Vaidya, V.S. MicroRNA-155 deficient mice experience heightened kidney toxicity when dosed with cisplatin. Toxicol. Sci., 2014, 141(2), 484-492. doi: 10.1093/toxsci/kfu143 PMID: 25015656
  118. Qin, W.; Xie, W.; Yang, X.; Xia, N.; Yang, K. Inhibiting microRNA-449 attenuates cisplatin-induced injury in NRK-52E cells possibly via regulating the SIRT1/P53/BAX pathway. Med. Sci. Monit., 2016, 22, 818-823. doi: 10.12659/MSM.897187 PMID: 26968221
  119. Guo, Y.; Ni, J.; Chen, S.; Bai, M.; Lin, J.; Ding, G.; Zhang, Y.; Sun, P.; Jia, Z.; Huang, S.; Yang, L.; Zhang, A. MicroRNA-709 mediates acute tubular injury through effects on mitochondrial function. J. Am. Soc. Nephrol., 2018, 29(2), 449-461. doi: 10.1681/ASN.2017040381 PMID: 29042455
  120. Joo, M; Lee, C; Koo, J; Kim, S. miR-125b transcriptionally increased by Nrf2 inhibits AhR repressor, which protects kidney from cisplatin-induced injury. Cell Death Dis., 2013, 4(10), e899.
  121. Wang, S.; Zhang, Z.; Wang, J.; Miao, H. MiR-107 induces TNF-α secretion in endothelial cells causing tubular cell injury in patients with septic acute kidney injury. Biochem. Biophys. Res. Commun., 2017, 483(1), 45-51. doi: 10.1016/j.bbrc.2017.01.013 PMID: 28063928
  122. Mai, H.; Huang, Z.; Zhang, X.; Zhang, Y.; Chen, J.; Chen, M.; Zhang, Y.; Song, Y.; Wang, B.; Lin, Y.; Gu, S. Protective effects of endothelial progenitor cell microvesicles carrying miR-98-5p on angiotensin II-induced rat kidney cell injury. Exp. Ther. Med., 2022, 24(5), 702. doi: 10.3892/etm.2022.11638 PMID: 36277153
  123. Shi, W.; Zhou, X.; Li, X.; Peng, X.; Chen, G.; Li, Y.; Zhang, C.; Yu, H.; Feng, Z.; Gou, X.; Fan, J. Human umbilical cord mesenchymal stem cells protect against renal ischemia-reperfusion injury by secreting extracellular vesicles loaded with miR-148b-3p that target pyruvate dehydrogenase kinase 4 to inhibit endoplasmic reticulum stress at the reperfusion stages. Int. J. Mol. Sci., 2023, 24(10), 8899. doi: 10.3390/ijms24108899 PMID: 37240246
  124. Ji, X.; Liu, X.; Li, X.; Du, X.; Fan, L. MircoRNA-322-5p promotes lipopolysaccharide-induced acute kidney injury mouse models and mouse primary proximal renal tubular epithelial cell injury by regulating T-box transcription factor 21/mitogen-activated protein kinase/extracellular signal-related kinase axis. Nefrologia, 2023, S2013-2514(23), 00079-2.
  125. Zhang, Y.; Lv, X.; Fan, Q.; Chen, F.; Wan, Z.; Nibaruta, J.; Wang, H.; Wang, X.; Yuan, Y.; Guo, W.; Leng, Y. miRNA155-5P participated in DDX3X targeted regulation of pyroptosis to attenuate renal ischemia/reperfusion injury. Aging, 2023, 15(9), 3586-3597. doi: 10.18632/aging.204692 PMID: 37142295
  126. Chen, T.; Jiang, Z.; Zhang, H.; Yang, R.; Wu, Y.; Guo, Y. MiRNA-200b level in peripheral blood predicts renal interstitial injury in patients with diabetic nephropathy. J. Med. Biochem., 2023, 42(2), 289-295. doi: 10.5937/jomb0-40379 PMID: 36987413
  127. Chen, Y.; Zhang, C.; Du, Y.; Yang, X.; Liu, M.; Yang, W.; Lei, G.; Wang, G. Exosomal transfer of microRNA-590-3p between renal tubular epithelial cells after renal ischemia-reperfusion injury regulates autophagy by targeting TRAF6. Chin. Med. J., 2022, 135(20), 2467-2477. doi: 10.1097/CM9.0000000000002377 PMID: 36449688
  128. Zhang, M.; Zhi, D.; Lin, J.; Liu, P.; Wang, Y.; Duan, M. miR-181a-5p inhibits pyroptosis in sepsis-induced acute kidney injury through downregulation of NEK7. J. Immunol. Res., 2022, 2022, 1-13. doi: 10.1155/2022/1825490 PMID: 35991122
  129. Ma, W.; Miao, X.; Xia, F.; Ruan, C.; Tao, D.; Li, B. The potential of miR-370-3p and miR-495-3p serving as biomarkers for sepsis-associated acute kidney injury. Comput. Math. Methods Med., 2022, 2022, 1-5. doi: 10.1155/2022/2439509 PMID: 35860182
  130. Yin, Q.; Zhao, Y.J.; Ni, W.J.; Tang, T.T.; Wang, Y.; Cao, J.Y.; Yin, D.; Wen, Y.; Li, Z.L.; Zhang, Y.L.; Jiang, W.; Zhang, Y.; Lu, X.Y.; Zhang, A.Q.; Gan, W.H.; Lv, L.L.; Liu, B.C.; Wang, B. MiR-155 deficiency protects renal tubular epithelial cells from telomeric and genomic DNA damage in cisplatin-induced acute kidney injury. Theranostics, 2022, 12(10), 4753-4766. doi: 10.7150/thno.72456 PMID: 35832084
  131. Zhang, Z.; Chen, H.; Zhou, L.; Li, C.; Lu, G.; Wang, L. Macrophage-derived exosomal miRNA-155 promotes tubular injury in ischemia-induced acute kidney injury. Int. J. Mol. Med., 2022, 50(3), 116. doi: 10.3892/ijmm.2022.5172 PMID: 35795997
  132. Wang, X.; Jia, P.; Ren, T.; Zou, Z.; Xu, S.; Zhang, Y.; Shi, Y.; Bao, S.; Li, Y.; Fang, Y.; Ding, X. MicroRNA-382 promotes M2-like macrophage via the SIRP-α/STAT3 signaling pathway in aristolochic acid-induced renal fibrosis. Front. Immunol., 2022, 13, 864984. doi: 10.3389/fimmu.2022.864984 PMID: 35585990
  133. Ding, G.; an, J.; Li, L. MicroRNA-103a-3p enhances sepsis-induced acute kidney injury via targeting CXCL12. Bioengineered, 2022, 13(4), 10288-10298. doi: 10.1080/21655979.2022.2062195 PMID: 35510354
  134. Ding, Y.; Guo, F.; Zhu, T.; Li, J.; Gu, D.; Jiang, W.; Lu, Y.; Zhou, D. Mechanism of long non-coding RNA MALAT1 in lipopolysaccharide-induced acute kidney injury is mediated by the miR-146a/NF-κB signaling pathway. Int. J. Mol. Med., 2018, 41(1), 446-454. PMID: 29115409
  135. Xu, L.; Hu, G.; Xing, P.; Zhou, M.; Wang, D. Paclitaxel alleviates the sepsis-induced acute kidney injury via lnc-MALAT1/miR-370-3p/HMGB1 axis. Life Sci., 2020, 262, 118505. doi: 10.1016/j.lfs.2020.118505 PMID: 32998017
  136. Zhu, S.; Lu, Y. dexmedetomidine suppressed the biological behavior of hk-2 cells treated with lps by down-regulating ALKBH5. Inflammation, 2020, 43(6), 2256-2263. doi: 10.1007/s10753-020-01293-y PMID: 32656611
  137. Zhou, S.G.; Zhang, W.; Ma, H.J.; Guo, Z.Y.; Xu, Y. Silencing of LncRNA TCONS_00088786 reduces renal fibrosis through miR-132. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(1), 166-173. PMID: 29364484
  138. Wang, P.; Luo, M.L.; Song, E.; Zhou, Z.; Ma, T.; Wang, J.; Jia, N.; Wang, G.; Nie, S.; Liu, Y.; Hou, F. Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway. Sci. Transl. Med., 2018, 10(462), eaat2039. doi: 10.1126/scitranslmed.aat2039 PMID: 30305452
  139. Xiao, H.; Liao, Y.; Tang, C.; Xiao, Z.; Luo, H.; Li, J.; Liu, H.; Sun, L.; Zeng, D.; Li, Y. RNA-Seq analysis of potential lncRNAs and genes for the anti-renal fibrotic effect of norcantharidin. J. Cell. Biochem., 2019, 120(10), 17354-17367. doi: 10.1002/jcb.28999 PMID: 31104327
  140. Wu, H.; Wang, J.; Ma, Z. Long noncoding RNA HOXA-AS2 mediates microRNA-106b-5p to repress sepsis-engendered acute kidney injury. J. Biochem. Mol. Toxicol., 2020, 34(4), e22453. doi: 10.1002/jbt.22453 PMID: 32048402
  141. Deng, J.; Tan, W.; Luo, Q.; Lin, L.; Zheng, L.; Yang, J. Long non-coding RNA MEG3 promotes renal tubular epithelial cell pyroptosis by regulating the miR-18a-3p/GSDMD pathway in lipopolysaccharide-induced acute kidney injury. Front. Physiol., 2021, 12, 663216. doi: 10.3389/fphys.2021.663216 PMID: 34012408
  142. Qiu, J.; Chen, Y.; Huang, G.; Zhang, Z.; Chen, L.; Na, N. Transforming growth factor-β activated long non-coding RNA ATB plays an important role in acute rejection of renal allografts and may impacts the postoperative pharmaceutical immunosuppression therapy. nephrology, 2017, 22(10), 796-803. doi: 10.1111/nep.12851 PMID: 27414253
  143. Lv, P.; Liu, H.; Ye, T.; Yang, X.; Duan, C.; Yao, X.; Li, B.; Tang, K.; Chen, Z.; Liu, J.; Deng, Y.; Wang, T.; Xing, J.; Liang, C.; Xu, H.; Ye, Z. XIST inhibition attenuates calcium oxalate nephrocalcinosis-induced renal inflammation and oxidative injury via the miR-223/NLRP3 pathway. Oxid. Med. Cell. Longev., 2021, 2021, 1-15. doi: 10.1155/2021/1676152 PMID: 34512861
  144. Chen, W.; Zhou, Z.Q.; Ren, Y.Q.; Zhang, L.; Sun, L.N.; Man, Y.L.; Wang, Z.K. Effects of long non-coding RNA LINC00667 on renal tubular epithelial cell proliferation, apoptosis and renal fibrosis via the miR-19b-3p/LINC00667/CTGF signaling pathway in chronic renal failure. Cell. Signal., 2019, 54, 102-114. doi: 10.1016/j.cellsig.2018.10.016 PMID: 30555030
  145. Huang, P.; Gu, X.J.; Huang, M.Y.; Tan, J.H.; Wang, J. Down-regulation of LINC00667 hinders renal tubular epithelial cell apoptosis and fibrosis through miR-34c. Clin. Transl. Oncol., 2021, 23(3), 572-581. doi: 10.1007/s12094-020-02451-2 PMID: 32705492
  146. Xiao, X.; Yuan, Q.; Chen, Y.; Huang, Z.; Fang, X.; Zhang, H.; Peng, L.; Xiao, P. LncRNA ENST00000453774.1 contributes to oxidative stress defense dependent on autophagy mediation to reduce extracellular matrix and alleviate renal fibrosis. J. Cell. Physiol., 2019, 234(6), 9130-9143. doi: 10.1002/jcp.27590 PMID: 30317629
  147. Millis, M.P.; Bowen, D.; Kingsley, C.; Watanabe, R.M.; Wolford, J.K. Variants in the plasmacytoma variant translocation gene (PVT1) are associated with end-stage renal disease attributed to type 1 diabetes. Diabetes, 2007, 56(12), 3027-3032. doi: 10.2337/db07-0675 PMID: 17881614
  148. Hanson, R.L.; Craig, D.W.; Millis, M.P.; Yeatts, K.A.; Kobes, S.; Pearson, J.V.; Lee, A.M.; Knowler, W.C.; Nelson, R.G.; Wolford, J.K. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes, 2007, 56(4), 975-983. doi: 10.2337/db06-1072 PMID: 17395743
  149. Alvarez, M.L.; DiStefano, J.K. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS One, 2011, 6(4), e18671. doi: 10.1371/journal.pone.0018671 PMID: 21526116
  150. Alvarez, M.L.; Khosroheidari, M.; Eddy, E.; Kiefer, J. Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: Implications for diabetic nephropathy. PLoS One, 2013, 8(10), e77468. doi: 10.1371/journal.pone.0077468 PMID: 24204837
  151. Zhang, R.; Li, J.; Huang, T.; Wang, X. Danggui buxue tang suppresses high glucose-induced proliferation and extracellular matrix accumulation of mesangial cells via inhibiting lncRNA PVT1. Am. J. Transl. Res., 2017, 9(8), 3732-3740. PMID: 28861164
  152. Chen, W.; Zhang, L.; Zhou, Z.Q.; Ren, Y.Q.; Sun, L.N.; Man, Y.L.; Ma, Z.W.; Wang, Z.K. Effects of long non-coding RNA LINC00963 on renal interstitial fibrosis and oxidative stress of rats with chronic renal failure via the foxo signaling pathway. Cell. Physiol. Biochem., 2018, 46(2), 815-828. doi: 10.1159/000488739 PMID: 29627834
  153. Liu, L.; Zhang, Y.; Zhong, L. LncRNA TUG1 relieves renal mesangial cell injury by modulating the miR-153-3p/Bcl-2 axis in lupus nephritis. Immun. Inflamm. Dis., 2023, 11(4), e811. doi: 10.1002/iid3.811 PMID: 37102641
  154. Jia, L.; Wang, W.; Liu, H.; Zhu, F.; Huang, Y. LncRNA TTN-AS1 exacerbates extracellular matrix accumulation via miR-493-3p/FOXP2 axis in diabetic nephropathy. J. Genet., 2023, 102, 102. PMID: 36722214
  155. Li, X.; Wu, Z.; Yang, J.; Zhang, D. LncRNA 148400 promotes the apoptosis of renal tubular epithelial cells in ischemic AKI by targeting the miR−10b−3p/GRK4 axis. Cells, 2022, 11(24), 3986. doi: 10.3390/cells11243986 PMID: 36552750
  156. Xu, J.; Wang, Q.; Song, Y.F.; Xu, X.H.; Zhu, H.; Chen, P.D.; Ren, Y.P. Long noncoding RNA X-inactive specific transcript regulates NLR family pyrin domain containing 3/caspase-1-mediated pyroptosis in diabetic nephropathy. World J. Diabetes, 2022, 13(4), 358-375. doi: 10.4239/wjd.v13.i4.358 PMID: 35582664
  157. Yu, Q.; Lin, J.; Ma, Q.; Li, Y.; Wang, Q.; Chen, H.; Liu, Y.; Liu, B. Long noncoding RNA ENSG00000254693 promotes diabetic kidney disease via interacting with HuR. J. Diabetes Res., 2022, 2022, 1-13. doi: 10.1155/2022/8679548 PMID: 35493610
  158. Wu, Z.; Pan, J.; Yang, J.; Zhang, D. LncRNA136131 suppresses apoptosis of renal tubular epithelial cells in acute kidney injury by targeting the miR-378a-3p/Rab10 axis. Aging, 2022, 14(8), 3666-3686. doi: 10.18632/aging.204036 PMID: 35482482
  159. Xue, Q.; Yang, L.; Wang, J.; Li, L.; Wang, H.; He, Y. lncRNA ROR and miR-125b predict the prognosis in heart failure combined acute renal failure. Dis. Markers, 2022, 2022, 1-6. doi: 10.1155/2022/6853939 PMID: 35096206
  160. Zheng, W.; Guo, J.; Lu, X.; Qiao, Y.; Liu, D.; Pan, S.; Liang, L.; Liu, C.; Zhu, H.; Liu, Z.; Liu, Z. cAMP-response element binding protein mediates podocyte injury in diabetic nephropathy by targeting lncRNA DLX6-AS1. Metabolism, 2022, 129, 155155. doi: 10.1016/j.metabol.2022.155155 PMID: 35093327
  161. Wang, J.; Jiao, P.; Wei, X.; Zhou, Y. Silencing long non-coding RNA kcnq1ot1 limits acute kidney injury by promoting MIR-204-5p and blocking the activation of NLRP3 inflammasome. Front. Physiol., 2021, 12, 721524. doi: 10.3389/fphys.2021.721524 PMID: 34858199
  162. Wang, H.; Mou, H.; Xu, X.; Liu, C.; Zhou, G.; Gao, B. LncRNA KCNQ1OT1 (potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1) aggravates acute kidney injury by activating p38/NF-κB pathway via miR-212-3p/MAPK1 (mitogen-activated protein kinase 1) axis in sepsis. Bioengineered, 2021, 12(2), 11353-11368. doi: 10.1080/21655979.2021.2005987 PMID: 34783627
  163. Li, Y.; Ding, T.; Hu, H.; Zhao, T.; Zhu, C.; Ding, J.; Yuan, J.; Guo, Z. LncRNA-ATB participates in the regulation of calcium oxalate crystal-induced renal injury by sponging the miR-200 family. Mol. Med., 2021, 27(1), 143. doi: 10.1186/s10020-021-00403-2 PMID: 34736391
  164. Ding, Y.; Zhou, D.; Yu, H.; Zhu, T.; Guo, F.; He, Y.; Guo, X.; Lin, Y.; Liu, Y.; Yu, Y. Upregulation of lncRNA NONRATG019935.2 suppresses the p53-mediated apoptosis of renal tubular epithelial cells in septic acute kidney injury. Cell Death Dis., 2021, 12(8), 771. doi: 10.1038/s41419-021-03953-9 PMID: 34719669
  165. Jing, X.; Han, J.; Zhang, J.; Chen, Y.; Yuan, J.; Wang, J.; Neo, S.; Li, S.; Yu, X.; Wu, J. Long non-coding RNA MEG3 promotes cisplatin-induced nephrotoxicity through regulating AKT/TSC/mTOR-mediated autophagy. Int. J. Biol. Sci., 2021, 17(14), 3968-3980. doi: 10.7150/ijbs.58910 PMID: 34671212
  166. Wang, T.; Cui, S.; Liu, X.; Han, L.; Duan, X.; Feng, S.; Zhang, S.; Li, G. LncTUG1 ameliorates renal tubular fibrosis in experimental diabetic nephropathy through the miR-145-5p/dual-specificity phosphatase 6 axis. Ren. Fail., 2023, 45(1), 2173950. doi: 10.1080/0886022X.2023.2173950 PMID: 36794657
  167. Hu, J.; Wang, Q.; Fan, X.; Zhen, J.; Wang, C.; Chen, H.; Liu, Y.; Zhou, P.; Zhang, T.; Huang, T.; Wang, R.; Lv, Z. Long noncoding RNA ENST00000436340 promotes podocyte injury in diabetic kidney disease by facilitating the association of PTBP1 with RAB3B. Cell Death Dis., 2023, 14(2), 130. doi: 10.1038/s41419-023-05658-7 PMID: 36792603
  168. Xie, K.; Liu, X.; Jia, J.; Zhong, X.; Han, R.; Tan, R.; Wang, L. Hederagenin ameliorates cisplatin-induced acute kidney injury via inhibiting long non-coding RNA A330074k22Rik/Axin2/β-catenin signalling pathway. Int. Immunopharmacol., 2022, 112, 109247. doi: 10.1016/j.intimp.2022.109247 PMID: 36155281
  169. Sun, Z.; Wu, J.; Bi, Q.; Wang, W. Exosomal lncRNA TUG1 derived from human urine-derived stem cells attenuates renal ischemia/reperfusion injury by interacting with SRSF1 to regulate ASCL4-mediated ferroptosis. Stem Cell Res. Ther., 2022, 13(1), 297. doi: 10.1186/s13287-022-02986-x PMID: 35841017
  170. Song, P.; Chen, Y.; Liu, Z.; Liu, H.; Xiao, L.; Sun, L.; Wei, J.; He, L. LncRNA MALAT1 aggravates renal tubular injury via Activating LIN28A and the Nox4/AMPK/mTOR signaling axis in diabetic nephropathy. Front. Endocrinol., 2022, 13, 895360. doi: 10.3389/fendo.2022.895360 PMID: 35813614
  171. Jia, P.; Xu, S.; Ren, T.; Pan, T.; Wang, X.; Zhang, Y.; Zou, Z.; Guo, M.; Zeng, Q.; Shen, B.; Ding, X. LncRNA IRAR regulates chemokines production in tubular epithelial cells thus promoting kidney ischemia-reperfusion injury. Cell Death Dis., 2022, 13(6), 562. doi: 10.1038/s41419-022-05018-x PMID: 35732633
  172. Wen, L.; Zhao, Z.; Li, F.; Ji, F.; Wen, J. ICAM-1 related long noncoding RNA is associated with progression of IgA nephropathy and fibrotic changes in proximal tubular cells. Sci. Rep., 2022, 12(1), 9645. doi: 10.1038/s41598-022-13521-6 PMID: 35688937
  173. Huang, J.; Xu, C. LncRNA MALAT1-deficiency restrains lipopolysaccharide (LPS)-induced pyroptotic cell death and inflammation in HK-2 cells by releasing microRNA-135b-5p. Ren. Fail., 2021, 43(1), 1288-1297. doi: 10.1080/0886022X.2021.1974037 PMID: 34503385
  174. Xu, Z.; Huang, X.; Lin, Q.; Xiang, W. Long non-coding RNA TUG1 knockdown promotes autophagy and improves acute renal injury in ischemia-reperfusion-treated rats by binding to microRNA-29 to silence PTEN. BMC Nephrol., 2021, 22(1), 288. doi: 10.1186/s12882-021-02473-0 PMID: 34429073
  175. Fan, H.P.; Zhu, Z.X.; Xu, J.J.; Li, Y.T.; Guo, C.W.; Yan, H. The lncRNA CASC9 alleviates lipopolysaccharide-induced acute kidney injury by regulating the miR-424-5p/TXNIP pathway. J. Int. Med. Res., 2021, 49(8) doi: 10.1177/03000605211037495 PMID: 34407684
  176. Lu, H.Y.; Wang, G.Y.; Zhao, J.W.; Jiang, H.T. Knockdown of lncRNA MALAT1 ameliorates acute kidney injury by mediating the miR-204/APOL1 pathway. J. Clin. Lab. Anal., 2021, 35(8), e23881. doi: 10.1002/jcla.23881 PMID: 34240756
  177. Jin, J.; Gong, J.; Zhao, L.; Li, Y.; He, Q. LncRNA Hoxb3os protects podocytes from high glucose-induced cell injury through autophagy dependent on the Akt-mTOR signaling pathway. Acta Biochim. Pol., 2021, 68(4), 619-625. doi: 10.18388/abp.2020_5483 PMID: 34648253
  178. Hu, H.; Zhang, J.; Li, Y.; Ding, J.; Chen, W.; Guo, Z. LncRNA SPANXA2-OT1 participates in the occurrence and development of EMT in calcium oxalate crystal-induced kidney injury by adsorbing miR-204 and up-regulating Smad5. Front. Med., 2021, 8, 719980. doi: 10.3389/fmed.2021.719980 PMID: 34646842
  179. Zhao, S.; Chen, W.; Li, W.; Yu, W.; Li, S.; Rao, T.; Ruan, Y.; Zhou, X.; Liu, C.; Qi, Y.; Cheng, F. LncRNA TUG1 attenuates ischaemia-reperfusion-induced apoptosis of renal tubular epithelial cells by sponging miR-144-3p via targeting Nrf2. J. Cell. Mol. Med., 2021, 25(20), 9767-9783. doi: 10.1111/jcmm.16924 PMID: 34547172
  180. Ling, H.; Li, Q.; Duan, Z.P.; Wang, Y.J.; Hu, B.Q.; Dai, X.G. LncRNA GAS5 inhibits miR-579-3p to activate SIRT1/PGC-1α/Nrf2 signaling pathway to reduce cell pyroptosis in sepsis-associated renal injury. Am. J. Physiol. Cell Physiol., 2021, 321(1), C117-C133. doi: 10.1152/ajpcell.00394.2020 PMID: 34010066
  181. Yuan, Y.; Li, X.; Chu, Y.; Ye, G.; Yang, L.; Dong, Z. Long Non-coding RNA H19 augments hypoxia/reoxygenation-induced renal tubular epithelial cell apoptosis and injury by the miR-130a/BCL2L11 Pathway. Front. Physiol., 2021, 12, 632398. doi: 10.3389/fphys.2021.632398 PMID: 33716779
  182. Li, H.; Zhang, X.; Wang, P.; Zhou, X.; Liang, H.; Li, C. Knockdown of circ-FANCA alleviates LPS-induced HK2 cell injury via targeting miR-93-5p/OXSR1 axis in septic acute kidney injury. Diabetol. Metab. Syndr., 2021, 13(1), 7. doi: 10.1186/s13098-021-00625-8 PMID: 33468219
  183. Zhou, Y.; Qing, M.; Xu, M. Circ-BNIP3L knockdown alleviates LPS-induced renal tubular epithelial cell injury during sepsis-associated acute kidney injury by miR-370-3p/MYD88 axis. J. Bioenerg. Biomembr., 2021, 53(6), 665-677. doi: 10.1007/s10863-021-09925-0 PMID: 34731384
  184. Lu, H.; Chen, Y.; Wang, X.; Yang, Y.; Ding, M.; Qiu, F. Circular RNA HIPK3 aggravates sepsis-induced acute kidney injury via modulating the microRNA-338/forkhead box A1 axis. Bioengineered, 2022, 13(3), 4798-4809. doi: 10.1080/21655979.2022.2032974 PMID: 35148669
  185. Xu, L.; Cao, H.; Xu, P.; Nie, M.; Zhao, C. Circ_0114427 promotes LPS-induced septic acute kidney injury by modulating miR-495-3p/TRAF6 through the NF-κB pathway. Autoimmunity, 2022, 55(1), 52-64. doi: 10.1080/08916934.2021.1995861 PMID: 34730059
  186. He, Y.; Sun, Y.; Peng, J. Circ_0114428 regulates sepsis-induced kidney injury by targeting the miR-495-3p/CRBN axis. Inflammation, 2021, 44(4), 1464-1477. doi: 10.1007/s10753-021-01432-z PMID: 33830389
  187. Xu, H.P.; Ma, X.Y.; Yang, C. Circular RNA TLK1 promotes sepsis-associated acute kidney injury by regulating inflammation and oxidative stress through miR-106a-5p/HMGB1 axis. Front. Mol. Biosci., 2021, 8, 660269. doi: 10.3389/fmolb.2021.660269 PMID: 34250012
  188. Xu, Y.; Li, X.; Li, H.; Zhong, L.; Lin, Y.; Xie, J.; Zheng, D. Circ_0023404 sponges miR-136 to induce HK-2 cells injury triggered by hypoxia/reoxygenation via up-regulating IL-6R. J. Cell. Mol. Med., 2021, 25(11), 4912-4921. doi: 10.1111/jcmm.15986 PMID: 33942982
  189. Xu, Y.; Jiang, W.; Zhong, L.; Li, H.; Bai, L.; Chen, X.; Lin, Y.; Zheng, D. circ-AKT3 aggravates renal ischaemia-reperfusion injury via regulating miR-144-5p/Wnt/β-catenin pathway and oxidative stress. J. Cell. Mol. Med., 2022, 26(6), 1766-1775. doi: 10.1111/jcmm.16072 PMID: 33200535
  190. Hou, J.; Li, A.L.; Xiong, W.Q.; Chen, R. Hsa Circ 001839 promoted inflammation in renal ischemia-reperfusion injury through NLRP3 by miR-432-3p. Nephron J., 2021, 145(5), 540-552. doi: 10.1159/000515279 PMID: 33975327
  191. Zhou, W.; Chen, Y.X.; Ke, B.; He, J.K.; Zhu, N.; Zhang, A.F.; Fang, X.D.; Tu, W.P. circPlekha7 suppresses renal fibrosis via targeting miR-493-3p/KLF4. Epigenomics, 2022, 14(4), 199-217. doi: 10.2217/epi-2021-0370 PMID: 35172608
  192. Tang, B.; Li, W.; Ji, T.T.; Li, X.Y.; Qu, X.; Feng, L.; Bai, S. Circ-AKT3 inhibits the accumulation of extracellular matrix of mesangial cells in diabetic nephropathy via modulating miR-296-3p/E-cadherin signals. J. Cell. Mol. Med., 2020, 24(15), 8779-8788. doi: 10.1111/jcmm.15513 PMID: 32597022
  193. Hu, W.; Han, Q.; Zhao, L.; Wang, L. Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-β1. J. Cell. Physiol., 2019, 234(2), 1469-1476. doi: 10.1002/jcp.26959 PMID: 30054916
  194. Peng, F.; Gong, W.; Li, S.; Yin, B.; Zhao, C.; Liu, W.; Chen, X.; Luo, C.; Huang, Q.; Chen, T.; Sun, L.; Fang, S.; Zhou, W.; Li, Z.; Long, H. circRNA_010383 acts as a sponge for miR-135a and its downregulated expression contributes to renal fibrosis in diabetic nephropathy. Diabetes, 2020, db200203. doi: 10.2337/db200203 PMID: 33203695
  195. Ouyang, Q.; Huang, Q.; Jiang, Z.; Zhao, J.; Shi, G.P.; Yang, M. Using plasma circRNA_002453 as a novel biomarker in the diagnosis of lupus nephritis. Mol. Immunol., 2018, 101, 531-538. doi: 10.1016/j.molimm.2018.07.029 PMID: 30172209
  196. Zhou, H.; Hasni, S.A.; Perez, P.; Tandon, M.; Jang, S.I.; Zheng, C.; Kopp, J.B.; Austin, H., III; Balow, J.E.; Alevizos, I.; Illei, G.G. miR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1. J. Am. Soc. Nephrol., 2013, 24(7), 1073-1087. doi: 10.1681/ASN.2012080849 PMID: 23723424
  197. Luan, J.; Jiao, C.; Kong, W.; Fu, J.; Qu, W.; Chen, Y.; Zhu, X.; Zeng, Y.; Guo, G.; Qi, H.; Yao, L.; Pi, J.; Wang, L.; Zhou, H. circHLA-C plays an important role in lupus nephritis by sponging miR-150. Mol. Ther. Nucleic Acids, 2018, 10, 245-253. doi: 10.1016/j.omtn.2017.12.006 PMID: 29499937
  198. Cao, Y.; Gao, X.; Yang, Y.; Ye, Z.; Wang, E.; Dong, Z. Changing expression profiles of long non-coding RNAs, mRNAs and circular RNAs in ethylene glycol-induced kidney calculi rats. BMC Genomics, 2018, 19(1), 660. doi: 10.1186/s12864-018-5052-8 PMID: 30200873
  199. Zhengbiao, Z.; Liang, C.; Zhi, Z.; Youmin, P. Circular RNA_HIPK3-targeting miR-93-5p regulates KLF9 expression level to control acute kidney injury. Comput. Math. Methods Med., 2023, 2023, 1-13. doi: 10.1155/2023/1318817 PMID: 36846202
  200. Gao, Q.; Zheng, Y.; Wang, H.; Hou, L.; Hu, X. circSTRN3 aggravates sepsis-induced acute kidney injury by regulating miR-578/toll like receptor 4 axis. Bioengineered, 2022, 13(5), 11388-11401. doi: 10.1080/21655979.2022.2061293 PMID: 35510365
  201. Gao, Y.; Xu, W.; Guo, C.; Huang, T. GATA1 regulates the microRNA-328-3p/PIM1 axis via circular RNA ITGB1 to promote renal ischemia/reperfusion injury in HK-2 cells. Int. J. Mol. Med., 2022, 50(2), 100. doi: 10.3892/ijmm.2022.5156 PMID: 35674159
  202. Kölling, M.; Seeger, H.; Haddad, G.; Kistler, A.; Nowak, A.; Faulhaber-Walter, R.; Kielstein, J.; Haller, H.; Fliser, D.; Mueller, T.; Wüthrich, R.P.; Lorenzen, J.M. The Circular RNA ciRs-126 predicts survival in critically ill patients with acute kidney injury. Kidney Int. Rep., 2018, 3(5), 1144-1152. doi: 10.1016/j.ekir.2018.05.012 PMID: 30197981
  203. Huang, T.; Cao, Y.; Wang, H.; Wang, Q.; Ji, J.; Sun, X.; Dong, Z. Circular RNA YAP1 acts as the sponge of microRNA-21-5p to secure HK-2 cells from ischaemia/reperfusion-induced injury. J. Cell. Mol. Med., 2020, 24(8), 4707-4715. doi: 10.1111/jcmm.15142 PMID: 32160412
  204. Lu, C.; Chen, B.; Chen, C.; Li, H.; Wang, D.; Tan, Y.; Weng, H. CircNr1h4 regulates the pathological process of renal injury in salt-sensitive hypertensive mice by targeting miR-155-5p. J. Cell. Mol. Med., 2020, 24(2), 1700-1712. doi: 10.1111/jcmm.14863 PMID: 31782248
  205. Liu, F.; Huang, J.; Zhang, C.; Xie, Y.; Cao, Y.; Tao, L.; Tang, H.; Lin, J.; Hammes, H.P.; Huang, K.; Yi, F.; Su, H.; Zhang, C. Regulation of podocyte injury by CircHIPK3/FUS complex in diabetic kidney disease. Int. J. Biol. Sci., 2022, 18(15), 5624-5640. doi: 10.7150/ijbs.75994 PMID: 36263181
  206. Huang, Y.; Zheng, G. Circ_UBE2D2 attenuates the progression of septic acute kidney injury in rats by targeting miR-370-3p/NR4A3 axis. J. Microbiol. Biotechnol., 2022, 32(6), 740-748. doi: 10.4014/jmb.2112.12038 PMID: 35722711
  207. Feng, T.; Li, W.; Li, T.; Jiao, W.; Chen, S. Circular RNA_0037128 aggravates high glucose-induced damage in HK-2 cells via regulation of microRNA-497-5p/nuclear factor of activated T cells 5 axis. Bioengineered, 2021, 12(2), 10959-10970. doi: 10.1080/21655979.2021.2001912 PMID: 34753398
  208. Shi, Y.; Sun, C.F.; Ge, W.H.; Du, Y.P.; Hu, N.B. Circular RNA VMA21 ameliorates sepsis-associated acute kidney injury by regulating miR-9-3p/SMG1/inflammation axis and oxidative stress. J. Cell. Mol. Med., 2020, 24(19), 11397-11408. doi: 10.1111/jcmm.15741 PMID: 32827242
  209. Cao, S.; Huang, Y.; Dai, Z.; Liao, Y.; Zhang, J.; Wang, L.; Hao, Z.; Wang, F.; Wang, D.; Liu, L. Circular RNA mmu_circ_0001295 from hypoxia pretreated adipose-derived mesenchymal stem cells (ADSCs) exosomes improves outcomes and inhibits sepsis-induced renal injury in a mouse model of sepsis. Bioengineered, 2022, 13(3), 6323-6331. doi: 10.1080/21655979.2022.2044720 PMID: 35212606
  210. Pan, J.J.; Yang, Y.; Chen, X.Q.; Shi, J.; Wang, M.Z.; Tong, M.L.; Zhou, X.G. RNA sequencing and bioinformatics analysis of circular RNAs in asphyxial newborns with acute kidney injury. Kaohsiung J. Med. Sci., 2023, 39(4), 337-344. doi: 10.1002/kjm2.12644 PMID: 36655871
  211. Luan, J.; Jiao, C.; Ma, C.; Zhang, Y.; Hao, X.; Zhou, G.; Fu, J.; Qiu, X.; Li, H.; Yang, W.; Illei, G.G.; Kopp, J.B.; Pi, J.; Zhou, H. circMTND5 participates in renal mitochondrial injury and fibrosis by sponging mir6812 in lupus nephritis. Oxid. Med. Cell. Longev., 2022, 2022, 1-17. doi: 10.1155/2022/2769487 PMID: 36267809
  212. Meng, F.; Chen, Q.; Gu, S.; Cui, R.; Ma, Q.; Cao, R.; Zhao, M. Inhibition of Circ-Snrk ameliorates apoptosis and inflammation in acute kidney injury by regulating the MAPK pathway. Ren. Fail., 2022, 44(1), 672-681. doi: 10.1080/0886022X.2022.2032746 PMID: 35416113
  213. Wang, H.; Huang, S.; Hu, T.; Fei, S.; Zhang, H. Circ_0000064 promotes high glucose-induced renal tubular epithelial cells injury to facilitate diabetic nephropathy progression through miR-532-3p/ROCK1 axis. BMC Endocr. Disord., 2022, 22(1), 67. doi: 10.1186/s12902-022-00968-x PMID: 35291991
  214. Fan, X.; Yin, X.; Zhao, Q.; Yang, Y. Hsa_circRNA_0045861 promotes renal injury in ureteropelvic junction obstruction via the microRNA-181d-5p/sirtuin 1 signaling axis. Ann. Transl. Med., 2021, 9(20), 1571. doi: 10.21037/atm-21-5060 PMID: 34790777
  215. Pan, J.; Wang, X.; Cang, X.; Jiang, Y.; Tang, R. Hsa_circ_0010957 knockdown attenuates lipopolysaccharide-induced HK2 cell injury by regulating the miR-1224-5p/IRAK1 axis. Cent. Eur. J. Immunol., 2021, 46(3), 314-324. doi: 10.5114/ceji.2021.108772 PMID: 34764803

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024