Does each Component of Reactive Oxygen Species have a Dual Role in the Tumor Microenvironment?
- Authors: Hao S.1, Cai D.2, Gou S.2, Li Y.2, Liu L.2, Tang X.2, Chen Y.2, Zhao Y.2, Shen J.2, Wu X.2, Li M.2, Chen M.2, Li X.2, Sun Y.2, Gu L.2, Li W.2, Wang F.2, Cho C.2, Xiao Z.2, Du F.2
-
Affiliations:
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy,, Southwest Medical University
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- Issue: Vol 31, No 31 (2024)
- Pages: 4958-4986
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645237
- DOI: https://doi.org/10.2174/0929867331666230719142202
- ID: 645237
Cite item
Full Text
Abstract
:Reactive oxygen species (ROS) are a class of highly reactive oxidizing molecules, including superoxide anion (O2 −) and hydrogen peroxide (H2O2), among others. Moderate levels of ROS play a crucial role in regulating cellular signaling and maintaining cellular functions. However, abnormal ROS levels or persistent oxidative stress can lead to changes in the tumor microenvironment (TME) that favor cancer development. This review provides an overview of ROS generation, structure, and properties, as well as their effects on various components of the TME. Contrary to previous studies, our findings reveal a dual effect of ROS on different components of the TME, whereby ROS can either enhance or inhibit certain factors, ultimately leading to the promotion or suppression of the TME. For example, H2O2 has dual effects on immune cells and non-- cellular components within the TME, while O2 − has dual effects on T cells and fibroblasts. Furthermore, each component demonstrates distinct mechanisms of action and ranges of influence. In the final section of the article, we summarize the current clinical applications of ROS in cancer treatment and identify certain limitations associated with existing therapeutic approaches. Therefore, this review aims to provide a comprehensive understanding of ROS, highlighting their dual effects on different components of the TME, and exploring the potential clinical applications that may pave the way for future treatment and prevention strategies.
Keywords
About the authors
Siyu Hao
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy,, Southwest Medical University
Email: info@benthamscience.net
Dan Cai
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Shuang Gou
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Yan Li
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Lin Liu
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Xiaolong Tang
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Yu Chen
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Yueshui Zhao
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Jing Shen
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Xu Wu
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Mingxing Li
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Meijuan Chen
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Xiaobing Li
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Yuhong Sun
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Li Gu
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Wanping Li
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Fang Wang
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Chi Cho
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Email: info@benthamscience.net
Zhangang Xiao
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Author for correspondence.
Email: info@benthamscience.net
Fukuan Du
Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Anderson, N.M.; Simon, M.C. The tumor microenvironment. Curr. Biol., 2020, 30(16), R921-R925. doi: 10.1016/j.cub.2020.06.081 PMID: 32810447
- Deepak, K.G.K.; Vempati, R.; Nagaraju, G.P.; Dasari, V.R.; S, N.; Rao, D.N.; Malla, R.R. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol. Res., 2020, 153, 104683. doi: 10.1016/j.phrs.2020.104683 PMID: 32050092
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674. doi: 10.1016/j.cell.2011.02.013 PMID: 21376230
- Weinberg, F.; Hamanaka, R.; Wheaton, W.W.; Weinberg, S.; Joseph, J.; Lopez, M.; Kalyanaraman, B.; Mutlu, G.M.; Budinger, G.R.S.; Chandel, N.S. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. USA, 2010, 107(19), 8788-8793. doi: 10.1073/pnas.1003428107 PMID: 20421486
- Kong, H.; Chandel, N.S. Regulation of redox balance in cancer and T cells. J. Biol. Chem., 2018, 293(20), 7499-7507. doi: 10.1074/jbc.TM117.000257 PMID: 29282291
- Martinez-Outschoorn, U.E.; Balliet, R.M.; Rivadeneira, D.; Chiavarina, B.; Pavlides, S.; Wang, C.; Whitaker-Menezes, D.; Daumer, K.; Lin, Z.; Witkiewicz, A.; Flomenberg, N.; Howell, A.; Pestell, R.; Knudsen, E.; Sotgia, F.; Lisanti, M.P. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution. Cell Cycle, 2010, 9(16), 3276-3296. doi: 10.4161/cc.9.16.12553 PMID: 20814239
- Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol., 2018, 80, 50-64. doi: 10.1016/j.semcdb.2017.05.023 PMID: 28587975
- Mittler, R. ROS are good. Trends Plant Sci., 2017, 22(1), 11-19. doi: 10.1016/j.tplants.2016.08.002 PMID: 27666517
- Weinberg, F.; Ramnath, N.; Nagrath, D. Reactive oxygen species in the tumor microenvironment: An overview. Cancers (Basel), 2019, 11(8), 1191. doi: 10.3390/cancers11081191 PMID: 31426364
- Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med., 2017, 104, 144-164. doi: 10.1016/j.freeradbiomed.2017.01.004 PMID: 28088622
- Kirtonia, A.; Sethi, G.; Garg, M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell. Mol. Life Sci., 2020, 77(22), 4459-4483. doi: 10.1007/s00018-020-03536-5 PMID: 32358622
- Halliwell, B. Oxidative stress and cancer: have we moved forward? Biochem. J., 2007, 401(1), 1-11. doi: 10.1042/BJ20061131 PMID: 17150040
- Nakazawa, M.S.; Keith, B.; Simon, M.C. Oxygen availability and metabolic adaptations. Nat. Rev. Cancer, 2016, 16(10), 663-673. doi: 10.1038/nrc.2016.84 PMID: 27658636
- Xiao, Z.; Dai, Z.; Locasale, J.W. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat. Commun., 2019, 10(1), 3763. doi: 10.1038/s41467-019-11738-0 PMID: 31434891
- Kumar, S.; Sharife, H.; Kreisel, T.; Mogilevsky, M.; Bar-Lev, L.; Grunewald, M.; Aizenshtein, E.; Karni, R.; Paldor, I.; Shlomi, T.; Keshet, E. Intra-tumoral metabolic zonation and resultant phenotypic diversification are dictated by blood vessel proximity. Cell Metab., 2019, 30(1), 201-211.e6. doi: 10.1016/j.cmet.2019.04.003 PMID: 31056286
- Velayutham, M.; Hemann, C.; Zweier, J.L. Removal of H2O2 and generation of superoxide radical: Role of cytochrome c and NADH. Free Radic. Biol. Med., 2011, 51(1), 160-170. doi: 10.1016/j.freeradbiomed.2011.04.007 PMID: 21545835
- Edmondson, D. Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: biological implications. Curr. Pharm. Des., 2014, 20(2), 155-160. doi: 10.2174/13816128113190990406 PMID: 23701542
- Loschen, G.; Azzi, A.; Richter, C.; Flohé, L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett., 1974, 42(1), 68-72. doi: 10.1016/0014-5793(74)80281-4 PMID: 4859511
- Buettner, G.R.; Ng, C.F.; Wang, M.; Rodgers, V.G.J.; Schafer, F.Q. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic. Biol. Med., 2006, 41(8), 1338-1350. doi: 10.1016/j.freeradbiomed.2006.07.015 PMID: 17015180
- Roscoe, J.M.; Sevier, C.S. Pathways for sensing and responding to hydrogen peroxide at the endoplasmic reticulum. Cells, 2020, 9(10), 2314. doi: 10.3390/cells9102314 PMID: 33080949
- Aviello, G.; Knaus, U.G. NADPH oxidases and ROS signaling in the gastrointestinal tract. Mucosal Immunol., 2018, 11(4), 1011-1023. doi: 10.1038/s41385-018-0021-8 PMID: 29743611
- Sirokmány, G.; Geiszt, M. The relationship of NADPH oxidases and heme peroxidases: Fallin in and out. Front. Immunol., 2019, 10, 394. doi: 10.3389/fimmu.2019.00394 PMID: 30891045
- Bienert, G.P.; Schjoerring, J.K.; Jahn, T.P. Membrane transport of hydrogen peroxide. Biochim. Biophys. Acta Biomembr., 2006, 1758(8), 994-1003. doi: 10.1016/j.bbamem.2006.02.015 PMID: 16566894
- Lefèvre, C.T.; Bennet, M.; Landau, L.; Vach, P.; Pignol, D.; Bazylinski, D.A.; Frankel, R.B.; Klumpp, S.; Faivre, D. Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria. Biophys. J., 2014, 107(2), 527-538. doi: 10.1016/j.bpj.2014.05.043 PMID: 25028894
- Katakwar, P.; Metgud, R.; Naik, S.; Mittal, R. Oxidative stress marker in oral cancer: A review. J. Cancer Res. Ther., 2016, 12(2), 438-446. doi: 10.4103/0973-1482.151935 PMID: 27461591
- Marinho, H.S.; Real, C.; Cyrne, L.; Soares, H.; Antunes, F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol., 2014, 2, 535-562. doi: 10.1016/j.redox.2014.02.006 PMID: 24634836
- Forman, H.J.; Maiorino, M.; Ursini, F. Signaling functions of reactive oxygen species. Biochemistry, 2010, 49(5), 835-842. doi: 10.1021/bi9020378 PMID: 20050630
- Tochigi, M.; Inoue, T.; Suzuki-Karasaki, M.; Ochiai, T.; Ra, C.; Suzuki-Karasaki, Y. Hydrogen peroxide induces cell death in human TRAIL-resistant melanoma through intracellular superoxide generation. Int. J. Oncol., 2013, 42(3), 863-872. doi: 10.3892/ijo.2013.1769 PMID: 23314732
- Okamoto, M.; Reddy, J.K.; Oyasu, R. Tumorigenic conversion of a non-tumorigenic rat urothelial cell line by overexpression of H2O2-generating peroxisomal fatty acyl-CoA oxidase. Int. J. Cancer, 1997, 70(6), 716-721. doi: 10.1002/(SICI)1097-0215(19970317)70:63.0.CO;2-7 PMID: 9096654
- Hirst, J.; Carroll, J.; Fearnley, I.M.; Shannon, R.J.; Walker, J.E. The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim. Biophys. Acta Bioenerg., 2003, 1604(3), 135-150. doi: 10.1016/S0005-2728(03)00059-8 PMID: 12837546
- Sazanov, L.A. Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry, 2007, 46(9), 2275-2288. doi: 10.1021/bi602508x PMID: 17274631
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13. doi: 10.1042/BJ20081386 PMID: 19061483
- Kussmaul, L.; Hirst, J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci. USA, 2006, 103(20), 7607-7612. doi: 10.1073/pnas.0510977103 PMID: 16682634
- Chance, B.; Hollunger, G. The interaction of energy and electron transfer reactions in mitochondria. I. General properties and nature of the products of succinate-linked reduction of pyridine nucleotide. J. Biol. Chem., 1961, 236(5), 1534-1543. doi: 10.1016/S0021-9258(18)64210-3 PMID: 13692277
- Cino, M.; Del Maestro, R.F. Generation of hydrogen peroxide by brain mitochondria: The effect of reoxygenation following postdecapitative ischemia. Arch. Biochem. Biophys., 1989, 269(2), 623-638. doi: 10.1016/0003-9861(89)90148-3 PMID: 2919886
- Hunte, C.; Palsdottir, H.; Trumpower, B.L. Protonmotive pathways and mechanisms in the cytochrome bc1 complex. FEBS Lett., 2003, 545(1), 39-46. doi: 10.1016/S0014-5793(03)00391-0 PMID: 12788490
- Dröse, S.; Brandt, U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv. Exp. Med. Biol., 2012, 748, 145-169. doi: 10.1007/978-1-4614-3573-0_6 PMID: 22729857
- Cadenas, E.; Boveris, A.; Ragan, C.I.; Stoppani, A.O.M. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys., 1977, 180(2), 248-257. doi: 10.1016/0003-9861(77)90035-2 PMID: 195520
- Hayyan, M.; Hashim, M.A.; AlNashef, I.M. Superoxide ion: Generation and chemical implications. Chem. Rev., 2016, 116(5), 3029-3085. doi: 10.1021/acs.chemrev.5b00407 PMID: 26875845
- Dietzel, P.D.C.; Kremer, R.K.; Jansen, M. Tetraorganylammonium superoxide compounds: close to unperturbed superoxide ions in the solid state. J. Am. Chem. Soc., 2004, 126(14), 4689-4696. doi: 10.1021/ja039880i PMID: 15070387
- Okada, F.; Kobayashi, M.; Tanaka, H.; Kobayashi, T.; Tazawa, H.; Iuchi, Y.; Onuma, K.; Hosokawa, M.; Dinauer, M.C.; Hunt, N.H. The role of nicotinamide adenine dinucleotide phosphate oxidase-derived reactive oxygen species in the acquisition of metastatic ability of tumor cells. Am. J. Pathol., 2006, 169(1), 294-302. doi: 10.2353/ajpath.2006.060073 PMID: 16816381
- Liu, R.; Li, B.; Qiu, M. Elevated superoxide production by active H-ras enhances human lung WI-38VA-13 cell proliferation, migration and resistance to TNF-α. Oncogene, 2001, 20(12), 1486-1496. doi: 10.1038/sj.onc.1204214 PMID: 11313892
- Chaudhuri, J.; Chowdhury, A.A.; Biswas, N.; Manna, A.; Chatterjee, S.; Mukherjee, T.; Chaudhuri, U.; Jaisankar, P.; Bandyopadhyay, S. Superoxide activates mTOReIF4EBax route to induce enhanced apoptosis in leukemic cells. Apoptosis, 2014, 19(1), 135-148. doi: 10.1007/s10495-013-0904-9 PMID: 24052408
- Thomas, C.; Mackey, M.M.; Diaz, A.A.; Cox, D.P. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation. Redox Rep., 2009, 14(3), 102-108. doi: 10.1179/135100009X392566 PMID: 19490751
- Chen, S.; Schopfer, P. Hydroxyl-radical production in physiological reactions. A novel function of peroxidase. Eur. J. Biochem., 1999, 260(3), 726-735. doi: 10.1046/j.1432-1327.1999.00199.x PMID: 10103001
- Babior, B.M. Phagocytes and oxidative stress. Am. J. Med., 2000, 109(1), 33-44. doi: 10.1016/S0002-9343(00)00481-2 PMID: 10936476
- Wright, R.M.; McManaman, J.L.; Repine, J.E. Alcohol-induced breast cancer: a proposed mechanism. Free Radic. Biol. Med., 1999, 26(3-4), 348-354. doi: 10.1016/S0891-5849(98)00204-4 PMID: 9895226
- Malins, D.C.; Gunselman, S.J.; Holmes, E.H.; Polissar, N.L. The etiology of breast cancer characteristic alterations in hydroxyl radical-induced DNA base lesions during oncogenesis with potential for evaluating incidence risk. Cancer, 1993, 71(10), 3036-3043. doi: 10.1002/1097-0142(19930515)71:103.0.CO;2-P PMID: 8387875
- Wang, Z.; Li, S.; Cao, Y.; Tian, X.; Zeng, R.; Liao, D.F.; Cao, D. Oxidative stress and carbonyl lesions in ulcerative colitis and associated colorectal cancer. Oxid. Med. Cell. Longev., 2016, 1-15. doi: 10.1155/2016/9875298 PMID: 26823956
- Sumkhemthong, S.; Prompetchara, E.; Chanvorachote, P.; Chaotham, C. Cisplatin-induced hydroxyl radicals mediate pro-survival autophagy in human lung cancer H460 cells. Biol. Res., 2021, 54(1), 22. doi: 10.1186/s40659-021-00346-2 PMID: 34321115
- Ren, J.G.; Xia, H.L.; Just, T.; Dai, Y.R. Hydroxyl radical-induced apoptosis in human tumor cells is associated with telomere shortening but not telomerase inhibition and caspase activation. FEBS Lett., 2001, 488(3), 123-132. doi: 10.1016/S0014-5793(00)02377-2 PMID: 11163758
- Tarr, M.; Valenzeno, D.P. Singlet oxygen: the relevance of extracellular production mechanisms to oxidative stress in vivo. Photochem. Photobiol. Sci., 2003, 2(4), 355-361. doi: 10.1039/b211778a PMID: 12760529
- Dogra, V.; Kim, C. Singlet oxygen metabolism: From genesis to signaling. Front. Plant Sci., 2020, 10, 1640. doi: 10.3389/fpls.2019.01640 PMID: 31969891
- Di Mascio, P.; Martinez, G.R.; Miyamoto, S.; Ronsein, G.E.; Medeiros, M.H.G.; Cadet, J. Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chem. Rev., 2019, 119(3), 2043-2086. doi: 10.1021/acs.chemrev.8b00554 PMID: 30721030
- Homma, T.; Kobayashi, S.; Fujii, J. Induction of ferroptosis by singlet oxygen generated from naphthalene endoperoxide. Biochem. Biophys. Res. Commun., 2019, 518(3), 519-525. doi: 10.1016/j.bbrc.2019.08.073 PMID: 31445701
- Bauer, G. HOCl-dependent singlet oxygen and hydroxyl radical generation modulate and induce apoptosis of malignant cells. Anticancer Res., 2013, 33(9), 3589-3602. PMID: 24023284
- Bauer, G. Autoamplificatory singlet oxygen generation sensitizes tumor cells for intercellular apoptosis-inducing signaling. Mech. Ageing Dev., 2018, 172, 59-77. doi: 10.1016/j.mad.2017.11.005 PMID: 29137940
- Klotz, L.O.; Kröncke, K.D.; Sies, H. Singlet oxygen-induced signaling effects in mammalian cells. Photochem. Photobiol. Sci., 2003, 2(2), 88-94. doi: 10.1039/b210750c PMID: 12664966
- Kuang, D.M.; Zhao, Q.; Peng, C.; Xu, J.; Zhang, J.P.; Wu, C.; Zheng, L. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med., 2009, 206(6), 1327-1337. doi: 10.1084/jem.20082173 PMID: 19451266
- Kryczek, I.; Zou, L.; Rodriguez, P.; Zhu, G.; Wei, S.; Mottram, P.; Brumlik, M.; Cheng, P.; Curiel, T.; Myers, L.; Lackner, A.; Alvarez, X.; Ochoa, A.; Chen, L.; Zou, W. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med., 2006, 203(4), 871-881. doi: 10.1084/jem.20050930 PMID: 16606666
- Tan, H.Y.; Wang, N.; Zhang, C.; Chan, Y.T.; Yuen, M.F.; Feng, Y. Lysyl oxidase-like 4 fosters an immunosuppressive microenvironment during hepatocarcinogenesis. Hepatology, 2021, 73(6), 2326-2341. doi: 10.1002/hep.31600 PMID: 33068461
- Izawa, S.; Mimura, K.; Watanabe, M.; Maruyama, T.; Kawaguchi, Y.; Fujii, H.; Kono, K. Increased prevalence of tumor-infiltrating regulatory T cells is closely related to their lower sensitivity to H2O2-induced apoptosis in gastric and esophageal cancer. Cancer Immunol. Immunother., 2013, 62(1), 161-170. doi: 10.1007/s00262-012-1327-0 PMID: 22865268
- Sakaguchi, S.; Ono, M.; Setoguchi, R.; Yagi, H.; Hori, S.; Fehervari, Z.; Shimizu, J.; Takahashi, T.; Nomura, T. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev., 2006, 212(1), 8-27. doi: 10.1111/j.0105-2896.2006.00427.x PMID: 16903903
- Beyer, M.; Schultze, J.L. Regulatory T cells in cancer. Blood, 2006, 108(3), 804-811. doi: 10.1182/blood-2006-02-002774 PMID: 16861339
- Kono, K.; Salazar-Onfray, F.; Petersson, M.; Hansson, J.; Masucci, G.; Wasserman, K.; Nakazawa, T.; Anderson, P.; Kiessling, R. Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur. J. Immunol., 1996, 26(6), 1308-1313. doi: 10.1002/eji.1830260620 PMID: 8647210
- Tao, B.; Shi, J.; Shuai, S.; Zhou, H.; Zhang, H.; Li, B.; Wang, X.; Li, G.; He, H.; Zhong, J. CYB561D2 up-regulation activates STAT3 to induce immunosuppression and aggression in gliomas. J. Transl. Med., 2021, 19(1), 338. doi: 10.1186/s12967-021-02987-z PMID: 34372858
- Cousin, C.; Aubatin, A.; Le Gouvello, S.; Apetoh, L.; Castellano, F.; Molinier-Frenkel, V. The immunosuppressive enzyme IL4I1 promotes FoxP3 + regulatory T lymphocyte differentiation. Eur. J. Immunol., 2015, 45(6), 1772-1782. doi: 10.1002/eji.201445000 PMID: 25778793
- Boulland, M.L.; Marquet, J.; Molinier-Frenkel, V.; Möller, P.; Guiter, C.; Lasoudris, F.; Copie-Bergman, C.; Baia, M.; Gaulard, P.; Leroy, K.; Castellano, F. Human IL4I1 is a secreted l-phenylalanine oxidase expressed by mature dendritic cells that inhibits T-lymphocyte proliferation. Blood, 2007, 110(1), 220-227. doi: 10.1182/blood-2006-07-036210 PMID: 17356132
- Lockhart, D.C.; Chan, A.K.; Mak, S.; Joo, H.G.; Daust, H.A.; Carritte, A.; Douville, C.C.; Goedegebuure, P.S.; Eberlein, T.J. Loss of T-cell receptor-CD3ζ and T-cell function in tumor-infiltrating lymphocytes but not in tumor-associated lymphocytes in ovarian carcinoma. Surgery, 2001, 129(6), 749-756. doi: 10.1067/msy.2001.114554 PMID: 11391375
- Bronte, V.; Serafini, P.; De Santo, C.; Marigo, I.; Tosello, V.; Mazzoni, A.; Segal, D.M.; Staib, C.; Lowel, M.; Sutter, G.; Colombo, M.P.; Zanovello, P. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J. Immunol., 2003, 170(1), 270-278. doi: 10.4049/jimmunol.170.1.270 PMID: 12496409
- Mao, Y.; Poschke, I.; Wennerberg, E.; Pico de Coaña, Y.; Egyhazi Brage, S.; Schultz, I.; Hansson, J.; Masucci, G.; Lundqvist, A.; Kiessling, R. Melanoma-educated CD14+ cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms. Cancer Res., 2013, 73(13), 3877-3887. doi: 10.1158/0008-5472.CAN-12-4115 PMID: 23633486
- Wang, L.; Lu, Z.; Zhao, J.; Schank, M.; Cao, D.; Dang, X.; Nguyen, L.N.; Nguyen, L.N.T.; Khanal, S.; Zhang, J.; Wu, X.Y.; El Gazzar, M.; Ning, S.; Moorman, J.P.; Yao, Z.Q. Selective oxidative stress induces dual damage to telomeres and mitochondria in human T cells. Aging Cell, 2021, 20(12), e13513. doi: 10.1111/acel.13513 PMID: 34752684
- Glorieux, C.; Xia, X.; He, Y.Q.; Hu, Y.; Cremer, K.; Robert, A.; Liu, J.; Wang, F.; Ling, J.; Chiao, P.J.; Huang, P. Regulation of PD-L1 expression in K-ras-driven cancers through ROS-mediated FGFR1 signaling. Redox Biol., 2021, 38, 101780. doi: 10.1016/j.redox.2020.101780 PMID: 33171331
- Thorne, K.J.; Svvennsen, R.J.; Franks, D. Role of hydrogen peroxide in the cytotoxic reaction of T lymphocytes. Clin. Exp. Immunol., 1980, 39(2), 486-495. PMID: 6248285
- Freund, E.; Liedtke, K.R.; van der Linde, J.; Metelmann, H.R.; Heidecke, C.D.; Partecke, L.I.; Bekeschus, S. Physical plasma-treated saline promotes an immunogenic phenotype in CT26 colon cancer cells in vitro and in vivo. Sci. Rep., 2019, 9(1), 634. doi: 10.1038/s41598-018-37169-3 PMID: 30679720
- Lu, C.; Zhou, F.; Wu, S.; Liu, L.; Xing, D. Phototherapy-induced antitumor immunity: Long-term tumor suppression effects via photoinactivation of respiratory chain oxidase-triggered superoxide anion burst. Antioxid. Redox Signal., 2016, 24(5), 249-262. doi: 10.1089/ars.2015.6334 PMID: 26413929
- Wang, Y.; Sun, X.; Han, Y.; Wang, K.; Cheng, L.; Sun, Y.; Besenbacher, F.; Yu, M. Au@MnSe 2 coreshell nanoagent enabling immediate generation of hydroxyl radicals and simultaneous glutathione deletion free of pre-reaction for chemodynamic-photothermo-photocatalytic therapy with significant immune response. Adv. Healthc. Mater., 2022, 11(14), 2200041. doi: 10.1002/adhm.202200041 PMID: 35481899
- Zhao, X.; Wan, X.; Huang, T.; Yao, S.; Wang, S.; Ding, Y.; Zhao, Y.; Li, Z.; Li, L. Acidity-responsive nanocages as robust reactive oxygen species generators with butterfly effects for maximizing oxidative damage and enhancing cancer therapy. J. Colloid Interface Sci., 2022, 618, 270-282. doi: 10.1016/j.jcis.2022.03.084 PMID: 35339963
- Farber, C.M.; Liebes, L.F.; Kanganis, D.N.; Silber, R. Human B lymphocytes show greater susceptibility to H2O2 toxicity than T lymphocytes. J. Immunol., 1984, 132(5), 2543-2546. doi: 10.4049/jimmunol.132.5.2543 PMID: 6609202
- Silber, R.; Stahl, R.L.; Farber, C.M.; Kanganis, D.; Astrow, A.; Liebes, L.F. Chronic lymphocytic leukemia lymphocytes: membrane anomalies and H2O2 vulnerability. Blood Cells, 1984, 10(2-3), 233-239. PMID: 6336165
- Izawa, S.; Kono, K.; Mimura, K.; Kawaguchi, Y.; Watanabe, M.; Maruyama, T.; Fujii, H. H2O2 production within tumor microenvironment inversely correlated with infiltration of CD56dim NK cells in gastric and esophageal cancer: possible mechanisms of NK cell dysfunction. Cancer Immunol. Immunother., 2011, 60(12), 1801-1810. doi: 10.1007/s00262-011-1082-7 PMID: 21811786
- Klopotowska, M.; Bajor, M.; Graczyk-Jarzynka, A.; Kraft, A.; Pilch, Z.; Zhylko, A.; Firczuk, M.; Baranowska, I.; Lazniewski, M.; Plewczynski, D.; Goral, A.; Soroczynska, K.; Domagala, J.; Marhelava, K.; Slusarczyk, A.; Retecki, K.; Ramji, K.; Krawczyk, M.; Temples, M.N.; Sharma, B.; Lachota, M.; Netskar, H.; Malmberg, K.J.; Zagozdzon, R.; Winiarska, M. PRDX-1 supports the survival and antitumor activity of primary and CAR-modified nk cells under oxidative stress. Cancer Immunol. Res., 2022, 10(2), 228-244. doi: 10.1158/2326-6066.CIR-20-1023 PMID: 34853030
- Zhou, X.; Zhao, R.; Schwarz, K.; Mangeat, M.; Schwarz, E.C.; Hamed, M.; Bogeski, I.; Helms, V.; Rieger, H.; Qu, B. Bystander cells enhance NK cytotoxic efficiency by reducing search time. Sci. Rep., 2017, 7(1), 44357. doi: 10.1038/srep44357 PMID: 28287155
- Upadhyay, S.; Vaish, S.; Dhiman, M. Hydrogen peroxide-induced oxidative stress and its impact on innate immune responses in lung carcinoma A549 cells. Mol. Cell. Biochem., 2019, 450(1-2), 135-147. doi: 10.1007/s11010-018-3380-2 PMID: 29938378
- Li, F.; Kitajima, S.; Kohno, S.; Yoshida, A.; Tange, S.; Sasaki, S.; Okada, N.; Nishimoto, Y.; Muranaka, H.; Nagatani, N.; Suzuki, M.; Masuda, S.; Thai, T.C.; Nishiuchi, T.; Tanaka, T.; Barbie, D.A.; Mukaida, N.; Takahashi, C. Retinoblastoma inactivation induces a protumoral microenvironment via enhanced CCL2 secretion. Cancer Res., 2019, 79(15), 3903-3915. doi: 10.1158/0008-5472.CAN-18-3604 PMID: 31189648
- Sang, Y.; Deng, Q.; Cao, F.; Liu, Z.; You, Y.; Liu, H.; Ren, J.; Qu, X. Remodeling macrophages by an iron nanotrap for tumor growth suppression. ACS Nano, 2021, 15(12), 19298-19309. doi: 10.1021/acsnano.1c05392 PMID: 34783526
- Martinez-Marin, D.; Jarvis, C.; Nelius, T.; de Riese, W.; Volpert, O.V.; Filleur, S. PEDF increases the tumoricidal activity of macrophages towards prostate cancer cells in vitro. PLoS One, 2017, 12(4), e0174968. doi: 10.1371/journal.pone.0174968 PMID: 28403150
- Zuo, W.; Chen, W.; Liu, J.; Huang, S.; Chen, L.; Liu, Q.; Liu, N.; Jin, Q.; Li, Y.; Wang, P.; Zhu, X. Macrophage-mimic hollow mesoporous fe-based nanocatalysts for self-amplified chemodynamic therapy and metastasis inhibition via tumor microenvironment remodeling. ACS Appl. Mater. Interfaces, 2022, 14(4), 5053-5065. doi: 10.1021/acsami.1c22432 PMID: 35040616
- Ishihara, Y.; Fujii, T.; Iijima, H.; Saito, K.; Matsunaga, K. The role of neutrophils as cytotoxic cells in lung metastasis: suppression of tumor cell metastasis by a biological response modifier (PSK). In vivo, 1998, 12(2), 175-182. PMID: 9627799
- Rosen, G.M.; Pou, S.; Ramos, C.L.; Cohen, M.S.; Britigan, B.E. Free radicals and phagocytic cells. FASEB J., 1995, 9(2), 200-209. doi: 10.1096/fasebj.9.2.7540156 PMID: 7540156
- Murphy, M.S.C.; Britigan, B.E.; Hassett, D.J.; Rosen, G.M. Phagocytes, O2 reduction, and hydroxyl radical. Clin. Infect. Dis., 1988, 10(6), 1088-1096. doi: 10.1093/clinids/10.6.1088 PMID: 2849797
- Butcher, L.D.; den Hartog, G.; Ernst, P.B.; Crowe, S.E. Oxidative stress resulting from Helicobacter pylori infection contributes to gastric carcinogenesis. Cell. Mol. Gastroenterol. Hepatol., 2017, 3(3), 316-322. doi: 10.1016/j.jcmgh.2017.02.002 PMID: 28462373
- Hoeben, A.; Landuyt, B.; Highley, M.S.; Wildiers, H.; Van Oosterom, A.T.; De Bruijn, E.A. Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev., 2004, 56(4), 549-580. doi: 10.1124/pr.56.4.3 PMID: 15602010
- Arneth, B. Tumor microenvironment. Medicina (Kaunas), 2019, 56(1), 15. doi: 10.3390/medicina56010015 PMID: 31906017
- Zeng, Y.; Opeskin, K.; Horvath, L.G.; Sutherland, R.L.; Williams, E.D. Lymphatic vessel density and lymph node metastasis in prostate cancer. Prostate, 2005, 65(3), 222-230. doi: 10.1002/pros.20288 PMID: 15948136
- Jennbacken, K.; Vallbo, C.; Wang, W.; Damber, J.E. Expression of vascular endothelial growth factor C (VEGF-C) and VEGF receptor-3 in human prostate cancer is associated with regional lymph node metastasis. Prostate, 2005, 65(2), 110-116. doi: 10.1002/pros.20276 PMID: 15880525
- Muders, M.H.; Zhang, H.; Wang, E.; Tindall, D.J.; Datta, K. Vascular endothelial growth factor-C protects prostate cancer cells from oxidative stress by the activation of mammalian target of rapamycin complex-2 and AKT-1. Cancer Res., 2009, 69(15), 6042-6048. doi: 10.1158/0008-5472.CAN-09-0552 PMID: 19638584
- Abumaree, M.H.; Hakami, M.; Abomaray, F.M.; Alshabibi, M.A.; Kalionis, B.; Al Jumah, M.A.; AlAskar, A.S. Human chorionic villous mesenchymal stem/stromal cells modify the effects of oxidative stress on endothelial cell functions. Placenta, 2017, 59, 74-86. doi: 10.1016/j.placenta.2017.05.001 PMID: 28502524
- Basmaeil, Y.; Al Subayyil, A.; Abumaree, M.; Khatlani, T. Conditions mimicking the cancer microenvironment modulate the functional outcome of human chorionic villus mesenchymal stem/stromal cells in vitro. Front. Cell Dev. Biol., 2021, 9, 650125. doi: 10.3389/fcell.2021.650125 PMID: 34235143
- Zhu, J.W.; Yu, B.M.; Ji, Y.B.; Zheng, M.H.; Li, D.H. Upregulation of vascular endothelial growth factor by hydrogen peroxide in human colon cancer. World J. Gastroenterol., 2002, 8(1), 153-157. doi: 10.3748/wjg.v8.i1.153 PMID: 11833093
- Culp, W.D.; Neal, R.; Massey, R.; Egevad, L.; Pisa, P.; Garland, D. Proteomic analysis of tumor establishment and growth in the B16-F10 mouse melanoma model. J. Proteome Res., 2006, 5(6), 1332-1343. doi: 10.1021/pr060059q PMID: 16739985
- Du, X.; Xu, Q.; Pan, D.; Xu, D.; Niu, B.; Hong, W.; Zhang, R.; Li, X.; Chen, S. HIC-5 in cancer-associated fibroblasts contributes to esophageal squamous cell carcinoma progression. Cell Death Dis., 2019, 10(12), 873. doi: 10.1038/s41419-019-2114-z PMID: 31740661
- Martinez-Outschoorn, U.E.; Balliet, R.M.; Lin, Z.; Whitaker-Menezes, D.; Howell, A.; Sotgia, F.; Lisanti, M.P. Hereditary ovarian cancer and two-compartment tumor metabolism. Cell Cycle, 2012, 11(22), 4152-4166. doi: 10.4161/cc.22226 PMID: 23047606
- Toullec, A.; Gerald, D.; Despouy, G.; Bourachot, B.; Cardon, M.; Lefort, S.; Richardson, M.; Rigaill, G.; Parrini, M.C.; Lucchesi, C.; Bellanger, D.; Stern, M.H.; Dubois, T.; Sastre-Garau, X.; Delattre, O.; Vincent-Salomon, A.; Mechta-Grigoriou, F. Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol. Med., 2010, 2(6), 211-230. doi: 10.1002/emmm.201000073 PMID: 20535745
- Balliet, R.M.; Capparelli, C.; Guido, C.; Pestell, T.G.; Martinez-Outschoorn, U.E.; Lin, Z.; Whitaker-Menezes, D.; Chiavarina, B.; Pestell, R.G.; Howell, A.; Sotgia, F.; Lisanti, M.P. Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth. Cell Cycle, 2011, 10(23), 4065-4073. doi: 10.4161/cc.10.23.18254 PMID: 22129993
- Liang, L.; Li, W.; Li, X.; Jin, X.; Liao, Q.; Li, Y.; Zhou, Y. Reverse Warburg effect of cancer-associated fibroblasts (Review). Int. J. Oncol., 2022, 60(6), 67. doi: 10.3892/ijo.2022.5357 PMID: 35425996
- Jezierska-Drutel, A.; Rosenzweig, S.A.; Neumann, C.A. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv. Cancer Res., 2013, 119, 107-125. doi: 10.1016/B978-0-12-407190-2.00003-4 PMID: 23870510
- Martinez-Outschoorn, U.E.; Lin, Z.; Trimmer, C.; Flomenberg, N.; Wang, C.; Pavlides, S.; Pestell, R.G.; Howell, A.; Sotgia, F.; Lisanti, M.P. Cancer cells metabolically "fertilize" the tumor microenvironment with hydrogen peroxide, driving the Warburg effect. Cell Cycle, 2011, 10(15), 2504-2520. doi: 10.4161/cc.10.15.16585 PMID: 21778829
- Lisanti, M.P.; Martinez-Outschoorn, U.E.; Lin, Z.; Pavlides, S.; Whitaker-Menezes, D.; Pestell, R.G.; Howell, A.; Sotgia, F. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis. Cell Cycle, 2011, 10(15), 2440-2449. doi: 10.4161/cc.10.15.16870 PMID: 21734470
- Hsieh, C.L.; Liu, C.M.; Chen, H.A.; Yang, S.T.; Shigemura, K.; Kitagawa, K.; Yamamichi, F.; Fujisawa, M.; Liu, Y.R.; Lee, W.H.; Chen, K.C.; Shen, C.N.; Lin, C.C.; Chung, L.W.K.; Sung, S.Y. Reactive oxygen speciesmediated switching expression of MMP-3 in stromal fibroblasts and cancer cells during prostate cancer progression. Sci. Rep., 2017, 7(1), 9065. doi: 10.1038/s41598-017-08835-9 PMID: 28831065
- Martinez-Outschoorn, U.E.; Trimmer, C.; Lin, Z.; Whitaker-Menezes, D.; Chiavarina, B.; Zhou, J.; Wang, C.; Pavlides, S.; Martinez-Cantarin, M.P.; Capozza, F.; Witkiewicz, A.K.; Flomenberg, N.; Howell, A.; Pestell, R.G.; Caro, J.; Lisanti, M.P.; Sotgia, F. Autophagy in cancer associated fibroblasts promotes tumor cell survival. Cell Cycle, 2010, 9(17), 3515-3533. doi: 10.4161/cc.9.17.12928 PMID: 20855962
- Trimmer, C.; Sotgia, F.; Whitaker-Menezes, D.; Balliet, R.M.; Eaton, G.; Martinez-Outschoorn, U.E.; Pavlides, S.; Howell, A.; Iozzo, R.V.; Pestell, R.G.; Scherer, P.E.; Capozza, F.; Lisanti, M.P. Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment. Cancer Biol. Ther., 2011, 11(4), 383-394. doi: 10.4161/cbt.11.4.14101 PMID: 21150282
- Golden, B.O.; Griess, B.; Mir, S.; Fitzgerald, M.; Kuperwasser, C.; Domann, F.; Teoh-Fitzgerald, M. Extracellular superoxide dismutase inhibits hepatocyte growth factor-mediated breast cancer-fibroblast interactions. Oncotarget, 2017, 8(64), 107390-107408. doi: 10.18632/oncotarget.22379 PMID: 29296173
- Abdian, N.; Ghasemi-Dehkordi, P.; Hashemzadeh-Chaleshtori, M.; Ganji-Arjenaki, M.; Doosti, A.; Amiri, B. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF). Cell Tissue Bank., 2015, 16(4), 487-495. doi: 10.1007/s10561-015-9494-9 PMID: 25605061
- Ma, C.; Bower, K.A.; Chen, G.; Shi, X.; Ke, Z.J.; Luo, J. Interaction between ERK and GSK3beta mediates basic fibroblast growth factor-induced apoptosis in SK-N-MC neuroblastoma cells. J. Biol. Chem., 2008, 283(14), 9248-9256. doi: 10.1074/jbc.M707316200 PMID: 18263590
- Wang, Z.; Zheng, R.; Fu, S.; Chen, Y.; Duan, G.; Qin, D.; Liu, G. Role of superoxide anion on the proliferation and c-Ha- ras or p53 expression in prostate cancer cell line PC3. Urol. Res., 1998, 26(5), 349-353. doi: 10.1007/s002400050068 PMID: 9840345
- Arnold, R.S.; Shi, J.; Murad, E.; Whalen, A.M.; Sun, C.Q.; Polavarapu, R.; Parthasarathy, S.; Petros, J.A.; Lambeth, J.D. Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc. Natl. Acad. Sci. USA, 2001, 98(10), 5550-5555. doi: 10.1073/pnas.101505898 PMID: 11331784
- Arbiser, J.L.; Petros, J.; Klafter, R.; Govindajaran, B.; McLaughlin, E.R.; Brown, L.F.; Cohen, C.; Moses, M.; Kilroy, S.; Arnold, R.S.; Lambeth, J.D. Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc. Natl. Acad. Sci. USA, 2002, 99(2), 715-720. doi: 10.1073/pnas.022630199 PMID: 11805326
- Kuroki, M.; Voest, E.E.; Amano, S.; Beerepoot, L.V.; Takashima, S.; Tolentino, M.; Kim, R.Y.; Rohan, R.M.; Colby, K.A.; Yeo, K.T.; Adamis, A.P. Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J. Clin. Invest., 1996, 98(7), 1667-1675. doi: 10.1172/JCI118962 PMID: 8833917
- Maehata, Y.; Ozawa, S.; Kobayashi, K.; Kato, Y.; Yoshino, F.; Miyamoto, C.; Izukuri, K.; Kubota, E.; Hata, R.I.; Lee, M.C.I. Reactive oxygen species (ROS) reduce the expression of BRAK/CXCL14 in human head and neck squamous cell carcinoma cells. Free Radic. Res., 2010, 44(8), 913-924. doi: 10.3109/10715762.2010.490836 PMID: 20815772
- Kang, D.H.; Lee, D.J.; Lee, K.W.; Park, Y.S.; Lee, J.Y.; Lee, S.H.; Koh, Y.J.; Koh, G.Y.; Choi, C.; Yu, D.Y.; Kim, J.; Kang, S.W. Peroxiredoxin II is an essential antioxidant enzyme that prevents the oxidative inactivation of VEGF receptor-2 in vascular endothelial cells. Mol. Cell, 2011, 44(4), 545-558. doi: 10.1016/j.molcel.2011.08.040 PMID: 22099303
- Pez, F.; Dayan, F.; Durivault, J.; Kaniewski, B.; Aimond, G.; Le Provost, G.S.; Deux, B.; Clézardin, P.; Sommer, P.; Pouysségur, J.; Reynaud, C. The HIF-1-inducible lysyl oxidase activates HIF-1 via the Akt pathway in a positive regulation loop and synergizes with HIF-1 in promoting tumor cell growth. Cancer Res., 2011, 71(5), 1647-1657. doi: 10.1158/0008-5472.CAN-10-1516 PMID: 21239473
- Payne, S.L.; Fogelgren, B.; Hess, A.R.; Seftor, E.A.; Wiley, E.L.; Fong, S.F.T.; Csiszar, K.; Hendrix, M.J.C.; Kirschmann, D.A. Lysyl oxidase regulates breast cancer cell migration and adhesion through a hydrogen peroxide-mediated mechanism. Cancer Res., 2005, 65(24), 11429-11436. doi: 10.1158/0008-5472.CAN-05-1274 PMID: 16357151
- Milla Sanabria, L.; Rodríguez, M.E.; Cogno, I.S.; Rumie Vittar, N.B.; Pansa, M.F.; Lamberti, M.J.; Rivarola, V.A. Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment. Biochim. Biophys. Acta, 2013, 1835(1), 36-45. PMID: 23046998
- Burlaka, A.P.; Ganusevich, I.I.; Lozovska, Y.V.; Lukianova, N.Y.; Chekhun, V.F. Redox-regulation of gelatinases during growth of cisplatin-sensitive and resistant Guerin carcinoma. Exp. Oncol., 2015, 37(1), 36-39. doi: 10.31768/2312-8852.2015.37(1):36-39 PMID: 25804229
- Ma, Z.; Liu, X.; Zhang, Q.; Yu, Z.; Gao, D. Carvedilol suppresses malignant proliferation of mammary epithelial cells through inhibition of the ROS-mediated PI3K/AKT signaling pathway. Oncol. Rep., 2019, 41(2), 811-818. PMID: 30483797
- Wang, Y.J.; Yang, M.C.; Pan, M.H. Dihydrolipoic acid inhibits tetrachlorohydroquinone-induced tumor promotion through prevention of oxidative damage. Food Chem. Toxicol., 2008, 46(12), 3739-3748. doi: 10.1016/j.fct.2008.09.064 PMID: 18951944
- Omenn, G.S.; Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Glass, A.; Keogh, J.P.; Meyskens, F.L., Jr; Valanis, B.; Williams, J.H., Jr; Barnhart, S.; Hammar, S. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med., 1996, 334(18), 1150-1155. doi: 10.1056/NEJM199605023341802 PMID: 8602180
- Klein, E.A.; Thompson, I.M., Jr; Tangen, C.M.; Crowley, J.J.; Lucia, M.S.; Goodman, P.J.; Minasian, L.M.; Ford, L.G.; Parnes, H.L.; Gaziano, J.M.; Karp, D.D.; Lieber, M.M.; Walther, P.J.; Klotz, L.; Parsons, J.K.; Chin, J.L.; Darke, A.K.; Lippman, S.M.; Goodman, G.E.; Meyskens, F.L., Jr; Baker, L.H. Vitamin E and the risk of prostate cancer. JAMA, 2011, 306(14), 1549-1556. doi: 10.1001/jama.2011.1437 PMID: 21990298
- Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med., 1994, 330(15), 1029-1035. doi: 10.1056/NEJM199404143301501 PMID: 8127329
- Singh, A.; Boldin-Adamsky, S.; Thimmulappa, R.K.; Rath, S.K.; Ashush, H.; Coulter, J.; Blackford, A.; Goodman, S.N.; Bunz, F.; Watson, W.H.; Gabrielson, E.; Feinstein, E.; Biswal, S. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res., 2008, 68(19), 7975-7984. doi: 10.1158/0008-5472.CAN-08-1401 PMID: 18829555
- DeNicola, G.M.; Karreth, F.A.; Humpton, T.J.; Gopinathan, A.; Wei, C.; Frese, K.; Mangal, D.; Yu, K.H.; Yeo, C.J.; Calhoun, E.S.; Scrimieri, F.; Winter, J.M.; Hruban, R.H.; Iacobuzio-Donahue, C.; Kern, S.E.; Blair, I.A.; Tuveson, D.A. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 2011, 475(7354), 106-109. doi: 10.1038/nature10189 PMID: 21734707
- Bauer, A.K.; Cho, H.Y.; Miller-DeGraff, L.; Walker, C.; Helms, K.; Fostel, J.; Yamamoto, M.; Kleeberger, S.R. Targeted deletion of Nrf2 reduces urethane-induced lung tumor development in mice. PLoS One, 2011, 6(10), e26590. doi: 10.1371/journal.pone.0026590 PMID: 22039513
- Watson, J. Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol., 2013, 3(1), 120144. doi: 10.1098/rsob.120144 PMID: 23303309
- Guo, L.; Tan, K.; Wang, H.; Zhang, X. Pterostilbene inhibits hepatocellular carcinoma through p53/SOD2/ROS-mediated mitochondrial apoptosis. Oncol. Rep., 2016, 36(6), 3233-3240. doi: 10.3892/or.2016.5151 PMID: 27748853
- Zou, J.; Zhang, Y.; Sun, J.; Wang, X.; Tu, H.; Geng, S.; Liu, R.; Chen, Y.; Bi, Z. Deoxyelephantopin induces reactive oxygen species-mediated apoptosis and autophagy in human osteosarcoma cells. Cell. Physiol. Biochem., 2017, 42(5), 1812-1821. doi: 10.1159/000479537 PMID: 28750364
- Renaudin, X. Reactive oxygen species and DNA damage response in cancer. Int. Rev. Cell Mol. Biol., 2021, 364, 139-161. doi: 10.1016/bs.ircmb.2021.04.001 PMID: 34507782
- Jackson, A.L.; Loeb, L.A. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat. Res., 2001, 477(1-2), 7-21. doi: 10.1016/S0027-5107(01)00091-4 PMID: 11376682
- Xia, X.; Yang, X.; Huang, P.; Yan, D. ROS-responsive nanoparticles formed from RGDepothilone b conjugate for targeted cancer therapy. ACS Appl. Mater. Interfaces, 2020, 12(16), 18301-18308. doi: 10.1021/acsami.0c00650 PMID: 32242653
- Zhang, Z.; Lu, Z.; Yuan, Q.; Zhang, C.; Tang, Y. ROS-Responsive and active targeted drug delivery based on conjugated polymer nanoparticles for synergistic chemo-/photodynamic therapy. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(9), 2240-2248. doi: 10.1039/D0TB02996C PMID: 33596297
- Yun, K.; Guo, J.; Zhu, R.; Wang, T.; Zhang, X.; Pan, H.; Pan, W. Design of ROS-responsive hyaluronic acidmethotrexate conjugates for synergistic chemo-photothermal therapy for cancer. Mol. Pharm., 2022, 19(9), 3323-3335. doi: 10.1021/acs.molpharmaceut.2c00472 PMID: 35900105
- Mokwena, M.G.; Kruger, C.A.; Ivan, M.T.; Heidi, A. A review of nanoparticle photosensitizer drug delivery uptake systems for photodynamic treatment of lung cancer. Photodiagn. Photodyn. Ther., 2018, 22, 147-154. doi: 10.1016/j.pdpdt.2018.03.006 PMID: 29588217
- Li, S.Y.; Cheng, H.; Qiu, W.X.; Zhang, L.; Wan, S.S.; Zeng, J.Y.; Zhang, X.Z. Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy. Biomaterials, 2017, 142, 149-161. doi: 10.1016/j.biomaterials.2017.07.026 PMID: 28735175
- Baldea, I.; Giurgiu, L.; Teacoe, I.D.; Olteanu, D.E.; Olteanu, F.C.; Clichici, S.; Filip, G.A. Photodynamic therapy in melanoma - where do we stand? Curr. Med. Chem., 2019, 25(40), 5540-5563. doi: 10.2174/0929867325666171226115626 PMID: 29278205
- Ming, H.; Li, B.; Tian, H.; Zhou, L.; Jiang, J.; Zhang, T.; Qiao, L.; Wu, P.; Nice, E.C.; Zhang, W.; He, W.; Huang, C.; Zhang, H. A minimalist and robust chemo-photothermal nanoplatform capable of augmenting autophagy-modulated immune response against breast cancer. Mater. Today Bio, 2022, 15, 100289. doi: 10.1016/j.mtbio.2022.100289 PMID: 35634171
- Wang, C.; Wang, J.; Zhang, X.; Yu, S.; Wen, D.; Hu, Q.; Ye, Y.; Bomba, H.; Hu, X.; Liu, Z.; Dotti, G.; Gu, Z. In situ formed reactive oxygen speciesresponsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med., 2018, 10(429), eaan3682. doi: 10.1126/scitranslmed.aan3682 PMID: 29467299
- Paduch, R.; Kandefer-Szerszeń, M.; Piersiak, T. The importance of release of proinflammatory cytokines, ROS, and NO in different stages of colon carcinoma growth and metastasis after treatment with cytotoxic drugs. Oncol. Res., 2009, 18(9), 419-436. doi: 10.3727/096504010X12671222663593 PMID: 20524400
- Jezierska-Drutel, A.; Attaran, S.; Hopkins, B.L.; Skoko, J.J.; Rosenzweig, S.A.; Neumann, C.A. The peroxidase PRDX1 inhibits the activated phenotype in mammary fibroblasts through regulating c-Jun N-terminal kinases. BMC Cancer, 2019, 19(1), 812. doi: 10.1186/s12885-019-6031-4 PMID: 31419957
- Letchoumy, P.V.; Chandra Mohan, K.V.P.; Stegeman, J.J.; Gelboin, H.V.; Hara, Y.; Nagini, S. in vitro antioxidative potential of lactoferrin and black tea polyphenols and protective effects in vivo on carcinogen activation, DNA damage, proliferation, invasion, and angiogenesis during experimental oral carcinogenesis. Oncol. Res., 2008, 17(5), 193-203. doi: 10.3727/096504008786111365 PMID: 18980016
- Horinaka, A.; Sakurai, D.; Ihara, F.; Makita, Y.; Kunii, N.; Motohashi, S.; Nakayama, T.; Okamoto, Y. Invariant NKT cells are resistant to circulating CD15+ myeloid-derived suppressor cells in patients with head and neck cancer. Cancer Sci., 2016, 107(3), 207-216. doi: 10.1111/cas.12866 PMID: 26679292
- Lasoudris, F.; Cousin, C.; Prevost-Blondel, A.; Martin-Garcia, N.; Abd-Alsamad, I.; Ortonne, N.; Farcet, J.P.; Castellano, F.; Molinier-Frenkel, V. IL4I1: an inhibitor of the CD8+ antitumor T-cell response in vivo. Eur. J. Immunol., 2011, 41(6), 1629-1638. doi: 10.1002/eji.201041119 PMID: 21469114
- Otsuji, M.; Kimura, Y.; Aoe, T.; Okamoto, Y.; Saito, T. Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 ζ chain of T-cell receptor complex and antigen-specific T-cell responses. Proc. Natl. Acad. Sci. USA, 1996, 93(23), 13119-13124. doi: 10.1073/pnas.93.23.13119 PMID: 8917554
- Kwon, D.; Choi, I.H. Hydrogen peroxide upregulates TNF-related apoptosis-inducing ligand (TRAIL) expression in human astroglial cells, and augments apoptosis of T cells. Yonsei Med. J., 2006, 47(4), 551-557. doi: 10.3349/ymj.2006.47.4.551 PMID: 16941746
- Kitamura, T.; Doughty-Shenton, D.; Cassetta, L.; Fragkogianni, S.; Brownlie, D.; Kato, Y.; Carragher, N.; Pollard, J.W. Monocytes differentiate to immune suppressive precursors of metastasis-associated macrophages in mouse models of metastatic breast cancer. Front. Immunol., 2018, 8, 2004. doi: 10.3389/fimmu.2017.02004 PMID: 29387063
- Qiu, J.; Zhang, T.; Zhu, X.; Yang, C.; Wang, Y.; Zhou, N.; Ju, B.; Zhou, T.; Deng, G.; Qiu, C. Hyperoside induces breast cancer cells apoptosis via ROS-mediated NF-κB signaling pathway. Int. J. Mol. Sci., 2019, 21(1), 131. doi: 10.3390/ijms21010131 PMID: 31878204
- Si, L.; Fu, J.; Liu, W.; Hayashi, T.; Nie, Y.; Mizuno, K.; Hattori, S.; Fujisaki, H.; Onodera, S.; Ikejima, T. Silibinin inhibits migration and invasion of breast cancer MDA-MB-231 cells through induction of mitochondrial fusion. Mol. Cell. Biochem., 2020, 463(1-2), 189-201. doi: 10.1007/s11010-019-03640-6 PMID: 31612353
- Lin, H.; Liu, X.; Yu, J.; Hua, F.; Hu, Z. Antioxidant N-acetylcysteine attenuates hepatocarcinogenesis by inhibiting ROS/ER stress in TLR2 deficient mouse. PLoS One, 2013, 8(10), e74130. doi: 10.1371/journal.pone.0074130 PMID: 24098333
- Nishikawa, M.; Hashida, M.; Takakura, Y. Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv. Drug Deliv. Rev., 2009, 61(4), 319-326. doi: 10.1016/j.addr.2009.01.001 PMID: 19385054
- Zhang, Q.; Huang, Y.; Yang, R.; Mu, J.; Zhou, Z.; Sun, M. Poly-antioxidants for enhanced anti-miR-155 delivery and synergistic therapy of metastatic breast cancer. Biomater. Sci., 2022, 10(13), 3637-3646. doi: 10.1039/D1BM02022F PMID: 35648436
- Travassos, I.O.; Mello-Andrade, F.; Caldeira, R.P.; Pires, W.C.; da Silva, P.F.F.; Correa, R.S.; Teixeira, T.; Martins-Oliveira, A.; Batista, A.A.; de Silveira-Lacerda, E.P. Ruthenium (II)/allopurinol complex inhibits breast cancer progression via multiple targets. J. Biol. Inorg. Chem., 2021, 26(4), 385-401. doi: 10.1007/s00775-021-01862-y PMID: 33837856
- Factor, V.M.; Laskowska, D.; Jensen, M.R.; Woitach, J.T.; Popescu, N.C.; Thorgeirsson, S.S. Vitamin E reduces chromosomal damage and inhibits hepatic tumor formation in a transgenic mouse model. Proc. Natl. Acad. Sci. USA, 2000, 97(5), 2196-2201. doi: 10.1073/pnas.040428797 PMID: 10681450
- Tapiero, H.; Townsend, D.M.; Tew, K.D. The role of carotenoids in the prevention of human pathologies. Biomed. Pharmacother., 2004, 58(2), 100-110. doi: 10.1016/j.biopha.2003.12.006 PMID: 14992791
- Nishikawa, M.; Hyoudou, K.; Kobayashi, Y.; Umeyama, Y.; Takakura, Y.; Hashida, M. Inhibition of metastatic tumor growth by targeted delivery of antioxidant enzymes. J. Control. Release, 2005, 109(1-3), 101-107. doi: 10.1016/j.jconrel.2005.09.017 PMID: 16256238
- Xu, G.; Yu, B.; Wang, R.; Jiang, J.; Wen, F.; Shi, X. Astragalin flavonoid inhibits proliferation in human lung carcinoma cells mediated via induction of caspase-dependent intrinsic pathway, ROS production, cell migration and invasion inhibition and targeting JAK/STAT signalling pathway. Cell. Mol. Biol., 2021, 67(2), 44-49. doi: 10.14715/cmb/2021.67.2.7 PMID: 34817340
- Phan, T.N.; Kim, O.; Ha, M.T.; Hwangbo, C.; Min, B.S.; Lee, J.H. Albanol B from mulberries exerts anti-cancer effect through mitochondria ROS production in lung cancer cells and suppresses in vivo tumor growth. Int. J. Mol. Sci., 2020, 21(24), 9502. doi: 10.3390/ijms21249502 PMID: 33327489
- Jia, X.B.; Zhang, Q.; Xu, L.; Yao, W.J.; Wei, L. Lotus leaf flavonoids induce apoptosis of human lung cancer A549 cells through the ROS/p38 MAPK pathway. Biol. Res., 2021, 54(1), 7. doi: 10.1186/s40659-021-00330-w PMID: 33653412
- Qu, X.; Sheng, J.; Shen, L.; Su, J.; Xu, Y.; Xie, Q.; Wu, Y.; Zhang, X.; Sun, L. Autophagy inhibitor chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma cells by mitochondrial ROS. PLoS One, 2017, 12(3), e0173712. doi: 10.1371/journal.pone.0173712 PMID: 28301876
- Schluterman, M.K.; Chapman, S.L.; Korpanty, G.; Ozumi, K.; Fukai, T.; Yanagisawa, H.; Brekken, R.A. Loss of fibulin-5 binding to β1 integrins inhibits tumor growth by increasing the level of ROS. Dis. Model. Mech., 2010, 3(5-6), 333-342. doi: 10.1242/dmm.003707 PMID: 20197418
- Li, D.; Kou, Y.; Gao, Y.; Liu, S.; Yang, P.; Hasegawa, T.; Su, R.; Guo, J.; Li, M. Oxaliplatin induces the PARP1-mediated parthanatos in oral squamous cell carcinoma by increasing production of ROS. Aging (Albany NY), 2021, 13(3), 4242-4257. doi: 10.18632/aging.202386 PMID: 33495407
- Zhou, L.; Yang, C.; Zhong, W.; Wang, Q.; Zhang, D.; Zhang, J.; Xie, S.; Xu, M. Chrysin induces autophagy-dependent ferroptosis to increase chemosensitivity to gemcitabine by targeting CBR1 in pancreatic cancer cells. Biochem. Pharmacol., 2021, 193, 114813. doi: 10.1016/j.bcp.2021.114813 PMID: 34673014
- Chen, Y.C.; Shen, S.C.; Chow, J.M.; Ko, C.; Tseng, S.W. Flavone inhibition of tumor growth via apoptosis in vitro and in vivo. Int. J. Oncol., 2004, 25(3), 661-670. doi: 10.3892/ijo.25.3.661 PMID: 15289867
- Li, Y.; Zhou, Y.; Wang, M.; Lin, X.; Zhang, Y.; Laurent, I.; Zhong, Y.; Li, J. Ampelopsin inhibits breast cancer cell growth through mitochondrial apoptosis pathway. Biol. Pharm. Bull., 2021, 44(11), 1738-1745. doi: 10.1248/bpb.b21-00470 PMID: 34470980
- Alam, M.; Hasan, G.M.; Ansari, M.M.; Sharma, R.; Yadav, D.K.; Hassan, M.I. Therapeutic implications and clinical manifestations of thymoquinone. Phytochemistry, 2022, 200, 113213. doi: 10.1016/j.phytochem.2022.113213 PMID: 35472482
- Ko, C.H.; Shen, S.C.; Yang, L.Y.; Lin, C.W.; Chen, Y.C. Gossypol reduction of tumor growth through ROS-dependent mitochondria pathway in human colorectal carcinoma cells. Int. J. Cancer, 2007, 121(8), 1670-1679. doi: 10.1002/ijc.22910 PMID: 17597109
- Wang, M.; Li, K.; Zou, Z.; Li, L.; Zhu, L.; Wang, Q.; Gao, W.; Wang, Y.; Huang, W.; Liu, R.; Yao, K.; Liu, Q. Piperidine nitroxide Tempol enhances cisplatin-induced apoptosis in ovarian cancer cells. Oncol. Lett., 2018, 16(4), 4847-4854. doi: 10.3892/ol.2018.9289 PMID: 30250550
- Zou, Z.W.; Liu, T.; Li, Y.; Chen, P.; Peng, X.; Ma, C.; Zhang, W.J.; Li, P.D. Melatonin suppresses thyroid cancer growth and overcomes radioresistance via inhibition of p65 phosphorylation and induction of ROS. Redox Biol., 2018, 16, 226-236. doi: 10.1016/j.redox.2018.02.025 PMID: 29525603
- Jeon, H.; Jin, Y.; Myung, C.S.; Heo, K.S. Ginsenoside-Rg2 exerts anti-cancer effects through ROS-mediated AMPK activation associated mitochondrial damage and oxidation in MCF-7 cells. Arch. Pharm. Res., 2021, 44(7), 702-712. doi: 10.1007/s12272-021-01345-3 PMID: 34302638
- Biswas, S.; Zhao, X.; Mone, A.P.; Mo, X.; Vargo, M.; Jarjoura, D.; Byrd, J.C.; Muthusamy, N. Arsenic trioxide and ascorbic acid demonstrate promising activity against primary human CLL cells in vitro. Leuk. Res., 2010, 34(7), 925-931. doi: 10.1016/j.leukres.2010.01.020 PMID: 20171736
Supplementary files
