Natural Products in Liver Fibrosis Management: A Five-year Review


Cite item

Full Text

Abstract

:Liver fibrosis, characterized by the overproduction of extracellular matrix proteins within liver tissue, poses a rising global health concern. However, no approved antifibrotic drugs are currently available, highlighting the critical need for understanding the molecular mechanisms of liver fibrosis. This knowledge could not only aid in developing therapies but also enable early intervention, enhance disease prediction, and improve our understanding of the interaction between various underlying conditions and the liver. Notably, natural products used in traditional medicine systems worldwide and demonstrating diverse biochemical and pharmacological activities are increasingly recognized for their potential in treating liver fibrosis. This review aims to comprehensively understand liver fibrosis, emphasizing the molecular mechanisms and advancements in exploring natural products' antifibrotic potential over the past five years. It also acknowledges the challenges in their development and seeks to underscore their potency in enhancing patient prognosis and reducing the global burden of liver disease.

About the authors

Tao Wang

Institute of Geriatrics, Jiangxi Provincial People’s Hospital & the First Affiliated Hospital of Nanchang Medical College

Author for correspondence.
Email: info@benthamscience.net

Zhuo Lu

Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University

Email: info@benthamscience.net

Gui-Feng Sun

Institute of Geriatrics, Jiangxi Provincial People’s Hospital & the First Affiliated Hospital of Nanchang Medical College

Email: info@benthamscience.net

Kai-Yi He

Institute of Geriatrics, Jiangxi Provincial People’s Hospital & the First Affiliated Hospital of Nanchang Medical College

Email: info@benthamscience.net

Zhi-Ping Chen

Department of Critical Care Medicine, Jiangxi Provincial People’s Hospital & the First Affiliated Hospital of Nanchang Medical College

Email: info@benthamscience.net

Xin-Hui Qu

The Second Department of Neurology, Jiangxi Provincial People’s Hospital & the First Affiliated Hospital of Nanchang Medical College

Email: info@benthamscience.net

Xiao-Jian Han

Institute of Geriatrics, Jiangxi Provincial People’s Hospital & the First Affiliated Hospital of Nanchang Medical College

Author for correspondence.
Email: info@benthamscience.net

References

  1. Berumen, J.; Baglieri, J.; Kisseleva, T.; Mekeel, K. Liver fibrosis: Pathophysiology and clinical implications. WIREs Mech. Dis., 2021, 13(1), e1499. doi: 10.1002/wsbm.1499 PMID: 32713091
  2. Kim, D.; Li, A.A.; Perumpail, B.J.; Gadiparthi, C.; Kim, W.; Cholankeril, G.; Glenn, J.S.; Harrison, S.A.; Younossi, Z.M.; Ahmed, A. Changing trends in etiology-based and ethnicity-based annual mortality rates of cirrhosis and hepatocellular carcinoma in the United States. Hepatology, 2019, 69(3), 1064-1074. doi: 10.1002/hep.30161 PMID: 30014489
  3. Ciardullo, S.; Monti, T.; Perseghin, G. High prevalence of advanced liver fibrosis assessed by transient elastography among U.S. adults with type 2 diabetes. Diabetes Care, 2021, 44(2), 519-525. doi: 10.2337/dc20-1778 PMID: 33303638
  4. Seki, E.; Brenner, D.A. Recent advancement of molecular mechanisms of liver fibrosis. J. Hepatobiliary Pancreat. Sci., 2015, 22(7), 512-518. doi: 10.1002/jhbp.245 PMID: 25869468
  5. Demir, Y; Ceylan, H; Turkes, C; Beydemir, S Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J. Biomol. Struct. Dyn., 2022, 40(22), 12008-12021.
  6. Yamali, C; Gul, HI; Cakir, T; Demir, Y; Gulcin, I Aminoalkylated phenolic chalcones: Investigation of biological effects on acetylcholinesterase and carbonic anhydrase I and II as potential lead enzyme inhibitors. Lett. Drug Design Discov., 2020, 17(10), 1283-1292.
  7. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803. doi: 10.1021/acs.jnatprod.9b01285 PMID: 32162523
  8. Zhang, H.W.; Lv, C.; Zhang, L.J.; Guo, X.; Shen, Y.W.; Nagle, D.G.; Zhou, Y.D.; Liu, S.H.; Zhang, W.D.; Luan, X. Application of omics- and multi-omics-based techniques for natural product target discovery. Biomed. Pharmacother., 2021, 141, 111833. doi: 10.1016/j.biopha.2021.111833 PMID: 34175822
  9. Bayrak, S.; Öztürk, C.; Demir, Y.; Alım, Z.; Küfrevioglu, Ö.İ. Purification of polyphenol oxidase from potato and investigation of the inhibitory effects of phenolic acids on enzyme activity. Protein Pept. Lett., 2020, 27(3), 187-192. doi: 10.2174/0929866526666191002142301 PMID: 31577197
  10. Palabıyık, E.; Sulumer, A.N.; Uguz, H.; Avcı, B.; Askın, S.; Askın, H.; Demir, Y. Assessment of hypolipidemic and anti-inflammatory properties of walnut ( Juglans regia ) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-INDUCED hyperlipidemia in rat kidney, liver, and heart. J. Mol. Recognit., 2023, 36(3), e3004. doi: 10.1002/jmr.3004 PMID: 36537558
  11. Özaslan, M.S.; Sağlamtaş, R.; Demir, Y.; Genç, Y.; Saraçoğlu, İ.; Gülçin, İ. Isolation of some phenolic compounds from Plantago subulata L. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity. Chem. Biodivers., 2022, 19(8), e202200280. doi: 10.1002/cbdv.202200280 PMID: 35796520
  12. Türkeş, C; Demir, Y; Beydemir, Ş. In vitro inhibitory activity and molecular docking study of selected natural phenolic compounds as ar and sdh inhibitors. ChemistrySelect, 2022, 7(48), e202204050.
  13. Demir, Y.; Türkeş, C.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Molecular docking studies and the effect of fluorophenylthiourea derivatives on glutathione-dependent enzymes. Chem. Biodivers., 2023, 20(1), e202200656. doi: 10.1002/cbdv.202200656 PMID: 36538730
  14. Yıldız, M.L.; Demir, Y.; Küfrevioğlu, Ö.I. Screening of in vitro and in silico effect of Fluorophenylthiourea compounds on glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase enzymes. J. Mol. Recognit., 2022, 35(12), e2987. doi: 10.1002/jmr.2987 PMID: 36326002
  15. Malarkey, D.E.; Johnson, K.; Ryan, L.; Boorman, G.; Maronpot, R.R. New insights into functional aspects of liver morphology. Toxicol. Pathol., 2005, 33(1), 27-34. doi: 10.1080/01926230590881826 PMID: 15805053
  16. Taslimi, P.; Kandemir, F.M.; Demir, Y.; İleritürk, M.; Temel, Y.; Caglayan, C.; Gulçin, İ. The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: Pharmacological evaluation of some metabolic enzyme activities. J. Biochem. Mol. Toxicol., 2019, 33(6), e22313. doi: 10.1002/jbt.22313 PMID: 30801880
  17. Çağlayan, C.; Taslimi, P.; Demir, Y.; Küçükler, S.; Kandemir, F.M.; Gulçin, İ. The effects of zingerone against vancomycin-induced lung, liver, kidney and testis toxicity in rats: The behavior of some metabolic enzymes. J. Biochem. Mol. Toxicol., 2019, 33(10), e22381. doi: 10.1002/jbt.22381 PMID: 31454121
  18. Bouwens, L.; De Bleser, P.; Vanderkerken, K.; Geerts, B.; Wisse, E. Liver cell heterogeneity: Functions of non-parenchymal cells. Enzyme, 1992, 46(1-3), 155-168. doi: 10.1159/000468782 PMID: 1289080
  19. Senoo, H. Structure and function of hepatic stellate cells. Med. Electron Microsc., 2004, 37(1), 3-15. doi: 10.1007/s00795-003-0230-3 PMID: 15057600
  20. Dixon, L.J.; Barnes, M.; Tang, H.; Pritchard, M.T.; Nagy, L.E. Kupffer cells in the liver. Compr. Physiol., 2013, 3(2), 785-797. doi: 10.1002/cphy.c120026 PMID: 23720329
  21. Elvevold, K.; Smedsrød, B.; Martinez, I. The liver sinusoidal endothelial cell: A cell type of controversial and confusing identity. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 294(2), G391-G400. doi: 10.1152/ajpgi.00167.2007 PMID: 18063708
  22. Tabibian, J.H.; Masyuk, A.I.; Masyuk, T.V.; O’Hara, S.P.; LaRusso, N.F. Physiology of cholangiocytes. Compr. Physiol., 2013, 3(1), 541-565. doi: 10.1002/cphy.c120019 PMID: 23720296
  23. Kumar, S.; Duan, Q.; Wu, R.; Harris, E.N.; Su, Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv. Drug Deliv. Rev., 2021, 176, 113869. doi: 10.1016/j.addr.2021.113869 PMID: 34280515
  24. Wang, L.; Wang, Y.; Quan, J. Exosomes derived from natural killer cells inhibit hepatic stellate cell activation and liver fibrosis. Hum. Cell, 2020, 33(3), 582-589. doi: 10.1007/s13577-020-00371-5 PMID: 32449114
  25. Zhou, W.; Luo, J.; Xie, X.; Yang, S.; Zhu, D.; Huang, H.; Yang, D.; Liu, J. Gut microbiota dysbiosis strengthens kupffer cell-mediated hepatitis B virus persistence through inducing endotoxemia in mice. J. Clin. Transl. Hepatol., 2022, 10(1), 17-25. doi: 10.14218/JCTH.2020.00161 PMID: 35233369
  26. Matsumoto, M.; Zhang, J.; Zhang, X.; Liu, J.; Jiang, J.X.; Yamaguchi, K.; Taruno, A.; Katsuyama, M.; Iwata, K.; Ibi, M.; Cui, W.; Matsuno, K.; Marunaka, Y.; Itoh, Y.; Torok, N.J.; Yabe-Nishimura, C. The NOX1 isoform of NADPH oxidase is involved in dysfunction of liver sinusoids in nonalcoholic fatty liver disease. Free Radic. Biol. Med., 2018, 115, 412-420. doi: 10.1016/j.freeradbiomed.2017.12.019 PMID: 29274380
  27. Lim, H.K.; Jeffrey, G.P.; Ramm, G.A.; Soekmadji, C. Pathogenesis of viral hepatitis-induced chronic liver disease: Role of extracellular vesicles. Front. Cell. Infect. Microbiol., 2020, 10, 587628. doi: 10.3389/fcimb.2020.587628 PMID: 33240824
  28. Mao, X.; Cheung, K.S.; Peng, C.; Mak, L.Y.; Cheng, H.M.; Fung, J. Steatosis, HBV-related HCC, cirrhosis, and HBsAg seroclearance: A systematic review and meta-analysis. Hepatology, 2022. PMID: 36111362
  29. Wang, C.C.; Cheng, P.N.; Kao, J.H. Systematic review: Chronic viral hepatitis and metabolic derangement. Aliment. Pharmacol. Ther., 2020, 51(2), 216-230. doi: 10.1111/apt.15575 PMID: 31746482
  30. Stockdale, A.J.; Kreuels, B.; Henrion, M.Y.R.; Giorgi, E.; Kyomuhangi, I.; de Martel, C.; Hutin, Y.; Geretti, A.M. The global prevalence of hepatitis D virus infection: Systematic review and meta-analysis. J. Hepatol., 2020, 73(3), 523-532. doi: 10.1016/j.jhep.2020.04.008 PMID: 32335166
  31. Taylor, R.S.; Taylor, R.J.; Bayliss, S.; Hagström, H.; Nasr, P.; Schattenberg, J.M.; Ishigami, M.; Toyoda, H.; Wai-Sun Wong, V.; Peleg, N.; Shlomai, A.; Sebastiani, G.; Seko, Y.; Bhala, N.; Younossi, Z.M.; Anstee, Q.M.; McPherson, S.; Newsome, P.N. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis. Gastroenterology, 2020, 158(6), 1611-1625.e12. doi: 10.1053/j.gastro.2020.01.043 PMID: 32027911
  32. Hyun, J.; Han, J.; Lee, C.; Yoon, M.; Jung, Y. Pathophysiological aspects of alcohol metabolism in the liver. Int. J. Mol. Sci., 2021, 22(11), 5717. doi: 10.3390/ijms22115717 PMID: 34071962
  33. Nguyen-Khac, E.; Thiele, M.; Voican, C.; Nahon, P.; Moreno, C.; Boursier, J.; Mueller, S.; de Ledinghen, V.; Stärkel, P.; Gyune Kim, S.; Fernandez, M.; Madsen, B.; Naveau, S.; Krag, A.; Perlemuter, G.; Ziol, M.; Chatelain, D.; Diouf, M. Non-invasive diagnosis of liver fibrosis in patients with alcohol-related liver disease by transient elastography: An individual patient data meta-analysis. Lancet Gastroenterol. Hepatol., 2018, 3(9), 614-625. doi: 10.1016/S2468-1253(18)30124-9 PMID: 29983372
  34. Hamesch, K.; Mandorfer, M.; Pereira, V.M.; Moeller, L.S.; Pons, M.; Dolman, G.E.; Reichert, M.C.; Schneider, C.V.; Woditsch, V.; Voss, J.; Lindhauer, C.; Fromme, M.; Spivak, I.; Guldiken, N.; Zhou, B.; Arslanow, A.; Schaefer, B.; Zoller, H.; Aigner, E.; Reiberger, T.; Wetzel, M.; Siegmund, B.; Simões, C.; Gaspar, R.; Maia, L.; Costa, D.; Bento-Miranda, M.; van Helden, J.; Yagmur, E.; Bzdok, D.; Stolk, J.; Gleiber, W.; Knipel, V.; Windisch, W.; Mahadeva, R.; Bals, R.; Koczulla, R.; Barrecheguren, M.; Miravitlles, M.; Janciauskiene, S.; Stickel, F.; Lammert, F.; Liberal, R.; Genesca, J.; Griffiths, W.J.; Trauner, M.; Krag, A.; Trautwein, C.; Strnad, P. Liver fibrosis and metabolic alterations in adults with alpha-1-antitrypsin deficiency caused by the Pi*ZZ mutation. Gastroenterology, 2019, 157(3), 705-719.e18. doi: 10.1053/j.gastro.2019.05.013 PMID: 31121167
  35. Strnad, P.; Mandorfer, M.; Choudhury, G.; Griffiths, W.; Trautwein, C.; Loomba, R.; Schluep, T.; Chang, T.; Yi, M.; Given, B.D.; Hamilton, J.C.; San Martin, J.; Teckman, J.H. Fazirsiran for liver disease associated with alpha 1 -antitrypsin deficiency. N. Engl. J. Med., 2022, 387(6), 514-524. doi: 10.1056/NEJMoa2205416 PMID: 35748699
  36. Powell, L.W.; Dixon, J.L.; Ramm, G.A.; Purdie, D.M.; Lincoln, D.J.; Anderson, G.J.; Subramaniam, V.N.; Hewett, D.G.; Searle, J.W.; Fletcher, L.M.; Crawford, D.H.; Rodgers, H.; Allen, K.J.; Cavanaugh, J.A.; Bassett, M.L. Screening for hemochromatosis in asymptomatic subjects with or without a family history. Arch. Intern. Med., 2006, 166(3), 294-301. doi: 10.1001/archinte.166.3.294 PMID: 16476869
  37. Przybylkowski, A; Szeligowska, J; Januszewicz, M; Raszeja-Wyszomirska, J; Szczepankiewicz, B; Nehring, P Evaluation of liver fibrosis in patients with Wilson's disease. Eur. J. Gastroenterol. Hepatol., 2021, 33(4), 535-540.
  38. Huang, S.P.; Chen, S.; Ma, Y.Z.; Zhou, A.; Jiang, H.; Wu, P. Evaluation of the mechanism of jiedu huazhuo quyu formula in treating wilson’s disease-associated liver fibrosis by network pharmacology analysis and molecular dynamics simulation. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-14. doi: 10.1155/2022/9363131 PMID: 35707473
  39. Manns, M.P.; Czaja, A.J.; Gorham, J.D.; Krawitt, E.L.; Mieli-Vergani, G.; Vergani, D.; Vierling, J.M. Diagnosis and management of autoimmune hepatitis. Hepatology, 2010, 51(6), 2193-2213. doi: 10.1002/hep.23584 PMID: 20513004
  40. Galina, P.; Alexopoulou, E.; Mentessidou, A.; Mirilas, P.; Zellos, A.; Lykopoulou, L.; Patereli, A.; Salpasaranis, K.; Kelekis, N.L.; Zarifi, M. Diagnostic accuracy of two-dimensional shear wave elastography in detecting hepatic fibrosis in children with autoimmune hepatitis, biliary atresia and other chronic liver diseases. Pediatr. Radiol., 2021, 51(8), 1358-1368. doi: 10.1007/s00247-020-04959-9 PMID: 33755748
  41. Zhang, J.; Lyu, Z.; Li, B.; You, Z.; Cui, N.; Li, Y.; Li, Y.; Huang, B.; Chen, R.; Chen, Y.; Peng, Y.; Fang, J.; Wang, Q.; Miao, Q.; Tang, R.; Gershwin, M.E.; Lian, M.; Xiao, X.; Ma, X. P4HA2 induces hepatic ductular reaction and biliary fibrosis in chronic cholestatic liver diseases. Hepatology, 2023, 78(1), 10-25. doi: 10.1097/HEP.0000000000000317 PMID: 36799463
  42. Biswas, A.; Santra, S.; Bishnu, D.; Dhali, G.K.; Chowdhury, A.; Santra, A. Isoniazid and rifampicin produce hepatic fibrosis through an oxidative stress-dependent mechanism. Int. J. Hepatol., 2020, 2020, 1-12. doi: 10.1155/2020/6987295 PMID: 32373368
  43. Huang, C.H.; Lai, Y.Y.; Kuo, Y.J.; Yang, S.C.; Chang, Y.J.; Chang, K.K.; Chen, W.K. Amiodarone and risk of liver cirrhosis: A nationwide, population-based study. Ther. Clin. Risk Manag., 2019, 15, 103-112. doi: 10.2147/TCRM.S174868 PMID: 30666120
  44. Gelfand, J.M.; Wan, J.; Zhang, H.; Shin, D.B.; Ogdie, A.; Syed, M.N.; Egeberg, A. Risk of liver disease in patients with psoriasis, psoriatic arthritis, and rheumatoid arthritis receiving methotrexate: A population-based study. J. Am. Acad. Dermatol., 2021, 84(6), 1636-1643. doi: 10.1016/j.jaad.2021.02.019 PMID: 33607181
  45. Dewidar, B; Meyer, C; Dooley, S; Meindl-Beinker, AN TGF-beta in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells, 2019, 8(11), 1419.
  46. Massague, J. TGFbeta signalling in context. Nat. Rev. Mol. Cell Biol., 2012, 13, 616-630.
  47. Armendáriz-Borunda, J.; Rincón, A.R.; Muñoz-Valle, J.F.; Bueno-Topete, M.; Oregón-Romero, E.; Islas-Carbajal, M.C.; Medina-Preciado, D.; González-García, I.; Bautista, C.A.; García-Rocha, S.; Godoy, J.; Vázquez-Del Mercado, M.; Troyo-SanRoman, R.; Arellano-Olivera, I.; Lucano, S.; Álvarez-Rodríguez, A.; Salazar, A. Fibrogenic polymorphisms (TGF-beta, PAI-1, AT) in Mexican patients with established liver fibrosis. Potential correlation with pirfenidone treatment. J. Investig. Med., 2008, 56(7), 944-953. doi: 10.2310/JIM.0b013e3181891512 PMID: 18797412
  48. Tao, R.; Fan, X.X.; Yu, H.J.; Ai, G.; Zhang, H.Y.; Kong, H.Y.; Song, Q.Q.; Huang, Y.; Huang, J.Q.; Ning, Q. Retracted : MicroRNA-29b-3p prevents Schistosoma japonicum -induced liver fibrosis by targeting COL1A1 and COL3A1. J. Cell. Biochem., 2018, 119(4), 3199-3209. doi: 10.1002/jcb.26475 PMID: 29091295
  49. Xiong, L.J.; Zhu, J.F.; Luo, D.D.; Zen, L.L.; Cai, S.Q. Effects of pentoxifylline on the hepatic content of TGF-β1 and collagen in Schistosomiasis japonica mice with liver fibrosis. World J. Gastroenterol., 2003, 9(1), 152-154. doi: 10.3748/wjg.v9.i1.152 PMID: 12508372
  50. Yang, Y.; Sun, M.; Li, W.; Liu, C.; Jiang, Z.; Gu, P.; Li, J.; Wang, W.; You, R.; Ba, Q.; Li, X.; Wang, H. Rebalancing TGF-β/Smad7 signaling via Compound kushen injection in hepatic stellate cells protects against liver fibrosis and hepatocarcinogenesis. Clin. Transl. Med., 2021, 11(7), e410. doi: 10.1002/ctm2.410 PMID: 34323416
  51. Schon, H.T.; Weiskirchen, R. Immunomodulatory effects of transforming growth factor-β in the liver. Hepatobiliary Surg. Nutr., 2014, 3(6), 386-406. PMID: 25568862
  52. Milani, S.; Herbst, H.; Schuppan, D.; Stein, H.; Surrenti, C. Transforming growth factors beta 1 and beta 2 are differentially expressed in fibrotic liver disease. Am. J. Pathol., 1991, 139(6), 1221-1229. PMID: 1750499
  53. Rosenfeld, M.; Keating, A.; Bowen-Pope, D.F.; Singer, J.W.; Ross, R. Responsiveness of the in vitro hematopoietic microenvironment to platelet-derived growth factor. Leuk. Res., 1985, 9(4), 427-434. doi: 10.1016/0145-2126(85)90001-3 PMID: 2987621
  54. Niba, E.T.E.; Nagaya, H.; Kanno, T.; Tsuchiya, A.; Gotoh, A.; Tabata, C.; Kuribayashi, K.; Nakano, T.; Nishizaki, T. Crosstalk between PI3 kinase/PDK1/Akt/Rac1 and Ras/Raf/MEK/ERK pathways downstream PDGF receptor. Cell. Physiol. Biochem., 2013, 31(6), 905-913. doi: 10.1159/000350108 PMID: 23817184
  55. Pan, T.L.; Wang, P.W.; Leu, Y.L.; Wu, T.H.; Wu, T.S. Inhibitory effects of Scutellaria baicalensis extract on hepatic stellate cells through inducing G2/M cell cycle arrest and activating ERK-dependent apoptosis via Bax and caspase pathway. J. Ethnopharmacol., 2012, 139(3), 829-837. doi: 10.1016/j.jep.2011.12.028 PMID: 22210104
  56. Zvibel, I.; Bar-Zohar, D.; Kloog, Y.; Oren, R.; Reif, S. The effect of Ras inhibition on the proliferation, apoptosis and matrix metalloproteases activity in rat hepatic stellate cells. Dig. Dis. Sci., 2008, 53(4), 1048-1053. doi: 10.1007/s10620-007-9984-0 PMID: 17934818
  57. Brady, L.M.; Fox, E.S.; Fimmel, C.J. Polyenylphosphatidylcholine inhibits PDGF-induced proliferation in rat hepatic stellate cells. Biochem. Biophys. Res. Commun., 1998, 248(1), 174-179. doi: 10.1006/bbrc.1998.8935 PMID: 9675106
  58. Deng, W.; Meng, Z.; Sun, A.; Yang, Z. Pioglitazone suppresses inflammation and fibrosis in nonalcoholic fatty liver disease by down-regulating PDGF and TIMP-2: Evidence from in vitro study. Cancer Biomark., 2017, 20(4), 411-415. doi: 10.3233/CBM-170157 PMID: 28946547
  59. Ying, H.Z.; Chen, Q.; Zhang, W.Y.; Zhang, H.H.; Ma, Y.; Zhang, S.Z.; Fang, J.; Yu, C.H. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics. Mol. Med. Rep., 2017, 16(6), 7879-7889. doi: 10.3892/mmr.2017.7641 PMID: 28983598
  60. Sims, G.P.; Rowe, D.C.; Rietdijk, S.T.; Herbst, R.; Coyle, A.J. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol., 2010, 28(1), 367-388. doi: 10.1146/annurev.immunol.021908.132603 PMID: 20192808
  61. Scaffidi, P.; Misteli, T.; Bianchi, M.E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 2002, 418(6894), 191-195. doi: 10.1038/nature00858 PMID: 12110890
  62. Mencin, A.; Kluwe, J.; Schwabe, R.F. Toll-like receptors as targets in chronic liver diseases. Gut, 2009, 58(5), 704-720. doi: 10.1136/gut.2008.156307 PMID: 19359436
  63. Yu, M.; Wang, H.; Ding, A.; Golenbock, D.T.; Latz, E.; Czura, C.J.; Fenton, M.J.; Tracey, K.J.; Yang, H. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock, 2006, 26(2), 174-179. doi: 10.1097/01.shk.0000225404.51320.82 PMID: 16878026
  64. Luedde, T.; Schwabe, R.F. NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(2), 108-118. doi: 10.1038/nrgastro.2010.213 PMID: 21293511
  65. Rim, E.Y.; Clevers, H.; Nusse, R. The WnT pathway: From signaling mechanisms to synthetic modulators. Annu. Rev. Biochem., 2022, 91(1), 571-598. doi: 10.1146/annurev-biochem-040320-103615 PMID: 35303793
  66. Ma, Z.G.; Lv, X.D.; Zhan, L.L.; Chen, L.; Zou, Q.Y.; Xiang, J.Q.; Qin, J.L.; Zhang, W.W.; Zeng, Z.J.; Jin, H.; Jiang, H.X.; Lv, X.P. Human urokinase-type plasminogen activator gene-modified bone marrow-derived mesenchymal stem cells attenuate liver fibrosis in rats by down-regulating the Wnt signaling pathway. World J. Gastroenterol., 2016, 22(6), 2092-2103. doi: 10.3748/wjg.v22.i6.2092 PMID: 26877613
  67. Klein, D.; Demory, A.; Peyre, F.; Kroll, J.; Augustin, H.G.; Helfrich, W.; Kzhyshkowska, J.; Schledzewski, K.; Arnold, B.; Goerdt, S. Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway. Hepatology, 2008, 47(3), 1018-1031. doi: 10.1002/hep.22084 PMID: 18302287
  68. Xin, P.; Xu, X.; Deng, C.; Liu, S.; Wang, Y.; Zhou, X.; Ma, H.; Wei, D.; Sun, S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol., 2020, 80, 106210. doi: 10.1016/j.intimp.2020.106210 PMID: 31972425
  69. Xiang, D.M.; Sun, W.; Ning, B.F.; Zhou, T.F.; Li, X.F.; Zhong, W.; Cheng, Z.; Xia, M.Y.; Wang, X.; Deng, X.; Wang, W.; Li, H.Y.; Cui, X.L.; Li, S.C.; Wu, B.; Xie, W.F.; Wang, H.Y.; Ding, J. The HLF/IL-6/STAT3 feedforward circuit drives hepatic stellate cell activation to promote liver fibrosis. Gut, 2018, 67(9), 1704-1715. doi: 10.1136/gutjnl-2016-313392 PMID: 28754776
  70. Martí-Rodrigo, A.; Alegre, F.; Moragrega, Á.B.; García-García, F.; Martí-Rodrigo, P.; Fernández-Iglesias, A.; Gracia-Sancho, J.; Apostolova, N.; Esplugues, J.V.; Blas-García, A. Rilpivirine attenuates liver fibrosis through selective STAT1-mediated apoptosis in hepatic stellate cells. Gut, 2020, 69(5), 920-932. doi: 10.1136/gutjnl-2019-318372 PMID: 31530714
  71. Xuan, Y.; Chen, S.; Ding, X.; Wang, L.; Li, S.; Yang, G.; Lan, T. Tetrahydropalmatine attenuates liver fibrosis by suppressing endoplasmic reticulum stress in hepatic stellate cells. Chin. Med. J., 2022, 135(5), 628-630. doi: 10.1097/CM9.0000000000001883 PMID: 34967794
  72. Shu, G.; Yusuf, A.; Dai, C.; Sun, H.; Deng, X. Piperine inhibits AML-12 hepatocyte EMT and LX-2 HSC activation and alleviates mouse liver fibrosis provoked by CCl 4 : Roles in the activation of the Nrf2 cascade and subsequent suppression of the TGF-β1/Smad axis. Food Funct., 2021, 12(22), 11686-11703. doi: 10.1039/D1FO02657G PMID: 34730139
  73. Abdelhamid, A.M.; Selim, A.; Zaafan, M.A. The hepatoprotective effect of piperine against thioacetamide-induced liver fibrosis in mice: The involvement of miR-17 and TGF-β/smads pathways. Front. Mol. Biosci., 2021, 8, 754098. doi: 10.3389/fmolb.2021.754098 PMID: 34778375
  74. Vargas-Pozada, E.E.; Ramos-Tovar, E.; Rodriguez-Callejas, J.D.; Cardoso-Lezama, I.; Galindo-Gómez, S.; Talamás-Lara, D.; Vásquez-Garzón, V.R.; Arellanes-Robledo, J.; Tsutsumi, V.; Villa-Treviño, S.; Muriel, P. Caffeine inhibits NLRP3 inflammasome activation by downregulating TLR4/MAPK/NF-κB signaling pathway in an experimental NASH model. Int. J. Mol. Sci., 2022, 23(17), 9954. doi: 10.3390/ijms23179954 PMID: 36077357
  75. Vargas-Pozada, E.E.; Ramos-Tovar, E.; Acero-Hernández, C.; Cardoso-Lezama, I.; Galindo-Gómez, S.; Tsutsumi, V.; Muriel, P. Caffeine mitigates experimental nonalcoholic steatohepatitis and the progression of thioacetamide-induced liver fibrosis by blocking the MAPK and TGF-β/Smad3 signaling pathways. Ann. Hepatol., 2022, 27(2), 100671. doi: 10.1016/j.aohep.2022.100671 PMID: 35065262
  76. Alkreathy, H.M.; Esmat, A. Lycorine ameliorates thioacetamide-induced hepatic fibrosis in rats: Emphasis on antioxidant, anti-inflammatory, and STAT3 inhibition effects. Pharmaceuticals, 2022, 15(3), 369. doi: 10.3390/ph15030369 PMID: 35337166
  77. Song, L.Y.; Ma, Y.T.; Fang, W.J.; He, Y.; Wu, J.L.; Zuo, S.R.; Deng, Z.Z.; Wang, S.F.; Liu, S.K. Inhibitory effects of oxymatrine on hepatic stellate cells activation through TGF-β/miR-195/Smad signaling pathway. BMC Complement. Altern. Med., 2019, 19(1), 138. doi: 10.1186/s12906-019-2560-2 PMID: 31221141
  78. Yamaguchi, M.; Ohbayashi, S.; Ooka, A.; Yamashita, H.; Motohashi, N.; Kaneko, Y.K.; Kimura, T.; Saito, S.; Ishikawa, T. Harmine suppresses collagen production in hepatic stellate cells by inhibiting DYRK1B. Biochem. Biophys. Res. Commun., 2022, 600, 136-141. doi: 10.1016/j.bbrc.2022.02.054 PMID: 35219102
  79. Hu, Z.; Su, H.; Zeng, Y.; Lin, C.; Guo, Z.; Zhong, F.; Jiang, K.; Yuan, G.; He, S. Tetramethylpyrazine ameliorates hepatic fibrosis through autophagy-mediated inflammation. Biochem. Cell Biol., 2020, 98(3), 327-337. doi: 10.1139/bcb-2019-0059 PMID: 32383631
  80. Xiang, D.; Zou, J.; Zhu, X.; Chen, X.; Luo, J.; Kong, L.; Zhang, H. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling. Phytomedicine, 2020, 78, 153294. doi: 10.1016/j.phymed.2020.153294 PMID: 32771890
  81. Zhu, X.; Ye, S.; Yu, D.; Zhang, Y.; Li, J.; Zhang, M.; Leng, Y.; Yang, T.; Luo, J.; Chen, X.; Zhang, H.; Kong, L. Physalin B attenuates liver fibrosis via suppressing LAP2α–HDAC1-mediated deacetylation of the transcription factor GLI1 and hepatic stellate cell activation. Br. J. Pharmacol., 2021, 178(17), 3428-3447. doi: 10.1111/bph.15490 PMID: 33864382
  82. Tan, Y.; Li, C.; Zhou, J.; Deng, F.; Liu, Y. Berberine attenuates liver fibrosis by autophagy inhibition triggering apoptosis via the miR-30a-5p/ATG5 axis. Exp. Cell Res., 2023, 427(2), 113600. doi: 10.1016/j.yexcr.2023.113600 PMID: 37062521
  83. Eissa, L.A.; Kenawy, H.I.; El-Karef, A.; Elsherbiny, N.M.; El-Mihi, K.A. Antioxidant and anti-inflammatory activities of berberine attenuate hepatic fibrosis induced by thioacetamide injection in rats. Chem. Biol. Interact., 2018, 294, 91-100. doi: 10.1016/j.cbi.2018.08.016 PMID: 30138605
  84. Sheng, J.; Zhang, B.; Chen, Y.; Yu, F. Capsaicin attenuates liver fibrosis by targeting Notch signaling to inhibit TNF-α secretion from M1 macrophages. Immunopharmacol. Immunotoxicol., 2020, 42(6), 556-563. doi: 10.1080/08923973.2020.1811308 PMID: 32811220
  85. Lv, X.T.; Wang, R.H.; Liu, X.T.; Ye, Y.J.; Liu, X.Y.; Qiao, J.D.; Wang, G.E. Theacrine ameliorates experimental liver fibrosis in rats by lowering cholesterol storage via activation of the Sirtuin 3-farnesoid X receptor signaling pathway. Chem. Biol. Interact., 2022, 364, 110051. doi: 10.1016/j.cbi.2022.110051 PMID: 35872049
  86. Demir, Y. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases. Drug Dev. Res., 2020, 81(5), 628-636. doi: 10.1002/ddr.21667 PMID: 32232985
  87. Demir, Y.; Durmaz, L.; Taslimi, P.; Gulçin, İ. Antidiabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase, and α-glycosidase. Biotechnol. Appl. Biochem., 2019, 66(5), 781-786. doi: 10.1002/bab.1781 PMID: 31135076
  88. Aslan, H.E.; Demir, Y.; Özaslan, M.S.; Türkan, F.; Beydemir, Ş.; Küfrevioğlu, Ö.I. The behavior of some chalcones on acetylcholinesterase and carbonic anhydrase activity. Drug Chem. Toxicol., 2019, 42(6), 634-640. doi: 10.1080/01480545.2018.1463242 PMID: 29860891
  89. Mahfouz, M.M.; Abdelsalam, R.M.; Masoud, M.A.; Mansour, H.A.; Ahmed-Farid, O.A.; kenawy, S.A. The neuroprotective effect of mesenchymal stem cells on an experimentally induced model for multiple sclerosis in mice. J. Biochem. Mol. Toxicol., 2017, 31(9), e21936. doi: 10.1002/jbt.21936 PMID: 28557239
  90. Özaslan, M.S.; Demir, Y.; Aslan, H.E.; Beydemir, Ş.; Küfrevioğlu, Ö.İ. Evaluation of chalcones as inhibitors of glutathione S-transferase. J. Biochem. Mol. Toxicol., 2018, 32(5), e22047. doi: 10.1002/jbt.22047 PMID: 29473699
  91. Demir, Y.; Özaslan, M.S.; Duran, H.E.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Inhibition effects of quinones on aldose reductase: Antidiabetic properties. Environ. Toxicol. Pharmacol., 2019, 70, 103195. doi: 10.1016/j.etap.2019.103195 PMID: 31125830
  92. Feng, J.; Wang, C.; Liu, T.; Li, J.; Wu, L.; Yu, Q.; Li, S.; Zhou, Y.; Zhang, J.; Chen, J.; Ji, J.; Chen, K.; Mao, Y.; Wang, F.; Dai, W.; Fan, X.; Wu, J.; Guo, C. Procyanidin B2 inhibits the activation of hepatic stellate cells and angiogenesis via the Hedgehog pathway during liver fibrosis. J. Cell. Mol. Med., 2019, 23(9), 6479-6493. doi: 10.1111/jcmm.14543 PMID: 31328391
  93. Xu, Y.; Zhang, D.; Yang, H.; Liu, Y.; Zhang, L.; Zhang, C.; Chen, G.; Hu, Y.; Chen, J.; Zhang, H.; Mu, Y.; Liu, P.; Liu, W. Hepatoprotective effect of genistein against dimethylnitrosamine-induced liver fibrosis in rats by regulating macrophage functional properties and inhibiting the JAK2/STAT3/SOCS3 signaling pathway. Frontiers in Bioscience-Landmark, 2021, 26(12), 1572-1584. doi: 10.52586/5050 PMID: 34994171
  94. Xu, T.; Huang, S.; Huang, Q.; Ming, Z.; Wang, M.; Li, R.; Zhao, Y. Kaempferol attenuates liver fibrosis by inhibiting activin receptor–like kinase 5. J. Cell. Mol. Med., 2019, 23(9), 6403-6410. doi: 10.1111/jcmm.14528 PMID: 31273920
  95. Huang, S.; Wang, Y.; Xie, S.; Lai, Y.; Mo, C.; Zeng, T.; Kuang, S.; Zhou, C.; Zeng, Z.; Chen, Y.; Huang, S.; Gao, L.; Lv, Z. Isoliquiritigenin alleviates liver fibrosis through caveolin-1-mediated hepatic stellate cells ferroptosis in zebrafish and mice. Phytomedicine, 2022, 101, 154117. doi: 10.1016/j.phymed.2022.154117 PMID: 35489326
  96. Liu, N.; Feng, J.; Lu, X.; Yao, Z.; Liu, Q.; Lv, Y.; Han, Y.; Deng, J.; Zhou, Y. Isorhamnetin inhibits liver fibrosis by reducing autophagy and inhibiting extracellular matrix formation via the TGF- β 1/Smad3 and TGF- β 1/p38 MAPK pathways. Mediators Inflamm., 2019, 2019, 1-14. doi: 10.1155/2019/6175091 PMID: 31467486
  97. Liu, G.; Wei, C.; Yuan, S.; Zhang, Z.; Li, J.; Zhang, L.; Wang, G.; Fang, L. Wogonoside attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis through SOCS1 / P53 / SLC7A11 pathway. Phytother. Res., 2022, 36(11), 4230-4243. doi: 10.1002/ptr.7558 PMID: 35817562
  98. Wang, W.; Chen, Z.; Zheng, T.; Zhang, M. Xanthohumol alleviates T2DM-induced liver steatosis and fibrosis by mediating the NRF2/RAGE/NF-κB signaling pathway. Future Med. Chem., 2021, 13(23), 2069-2081. doi: 10.4155/fmc-2021-0241 PMID: 34551612
  99. Li, S; Li, X; Chen, F; Liu, M; Ning, L; Yan, Y. Nobiletin mitigates hepatocytes death, liver inflammation, and fibrosis in a murine model of NASH through modulating hepatic oxidative stress and mitochondrial dysfunction. J. Nutr. Biochem., 2022, 100, 108888.
  100. Amer, M.A.; Othman, A.I.; EL-Missiry, M.A.; Farag, A.A.; Amer, M.E. Proanthocyanidins attenuated liver damage and suppressed fibrosis in CCl4-treated rats. Environ. Sci. Pollut. Res. Int., 2022, 29(60), 91127-91138. doi: 10.1007/s11356-022-22051-7 PMID: 35881285
  101. Lee, E.H.; Park, K.I.; Kim, K.Y.; Lee, J.H.; Jang, E.J.; Ku, S.K.; Kim, S.C.; Suk, H.Y.; Park, J.Y.; Baek, S.Y.; Kim, Y.W. Liquiritigenin inhibits hepatic fibrogenesis and TGF-β1/Smad with Hippo/YAP signal. Phytomedicine, 2019, 62, 152780. doi: 10.1016/j.phymed.2018.12.003 PMID: 31121384
  102. Du, X.S.; Li, H.D.; Yang, X.J.; Li, J.J.; Xu, J.J.; Chen, Y.; Xu, Q.Q.; Yang, L.; He, C.S.; Huang, C.; Meng, X.M.; Li, J. Wogonin attenuates liver fibrosis via regulating hepatic stellate cell activation and apoptosis. Int. Immunopharmacol., 2019, 75, 105671. doi: 10.1016/j.intimp.2019.05.056 PMID: 31377590
  103. Casas-Grajales, S.; Reyes-Gordillo, K.; Cerda-García-Rojas, C.M.; Tsutsumi, V.; Lakshman, M.R.; Muriel, P. Rebaudioside A administration prevents experimental liver fibrosis: An in vivo and in vitro study of the mechanisms of action involved. J. Appl. Toxicol., 2019, 39(8), 1118-1131. doi: 10.1002/jat.3797 PMID: 30883860
  104. Liu, D.; Qin, H.; Yang, B.; Du, B.; Yun, X. Oridonin ameliorates carbon tetrachloride-induced liver fibrosis in mice through inhibition of the NLRP3 inflammasome. Drug Dev. Res., 2020, 81(4), 526-533. doi: 10.1002/ddr.21649 PMID: 32219880
  105. Yan, H.; Huang, Z.; Bai, Q.; Sheng, Y.; Hao, Z.; Wang, Z.; Ji, L. Natural product andrographolide alleviated APAP-induced liver fibrosis by activating Nrf2 antioxidant pathway. Toxicology, 2018, 396-397, 1-12. doi: 10.1016/j.tox.2018.01.007 PMID: 29355602
  106. Ji, D.; Zhao, Q.; Qin, Y.; Tong, H.; Wang, Q.; Yu, M.; Mao, C.; Lu, T.; Qiu, J.; Jiang, C. Germacrone improves liver fibrosis by regulating the PI3K/AKT/mTOR signalling pathway. Cell Biol. Int., 2021, 45(9), 1866-1875. doi: 10.1002/cbin.11607 PMID: 33835632
  107. Wan, S.; Luo, F.; Huang, C.; Liu, C.; Luo, Q.; Zhu, X. Ursolic acid reverses liver fibrosis by inhibiting interactive NOX4/ROS and RhoA/ROCK1 signalling pathways. Aging, 2020, 12(11), 10614-10632. doi: 10.18632/aging.103282 PMID: 32496208
  108. Kim, J.K.; Han, N.R.; Park, S.M.; Jegal, K.H.; Jung, J.Y.; Jung, E.H.; Kim, E.O.; Kim, D.; Jung, D.H.; Lee, J.R.; Park, C.A.; Ku, S.K.; Cho, I.J.; Kim, S.C. Hemistepsin A alleviates liver fibrosis by inducing apoptosis of activated hepatic stellate cells via inhibition of nuclear factor-κB and Akt. Food Chem. Toxicol., 2020, 135, 111044. doi: 10.1016/j.fct.2019.111044 PMID: 31830547
  109. Zhang, Y.; Cai, B.; Li, Y.; Xu, Y.; Wang, Y.; Zheng, L.; Zheng, X.; Yin, L.; Chen, G.; Wang, Y.; Liang, G.; Chen, L. Identification of linderalactone as a natural inhibitor of SHP2 to ameliorate CCl4-induced liver fibrosis. Front. Pharmacol., 2023, 14, 1098463. doi: 10.3389/fphar.2023.1098463 PMID: 36843936
  110. Zhou, M.; Zhao, X.; Liao, L.; Deng, Y.; Liu, M.; Wang, J.; Xue, X.; Li, Y. Forsythiaside A regulates activation of hepatic stellate cells by inhibiting NOX4-dependent ROS. Oxid. Med. Cell. Longev., 2022, 2022, 1-17. doi: 10.1155/2022/9938392 PMID: 35035671
  111. Zhu, H.; He, C.; Zhao, H.; Jiang, W.; Xu, S.; Li, J.; Ma, T.; Huang, C. Sennoside A prevents liver fibrosis by binding DNMT1 and suppressing DNMT1-mediated PTEN hypermethylation in HSC activation and proliferation. FASEB J., 2020, 34(11), 14558-14571. doi: 10.1096/fj.202000494RR PMID: 32946656
  112. Li, R.; Li, J.; Huang, Y.; Li, H.; Yan, S.; Lin, J.; Chen, Y.; Wu, L.; Liu, B.; Wang, G.; Lan, T. Polydatin attenuates diet-induced nonalcoholic steatohepatitis and fibrosis in mice. Int. J. Biol. Sci., 2018, 14(11), 1411-1425. doi: 10.7150/ijbs.26086 PMID: 30262993
  113. Bao, X.; Li, J.; Ren, C.; Wei, J.; Lu, X.; Wang, X.; Du, W.; Jin, X.; Ma, B.; Zhang, Q.; Ma, B. Aucubin ameliorates liver fibrosis and hepatic stellate cells activation in diabetic mice via inhibiting ER stress-mediated IRE1α/TXNIP/NLRP3 inflammasome through NOX4/ROS pathway. Chem. Biol. Interact., 2022, 365, 110074. doi: 10.1016/j.cbi.2022.110074 PMID: 35961541
  114. Lin, L.; Zhou, M.; Que, R.; Chen, Y.; Liu, X.; Zhang, K.; Shi, Z.; Li, Y. Saikosaponin-d protects against liver fibrosis by regulating the estrogen receptor-β/NLRP3 inflammasome pathway. Biochem. Cell Biol., 2021, 99(5), 666-674. doi: 10.1139/bcb-2020-0561 PMID: 33974808
  115. Chen, Y.; Que, R.; Zhang, N.; Lin, L.; Zhou, M.; Li, Y. Saikosaponin-d alleviates hepatic fibrosis through regulating GPER1/autophagy signaling. Mol. Biol. Rep., 2021, 48(12), 7853-7863. doi: 10.1007/s11033-021-06807-x PMID: 34714484
  116. Xiao, Z.; Ji, Q.; Fu, Y.; Gao, S.; Hu, Y.; Liu, W.; Chen, G.; Mu, Y.; Chen, J.; Liu, P. Amygdalin ameliorates liver fibrosis through inhibiting activation of TGF-β/smad signaling. Chin. J. Integr. Med., 2023, 29(4), 316-324. doi: 10.1007/s11655-021-3304-y PMID: 34816365
  117. Liu, X.; Mi, X.; Wang, Z.; Zhang, M.; Hou, J.; Jiang, S.; Wang, Y.; Chen, C.; Li, W. Ginsenoside Rg3 promotes regression from hepatic fibrosis through reducing inflammation-mediated autophagy signaling pathway. Cell Death Dis., 2020, 11(6), 454. doi: 10.1038/s41419-020-2597-7 PMID: 32532964
  118. Casas-Grajales, S.; Alvarez-Suarez, D.; Ramos-Tovar, E.; Dayana Buendía-Montaño, L.; Reyes-Gordillo, K.; Camacho, J.; Tsutsumi, V.; Lakshman, M.R.; Muriel, P. Stevioside inhibits experimental fibrosis by down-regulating profibrotic Smad pathways and blocking hepatic stellate cell activation. Basic Clin. Pharmacol. Toxicol., 2019, 124(6), 670-680. doi: 10.1111/bcpt.13194 PMID: 30561898
  119. Zhang, Y.; Zhang, S.; Luo, X.; Zhao, H.; Xiang, X. Paeoniflorin mitigates PBC-induced liver fibrosis by repressing NLRP3 formation. Acta Cir. Bras., 2021, 36(11), e361106. doi: 10.1590/acb361106 PMID: 35195182
  120. Ceylan, H.; Demir, Y.; Beydemir, Ş. Inhibitory effects of usnic and carnosic acid on some metabolic enzymes: An in vitro study. Protein Pept. Lett., 2019, 26(5), 364-370. doi: 10.2174/0929866526666190301115122 PMID: 30827223
  121. Oztaskin, N.; Goksu, S.; Demir, Y.; Maras, A.; Gulcin, İ. Synthesis of novel bromophenol with diaryl methanes-determination of their inhibition effects on carbonic anhydrase and acetylcholinesterase. Molecules, 2022, 27(21), 7426. doi: 10.3390/molecules27217426 PMID: 36364255
  122. Saadati, S.; Sadeghi, A.; Mansour, A.; Yari, Z.; Poustchi, H.; Hedayati, M.; Hatami, B.; Hekmatdoost, A. Curcumin and inflammation in non-alcoholic fatty liver disease: A randomized, placebo controlled clinical trial. BMC Gastroenterol., 2019, 19(1), 133. doi: 10.1186/s12876-019-1055-4 PMID: 31345163
  123. Yang, Y.; Qu, Y.; Lv, X.; Zhao, R.; Yu, J.; Hu, S.; Kang, J.; Zhang, Y.; Gong, Y.; Cui, T.; Zhang, X.; Yan, Y. Sesamol supplementation alleviates nonalcoholic steatohepatitis and atherosclerosis in high-fat, high carbohydrate and high-cholesterol diet-fed rats. Food Funct., 2021, 12(19), 9347-9359. doi: 10.1039/D1FO01517F PMID: 34606548
  124. Wu, J.; Xue, X.; Fan, G.; Gu, Y.; Zhou, F.; Zheng, Q.; Liu, R.; Li, Y.; Ma, B.; Li, S.; Huang, G.; Ma, L.; Li, X. Ferulic acid ameliorates hepatic inflammation and fibrotic liver injury by inhibiting PTP1B activity and subsequent promoting AMPK phosphorylation. Front. Pharmacol., 2021, 12, 754976. doi: 10.3389/fphar.2021.754976 PMID: 34566665
  125. Li, L.; Wang, K.; Jia, R.; xie, J.; Ma, L.; Hao, Z.; Zhang, W.; Mo, J.; Ren, F. Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the SNARE complexes formation. Redox Biol., 2022, 56, 102435. doi: 10.1016/j.redox.2022.102435 PMID: 36029649
  126. El-Gendy, Z.A.; Ramadan, A.; El-Batran, S.A.; Ahmed, R.F.; El-Marasy, S.A.; Abd El-Rahman, S.S.; Youssef, S.A.H. Carvacrol hinders the progression of hepatic fibrosis via targeting autotaxin and thioredoxin in thioacetamide-induced liver fibrosis in rat. Hum. Exp. Toxicol., 2021, 40(12), 2188-2201. doi: 10.1177/09603271211026729 PMID: 34155936
  127. Hu, M.; Zhang, D.; Xu, H.; Zhang, Y.; Shi, H.; Huang, X.; Wang, X.; Wu, Y.; Qi, Z. Salidroside activates the AMP-activated protein kinase pathway to suppress nonalcoholic steatohepatitis in mice. Hepatology, 2021, 74(6), 3056-3073. doi: 10.1002/hep.32066 PMID: 34292604
  128. Liang, F.; Xu, X.; Tu, Y. Resveratrol inhibited hepatocyte apoptosis and alleviated liver fibrosis through miR-190a-5p /HGF axis. Bioorg. Med. Chem., 2022, 57, 116593. doi: 10.1016/j.bmc.2021.116593 PMID: 35093804
  129. Wu, B.; Wang, R.; Li, S.; Wang, Y.; Song, F.; Gu, Y.; Yuan, Y. Antifibrotic effects of Fraxetin on carbon tetrachloride-induced liver fibrosis by targeting NF-κB/IκBα, MAPKs and Bcl-2/Bax pathways. Pharmacol. Rep., 2019, 71(3), 409-416. doi: 10.1016/j.pharep.2019.01.008 PMID: 31003150
  130. Tong, Y.; Zhu, W.; Wen, T.; Mukhamejanova, Z.; Xu, F.; Xiang, Q.; Pang, J. Xyloketal B reverses nutritional hepatic steatosis, steatohepatitis, and liver fibrosis through activation of the PPARα/PGC1α signaling pathway. J. Nat. Prod., 2022, 85(7), 1738-1750. doi: 10.1021/acs.jnatprod.2c00259 PMID: 35749236

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers