The Effects of Curcumin on Brain-Derived Neurotrophic Factor Expression in Neurodegenerative Disorders
- Authors: Radbakhsh S.1, Butler A.2, Moallem S.3, Sahebkar A.4
-
Affiliations:
- Student Research Committee, Mashhad University of Medical Sciences
- Research Department, Royal College of Surgeons in Ireland Bahrain
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences
- Issue: Vol 31, No 36 (2024)
- Pages: 5937-5952
- Section: Anti-Infectives and Infectious Diseases
- URL: https://hum-ecol.ru/0929-8673/article/view/645250
- DOI: https://doi.org/10.2174/0929867330666230602145817
- ID: 645250
Cite item
Full Text
Abstract
:Brain-Derived Neurotrophic Factor (BDNF) is a crucial molecule implicated in plastic modifications related to learning and memory. The expression of BDNF is highly regulated, which can lead to significant variability in BDNF levels in healthy subjects. Changes in BDNF expression might be associated with neuropsychiatric diseases, particularly in structures important for memory processes, including the hippocampus and parahippocampal areas. Curcumin is a natural polyphenolic compound that has great potential for the prevention and treatment of age-related disorders by regulating and activating the expression of neural protective proteins such as BDNF. This review discusses and analyzes the available scientific literature on the effects of curcumin on BDNF production and function in both in vitro and in vivo models of disease.
Keywords
About the authors
Shabnam Radbakhsh
Student Research Committee, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Alexandra Butler
Research Department, Royal College of Surgeons in Ireland Bahrain
Email: info@benthamscience.net
Seyed Moallem
Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women
Email: info@benthamscience.net
Amirhossein Sahebkar
Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035. doi: 10.1101/cshperspect.a028035 PMID: 28062563
- Sharifi-Rad, M.; Lankatillake, C.; Dias, D.A.; Docea, A.O.; Mahomoodally, M.F.; Lobine, D.; Chazot, P.L.; Kurt, B.; Boyunegmez Tumer, T.; Catarina Moreira, A.; Sharopov, F.; Martorell, M.; Martins, N.; Cho, W.C.; Calina, D.; Sharifi-Rad, J. Impact of natural compounds on neurodegenerative disorders: From preclinical to pharmacotherapeutics. J. Clin. Med., 2020, 9(4), 1061. doi: 10.3390/jcm9041061 PMID: 32276438
- Chandra, V.; Pandav, R.; Laxminarayan, R.; Tanner, C.; Manyam, B.; Rajkumar, S. Neurological Disorders. In: Disease Control Priorities in Developing Countries; Jamison, D.T.; Breman, J.G.; Measham, A.R.; Alleyne, G.; Claeson, M.; Evans, D.B., Eds.; Oxford University Press: Washington (DC) New York, 2006.
- Cole, G.; Yang, F.; Lim, G.; Cummings, J.; Masterman, D.; Frautschy, S. A rationale for curcuminoids for the prevention or treatment of Alzheimers disease. Curr. Med. Chem. Immunol. Endocr. Metab. Agents, 2003, 3(1), 15-25. doi: 10.2174/1568013033358761
- Radbakhsh, S.; Barreto, G.E.; Bland, A.R.; Sahebkar, A. Curcumin: A small molecule with big functionality against amyloid aggregation in neurodegenerative diseases and type 2 diabetes. Biofactors, 2021, 47(4), 570-586. doi: 10.1002/biof.1735 PMID: 33893674
- Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci., 2019, 13, 363. doi: 10.3389/fncel.2019.00363 PMID: 31440144
- Priyadarsini, K. The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112. doi: 10.3390/molecules191220091 PMID: 25470276
- Hatamipour, M.; Johnston, T.P.; Sahebkar, A. One molecule, many targets and numerous effects: The pleiotropy of curcumin lies in its chemical structure. Curr. Pharm. Des., 2018, 24(19), 2129-2136. doi: 10.2174/1381612824666180522111036 PMID: 29788873
- Gupta, S.C.; Prasad, S.; Kim, J.H.; Patchva, S.; Webb, L.J.; Priyadarsini, I.K.; Aggarwal, B.B. Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep., 2011, 28(12), 1937-1955. doi: 10.1039/c1np00051a PMID: 21979811
- Keihanian, F., Saeidinia, A., Bagheri, R. K., Johnston, T. P., & Sahebkar, A. Curcumin, hemostasis, thrombosis, and coagulation. J. Cell. Physiol., 2018, 233(6), 44974511 doi: 10.1002/jcp.26249
- Sabouni, N.; Marzouni, H.Z.; Palizban, S.; Meidaninikjeh, S.; Kesharwani, P.; Jamialahmadi, T.; Sahebkar, A. Role of curcumin and its nanoformulations in the treatment of neurological diseases through the effects on stem cells. J. Drug Target., 2023, 31(3), 243-260. doi: 10.1080/1061186X.2022.2141755 PMID: 36305097
- Soltani, S.; Boozari, M.; Cicero, A.F.G.; Jamialahmadi, T.; Sahebkar, A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother. Res., 2021, 35(6), 2854-2878. doi: 10.1002/ptr.6991 PMID: 33464676
- Prasad, S.; Aggarwal, B.B. Turmeric, the golden spice. Herbal Medicine: Biomolecular and Clinical Aspects, 2nd Ed; , 2011. doi: 10.1201/b10787-14
- Ganji, A.; Farahani, I.; Saeedifar, A.M.; Mosayebi, G.; Ghazavi, A.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Protective effects of curcumin against lipopolysaccharide-induced toxicity. Curr. Med. Chem., 2021, 28(33), 6915-6930. doi: 10.2174/0929867328666210525124707 PMID: 34036908
- Ghasemi, F.; Bagheri, H.; Barreto, G.E.; Read, M.I.; Sahebkar, A. Effects of curcumin on microglial cells. Neurotox. Res., 2019, 36(1), 12-26. doi: 10.1007/s12640-019-00030-0 PMID: 30949950
- Heidari, Z.; Daei, M.; Boozari, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother. Res., 2022, 36(4), 1442-1458. doi: 10.1002/ptr.7350 PMID: 34904764
- Momtazi, A. A., & Sahebkar, A. Difluorinated Curcumin: A Promising Curcumin Analogue with Improved Anti-Tumor Activity and Pharmacokinetic Profile. Curr. Pharm. Des., 2016, 22(28), 43864397. doi: 10.2174/1381612822666160527113501
- Mokhtari-Zaer, A.; Marefati, N.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. The protective role of curcumin in myocardial ischemiareperfusion injury. J. Cell. Physiol., 2019, 234(1), 214-222. doi: 10.1002/jcp.26848 PMID: 29968913
- Mohajeri, M., & Sahebkar, A. (). Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 3051 doi: 10.1016/j.critrevonc.2017.12.005
- Hashem, S.; Nisar, S.; Sageena, G.; Macha, M.A.; Yadav, S.K.; Krishnankutty, R.; Uddin, S.; Haris, M.; Bhat, A.A. Therapeutic effects of curcumol in several diseases; an overview. Nutr. Cancer, 2021, 73(2), 181-195. doi: 10.1080/01635581.2020.1749676 PMID: 32285707
- Slika, L.; Patra, D. Traditional uses, therapeutic effects and recent advances of curcumin: A mini-review. Mini Rev. Med. Chem., 2020, 20(12), 1072-1082. doi: 10.2174/1389557520666200414161316 PMID: 32286941
- Aggarwal, B.B.; Yuan, W.; Li, S.; Gupta, S.C. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric. Mol. Nutr. Food Res., 2013, 57(9), 1529-1542. doi: 10.1002/mnfr.201200838 PMID: 23847105
- Hewlings, S.; Kalman, D. Curcumin: A review of its effects on human health. Foods, 2017, 6(10), 92. doi: 10.3390/foods6100092 PMID: 29065496
- Bagheri, H.; Ghasemi, F.; Barreto, G.E.; Rafiee, R.; Sathyapalan, T.; Sahebkar, A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors, 2020, 46(1), 5-20. doi: 10.1002/biof.1566 PMID: 31580521
- Bavarsad, K.; Barreto, G.E.; Hadjzadeh, M.A.R.; Sahebkar, A. Protective effects of curcumin against ischemia-reperfusion injury in the nervous system. Mol. Neurobiol., 2019, 56(2), 1391-1404. doi: 10.1007/s12035-018-1169-7 PMID: 29948942
- Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: an inflammasome silencer. Pharmacol. Res., 2020, 159, 104921. doi: 10.1016/j.phrs.2020.104921 PMID: 32464325
- Mohajeri, M.; Sahebkar, A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 30-51. doi: 10.1016/j.critrevonc.2017.12.005 PMID: 29458788
- Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135. doi: 10.1016/j.autrev.2017.11.016 PMID: 29180127
- Liczbiński, P.; Michałowicz, J.; Bukowska, B. Molecular mechanism of curcumin action in signaling pathways: Review of the latest research. Phytother. Res., 2020, 34(8), 1992-2005. doi: 10.1002/ptr.6663 PMID: 32141677
- Rusek, M.; Czuczwar, S.J. The Role of Curcumin in Post-Ischemic Brain. In: Cerebral Ischemia; Pluta, R. Brisbane (AU): Exon Publications, 2021. doi: 10.36255/exonpublications.cerebralischemia.2021.curcumin
- Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218. doi: 10.1208/s12248-012-9432-8 PMID: 23143785
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci., 2015, 6(6), 1164-1178. doi: 10.5114/aoms.2015.56342 PMID: 26788077
- Pruunsild, P.; Kazantseva, A.; Aid, T.; Palm, K.; Timmusk, T. Dissecting the human BDNF locus: Bidirectional transcription, complex splicing, and multiple promoters. Genomics, 2007, 90(3), 397-406. doi: 10.1016/j.ygeno.2007.05.004 PMID: 17629449
- Cattaneo, A.; Cattane, N.; Begni, V.; Pariante, C.M.; Riva, M.A. The human BDNF gene: Peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl Psychiatry, 2016, 6(11), e958. doi: 10.1038/tp.2016.214
- Pezet, S.; Malcangio, M.; McMahon, S.B. BDNF: a neuromodulator in nociceptive pathways? Brain Res. Brain Res. Rev., 2002, 40(1-3), 240-249. doi: 10.1016/S0165-0173(02)00206-0 PMID: 12589922
- Bonni, A.; Brunet, A.; West, A.E.; Datta, S.R.; Takasu, M.A.; Greenberg, M.E. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science, 1999, 286(5443), 1358-1362. doi: 10.1126/science.286.5443.1358 PMID: 10558990
- Suliman, S.; Hemmings, S.M.J.; Seedat, S. Brain-Derived Neurotrophic Factor (BDNF) protein levels in anxiety disorders: systematic review and meta-regression analysis. Front. Integr. Nuerosci., 2013, 7, 55. doi: 10.3389/fnint.2013.00055 PMID: 23908608
- Lima Giacobbo, B.; Doorduin, J.; Klein, H.C.; Dierckx, R.A.J.O.; Bromberg, E.; de Vries, E.F.J. Brain-derived neurotrophic factor in brain disorders: Focus on neuroinflammation. Mol. Neurobiol., 2019, 56(5), 3295-3312. doi: 10.1007/s12035-018-1283-6 PMID: 30117106
- Ventriglia, M.; Zanardini, R.; Bonomini, C.; Zanetti, O.; Volpe, D.; Pasqualetti, P.; Gennarelli, M.; Bocchio-Chiavetto, L. Serum brain-derived neurotrophic factor levels in different neurological diseases. BioMed Res. Int., 2013, 2013, 1-7. doi: 10.1155/2013/901082 PMID: 24024214
- Yu, Y.; Wu, S.; Li, J.; Wang, R.; Xie, X.; Yu, X.; Pan, J.; Xu, Y.; Zheng, L. The effect of curcumin on the brain-gut axis in rat model of irritable bowel syndrome: involvement of 5-HT-dependent signaling. Metab. Brain Dis., 2015, 30(1), 47-55. doi: 10.1007/s11011-014-9554-z PMID: 24807589
- Osali, A. Aerobic exercise and nano-curcumin supplementation improve inflammation in elderly females with metabolic syndrome. Diabetol. Metab. Syndr., 2020, 12(1), 26. doi: 10.1186/s13098-020-00532-4 PMID: 32256716
- Franco-Robles, E.; Campos-Cervantes, A.; Murillo-Ortiz, B.O.; Segovia, J.; López-Briones, S.; Vergara, P.; Pérez-Vázquez, V.; Solís-Ortiz, M.S.; Ramírez-Emiliano, J. Effects of curcumin on brain-derived neurotrophic factor levels and oxidative damage in obesity and diabetes. Appl. Physiol. Nutr. Metab., 2014, 39(2), 211-218. doi: 10.1139/apnm-2013-0133 PMID: 24476477
- Kurauchi, Y.; Hisatsune, A.; Isohama, Y.; Mishima, S.; Katsuki, H. Caffeic acid phenethyl ester protects nigral dopaminergic neurons via dual mechanisms involving haem oxygenase-1 and brain-derived neurotrophic factor. Br. J. Pharmacol., 2012, 166(3), 1151-1168. doi: 10.1111/j.1476-5381.2012.01833.x PMID: 22224485
- Moriya, J.; Chen, R.; Yamakawa, J.; Sasaki, K.; Ishigaki, Y.; Takahashi, T. Resveratrol improves hippocampal atrophy in chronic fatigue mice by enhancing neurogenesis and inhibiting apoptosis of granular cells. Biol. Pharm. Bull., 2011, 34(3), 354-359. doi: 10.1248/bpb.34.354 PMID: 21372384
- Zhang, F.; Lu, Y.F.; Wu, Q.; Liu, J.; Shi, J.S. Resveratrol promotes neurotrophic factor release from astroglia. Exp. Biol. Med. (Maywood), 2012, 237(8), 943-948. doi: 10.1258/ebm.2012.012044 PMID: 22875340
- Hoppe, J.B.; Coradini, K.; Frozza, R.L.; Oliveira, C.M.; Meneghetti, A.B.; Bernardi, A.; Pires, E.S.; Beck, R.C.R.; Salbego, C.G. Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: Involvement of BDNF and Akt/GSK-3β signaling pathway. Neurobiol. Learn. Mem., 2013, 106, 134-144. doi: 10.1016/j.nlm.2013.08.001 PMID: 23954730
- Spencer, P.S.; Lein, P.J. Neurotoxicity. Encyclopedia of toxicology, 3rd ed; Wexler, P., Ed.; Academic Press: Oxford, 2014, pp. 489-500. doi: 10.1016/B978-0-12-386454-3.00169-X
- Sarraf, P.; Parohan, M.; Javanbakht, M.H.; Ranji-Burachaloo, S.; Djalali, M. Short-term curcumin supplementation enhances serum brain-derived neurotrophic factor in adult men and women: a systematic review and dose-response meta-analysis of randomized controlled trials. Nutr. Res., 2019, 69, 1-8. doi: 10.1016/j.nutres.2019.05.001 PMID: 31279955
- Joseph, M.S.; Ying, Z.; Zhuang, Y.; Zhong, H.; Wu, A.; Bhatia, H.S.; Cruz, R.; Tillakaratne, N.J.K.; Roy, R.R.; Edgerton, V.R.; Gomez-Pinilla, F. Effects of diet and/or exercise in enhancing spinal cord sensorimotor learning. PLoS One, 2012, 7(7), e41288. doi: 10.1371/journal.pone.0041288 PMID: 22911773
- Guerzoni, L.P.B.; Nicolas, V.; Angelova, A. In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm. Res., 2017, 34(2), 492-505. doi: 10.1007/s11095-016-2080-4 PMID: 27995523
- Singh, N.; Sharma, B. On the mechanisms of heavy metal-induced neurotoxicity: Amelioration by plant products. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2021, 91(4), 743-751. doi: 10.1007/s40011-021-01272-9
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: a review. Interdiscip. Toxicol., 2015, 8(2), 55-64. doi: 10.1515/intox-2015-0009 PMID: 27486361
- Dabidi Roshan, V.; Hosseinzadeh, S.; Mahjoub, S.; Hosseinzadeh, M.; Myers, J. Endurance exercise training and diferuloyl methane supplement: changes in neurotrophic factor and oxidative stress induced by lead in rat brain. Biol. Sport, 2013, 30(1), 41-46. doi: 10.5604/20831862.1029820 PMID: 24744464
- Hosseinzadeh, S.; Roshan, V.D.; Mahjoub, S. Continuous exercise training and curcumin attenuate changes in brain-derived neurotrophic factor and oxidative stress induced by lead acetate in the hippocampus of male rats. Pharm. Biol., 2013, 51(2), 240-245. doi: 10.3109/13880209.2012.717230 PMID: 23134146
- Namgyal, D.; Ali, S.; Mehta, R.; Sarwat, M. The neuroprotective effect of curcumin against Cd-induced neurotoxicity and hippocampal neurogenesis promotion through CREB-BDNF signaling pathway. Toxicology, 2020, 442, 152542. doi: 10.1016/j.tox.2020.152542 PMID: 32735850
- Wei, W.; Dong, Q.; Jiang, W.; Wang, Y.; Chen, Y.; Han, T.; Sun, C. Dichloroacetic acid-induced dysfunction in rat hippocampus and the protective effect of curcumin. Metab. Brain Dis., 2021, 36(4), 545-556. doi: 10.1007/s11011-020-00657-5 PMID: 33411217
- Sheldon, A.L.; Robinson, M.B. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem. Int., 2007, 51(6-7), 333-355. doi: 10.1016/j.neuint.2007.03.012 PMID: 17517448
- Kawamoto, E.M.; Scavone, C.; Mattson, M.P.; Camandola, S. Curcumin requires tumor necrosis factor α signaling to alleviate cognitive impairment elicited by lipopolysaccharide. Neurosignals, 2013, 21(1-2), 75-88. doi: 10.1159/000336074 PMID: 22572473
- Santana-Martínez, R.A.; Silva-Islas, C.A.; Fernández-Orihuela, Y.Y.; Barrera-Oviedo, D.; Pedraza-Chaverri, J.; Hernández-Pando, R. The therapeutic effect of curcumin in quinolinic acid-induced neurotoxicity in rats is associated with BDNF, ERK1/2, Nrf2, and antioxidant enzymes. Antioxidants, 2019, 8(9)
- Papouek, R.; Pataj, Z.; Nováková, P.; Lemr, K.; Barták, P. Determination of acrylamide and acrolein in smoke from tobacco and e-cigarettes. Chromatographia, 2014, 77(17-18), 1145-1151. doi: 10.1007/s10337-014-2729-2
- Yan, D.; Yao, J.; Liu, Y.; Zhang, X.; Wang, Y.; Chen, X.; Liu, L.; Shi, N.; Yan, H. Tau hyperphosphorylation and P-CREB reduction are involved in acrylamide-induced spatial memory impairment: Suppression by curcumin. Brain Behav. Immun., 2018, 71, 66-80. doi: 10.1016/j.bbi.2018.04.014 PMID: 29704550
- Shi, L.Y.; Zhang, L.; Li, H.; Liu, T.L.; Lai, J.C.; Wu, Z.B. Protective effects of curcumin on acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. Pharmacol Rep, 2018, 70(5), 1040-46. doi: 10.1016/j.pharep.2018.05.006
- Motaghinejad, M.; Motevalian, M.; Fatima, S.; Faraji, F.; Mozaffari, S. The neuroprotective effect of curcumin against nicotine-induced neurotoxicity is mediated by CREBBDNF signaling pathway. Neurochem. Res., 2017, 42(10), 2921-2932. doi: 10.1007/s11064-017-2323-8 PMID: 28608236
- Cippitelli, A.; Damadzic, R.; Frankola, K.; Goldstein, A.; Thorsell, A.; Singley, E.; Eskay, R.L.; Heilig, M. Alcohol-induced neurodegeneration, suppression of transforming growth factor-beta, and cognitive impairment in rats: prevention by group II metabotropic glutamate receptor activation. Biol. Psychiatry, 2010, 67(9), 823-830. doi: 10.1016/j.biopsych.2009.12.018 PMID: 20132926
- Motaghinejad, M.; Motevalian, M.; Fatima, S.; Hashemi, H.; Gholami, M. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats. Biomed. Pharmacother., 2017, 87, 721-740. doi: 10.1016/j.biopha.2016.12.020 PMID: 28095363
- Feizolahi, F.; Azarbayjani, M.A.; Nasehi, M.; Peeri, M.; Zarrindast, M.R. The combination of swimming and curcumin consumption may improve spatial memory recovery after binge ethanol drinking. Physiol. Behav., 2019, 207, 139-150. doi: 10.1016/j.physbeh.2019.03.018 PMID: 31071339
- Gholami, M.; Hozuri, F.; Abdolkarimi, S.; Mahmoudi, M.; Motaghinejad, M.; Safari, S.; Sadr, S. Pharmacological and molecular evidence of neuroprotective curcumin effects against biochemical and behavioral sequels caused by methamphetamine: Possible function of CREB-BDNF signaling pathway. Basic Clin. Neurosci., 2021, 12(3), 325-338. doi: 10.32598/bcn.2021.1176.3 PMID: 34917292
- Wang, Q.; Sun, L.H.; Jia, W.; Liu, X.M.; Dang, H.X.; Mai, W.L.; Wang, N.; Steinmetz, A.; Wang, Y.Q.; Xu, C.J. Comparison of ginsenosides Rg1 and Rb1 for their effects on improving scopolamine-induced learning and memory impairment in mice. Phytother. Res., 2010, 24(12), 1748-1754. doi: 10.1002/ptr.3130 PMID: 20564503
- Eun, C.S.; Lim, J.S.; Lee, J.; Lee, S.P.; Yang, S.A. The protective effect of fermented Curcuma longa L. on memory dysfunction in oxidative stress-induced C6 gliomal cells, proinflammatory-activated BV2 microglial cells, and scopolamine-induced amnesia model in mice. BMC Complement. Altern. Med., 2017, 17(1), 367. doi: 10.1186/s12906-017-1880-3 PMID: 28716085
- Gite, S.; Ross, R.P.; Kirke, D.; Guihéneuf, F.; Aussant, J.; Stengel, D.B.; Dinan, T.G.; Cryan, J.F.; Stanton, C. Nutraceuticals to promote neuronal plasticity in response to corticosterone-induced stress in human neuroblastoma cells. Nutr. Neurosci., 2019, 22(8), 551-568. doi: 10.1080/1028415X.2017.1418728 PMID: 29378496
- Tiekou Lorinczova, H.; Fitzsimons, O.; Mursaleen, L.; Renshaw, D.; Begum, G.; Zariwala, M.G. Co-administration of iron and a bioavailable curcumin supplement increases serum BDNF levels in healthy adults. Antioxidants, 2020, 9(8), 645. doi: 10.3390/antiox9080645
- Wu, X.; Chen, H.; Huang, C.; Gu, X.; Wang, J.; Xu, D.; Yu, X.; Shuai, C.; Chen, L.; Li, S.; Xu, Y.; Gao, T.; Ye, M.; Su, W.; Liu, H.; Zhang, J.; Wang, C.; Chen, J.; Wang, Q.; Cui, W. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice. Metab. Brain Dis., 2017, 32(3), 789-798. doi: 10.1007/s11011-017-9970-y PMID: 28224377
- Namgyal, D.; Chandan, K.; Sultan, A.; Aftab, M.; Ali, S.; Mehta, R.; El-Serehy, H.A.; Al-Misned, F.A.; Sarwat, M. Dim light at night induced neurodegeneration and ameliorative effect of curcumin. Cells, 2020, 9(9), 2093. doi: 10.3390/cells9092093 PMID: 32933226
- Sumanont, Y.; Murakami, Y.; Tohda, M.; Vajragupta, O.; Watanabe, H.; Matsumoto, K. Effects of manganese complexes of curcumin and diacetylcurcumin on kainic acid-induced neurotoxic responses in the rat hippocampus. Biol. Pharm. Bull., 2007, 30(9), 1732-1739. doi: 10.1248/bpb.30.1732 PMID: 17827730
- Beltrán-Campos, V.; Silva-Vera, M.; García-Campos, M.L.; Díaz-Cintra, S. Effects of morphine on brain plasticity. Neurologia, 2015, 30(3), 176-180. PMID: 25444409
- Liang, D.Y.; Li, X.; Clark, J.D. Epigenetic regulation of opioid-induced hyperalgesia, dependence, and tolerance in mice. J. Pain, 2013, 14(1), 36-47. doi: 10.1016/j.jpain.2012.10.005 PMID: 23273833
- Matsushita, Y.; Ueda, H. Curcumin blocks chronic morphine analgesic tolerance and brain-derived neurotrophic factor upregulation. Neuroreport, 2009, 20(1), 63-68. doi: 10.1097/WNR.0b013e328314decb PMID: 19033880
- Zhu, X.; Li, Q.; Chang, R.; Yang, D.; Song, Z.; Guo, Q.; Huang, C. Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and cox-2 in a rat model. PLoS One, 2014, 9(3), e91303. doi: 10.1371/journal.pone.0091303 PMID: 24603592
- Pieretti, S.; Ranjan, A.P.; Di Giannuario, A.; Mukerjee, A.; Marzoli, F.; Di Giovannandrea, R.; Vishwanatha, J.K. "Curcumin-loaded Poly (d, l-lactide-co-glycolide) nanovesicles induce antinociceptive effects and reduce pronociceptive cytokine and BDNF release in spinal cord after acute administration in mice". Colloids Surf. B Biointerfaces, 2017, 158, 379-386. doi: 10.1016/j.colsurfb.2017.07.027 PMID: 28719859
- Srivastava, P.; Dhuriya, Y.K.; Gupta, R.; Shukla, R.K.; Yadav, R.S.; Dwivedi, H.N.; Pant, A.B.; Khanna, V.K. Protective effect of curcumin by modulating BDNF/DARPP32/CREB in arsenic-induced alterations in dopaminergic signaling in rat corpus striatum. Mol. Neurobiol., 2018, 55(1), 445-461. doi: 10.1007/s12035-016-0288-2 PMID: 27966075
- Srivastava, P.; Dhuriya, Y.K.; Kumar, V.; Srivastava, A.; Gupta, R.; Shukla, R.K.; Yadav, R.S.; Dwivedi, H.N.; Pant, A.B.; Khanna, V.K. PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus: Neuroprotective role of curcumin. Neurotoxicology, 2018, 67, 190-205. doi: 10.1016/j.neuro.2018.04.018 PMID: 29723552
- Failla, M.D.; Conley, Y.P.; Wagner, A.K. Brain-derived neurotrophic factor (BDNF) in traumatic brain injuryrelated mortality. Neurorehabil. Neural Repair, 2016, 30(1), 83-93. doi: 10.1177/1545968315586465 PMID: 25979196
- Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp. Neurol., 2006, 197(2), 309-317. doi: 10.1016/j.expneurol.2005.09.004 PMID: 16364299
- Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary strategy to repair plasma membrane after brain trauma: implications for plasticity and cognition. Neurorehabil. Neural Repair, 2014, 28(1), 75-84. doi: 10.1177/1545968313498650 PMID: 23911971
- Sun, G.; Miao, Z.; Ye, Y.; Zhao, P.; Fan, L.; Bao, Z.; Tu, Y.; Li, C.; Chao, H.; Xu, X.; Ji, J. Curcumin alleviates neuroinflammation, enhances hippocampal neurogenesis, and improves spatial memory after traumatic brain injury. Brain Res. Bull., 2020, 162, 84-93. doi: 10.1016/j.brainresbull.2020.05.009 PMID: 32502596
- Wu, A.; Ying, Z.; Schubert, D.; Gomez-Pinilla, F. Brain and spinal cord interaction: a dietary curcumin derivative counteracts locomotor and cognitive deficits after brain trauma. Neurorehabil. Neural Repair, 2011, 25(4), 332-342. doi: 10.1177/1545968310397706 PMID: 21343524
- Murakami, S.; Imbe, H.; Morikawa, Y.; Kubo, C.; Senba, E. Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly. Neurosci. Res., 2005, 53(2), 129-139. doi: 10.1016/j.neures.2005.06.008 PMID: 16024125
- Xu, Y.; Ku, B.; Cui, L.; Li, X.; Barish, P.A.; Foster, T.C.; Ogle, W.O. Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Res., 2007, 1162, 9-18. doi: 10.1016/j.brainres.2007.05.071 PMID: 17617388
- Xu, Y.; Ku, B.; Tie, L.; Yao, H.; Jiang, W.; Ma, X.; Li, X. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res., 2006, 1122(1), 56-64. doi: 10.1016/j.brainres.2006.09.009 PMID: 17022948
- Zhang, L.; Luo, J.; Zhang, M.; Yao, W.; Ma, X.; Yu, S.Y. Effects of curcumin on chronic, unpredictable, mild, stress-induced depressive-like behaviour and structural plasticity in the lateral amygdala of rats. Int. J. Neuropsychopharmacol., 2014, 17(5), 793-806. doi: 10.1017/S1461145713001661 PMID: 24405689
- Liu, D.; Wang, Z.; Gao, Z.; Xie, K.; Zhang, Q.; Jiang, H.; Pang, Q. Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress. Behav. Brain Res., 2014, 271, 116-121. doi: 10.1016/j.bbr.2014.05.068 PMID: 24914461
- Wei, S.; Xu, H.; Xia, D.; Zhao, R. Curcumin attenuates the effects of transport stress on serum cortisol concentration, hippocampal NO production, and BDNF expression in the pig. Domest. Anim. Endocrinol., 2010, 39(4), 231-239. doi: 10.1016/j.domaniend.2010.06.004 PMID: 20920780
- Dwivedi, Y. Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatr. Dis. Treat., 2009, 5, 433-449. doi: 10.2147/NDT.S5700 PMID: 19721723
- Ristevska-Dimitrovska, G.; Shishkov, R.; Gerazova, V.P.; Vujovik, V.; Stefanovski, B.; Novotni, A.; Marinov, P.; Filov, I. Different serum BDNF levels in depression: results from BDNF studies in FYR Macedonia and Bulgaria. Psychiatr. Danub., 2013, 25(2), 123-127. PMID: 23793275
- Molendijk, M.L.; Bus, B A A.; Spinhoven, P.; Penninx, B.W.J.H.; Kenis, G.; Prickaerts, J.; Voshaar, R.C.O.; Elzinga, B.M. Serum levels of brain-derived neurotrophic factor in major depressive disorder: statetrait issues, clinical features and pharmacological treatment. Mol. Psychiatry, 2011, 16(11), 1088-1095. doi: 10.1038/mp.2010.98 PMID: 20856249
- Afzal, A.; Batool, Z.; Sadir, S.; Liaquat, L.; Shahzad, S.; Tabassum, S.; Ahmad, S.; Kamil, N.; Perveen, T.; Haider, S. Therapeutic potential of curcumin in reversing the depression and associated pseudodementia via modulating stress hormone, hippocampal neurotransmitters, and BDNF Levels in rats. Neurochem. Res., 2021, 46(12), 3273-3285. doi: 10.1007/s11064-021-03430-x PMID: 34409523
- Liao, D; Lv, C; Cao, L; Yao, D; Wu, Y; Long, M Curcumin attenuates chronic unpredictable mild stress-induced depressive-like behaviors via restoring changes in oxidative stress and the activation of Nrf2 signaling pathway in rats. Oxid Med Cell Longev, 2020, 2020, 9268083. doi: 10.1155/2020/9268083
- Hurley, L.L.; Akinfiresoye, L.; Nwulia, E.; Kamiya, A.; Kulkarni, A.A.; Tizabi, Y. Antidepressant-like effects of curcumin in WKY rat model of depression is associated with an increase in hippocampal BDNF. Behav. Brain Res., 2013, 239, 27-30. doi: 10.1016/j.bbr.2012.10.049 PMID: 23142609
- Huang, Z.; Zhong, X.M.; Li, Z.Y.; Feng, C.R.; Pan, A.J.; Mao, Q.Q. Curcumin reverses corticosterone-induced depressive-like behavior and decrease in brain BDNF levels in rats. Neurosci. Lett., 2011, 493(3), 145-148. doi: 10.1016/j.neulet.2011.02.030 PMID: 21334417
- Zhang, L.; Xu, T.; Wang, S.; Yu, L.; Liu, D.; Zhan, R.; Yu, S.Y. Curcumin produces antidepressant effects via activating MAPK/ERK-dependent brain-derived neurotrophic factor expression in the amygdala of mice. Behav. Brain Res., 2012, 235(1), 67-72. doi: 10.1016/j.bbr.2012.07.019 PMID: 22820234
- Lian, L.; Xu, Y.; Zhang, J.; Yu, Y.; Zhu, N.; Guan, X.; Huang, H.; Chen, R.; Chen, J.; Shi, G.; Pan, J. Antidepressant-like effects of a novel curcumin derivative J147: Involvement of 5-HT1A receptor. Neuropharmacology, 2018, 135, 506-513. doi: 10.1016/j.neuropharm.2018.04.003 PMID: 29626566
- Li, J.; Chen, L.; Li, G.; Chen, X.; Hu, S.; Zheng, L.; Luria, V.; Lv, J.; Sun, Y.; Xu, Y.; Yu, Y. Sub-acute treatment of curcumin derivative J147 ameliorates depression-like behavior through 5-HT1A-mediated cAMP signaling. Front. Neurosci., 2020, 14, 701. doi: 10.3389/fnins.2020.00701 PMID: 32733195
- Wang, R.; Li, Y.H.; Xu, Y.; Li, Y.B.; Wu, H.L.; Guo, H.; Zhang, J.Z.; Zhang, J.J.; Pan, X.Y.; Li, X.J. Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(1), 147-153. doi: 10.1016/j.pnpbp.2009.10.016 PMID: 19879308
- Wang, R.; Li, Y.B.; Li, Y.H.; Xu, Y.; Wu, H.; Li, X.J. Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res., 2008, 1210, 84-91. doi: 10.1016/j.brainres.2008.01.104 PMID: 18420184
- He, X.; Yang, L.; Wang, M.; Zhuang, X.; Huang, R.; Zhu, R. Targeting the endocannabinoid/CB1 receptor system for treating major depression through antidepressant activities of curcumin and dexanabinol-loaded solid lipid nanoparticles. Cell Physiol Biochem, 2017, 42(6), 2281-2294.
- Yu, J.J.; Pei, L.B.; Zhang, Y.; Wen, Z.Y.; Yang, J.L. Chronic supplementation of curcumin enhances the efficacy of antidepressants in major depressive disorder. J. Clin. Psychopharmacol., 2015, 35(4), 406-410. doi: 10.1097/JCP.0000000000000352 PMID: 26066335
- Choi, G-Y; Kim, H-B; Hwang, E-S; Lee, S; Kim, M-J; Choi, J-Y Curcumin alters neural plasticity and viability of intact hippocampal circuits and attenuates behavioral despair and COX-2 expression in chronically stressed rats. Mediators Inflamm, 2017, 2017, 6280925.
- Rinwa, P.; Kumar, A.; Garg, S. Suppression of neuroinflammatory and apoptotic signaling cascade by curcumin alone and in combination with piperine in rat model of olfactory bulbectomy induced depression. PLoS One, 2013, 8(4), e61052. doi: 10.1371/journal.pone.0061052 PMID: 23613781
- Gao, L.; Zhang, Y.; Sterling, K.; Song, W. Brain-derived neurotrophic factor in Alzheimers disease and its pharmaceutical potential. Transl. Neurodegener., 2022, 11(1), 4. doi: 10.1186/s40035-022-00279-0 PMID: 35090576
- Zhang, L.; Fang, Y.; Xu, Y.; Lian, Y.; Xie, N.; Wu, T.; Zhang, H.; Sun, L.; Zhang, R.; Wang, Z. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One, 2015, 10(6), e0131525. doi: 10.1371/journal.pone.0131525 PMID: 26114940
- Okuda, M.; Fujita, Y.; Sugimoto, H. The additive effects of low dose intake of ferulic acid, phosphatidylserine and curcumin, not alone, improve cognitive function in appswe/ps1de9 transgenic mice. Biol. Pharm. Bull., 2019, 42(10), 1694-1706. doi: 10.1248/bpb.b19-00332 PMID: 31582657
- Li, J.; Wang, S.; Zhang, S.; Cheng, D.; Yang, X.; Wang, Y.; Yin, H.; Liu, Y.; Liu, Y.; Bai, H.; Geng, S.; Wang, Y. Curcumin slows the progression of Alzheimers disease by modulating mitochondrial stress responses via JMJD3-H3K27me3-BDNF axis. Am. J. Transl. Res., 2021, 13(12), 13380-13393. PMID: 35035682
- Tang, H.; Lu, D.; Pan, R.; Qin, X.; Xiong, H.; Dong, J. Curcumin improves spatial memory impairment induced by human immunodeficiency virus type 1 glycoprotein 120 V3 loop peptide in rats. Life Sci., 2009, 85(1-2), 1-10. doi: 10.1016/j.lfs.2009.03.013 PMID: 19345695
- Yang, J.; Song, S.; Li, J.; Liang, T. Neuroprotective effect of curcumin on hippocampal injury in 6-OHDA-induced Parkinsons disease rat. Pathol. Res. Pract., 2014, 210(6), 357-362. doi: 10.1016/j.prp.2014.02.005 PMID: 24642369
- Yu, C.; Li, C.H.; Chen, S.; Yoo, H.; Qin, X.; Park, H. Decreased BDNF release in cortical neurons of a knock-in mouse model of Huntingtons disease. Sci. Rep., 2018, 8(1), 16976. doi: 10.1038/s41598-018-34883-w PMID: 30451892
- Zuccato, C.; Marullo, M.; Vitali, B.; Tarditi, A.; Mariotti, C.; Valenza, M.; Lahiri, N.; Wild, E.J.; Sassone, J.; Ciammola, A.; Bachoud-Lèvi, A.C.; Tabrizi, S.J.; Di Donato, S.; Cattaneo, E. Brain-derived neurotrophic factor in patients with Huntingtons disease. PLoS One, 2011, 6(8), e22966. doi: 10.1371/journal.pone.0022966 PMID: 21857974
- Gharaibeh, A.; Maiti, P.; Culver, R.; Heileman, S.; Srinageshwar, B.; Story, D.; Spelde, K.; Paladugu, L.; Munro, N.; Muhn, N.; Kolli, N.; Rossignol, J.; Dunbar, G.L. Solid lipid curcumin particles protect medium spiny neuronal morphology, and reduce learning and memory deficits in the YAC128 mouse model of Huntingtons disease. Int. J. Mol. Sci., 2020, 21(24), 9542. doi: 10.3390/ijms21249542 PMID: 33333883
- Elifani, F.; Amico, E.; Pepe, G.; Capocci, L.; Castaldo, S.; Rosa, P.; Montano, E.; Pollice, A.; Madonna, M.; Filosa, S.; Calogero, A.; Maglione, V.; Crispi, S.; Di Pardo, A. Curcumin dietary supplementation ameliorates disease phenotype in an animal model of Huntingtons disease. Hum. Mol. Genet., 2019, 28(23), ddz247. doi: 10.1093/hmg/ddz247 PMID: 31630202
- Mojtabavi, H.; Shaka, Z.; Momtazmanesh, S.; Ajdari, A.; Rezaei, N. Circulating brain-derived neurotrophic factor as a potential biomarker in stroke: a systematic review and meta-analysis. J. Transl. Med., 2022, 20(1), 126. doi: 10.1186/s12967-022-03312-y PMID: 35287688
- Lapchak, P.A.; Boitano, P.D.; Bombien, R.; Cook, D.J.; Doyan, S.; Lara, J.M.; Schubert, D.R. CNB-001, a pleiotropic drug is efficacious in embolized agyrencephalic New Zealand white rabbits and ischemic gyrencephalic cynomolgus monkeys. Exp. Neurol., 2019, 313, 98-108. doi: 10.1016/j.expneurol.2018.11.010 PMID: 30521790
- Green, M.J.; Matheson, S.L.; Shepherd, A.; Weickert, C.S.; Carr, V.J. Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol. Psychiatry, 2011, 16(9), 960-972. doi: 10.1038/mp.2010.88 PMID: 20733577
- Wynn, J.K.; Green, M.F.; Hellemann, G.; Karunaratne, K.; Davis, M.C.; Marder, S.R. The effects of curcumin on brain-derived neurotrophic factor and cognition in schizophrenia: A randomized controlled study. Schizophr. Res., 2018, 195, 572-573. doi: 10.1016/j.schres.2017.09.046 PMID: 28965778
Supplementary files
