Stretchable Pixel-Array Light-Emitting Electrode Based on Single-Walled Carbon Nanotubes for Flexible Electronics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The technology for manufacturing a stretchable electrode based on polydimethylsiloxane (PDMS) and single-walled carbon nanotubes is considered. The electrodes were created by optical lithography on nanotubes using a sacrificial layer. The pattern was formed by dry plasma etching. To create a stretchable device, an array of InGaN/GaN nanocrystal nanowires was encapsulated in PDMS by gravity wrapping and separated from the growth substrate. The device was tested for tension, its current–voltage characteristics were measured, and the stability of the device under cyclic loads was studied.

Texto integral

Acesso é fechado

Sobre autores

D. Kolesina

Alferov Saint Petersburg National Research Academic University; Peter the Great St. Petersburg Polytechnic University

Autor responsável pela correspondência
Email: diana666167@gmail.com
Rússia, Saint Petersburg, 194021; Saint Petersburg, 195251

F. Kochetkov

Alferov Saint Petersburg National Research Academic University

Email: diana666167@gmail.com
Rússia, Saint Petersburg, 194021

A. Vorobyov

Alferov Saint Petersburg National Research Academic University

Email: diana666167@gmail.com
Rússia, Saint Petersburg, 194021

K. Novikova

Alferov Saint Petersburg National Research Academic University

Email: diana666167@gmail.com
Rússia, Saint Petersburg, 194021

A. Goltaev

Alferov Saint Petersburg National Research Academic University

Email: diana666167@gmail.com
Rússia, Saint Petersburg, 194021

V. Neplokh

Alferov Saint Petersburg National Research Academic University

Email: diana666167@gmail.com
Rússia, Saint Petersburg, 194021

I. Mukhin

Alferov Saint Petersburg National Research Academic University; Peter the Great St. Petersburg Polytechnic University

Email: diana666167@gmail.com
Rússia, Saint Petersburg, 194021; Saint Petersburg, 195251

Bibliografia

  1. Xie Y. Shihong Q. Principle and Application of Inorganic Electroluminescence and Organic Electroluminescence // International Conference on Electric Information and Control Engineering. 2011. https://doi.org/10.1109/ICEICE.2011.5777215
  2. Kim Y., Hwang S., Hong J., Lee S. // Appl. Phys. Lett. 2006. V. 89. № 17. P. 173506. https://doi.org/10.1063/1.2364866
  3. Sugimoto A., Ochi H., Fujimura S., Yoshida A., Miyadera T., Tsuchida M. // J. Selected Topics Quantum Electronics. 2004. V. 10. № 1. P. 107. https://doi.org/10.1109/JSTQE.2004.824112
  4. Shen J., Chui C., Tao X. // Biomed. Opt. Express. 2013. V. 4. № 12. P. 2925. https://doi.org/10.1364/BOE.4.002925
  5. Yokota T., Zalar P., Kaltenbrunner M., Jinno H., Matsuhisa N., Kitanosako H., Tachibana Y., Yukita W., Koizumi M., Someya T. // Sci. Adv. 2016. V. 2. № 4. P. e1501856. https://doi.org/10.1126/sciadv.1501856
  6. Самарин А. // Новые технологии. 2007. № 69. С. 221.
  7. Kgatuke M., Hardy D., Тownsend K., Salter E., Downes T., Harrigan K., Allcock S., Dias Т. // Proceedings. 2019. V. 32. № 1. P. 12. https://doi.org/10.3390/proceedings2019032012
  8. Yan X., Fan S., Zhang X., Ren Х. // Nanoscale Res. Lett. 2015. V. 10. P. 1. https://doi.org/10.1186/s11671-015-1097-7
  9. Feng G., Nix W., Yoon Y., Lee C. // J. Appl. Phys. 2006. V. 99. № 7. P. 074304. https://doi.org/10.1063/1.2189020
  10. Neplokh V., Kochetkov F., Deryabin K., Fedorov V., Bolshakov A., Eliseev I., Mikhailovskii V., Ilatovskii D., Krasnikov D., Tchernycheva M., Cirlin G., Nasibulin A., Mukhin I., Islamova R. // J. Mater. Chem. C. 2020. V. 8. № 11. P. 3764. https://doi.org/10.1039/C9TC06239D
  11. Kochetkov F., Neplokh V., Mastalieva V., Mukhangali S., Vorobyov A., Uvarov A., Komissarenko F., Mitin D., Kapoor A., Eymery J., Amador-Mendez N., Durand C., Krasnikov D., Nasibulin A., Mukhin I., Islamova R. // Nanomaterials. 2021. V. 11. № 6. P. 1503. https://doi.org/10.3390/nano11061503
  12. Mukhangali S. Neplokh V., Kochetkov F., Moiseev E., Miroshnichenko A., Deryabin K., Nasibulin A., Mukhin I., Islamova R. // J. Phys.: Conf. Ser. 2021. V. 2103. № 1. P. 012178. https://doi.org/10.1088/1742–6596/2103/1/012178
  13. Kochetkov F., Neplokh V., Fedorov V., Bolshakov A., Cirlin G., Mukhin I., Islamova R. // J. Phys.: Conf. Ser. 2020. V. 1965. № 1. P. 012010. https://doi.org/10.1088/1742-6596/1695/1/012010
  14. Mukhangali S., Neplokh V., Kochetkov F., Fedorov V., Nasibulin A., Makarov S., Mukhin I., Islamova R. // J. Phys.: Conf. Ser. 2021. V. 2086. № 1. P. 012093. https://doi.org/10.1088/1742-6596/2086/1/012093
  15. Kaskela A., Nasibulin A.G., Timmermans M.Y., Aitchison B., Papadimitratos A., Tian Y., Zhu Z., Jiang H., Brown D.P., Zakhidov A., Kauppinen E.I. // Nano Lett. 2010. V. 10. № 11. P. 4349. https://doi.org/10.1021/nl101680s
  16. Mukhangali S., Neplokh V., Kochetkov F., Vorobyov A., Mitin D., Mukhin I., Krasnikov D., Tian Y., Islamova R., Nasibulin A.G., Mukhin I. // Appl. Phys. Lett. 2022. V. 121. № 24. https://doi.org/10.1063/5.0125974
  17. Köster R. Hwang J.S., Durand C., Dang D., Eymery J. // Nanotechnology. 2009. V. 21. № 1. P. 015602. https://doi.org/10.1088/0957-4484/21/1/015602
  18. Eymery J., Chen X., Durand C., Kolb M., Richter G. // Comptes Rendus Phys. 2013. V. 14. № 2–3. P. 221. https://doi.org/10.1016/j.crhy.2012.10.009
  19. Guan N., Dai X., Babichev A., Julien F., Tchernycheva M. // Chem. Sci. 2017. V. 8. № 12. P. 7904. https://doi.org/10.1039/C7SC02573D
  20. Tsapenko A.P., Goldt A.E., Shulga E., Popov Z.I., Maslakov K.I., Anisimov A.S., Sorokin P.B., Nasibulin A.G. // Carbon. 2018. № 130. P. 448. https://doi.org/10.1016/j.carbon.2018.01.016
  21. Gilshteyn E.P., Romanov S.A., Kopylova D.S., Savostyanov G. V., Anisimov A.S., Glukhova O.E., Nasibulin A.G. // ACS Appl. Mater. Interfaces. 2019. V. 11. № 30. P. 27327. https://doi.org/10.1021/acsami.9b07578

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. SEM images of an array of InGaN/GaN filamentous microcrystals: a – encapsulated in a silicone matrix of PDMS; b — on a growth substrate.

Baixar (23KB)
3. Fig. 2. The process of separating the membrane from the growth substrate with a blade and an image of the separated membrane. NMK is a filamentous microcrystal, OUNT is a single—walled carbon nanotube.

Baixar (36KB)
4. Fig. 3. The scheme of manufacturing a stretchable electrode single-walled CNTs/PDMS: a – applying a photolithography resist; b — combining and exposing; c – etching tubes in O2 plasma and removing the resist in acetone; d — applying a PDMS layer by centrifugation; e — dissolving the sacrificial layer in DMSO; f — the resulting stretchable electrode.

Baixar (34KB)
5. Fig. 4. The process of assembling a stretchable device (InGaN/GaN)/PDMS/CNT. NMK is a filamentous microcrystal, OUNT is a single—walled carbon nanotube.

Baixar (39KB)
6. Fig. 5. Volt-ampere characteristic of a stretchable device (InGaN/GaN)/PDMS/CNT.

Baixar (17KB)
7. Fig. 6. Determination of the stability of the device at an operating voltage of 14 V.

Baixar (22KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025