Marine Microalgae Schizochytrium sp. S31: Potential Source for New Antimicrobial and Antibiofilm Agent


Дәйексөз келтіру

Толық мәтін

Аннотация

Background:The rise of antibiotic-resistant bacteria necessitates the discovery of new, safe, and bioactive antimicrobial compounds. The antibacterial and antibiofilm activity of microalgae makes them a potential candidate for developing natural antibiotics to limit microbial infection in various fields.

Objective:This study aimed to analyze the antibacterial effect of the methanolic extract of Schizochytrium sp. S31 microalgae by broth microdilution and spot plate assays.

Methods:The antibacterial effects of Schizochytrium sp. S31 extract was studied on gramnegative pathogens, Pseudomonas aeruginosa, Escherichia coli 35218, Klebsiella pneumonia, which cause many different human infections, and the gram-positive pathogen Streptococcus mutans. At the same time, the antibiofilm activity of the Schizochytrium sp. S31 extract on Pseudomonas aeruginosa and Escherichia coli 35218 bacteria were investigated by crystal violet staining method.

Results:Schizochytrium sp. S31 extract at a 60% concentration for 8 hours displayed the highest antibacterial activity against P. aeruginosa, E. coli 35218, and K. pneumonia, with a decrease of 87%, 92%, and 98% in cell viability, respectively. The experiment with Streptococcus mutans revealed a remarkable antibacterial effect at a 60% extract concentration for 24 hours, leading to a notable 93% reduction in cell viability. Furthermore, the extract exhibited a dose-dependent inhibition of biofilm formation in P. aeruginosa and E. coli 35218. The concentration of 60% extract was identified as the most effective dosage in terms of inhibition.

Conclusion:This research emphasizes the potential of Schizochytrium sp. S31 as a natural antibacterial and antibiofilm agent with promising applications in the pharmaceutical sectors. This is the first study to examine the antibacterial activity of Schizochytrium sp. S31 microalgae using broth microdilution, spot plate assays, and the antibiofilm activity by a crystal staining method. The findings of this study show that Schizochytrium sp. S31 has antibacterial and antibiofilm activities against critical bacterial pathogens.

Авторлар туралы

Doaa Hammadi Al-Ogaidi

Department of Biomedical Science, Altınbaş University

Email: info@benthamscience.net

Sevinç Karaçam

Department of Biotechnology, Bilecik Seyh Edebali University

Email: info@benthamscience.net

Rafig Gurbanov

Department of Bioengineering, Bilecik Şeyh Edebali University

Email: info@benthamscience.net

Nurcan Vardar-Yel

Department of Medical Laboratory Techniques, Altinbas University

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Әдебиет тізімі

  1. Khavari, F.; Saidijam, M.; Taheri, M.; Nouri, F. Microalgae: Therapeutic potentials and applications. Mol. Biol. Rep., 2021, 48(5), 4757-4765. doi: 10.1007/s11033-021-06422-w PMID: 34028654
  2. Sigamani, S.; Ramamurthy, D.; Natarajan, H. A review on potential biotechnological applications of microalgae. J. Appl. Pharm. Sci., 2016, 6(8), 179-184. doi: 10.7324/JAPS.2016.60829
  3. Chu, W.L.; Phang, S.M. Bioactive compounds from microalgae and their potential applications as pharmaceuticals and nutraceuticals. In: Grand Challenges in Algae Biotechnology; Hallmann, A.; Rampelotto, P., Eds.; Springer: Cham, 2019; pp. 429-469. doi: 10.1007/978-3-030-25233-5_12
  4. Dhandayuthapani, K.; Malathy, S.; Mulla, S.I.; Gupta, S.K. An insight into the potential application of microalgae in pharmaceutical and nutraceutical production. In: Algae Multifarious Applications for a Sustainable World; Mandotra, S.K.; Upadhyay, A.K.; Ahluwalia, A.S., Eds.; Springer: Singapore, 2021; pp. 135-179. doi: 10.1007/978-981-15-7518-1_7
  5. Olasehinde, T.; Olaniran, A.; Okoh, A. Therapeutic potentials of microalgae in the treatment of Alzheimer’s disease. Molecules, 2017, 22(3), 480. doi: 10.3390/molecules22030480 PMID: 28335462
  6. Jubair, N.; Rajagopal, M.; Chinnappan, S.; Abdullah, N.B.; Fatima, A. Review on the antibacterial mechanism of plant-derived compounds against multidrug-resistant bacteria (MDR). Evid. Based Complement. Alternat. Med., 2021, 2021, 3663315. doi: 10.1155/2021/3663315
  7. Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health, 2015, 109(7), 309-318. doi: 10.1179/2047773215Y.0000000030 PMID: 26343252
  8. Kon, K.; Rai, M. Antibiotic Resistance: Mechanisms and New Antimicrobial Approaches; Academic press: London, 2016.
  9. Marrez, D.A.; Naguib, M.M.; Sultan, Y.Y.; Higazy, A.M. Antimicrobial and anticancer activities of Scenedesmus obliquus metabolites. Heliyon, 2019, 5(3), e01404. doi: 10.1016/j.heliyon.2019.e01404 PMID: 30976685
  10. Shannon, E.; Abu-Ghannam, N. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Mar. Drugs, 2016, 14(4), 81. doi: 10.3390/md14040081 PMID: 27110798
  11. Vikneshan, M.; Saravanakumar, R.; Mangaiyarkarasi, R.; Rajeshkumar, S.; Samuel, S.R.; Suganya, M.; Baskar, G. Algal biomass as a source for novel oral nano-antimicrobial agent. Saudi J. Biol. Sci., 2020, 27(12), 3753-3758. doi: 10.1016/j.sjbs.2020.08.022 PMID: 33304187
  12. Stirk, W.A.; van Staden, J. Bioprospecting for bioactive compounds in microalgae: Antimicrobial compounds. Biotechnol. Adv., 2022, 59, 107977. doi: 10.1016/j.biotechadv.2022.107977 PMID: 35580750
  13. Ruiz, M.M.; González, M.C.A.; Kim, D.H.; Romero, S.B.; Pardo, R.H.; Zepeda, V.K.R.; Sánchez, M.E.R.; Gamboa, R.D.; Zamorano, D.A.L.; Hernández, S.J.E.; Apodaca, C.K.G.; Méndez, G.A.M.; Iqbal, H.M.N.; Saldivar, P.R. Microalgae bioactive compounds to topical applications products—a review. Molecules, 2022, 27(11), 3512. doi: 10.3390/molecules27113512 PMID: 35684447
  14. de Morais, M.G.; Vaz, B.S.; de Morais, E.G.; Costa, J.A.V. Biologically active metabolites synthesized by microalgae. BioMed Res. Int., 2015, 2015, 1-15. doi: 10.1155/2015/835761 PMID: 26339647
  15. Das, B.K.; Pradhan, J. Antibacterial properties of selected freshwater microalgae against pathogenic bacteria. Indian J. Fish., 2010, 57(2), 61-66.
  16. Jyotirmayee, P.; Sachidananda, D.; Basanta, K.D. Antibacterial activity of freshwater microalgae: A review. Afr. J. Pharm. Pharmacol., 2014, 8(32), 809-818. doi: 10.5897/AJPP2013.0002
  17. Jena, J.; Subudhi, E. Microalgae: An untapped resource for natural antimicrobials. In: The Role of Microalgae in Wastewater Treatment; Sukla, L.; Subudhi, E.; Pradhan, D., Eds.; Springer Singapore, 2019; pp. 99-114. doi: 10.1007/978-981-13-1586-2_8
  18. Mayer, A.M.S.; Hamann, M.T. Marine pharmacology in 2001–2002: Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2005, 140(3-4), 265-286. doi: 10.1016/j.cca.2005.04.004 PMID: 15919242
  19. Surendhiran, D.; Vijay, M.; Sirajunnisa, A.R.; Subramaniyan, T.; Subramaniyan, A.S.; Tamilselvam, K. A green synthesis of antimicrobial compounds from marine microalgae Nannochloropsis oculata. J. Coast. Life Med., 2014, 2(11), 862-869.
  20. Bhateja, P.; Mathur, T.; Pandya, M.; Fatma, T.; Rattan, A. Activity of blue green microalgae extracts against in vitro generated Staphylococcus aureus with reduced susceptibility to vancomycin. Fitoterapia, 2006, 77(3), 233-235. doi: 10.1016/j.fitote.2006.01.009 PMID: 16556488
  21. Amaro, H.M.; Guedes, A.C.; Malcata, F.; Guedes, A.C.; Malcata, F.X. Antimicrobial activities of microalgae: An invited review. In: Science against microbial pathogens: communicating current research and technological advances; Méndez-Vilas, A., Ed.; Formatex: Spain, 2011; pp. 1272-1284.
  22. Cepas, V.; López, Y.; Gabasa, Y.; Martins, C.B.; Ferreira, J.D.; Correia, M.J.; Santos, L.M.A.; Oliveira, F.; Ramos, V.; Reis, M.; Branco, C.R.; Morais, J.; Vasconcelos, V.; Probert, I.; Guilloud, E.; Mehiri, M.; Soto, S.M. Inhibition of bacterial and fungal biofilm formation by 675 extracts from microalgae and cyanobacteria. Antibiotics, 2019, 8(2), 77. doi: 10.3390/antibiotics8020077 PMID: 31212792
  23. Kanimozhi, R.; Prasath, D.A.; Dhandapani, R.; Sigamani, S. In vitro antioxidant and antibiofilm activities of microcystis sp. against multidrug-resistant human pathogens. Ann. Rom. Soc. Cell Biol., 2021, 25(6), 4419-4430.
  24. Mishra, A.K.R.; Muthukaliannan, K.G. Role of microalgal metabolites in controlling quorum-sensing-regulated biofilm. Arch. Microbiol., 2022, 204(3), 163. doi: 10.1007/s00203-022-02776-2 PMID: 35119531
  25. Sampathkumar, S.J.; Srivastava, P.; Ramachandran, S.; Sivashanmugam, K.; Gothandam, K.M. Lutein: A potential antibiofilm and antiquorum sensing molecule from green microalga Chlorella pyrenoidosa. Microb. Pathog., 2019, 135, 103658. doi: 10.1016/j.micpath.2019.103658 PMID: 31398531
  26. Iglesias, M.J.; Soengas, R.; Probert, I.; Guilloud, E.; Gourvil, P.; Mehiri, M.; López, Y.; Cepas, V.; del-Río, G.I.; Blanco, R.S.; Villar, C.J.; Lombó, F.; Soto, S.; Ortiz, F.L. NMR characterization and evaluation of antibacterial and antiobiofilm activity of organic extracts from stationary phase batch cultures of five marine microalgae (Dunaliella sp., D. salina, Chaetoceros calcitrans, C. gracilis and Tisochrysis lutea). Phytochemistry, 2019, 164, 192-205. doi: 10.1016/j.phytochem.2019.05.001 PMID: 31174083
  27. Cosio, C.P.; Escalante, M.E.; Geraldo, R.R.; Angulo, C. Natural and recombinant bioactive compounds from Schizochytrium sp.: Recent advances and future prospects. Algal Res., 2023, 75, 103273. doi: 10.1016/j.algal.2023.103273
  28. Nag, M.; Lahiri, D.; Dey, A.; Sarkar, T.; Joshi, S.; Ray, R.R. Evaluation of algal active compounds as potent antibiofilm agent. J. Basic Microbiol., 2022, 62(9), 1098-1109. doi: 10.1002/jobm.202100470 PMID: 34939676
  29. Puri, M.; Gupta, A.; Sahni, S. Schizochytrium sp. In: Trends in Microbiology; Iyer, S., Ed.; Elsevier, 2023; pp. 872-873.
  30. Wang, Q.; Han, W.; Jin, W.; Gao, S.; Zhou, X. Docosahexaenoic acid production by Schizochytrium sp.: review and prospect. Food Biotechnol., 2021, 35(2), 111-135. doi: 10.1080/08905436.2021.1908900
  31. Półbrat, T.; Konkol, D.; Korczyński, M. Optimization of docosahexaenoic acid production by Schizochytrium SP. – A review. Biocatal. Agric. Biotechnol., 2021, 35, 102076. doi: 10.1016/j.bcab.2021.102076
  32. FDA. Substances affirmed as generally recognized as safe: Algal Oil (Schizochytrium sp.). GRN no. 137. 2004. Available from: https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory
  33. Lewis, K.D.; Huang, W.; Zheng, X.; Jiang, Y.; Feldman, R.S.; Falk, M.C. Toxicological evaluation of arachidonic acid (ARA)-rich oil and docosahexaenoic acid (DHA)-rich oil. Food Chem. Toxicol., 2016, 96, 133-144. doi: 10.1016/j.fct.2016.07.026 PMID: 27470615
  34. Hammond, B.G.; Mayhew, D.A.; Robinson, K.; Mast, R.W.; Sander, W.J. Safety assessment of DHA-rich microalgae from Schizochytrium sp. Part III. Single generation rat reproduction study. Regul. Toxicol. Pharmacol., 2001, 33(3), 356-362. doi: 10.1006/rtph.2001.1477 PMID: 11407938
  35. Hammond, B.G.; Mayhew, D.A.; Naylor, M.W.; Ruecker, F.A.; Mast, R.W.; Sander, W.J. Safety assessment of DHA-rich microalgae from Schizochytrium Sp.: I. Subchronic rat feeding study. Regul. Toxicol. Pharmacol., 2001, 33(2), 192-204. doi: 10.1006/rtph.2001.1458 PMID: 11350202
  36. Hammond, B.G.; Mayhew, D.A.; Holson, J.F.; Nemec, M.D.; Mast, R.W.; Sander, W.J. Safety assessment of DHA-rich microalgae from Schizochytrium sp.: II. Developmental toxicity evaluation in rats and rabbits. Regul. Toxicol. Pharmacol., 2001, 33(2), 205-217. doi: 10.1006/rtph.2001.1459 PMID: 11350203
  37. Abril, R.; Garrett, J.; Zeller, S.G.; Sander, W.J.; Mast, R.W. Safety assessment of DHA-rich microalgae from Schizochytrium sp. Part V: target animal safety/toxicity study in growing swine. Regul. Toxicol. Pharmacol., 2003, 37(1), 73-82. doi: 10.1016/S0273-2300(02)00030-2 PMID: 12662911
  38. Dahms, F.I.; Marone, P.A.; Hall, B.E.; Ryan, A.S. Safety evaluation of algal oil from Schizochytrium sp. Food Chem. Toxicol., 2011, 49(1), 70-77. doi: 10.1016/j.fct.2010.09.033 PMID: 20933569
  39. Arterburn, L.M.; Boswell, K.D.; Lawlor, T.; Cifone, M.A.; Murli, H.; Kyle, D.J. In vitro genotoxicity testing of ARASCO® and DHASCO® oils. Food Chem. Toxicol., 2000, 38(11), 971-976. doi: 10.1016/S0278-6915(00)00085-5 PMID: 11038233
  40. Schmitt, D.; Tran, N.; Peach, J.; Bauter, M.; Marone, P. Toxicologic evaluation of DHA-rich algal oil: Genotoxicity, acute and subchronic toxicity in rats. Food Chem. Toxicol., 2012, 50(10), 3567-3576. doi: 10.1016/j.fct.2012.07.054 PMID: 22898615
  41. Kroes, R.; Schaefer, E.J.; Squire, R.A.; Williams, G.M. A review of the safety of DHA45-oil. Food Chem. Toxicol., 2003, 41(11), 1433-1446. doi: 10.1016/S0278-6915(03)00163-7 PMID: 12962995
  42. Blum, R.; Kiy, T.; Tanaka, S.; Wong, A.W.; Roberts, A. Genotoxicity and subchronic toxicity studies of DHA-rich oil in rats. Regul. Toxicol. Pharmacol., 2007, 49(3), 271-284. doi: 10.1016/j.yrtph.2007.08.005 PMID: 17933446
  43. Sahin, D.; Tas, E.; Altindag, U.H. Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions. AMB Express, 2018, 8(1), 7. doi: 10.1186/s13568-018-0540-4 PMID: 29368055
  44. Karadağ H.; Tunçer, S.; Karaçam, S.; Gurbanov, R. Tapioca starch and skim milk support probiotic efficacy of Lactiplantibacillus plantarum post-fermentation medium against pathogens and cancer cells. Arch. Microbiol., 2022, 204(6), 331. doi: 10.1007/s00203-022-02943-5 PMID: 35579801
  45. Merritt, J.H.; Kadouri, D.E.; O’Toole, G.A. Growing and analyzing static biofilms. Curr. Protoc. Microbiol., 2011, 22(1), 1B-1. doi: 10.1002/9780471729259.mc01b01s22 PMID: 18770545
  46. Tunçer, S.; Karaçam, S. Cell-free supernatant of Streptococcus salivarius M18 impairs the pathogenic properties of Pseudomonas aeruginosa and Klebsiella pneumonia. Arch. Microbiol., 2020, 202(10), 2825-2840. doi: 10.1007/s00203-020-02005-8 PMID: 32747998
  47. Cepas, V.; Río, G.D.I.; López, Y.; Blanco, R.S.; Gabasa, Y.; Iglesias, M.J.; Soengas, R.; Lorenzo, F.A.; Ibáñez, L.S.; Villar, C.J.; Martins, C.B.; Ferreira, J.D.; Assunção, M.F.G.; Santos, L.M.A.; Morais, J.; Branco, C.R.; Reis, M.A.; Vasconcelos, V.; Ortiz, L.F.; Lombó, F.; Soto, S.M. Microalgae and cyanobacteria strains as producers of lipids with antibacterial and antibiofilm activity. Mar. Drugs, 2021, 19(12), 675. doi: 10.3390/md19120675 PMID: 34940674
  48. Blackledge, M.S.; Worthington, R.J.; Melander, C. Biologically inspired strategies for combating bacterial biofilms. Curr. Opin. Pharmacol., 2013, 13(5), 699-706. doi: 10.1016/j.coph.2013.07.004 PMID: 23871261
  49. Flemming, H.C.; Wuertz, S. Bacteria and archaea on earth and their abundance in biofilms. Nat. Rev. Microbiol., 2019, 17(4), 247-260. doi: 10.1038/s41579-019-0158-9 PMID: 30760902
  50. Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.F.; Alarcon, E.I.; Bacterial, A.E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon, 2018, 4(12), e01067. doi: 10.1016/j.heliyon.2018.e01067 PMID: 30619958
  51. Sauer, K.; Stoodley, P.; Goeres, D.M.; Stoodley, H.L.; Burmølle, M.; Stewart, P.S.; Bjarnsholt, T. The biofilm life cycle: Expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol., 2022, 20(10), 608-620. doi: 10.1038/s41579-022-00767-0 PMID: 35922483
  52. Muhammad, M.H.; Idris, A.L.; Fan, X.; Guo, Y.; Yu, Y.; Jin, X.; Qiu, J.; Guan, X.; Huang, T. Beyond risk: Bacterial biofilms and their regulating approaches. Front. Microbiol., 2020, 11, 928. doi: 10.3389/fmicb.2020.00928 PMID: 32508772
  53. Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; Salamat, M.K.F.; Baloch, Z. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist., 2018, 11, 1645-1658. doi: 10.2147/IDR.S173867 PMID: 30349322
  54. Rojas, V.; Rivas, L.; Cárdenas, C.; Guzmán, F. Cyanobacteria and eukaryotic microalgae as emerging sources of antibacterial peptides. Molecules, 2020, 25(24), 5804. doi: 10.3390/molecules25245804 PMID: 33316949
  55. López, Y.; Soto, S.M. The preventing usefulness biofilm microalgae infections compounds for preventing biofilm infections. Antibiotics, 2020, 9, 9. doi: 10.3390/antibiotics9010009 PMID: 31878164
  56. Dolganyuk, V.; Belova, D.; Babich, O.; Prosekov, A.; Ivanova, S.; Katserov, D.; Patyukov, N.; Sukhikh, S. Microalgae: A promising source of valuable bioproducts. Biomolecules, 2020, 10(8), 1153. doi: 10.3390/biom10081153 PMID: 32781745
  57. Falaise, C.; François, C.; Travers, M.A.; Morga, B.; Haure, J.; Tremblay, R.; Turcotte, F.; Pasetto, P.; Gastineau, R.; Hardivillier, Y.; Leignel, V.; Mouget, J.L. Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Mar. Drugs, 2016, 14(9), 159. doi: 10.3390/md14090159 PMID: 27598176
  58. Lyczak, J.B.; Cannon, C.L.; Pier, G.B. Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist. Microbes Infect., 2000, 2(9), 1051-1060. doi: 10.1016/S1286-4579(00)01259-4 PMID: 10967285
  59. Gellatly, S.L.; Hancock, R.E.W. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis., 2013, 67(3), 159-173. doi: 10.1111/2049-632X.12033 PMID: 23620179
  60. Caneiras, C.; Lito, L.; Cristino, M.J.; Duarte, A. Community-and hospital-acquired Klebsiella pneumoniae urinary tract infections in Portugal: Virulence and antibiotic resistance. Microorganisms, 2019, 7(5), 138. doi: 10.3390/microorganisms7050138 PMID: 31100810
  61. Azimi, L.; Alaghehbandan, R.; Asadian, M.; Alinejad, F.; Lari, A.R. Multi-drug resistant Pseudomonas aeruginosa and Klebsiella pneumoniae circulation in a burn hospital, Tehran, Iran. GMS Hyg. Infect. Control, 2019, 14, Doc01. doi: 10.3205/dgkh000317
  62. Zhang, S.; Yang, G.; Ye, Q.; Wu, Q.; Zhang, J.; Huang, Y. Phenotypic and genotypic characterization of Klebsiella pneumoniae isolated from retail foods in China. Front. Microbiol., 2018, 9, 289. doi: 10.3389/fmicb.2018.00289 PMID: 29545778
  63. Zhou, F.; Wang, D.; Hu, J.; Zhang, Y.; Tan, B.K.; Lin, S. Control measurements of Escherichia coli biofilm: A review. Foods, 2022, 11(16), 2469. doi: 10.3390/foods11162469 PMID: 36010469
  64. Metwalli, K.H.; Khan, S.A.; Krom, B.P.; Rizk, J.M.A. Streptococcus mutans, Candida albicans, and the human mouth: A sticky situation. PLoS Pathog., 2013, 9(10), e1003616. doi: 10.1371/journal.ppat.1003616 PMID: 24146611
  65. Chanda, W.; Joseph, T.P.; Guo, X.; Wang, W.; Liu, M.; Vuai, M.S.; Padhiar, A.A.; Zhong, M. Effectiveness of omega-3 polyunsaturated fatty acids against microbial pathogens. J. Zhejiang Univ. Sci. B, 2018, 19(4), 253-262. doi: 10.1631/jzus.B1700063 PMID: 29616501
  66. Kalidasan, K.; Sunil, K.; Kayalvizhi, K.; Kathiresan, K. Polyunsaturated fatty acid-producing marine thraustochytrids: A potential source for antimicrobials. J. Coast. Life Med., 2015, 3(11), 848-851. doi: 10.12980/jclm.3.2015j5-75
  67. Huber, C.D.C.; Steixner, S.; Wurm, A.; Nogler, M. Antibacterial and anti-biofilm activity of omega-3 polyunsaturated fatty acids against periprosthetic joint infections-isolated multi-drug resistant strains. Biomedicines, 2021, 9(4), 334. doi: 10.3390/biomedicines9040334 PMID: 33810261
  68. Desbois, A.; Lawlor, K. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar. Drugs, 2013, 11(11), 4544-4557. doi: 10.3390/md11114544 PMID: 24232668
  69. Som, C.R.S.; Radhakrishnan, C.K. Antibacterial activities of polyunsaturated fatty acid extracts from Sardinella longiceps and Sardinella fimbriata. IJMS, 2011, 40(5), 710-716.
  70. Knapp, H.R.; Melly, M.A. Bactericidal effects of polyunsaturated fatty acids. J. Infect. Dis., 1986, 154(1), 84-94. doi: 10.1093/infdis/154.1.84 PMID: 3086465
  71. Zheng, C.J.; Yoo, J.S.; Lee, T.G.; Cho, H.Y.; Kim, Y.H.; Kim, W.G. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett., 2005, 579(23), 5157-5162. doi: 10.1016/j.febslet.2005.08.028 PMID: 16146629
  72. Alsenani, F.; Tupally, K.R.; Chua, E.T.; Eltanahy, E.; Alsufyani, H.; Parekh, H.S.; Schenk, P.M. Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharm. J., 2020, 28(12), 1834-1841. doi: 10.1016/j.jsps.2020.11.010 PMID: 33424272
  73. Smith, V.J.; Desbois, A.P.; Dyrynda, E.A. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar. Drugs, 2010, 8(4), 1213-1262. doi: 10.3390/md8041213 PMID: 20479976
  74. Desbois, A.P.; Lebl, T.; Yan, L.; Smith, V.J. Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum. Appl. Microbiol. Biotechnol., 2008, 81(4), 755-764. doi: 10.1007/s00253-008-1714-9 PMID: 18813920
  75. Plaza, M.; Santoyo, S.; Jaime, L.; Reina, G.B.G.; Herrero, M.; Señoráns, F.J.; Ibáñez, E. Screening for bioactive compounds from algae. J. Pharm. Biomed. Anal., 2010, 51(2), 450-455. doi: 10.1016/j.jpba.2009.03.016 PMID: 19375880

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024