Iron(III) Monoglycerolate as a New Biocompatible Precursor in the Synthesis of Bioactive Nanocomposite Glycerohydrogels


如何引用文章

全文:

详细

Background:Nanocomposite glycerohydrogels based on biocompatible elementcontaining glycerolates are of practicular interest for biomedical applications.

Objective:Using two biocompatible precursors, silicon and iron glycerolates, a new bioactive nanocomposite silicon‒iron glycerolates hydrogel was obtained by sol-gel method.

Methods:The composition and structural features of the hydrogel were studied using a complex of modern analytical techniques, including TEM, XRD, and AES. On the example of experimental animals hemostatic activity of the hydrogel was studied, as well as primary toxicological studies were carried out.

Results:The composition of dispersed phase and dispersion medium of silicon‒iron glycerolates hydrogel was determined. The structural features of hydrogel were revealed and its structure model was proposed. It was shown that silcon-iron glycerolates hydrogel is nontoxic, and exhibits pronounced hemostatic activity.

Conclusion:Silicon-iron glycerolates hydrogel is a potential hemostatic agent for topical application in medical and veterinary practice.

作者简介

Tat’yana Khonina

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: info@benthamscience.net

Denis Tishin

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: info@benthamscience.net

Leonid Larionov

, Ural State Medical University

Email: info@benthamscience.net

Artur Osipenko

, Ural State Medical University

Email: info@benthamscience.net

Maria Dobrinskaya

, Ural State Medical University

Email: info@benthamscience.net

Ekaterina Bogdanova

Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences

Email: info@benthamscience.net

Maxim Karabanalov

, Ural Federal University

Email: info@benthamscience.net

Maria Bulatova

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: info@benthamscience.net

Elena Shadrina

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: info@benthamscience.net

Oleg Chupakhin

Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences

Email: info@benthamscience.net

参考

  1. Sakka, S. Handbook of Sol-gel Science and Technology: Applications of Sol-gel Technology; Kluwer Academic Publishers: Boston, 2005.
  2. Levy, D.; Zayat, M. The sol-gel handbook: Synthesis and processing; Wiley-VCH Verlag GmbH & Co: Weinheim, 2015. doi: 10.1002/9783527670819
  3. Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.M.; Mahapatra, C.; Kim, H.W.; Knowles, J.C. Sol-gel based materials for biomedical applications. Prog. Mater. Sci., 2016, 77, 1-79. doi: 10.1016/j.pmatsci.2015.12.001
  4. Zheng, K.; Boccaccini, A.R. Sol-gel processing of bioactive glass nanoparticles: A review. Adv. Colloid Interface Sci., 2017, 249, 363-373. doi: 10.1016/j.cis.2017.03.008 PMID: 28364954
  5. Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I.H.; Valiev, G.H.; Kianfar, E. Nanomaterial by sol-gel method: Synthesis and application. Adv. Mater. Sci. Eng., 2021, 2021, 1-21. doi: 10.1155/2021/5102014
  6. Fernández-Hernán, J.P.; Torres, B.; López, A.J.; Rams, J. The role of the sol-gel synthesis process in the biomedical field and its use to enhance the performance of bioabsorbable magnesium implants. Gels, 2022, 8(7), 426. doi: 10.3390/gels8070426 PMID: 35877511
  7. Brinker, C.J.; Scherer, G.W. Sol-gel science: the physics and chemistry of sol-gel processing; Academic Press: Boston, 1990.
  8. Klein, L.; Aparicio, M.; Jitianu, A. Handbook of Sol-Gel Science and Technology; Springer International Publishing AG: Cham, 2018. doi: 10.1007/978-3-319-32101-1
  9. Pierre, A.C. Introduction to Sol-Gel Processing; Springer International Publishing: Cham, 2020. doi: 10.1007/978-3-030-38144-8
  10. Coradin, T.; Boissière, M.; Livage, J. Sol-gel chemistry in medicinal science. Curr. Med. Chem., 2006, 13(1), 99-108. doi: 10.2174/092986706789803044 PMID: 16457642
  11. Reddy, B. Ed.; Advances in nanocomposites: synthesis, characterization and industrial applications; InTech: Rijeka, 2011. doi: 10.5772/604
  12. Guglielmi, M.; Kickelbick, G.; Martucci, A. Sol-Gel Nanocomposites; Springer New York: New York, 2014. doi: 10.1007/978-1-4939-1209-4
  13. Nagrath, M.; Rahimnejad Yazdi, A.; Rafferty, A.; Daly, D.; Rahman, S.U.; Gallant, R.C.; Ni, H.; Arany, P.R.; Towler, M.R. Tantalum-containing meso-porous glass fibres for hemostatic applications. Mater. Today Commun., 2021, 27, 102260. doi: 10.1016/j.mtcomm.2021.102260
  14. Pavoski, G.; Baldisserotto, D.L.S.; Maraschin, T.; Brum, L.F.W.; dos Santos, C.; dos Santos, J.H.Z.; Brandelli, A.; Galland, G.B. Silver nanoparticles encapsulated in silica: Synthesis, characterization and application as antibacterial fillers in the ethylene polymerization. Eur. Polym. J., 2019, 117, 38-54. doi: 10.1016/j.eurpolymj.2019.04.055
  15. Yao, Y.; Shen, L.; Wei, A.; Wang, T.; Chen, S. Facile synthesis, microstructure, photo-catalytic activity, and anti-bacterial property of the novel Ag@gelatin-silica hybrid nanofiber membranes. J. Sol-Gel Sci. Technol., 2019, 89(3), 651-662. doi: 10.1007/s10971-018-04914-z
  16. Timaeva, O.I.; Pashkin, I.I.; Kuz’micheva, G.M.; Sadovskaya, N.V. Synthesis and structure of new composite hydrogels based on poly(N-vinyl caprolactam) with nanosized anatase. Mendeleev Commun., 2019, 29(6), 646-647. doi: 10.1016/j.mencom.2019.11.013
  17. Rodrigues, M.C.; Rolim, W.R.; Viana, M.M.; Souza, T.R.; Gonçalves, F.; Tanaka, C.J.; Bueno-Silva, B.; Seabra, A.B. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. J. Dent., 2020, 96, 103327. doi: 10.1016/j.jdent.2020.103327 PMID: 32229160
  18. Nagrath, M.; Alhalawani, A.; Rahimnejad, Y.A.; Towler, M.R. Bioactive glass fiber fabrication via a combination of sol-gel process with electro-spinning technique. Mater. Sci. Eng. C, 2019, 101, 521-538. doi: 10.1016/j.msec.2019.04.003 PMID: 31029347
  19. Zheng, K.; Niu, W.; Lei, B.; Boccaccini, A.R. Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomater., 2021, 133, 168-186. doi: 10.1016/j.actbio.2021.08.023 PMID: 34418539
  20. Innocenzi, P. Mesoporous Ordered Silica Films; Springer International Publishing: New York, 2022. doi: 10.1007/978-3-030-89536-5
  21. Brook, M.A.; Chen, Y.; Guo, K.; Zhang, Z.; Brennan, J.D. Sugar-modified silanes: Precursors for silica monoliths. J. Mater. Chem., 2004, 14(9), 1469-1479. doi: 10.1039/B401278J
  22. Chen, Y.; Yi, Y.; Brennan, J.D.; Brook, M.A. Development of macroporous titania monoliths using a biocompatible method. Part 1: Material fabrication and characterization. Chem. Mater., 2006, 18(22), 5326-5335. doi: 10.1021/cm060948d
  23. Brandhuber, D.; Torma, V.; Raab, C.; Peterlik, H.; Kulak, A.; Hüsing, N. Glycol-modified silanes in the synthesis of mesoscopically organized silica monoliths with hierarchical porosity. Chem. Mater., 2005, 17(16), 4262-4271. doi: 10.1021/cm048483j
  24. Hartmann, S.; Brandhuber, D.; Hüsing, N. Glycol-modified silanes: Novel possibilities for the synthesis of hierarchically organized (hybrid) porous materials. Acc. Chem. Res., 2007, 40(9), 885-894. doi: 10.1021/ar6000318 PMID: 17518437
  25. Wang, G.H.; Zhang, L.M. Manipulating formation and drug-release behavior of new sol-gel silica matrix by hydroxypropyl guar gum. J. Phys. Chem. B, 2007, 111(36), 10665-10670. doi: 10.1021/jp070370a PMID: 17711328
  26. Wang, G.H.; Zhang, L.M. A biofriendly silica gel for in situ protein entrapment: biopolymer-assisted formation and its kinetic mechanism. J. Phys. Chem. B, 2009, 113(9), 2688-2694. doi: 10.1021/jp810736v PMID: 19708206
  27. Shchipunov, Y.A.; Karpenko, T.Y.; Krekoten, A.V.; Postnova, I.V. Gelling of otherwise nongelable polysaccharides. J. Colloid Interface Sci., 2005, 287(2), 373-378. doi: 10.1016/j.jcis.2005.02.004 PMID: 15925600
  28. Chen, Y.; Brook, M.A. Starch-directed synthesis of worm-shaped silica microtubes. Materials, 2023, 16(7), 2831. doi: 10.3390/ma16072831 PMID: 37049125
  29. Feinle, A.; Elsaesser, M.S.; Hüsing, N. Sol-gel synthesis of monolithic materials with hierarchical porosity. Chem. Soc. Rev., 2016, 45(12), 3377-3399. doi: 10.1039/C5CS00710K PMID: 26563577
  30. Wang, G.H.; Zhang, L.M. Electroactive polyaniline/silica hybrid gels: Controllable sol-gel transition adjusted by chitosan derivatives. Carbohydr. Polym., 2018, 202, 523-529. doi: 10.1016/j.carbpol.2018.08.139 PMID: 30287031
  31. Shchipunov, Y.; Postnova, I. Cellulose mineralization as a route for novel functional materials. Adv. Funct. Mater., 2018, 28(27), 1705042. doi: 10.1002/adfm.201705042
  32. Postnova, I.; Shchipunov, Y. Tannic acid as a versatile template for silica monoliths engineering with catalytic gold and silver nanoparticles. Nanomaterials, 2022, 12(23), 4320. doi: 10.3390/nano12234320 PMID: 36500940
  33. Lavrova, D.G.; Zvonarev, A.N.; Alferov, V.A.; Khonina, T.G.; Shadrina, E.V.; Alferov, S.V.; Ponamoreva, O.N. Biocompatible silica-polyethylene glycol-based composites for immobilization of microbial cells by sol-gel synthesis. Polymers , 2023, 15(2), 458. doi: 10.3390/polym15020458 PMID: 36679338
  34. Khonina, T.G.; Shadrina, E.V.; Boyko, A.A.; Chupakhin, O.N.; Larionov, L.P.; Volkov, A.A.; Burda, V.D. Synthesis of hydrogels based on silicon polyolates. Russ. Chem. Bull., 2010, 59(1), 75-80. doi: 10.1007/s11172-010-0047-x
  35. Khonina, T.G.; Safronov, A.P.; Shadrina, E.V.; Ivanenko, M.V.; Suvorova, A.I.; Chupakhin, O.N. Mechanism of structural networking in hydrogels based on silicon and titanium glycerolates. J. Colloid Interface Sci., 2012, 365(1), 81-89. doi: 10.1016/j.jcis.2011.09.018 PMID: 21978403
  36. Khonina, T.G.; Safronov, A.P.; Ivanenko, M.V.; Shadrina, E.V.; Chupakhin, O.N. Features of silicon- and titanium-polyethylene glycol precursors in sol-gel synthesis of new hydrogels. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(27), 5490-5500. doi: 10.1039/C5TB00480B PMID: 32262520
  37. Khonina, T.G.; Ivanenko, M.V.; Chupakhin, O.N.; Safronov, A.P.; Bogdanova, E.A.; Karabanalov, M.S.; Permikin, V.V.; Larionov, L.P.; Drozdova, L.I. Silicon-zinc-glycerol hydrogel, a potential immunotropic agent for topical application. Eur. J. Pharm. Sci., 2017, 107, 197-202. doi: 10.1016/j.ejps.2017.07.012 PMID: 28709910
  38. Khonina, T.G.; Kungurov, N.V.; Zilberberg, N.V.; Evstigneeva, N.P.; Kokhan, MM.; Polishchuk, A.I.; Shadrina, E.V.; Nikitina, E.Y.; Permikin, V.V.; Chupakhin, O.N. Structural features and antimicrobial activity of hydrogels obtained by the sol-gel method from silicon, zinc, and boron glycerolates. J. Sol-Gel Sci. Technol., 2020, 95(3), 682-692. doi: 10.1007/s10971-020-05328-6
  39. Dziuba, E.V.; Nagaeva, M.O.; Khonina, T.G.; Shadrina, E.V.; Zhdanova, E.V. Preparation for the complex treatment of inflammatory periodontal and oral mucosa diseases. R.U. Patent 2,781,848, 2022.
  40. Bukharin, O.V.; Perunova, N.B.; Ivanova, E.V.; Danilova, E.I.; Chelpachenko, O.E.; Stadnikov, A.A.; Khonina, T.G.; Shadrina, E.V.; Chupakhin, O.N.; Larionov, L.P. Agent for treating inflammatory diseases of the joints. R.U. Patent 2,707,278, 2019.
  41. Grigorev, S.S.; Larionov, L.P.; Sablina, S.N.; Shadrina, E.V.; Tishin, D.S.; Babicheva, T.S.; Shipovskaia, A.B.; Khonina, T.G.; Chupakhin, O.N. Agent for local treatment of periodontitis and method of treatment of periodontitis. R.U. Patent 2,802,822, 2023.
  42. Khonina, T.G.; Nikitina, E.Y.; Germov, A.Y.; Goloborodsky, B.Y.; Mikhalev, K.N.; Bogdanova, E.A.; Tishin, D.S.; Demin, A.M.; Krasnov, V.P.; Chupakhin, O.N.; Charushin, V.N. Individual iron(III) glycerolate: synthesis and characterisation. RSC Advances, 2022, 12(7), 4042-4046. doi: 10.1039/D1RA08485B PMID: 35425460
  43. Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci., 2014, 19(2), 164-174. PMID: 24778671
  44. Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem., 2019, 195, 120-129. doi: 10.1016/j.jinorgbio.2019.03.013 PMID: 30939379
  45. Sánchez, M.; Sabio, L.; Gálvez, N.; Capdevila, M.; Dominguez-Vera, J.M. Iron chemistry at the service of life. IUBMB Life, 2017, 69(6), 382-388. doi: 10.1002/iub.1602 PMID: 28150902
  46. Nielsen, F.H. Update on the possible nutritional importance of silicon. J. Trace Elem. Med. Biol., 2014, 28(4), 379-382. doi: 10.1016/j.jtemb.2014.06.024 PMID: 25081495
  47. Rondanelli, M.; Faliva, M.A.; Peroni, G.; Gasparri, C.; Perna, S.; Riva, A.; Petrangolini, G.; Tartara, A. Silicon: A neglected micronutrient essential for bone health. Exp. Biol. Med., 2021, 246(13), 1500-1511. doi: 10.1177/1535370221997072 PMID: 33715532
  48. Walsh, C.T.; Sandstead, H.H.; Prasad, A.S.; Newberne, P.M.; Fraker, P.J. Zinc: health effects and research priorities for the 1990s. Environ. Health Perspect., 1994, 102(S2), 5-46. doi: 10.1289/ehp.941025 PMID: 7925188
  49. Glutsch, V.; Hamm, H.; Goebeler, M. Zink und Haut: Ein Update. J. Dtsch. Dermatol. Ges., 2019, 17(6), 589-596. doi: 10.1111/ddg.13811_g PMID: 31241838
  50. Nielsen, F.H. Update on human health effects of boron. J. Trace Elem. Med. Biol., 2014, 28(4), 383-387. doi: 10.1016/j.jtemb.2014.06.023 PMID: 25063690
  51. Khaliq, H.; Juming, Z.; Ke-Mei, P. The physiological role of boron on health. Biol. Trace Elem. Res., 2018, 186(1), 31-51. doi: 10.1007/s12011-018-1284-3 PMID: 29546541
  52. Bruylants, P.; Munaut, A.; Poncelet, G.; Ladriere, J.; Meyers, J.; Fripiat, J. IR and Mössbauer study of iron glycerolates. J. Inorg. Nucl. Chem., 1980, 42(11), 1603-1611. doi: 10.1016/0022-1902(80)80324-1
  53. Bartůněk, V.; Průcha, D.; Švecová, M.; Ulbrich, P.; Huber, Š.; Sedmidubský, D.; Jankovský, O. Ultrafine ferromagnetic iron oxide nanoparticles: Facile synthesis by low temperature decomposition of iron glycerolate. Mater. Chem. Phys., 2016, 180, 272-278. doi: 10.1016/j.matchemphys.2016.06.007
  54. Gonçalves, J.M.; Hennemann, A.L.; Ruiz-Montoya, J.G.; Martins, P.R.; Araki, K.; Angnes, L.; Shahbazian-Yassar, R. Metal-glycerolates and their derivatives as electrode materials: A review on recent developments, challenges, and future perspectives. Coord. Chem. Rev., 2023, 477, 214954. doi: 10.1016/j.ccr.2022.214954
  55. Wang, M.; Jiang, J.; Ai, L. Layered bimetallic iron-nickel alkoxide microspheres as high-performance electrocatalysts for oxygen evolution reaction in alkaline media. ACS Sustain. Chem.& Eng., 2018, 6(5), 6117-6125. doi: 10.1021/acssuschemeng.7b04784
  56. Lau, P.C.; Kwong, T.L.; Yung, K.F. Effective heterogeneous transition metal glycerolates catalysts for one-step biodiesel production from low grade non-refined Jatropha oil and crude aqueous bioethanol. Sci. Rep., 2016, 6(1), 23822. doi: 10.1038/srep23822 PMID: 27029238
  57. Liu, X.; Gong, M.; Deng, S.; Zhao, T.; Zhang, J.; Wang, D. Recent advances on metal alkoxide-based electrocatalysts for water splitting. Mater. Energy Sustain., 2020, 8(20), 10130-10149. doi: 10.1039/D0TA03044A
  58. Larcher, D.; Sudant, G.; Patrice, R.; Tarascon, J.M. Some insights on the use of polyols-based metal alkoxides powders as precursors for tailored metal-oxides particles. Chem. Mater., 2003, 15(18), 3543-3551. doi: 10.1021/cm030048m
  59. Crețu, B.E.B.; Dodi, G.; Shavandi, A.; Gardikiotis, I.; Șerban, I.L.; Balan, V. Imaging constructs: The rise of iron oxide nanoparticles. Molecules, 2021, 26(11), 3437-3482. doi: 10.3390/molecules26113437 PMID: 34198906
  60. Li, H.; Wang, R.; Hong, R.; Li, Y. Preparation, biocompatibility and imaging performance of ultrasmall iron oxide magnetic fluids for T1/T2-weighted MRI. Colloids Surf. A Physicochem. Eng. Asp., 2022, 648, 129360. doi: 10.1016/j.colsurfa.2022.129360
  61. Popa, C.L.; Prodan, A.M.; Chapon, P.; Turculet, C.; Predoi, D. Inhibitory effect evaluation of glycerol-iron oxide thin films on methicillin-resistant staphylococcus aureus. J. Nanomater., 2015, 2015, 1-8. doi: 10.1155/2015/465034
  62. Khonina, T.G.; Demin, A.M.; Tishin, D.S.; Germov, A.Y.; Uimin, M.A.; Mekhaev, A.V.; Minin, A.S.; Karabanalov, M.S.; Mysik, A.A.; Bogdanova, E.A.; Krasnov, V.P. Magnetic nanocomposite materials based on Fe3O4 nanoparticles with iron and silica glycerolates shell: Synthesis and characterization. Int. J. Mol. Sci., 2023, 24(15), 12178. doi: 10.3390/ijms241512178 PMID: 37569552
  63. Matter, M.T.; Starsich, F.; Galli, M.; Hilber, M.; Schlegel, A.A.; Bertazzo, S.; Pratsinis, S.E.; Herrmann, I.K. Developing a tissue glue by engineering the adhesive and hemostatic properties of metal oxide nanoparticles. Nanoscale, 2017, 9(24), 8418-8426. doi: 10.1039/C7NR01176H PMID: 28604885
  64. Nuvvula, S.; Bandi, M.; Mallineni, S.K. Clinical applications of ferric sulfate in dentistry: A narrative review. J. Conserv. Dent., 2017, 20(4), 278-281. doi: 10.4103/JCD.JCD_259_16 PMID: 29259368
  65. Shabanova, E.M.; Drozdov, A.S.; Fakhardo, A.F.; Dudanov, I.P.; Kovalchuk, M.S.; Vinogradov, V.V. Thrombin@Fe3O4 nanoparticles for use as a hemostatic agent in internal bleeding. Sci. Rep., 2018, 8(1), 233. doi: 10.1038/s41598-017-18665-4 PMID: 29321571
  66. Khoshmohabat, H.; Paydar, S.; Kazemi, H.M.; Dalfardi, B. Overview of agents used for emergency hemostasis. Trauma Mon., 2016, 21(1), e26023. doi: 10.5812/traumamon.26023 PMID: 27218055
  67. Han, W.; Wang, S. Advances in hemostatic hydrogels that can adhere to wet surfaces. Gels, 2022, 9(1), 2. doi: 10.3390/gels9010002 PMID: 36661770
  68. Khonina, T.G.; Tishin, D.S.; Larionov, L.P.; Dobrinskaya, M.N.; Antropova, I.P.; Izmozherova, N.V.; Osipenko, A.V.; Shadrina, E.V.; Nikitina, E.Y.; Bogdanova, E.A.; Karabanalov, M.S.; Evstigneeva, N.P.; Kokhan, M.M.; Chupakhin, O.N. Bioactive silicon-iron-containing glycerohydrogel synthesized by the sol—gel method in the presence of chitosan. Russ. Chem. Bull., 2022, 71(11), 2342-2351. doi: 10.1007/s11172-022-3661-5
  69. Fan, P.; Zeng, Y.; Zaldivar-Silva, D.; Agüero, L.; Wang, S. Chitosan-based hemostatic hydrogels: The concept, mechanism, application, and prospects. Molecules, 2023, 28(3), 1473. doi: 10.3390/molecules28031473 PMID: 36771141
  70. Gheorghiță, D.; Moldovan, H.; Robu, A.; Bița, A.I.; Grosu, E.; Antoniac, A.; Corneschi, I.; Antoniac, I.; Bodog, A.D.; Băcilă, C.I. Chitosan-based biomaterials for hemostatic applications: A review of recent advances. Int. J. Mol. Sci., 2023, 24(13), 10540. doi: 10.3390/ijms241310540 PMID: 37445718
  71. Hu, Z.; Zhang, D.Y.; Lu, S.T.; Li, P.W.; Li, S.D. Chitosan-based composite materials for prospective hemostatic applications. Mar. Drugs, 2018, 16(8), 273. doi: 10.3390/md16080273 PMID: 30081571
  72. Song, F.; Kong, Y.; Shao, C.; Cheng, Y.; Lu, J.; Tao, Y.; Du, J.; Wang, H. Chitosan-based multifunctional flexible hemostatic bio-hydrogel. Acta Biomater., 2021, 136, 170-183. doi: 10.1016/j.actbio.2021.09.056 PMID: 34610476
  73. Mironov, A.N. Guidelines for preclinical trials of drugs; Grif i K: Moscow, 2012.
  74. Al-Afifi, N.A.; Alabsi, A.M.; Bakri, M.M.; Ramanathan, A. Acute and sub-acute oral toxicity of Dracaena cinnabari resin methanol extract in rats. BMC Complement. Altern. Med., 2018, 18(1), 50. doi: 10.1186/s12906-018-2110-3 PMID: 29402248
  75. Nalimu, F.; Oloro, J.; Peter, E.L.; Ogwang, P.E. Acute and sub-acute oral toxicity of aqueous whole leaf and green rind extracts of Aloe vera in Wistar rats. BMC Complement. Med. Ther., 2022, 22(1), 16. doi: 10.1186/s12906-021-03470-4 PMID: 35031035
  76. Zainal, Z.; Ong, A.; Yuen May, C.; Chang, S.K.; Abdul Rahim, A.; Khaza’ai, H. Acute and subchronic oral toxicity of oil palm puree in sprague-dawley rats. Int. J. Environ. Res. Public Health, 2020, 17(10), 3404. doi: 10.3390/ijerph17103404 PMID: 32414159
  77. Qu, J.; Pei, L.; Wang, X.; Fu, S.; Yong, L.; Xiao, X.; Xie, Q.; Fan, B.; Song, Y. Acute and subchronic oral toxicity of anthraquinone in sprague dawley rats. Int. J. Environ. Res. Public Health, 2022, 19(16), 10413. doi: 10.3390/ijerph191610413 PMID: 36012048
  78. Khonina, T.G.; Chupakhin, O.N.; Larionov, L.P.; Boyakovskaya, T.G.; Suvorov, A.L.; Shadrina, E.V. Synthesis, toxicity, and percutaneous activity of silicon glycerolates and related hydrogels. Pharm. Chem. J., 2008, 42(11), 609-613. doi: 10.1007/s11094-009-0199-x
  79. Kochan, J.; Schmidtová, Ľ.; Sadloňová, I.; Murányi, A.; Zigová, J.; Múčková, M. Hemostatic effect and distribution of new rhThrombin formulations in rats. Interdiscip. Toxicol., 2014, 7(4), 219-222. doi: 10.2478/intox-2014-0032 PMID: 26109904
  80. Krishnadoss, V.; Melillo, A.; Kanjilal, B.; Hannah, T.; Ellis, E.; Kapetanakis, A.; Hazelton, J.; San Roman, J.; Masoumi, A.; Leijten, J.; Noshadi, I. Bioionic liquid conjugation as universal approach to engineer hemostatic bioadhesives. ACS Appl. Mater. Interfaces, 2019, 11(42), 38373-38384. doi: 10.1021/acsami.9b08757 PMID: 31523968
  81. Sener, D.; Kocak, M.; Saracoglu, R.; Deveci, U.; Karadag, M. Histopathological effects of Algan hemostatic agent (AHA) in liver injury model in rats. Hepatol Forum, 2022, 3(1), 16-20. doi: 10.14744/hf.2021.2021.0040
  82. Gao, Y.; Ikeda-Imafuku, M.; Zhao, Z.; Joshi, M.; Mitragotri, S. A polymer‐based systemic hemostat for managing uncontrolled bleeding. Bioeng. Transl. Med., 2023, 8(3), e10516. doi: 10.1002/btm2.10516 PMID: 37206230
  83. Kopec, A.K.; Joshi, N.; Luyendyk, J.P. Role of hemostatic factors in hepatic injury and disease: animal models de‐liver. J. Thromb. Haemost., 2016, 14(7), 1337-1349. doi: 10.1111/jth.13327 PMID: 27060337
  84. Gonçalves, J.M.; Ghorbani, A.; Ritter, T.G.; Lima, I.S.; Tamadoni Saray, M.; Phakatkar, A.H.; Silva, V.D.; Pereira, R.S.; Yarin, A.L.; Angnes, L.; Shahbazian-Yassar, R. Multimetallic glycerolate as a precursor template of spherical porous high-entropy oxide microparticles. J. Colloid Interface Sci., 2023, 641, 643-652. doi: 10.1016/j.jcis.2023.03.089 PMID: 36963257
  85. Tran, H.D.N.; Moonshi, S.S.; Xu, Z.P.; Ta, H.T. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater. Sci., 2021, 10(1), 10-50. doi: 10.1039/D1BM01351C PMID: 34775503
  86. Charushin, V.N.; Kungurov, N.V.; Chupakhin, O.N.; Khonina, T.G.; Evstigneeva, N.P.; Kokhan, M.M.; Zilberberg, N.V.; Gerasimova, N.A.; Tishin, D.S.; Shadrina, E.V.; Nikitina, E.Yu.; Permikin, V.V.; Starikov, N.M.; Larionov, L.P.; Osipenko, A.V.; Dobrinskaya, M.N.; Sementsova, E.A.; Kotikova, A.Yu.; Mandra, Yu.V.; Bulatova, M.A. Silicon-iron(zinc, boron)containing glycerohydrogel for topical use, having hemostatic and antimicrobial activity (options). R.U. Patent 2,797,966, 2023.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024