Iron(III) Monoglycerolate as a New Biocompatible Precursor in the Synthesis of Bioactive Nanocomposite Glycerohydrogels
- 作者: Khonina T.1, Tishin D.1, Larionov L.2, Osipenko A.2, Dobrinskaya M.2, Bogdanova E.3, Karabanalov M.4, Bulatova M.1, Shadrina E.1, Chupakhin O.1
-
隶属关系:
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences
- , Ural State Medical University
- Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences
- , Ural Federal University
- 期: 卷 25, 编号 15 (2024)
- 页面: 2022-2031
- 栏目: Biotechnology
- URL: https://hum-ecol.ru/1389-2010/article/view/644631
- DOI: https://doi.org/10.2174/0113892010269503231229100317
- ID: 644631
如何引用文章
全文:
详细
Background:Nanocomposite glycerohydrogels based on biocompatible elementcontaining glycerolates are of practicular interest for biomedical applications.
Objective:Using two biocompatible precursors, silicon and iron glycerolates, a new bioactive nanocomposite silicon‒iron glycerolates hydrogel was obtained by sol-gel method.
Methods:The composition and structural features of the hydrogel were studied using a complex of modern analytical techniques, including TEM, XRD, and AES. On the example of experimental animals hemostatic activity of the hydrogel was studied, as well as primary toxicological studies were carried out.
Results:The composition of dispersed phase and dispersion medium of silicon‒iron glycerolates hydrogel was determined. The structural features of hydrogel were revealed and its structure model was proposed. It was shown that silcon-iron glycerolates hydrogel is nontoxic, and exhibits pronounced hemostatic activity.
Conclusion:Silicon-iron glycerolates hydrogel is a potential hemostatic agent for topical application in medical and veterinary practice.
作者简介
Tatyana Khonina
Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: info@benthamscience.net
Denis Tishin
Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences
Email: info@benthamscience.net
Leonid Larionov
, Ural State Medical University
Email: info@benthamscience.net
Artur Osipenko
, Ural State Medical University
Email: info@benthamscience.net
Maria Dobrinskaya
, Ural State Medical University
Email: info@benthamscience.net
Ekaterina Bogdanova
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences
Email: info@benthamscience.net
Maxim Karabanalov
, Ural Federal University
Email: info@benthamscience.net
Maria Bulatova
Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences
Email: info@benthamscience.net
Elena Shadrina
Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences
Email: info@benthamscience.net
Oleg Chupakhin
Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences
Email: info@benthamscience.net
参考
- Sakka, S. Handbook of Sol-gel Science and Technology: Applications of Sol-gel Technology; Kluwer Academic Publishers: Boston, 2005.
- Levy, D.; Zayat, M. The sol-gel handbook: Synthesis and processing; Wiley-VCH Verlag GmbH & Co: Weinheim, 2015. doi: 10.1002/9783527670819
- Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.M.; Mahapatra, C.; Kim, H.W.; Knowles, J.C. Sol-gel based materials for biomedical applications. Prog. Mater. Sci., 2016, 77, 1-79. doi: 10.1016/j.pmatsci.2015.12.001
- Zheng, K.; Boccaccini, A.R. Sol-gel processing of bioactive glass nanoparticles: A review. Adv. Colloid Interface Sci., 2017, 249, 363-373. doi: 10.1016/j.cis.2017.03.008 PMID: 28364954
- Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I.H.; Valiev, G.H.; Kianfar, E. Nanomaterial by sol-gel method: Synthesis and application. Adv. Mater. Sci. Eng., 2021, 2021, 1-21. doi: 10.1155/2021/5102014
- Fernández-Hernán, J.P.; Torres, B.; López, A.J.; Rams, J. The role of the sol-gel synthesis process in the biomedical field and its use to enhance the performance of bioabsorbable magnesium implants. Gels, 2022, 8(7), 426. doi: 10.3390/gels8070426 PMID: 35877511
- Brinker, C.J.; Scherer, G.W. Sol-gel science: the physics and chemistry of sol-gel processing; Academic Press: Boston, 1990.
- Klein, L.; Aparicio, M.; Jitianu, A. Handbook of Sol-Gel Science and Technology; Springer International Publishing AG: Cham, 2018. doi: 10.1007/978-3-319-32101-1
- Pierre, A.C. Introduction to Sol-Gel Processing; Springer International Publishing: Cham, 2020. doi: 10.1007/978-3-030-38144-8
- Coradin, T.; Boissière, M.; Livage, J. Sol-gel chemistry in medicinal science. Curr. Med. Chem., 2006, 13(1), 99-108. doi: 10.2174/092986706789803044 PMID: 16457642
- Reddy, B. Ed.; Advances in nanocomposites: synthesis, characterization and industrial applications; InTech: Rijeka, 2011. doi: 10.5772/604
- Guglielmi, M.; Kickelbick, G.; Martucci, A. Sol-Gel Nanocomposites; Springer New York: New York, 2014. doi: 10.1007/978-1-4939-1209-4
- Nagrath, M.; Rahimnejad Yazdi, A.; Rafferty, A.; Daly, D.; Rahman, S.U.; Gallant, R.C.; Ni, H.; Arany, P.R.; Towler, M.R. Tantalum-containing meso-porous glass fibres for hemostatic applications. Mater. Today Commun., 2021, 27, 102260. doi: 10.1016/j.mtcomm.2021.102260
- Pavoski, G.; Baldisserotto, D.L.S.; Maraschin, T.; Brum, L.F.W.; dos Santos, C.; dos Santos, J.H.Z.; Brandelli, A.; Galland, G.B. Silver nanoparticles encapsulated in silica: Synthesis, characterization and application as antibacterial fillers in the ethylene polymerization. Eur. Polym. J., 2019, 117, 38-54. doi: 10.1016/j.eurpolymj.2019.04.055
- Yao, Y.; Shen, L.; Wei, A.; Wang, T.; Chen, S. Facile synthesis, microstructure, photo-catalytic activity, and anti-bacterial property of the novel Ag@gelatin-silica hybrid nanofiber membranes. J. Sol-Gel Sci. Technol., 2019, 89(3), 651-662. doi: 10.1007/s10971-018-04914-z
- Timaeva, O.I.; Pashkin, I.I.; Kuzmicheva, G.M.; Sadovskaya, N.V. Synthesis and structure of new composite hydrogels based on poly(N-vinyl caprolactam) with nanosized anatase. Mendeleev Commun., 2019, 29(6), 646-647. doi: 10.1016/j.mencom.2019.11.013
- Rodrigues, M.C.; Rolim, W.R.; Viana, M.M.; Souza, T.R.; Gonçalves, F.; Tanaka, C.J.; Bueno-Silva, B.; Seabra, A.B. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. J. Dent., 2020, 96, 103327. doi: 10.1016/j.jdent.2020.103327 PMID: 32229160
- Nagrath, M.; Alhalawani, A.; Rahimnejad, Y.A.; Towler, M.R. Bioactive glass fiber fabrication via a combination of sol-gel process with electro-spinning technique. Mater. Sci. Eng. C, 2019, 101, 521-538. doi: 10.1016/j.msec.2019.04.003 PMID: 31029347
- Zheng, K.; Niu, W.; Lei, B.; Boccaccini, A.R. Immunomodulatory bioactive glasses for tissue regeneration. Acta Biomater., 2021, 133, 168-186. doi: 10.1016/j.actbio.2021.08.023 PMID: 34418539
- Innocenzi, P. Mesoporous Ordered Silica Films; Springer International Publishing: New York, 2022. doi: 10.1007/978-3-030-89536-5
- Brook, M.A.; Chen, Y.; Guo, K.; Zhang, Z.; Brennan, J.D. Sugar-modified silanes: Precursors for silica monoliths. J. Mater. Chem., 2004, 14(9), 1469-1479. doi: 10.1039/B401278J
- Chen, Y.; Yi, Y.; Brennan, J.D.; Brook, M.A. Development of macroporous titania monoliths using a biocompatible method. Part 1: Material fabrication and characterization. Chem. Mater., 2006, 18(22), 5326-5335. doi: 10.1021/cm060948d
- Brandhuber, D.; Torma, V.; Raab, C.; Peterlik, H.; Kulak, A.; Hüsing, N. Glycol-modified silanes in the synthesis of mesoscopically organized silica monoliths with hierarchical porosity. Chem. Mater., 2005, 17(16), 4262-4271. doi: 10.1021/cm048483j
- Hartmann, S.; Brandhuber, D.; Hüsing, N. Glycol-modified silanes: Novel possibilities for the synthesis of hierarchically organized (hybrid) porous materials. Acc. Chem. Res., 2007, 40(9), 885-894. doi: 10.1021/ar6000318 PMID: 17518437
- Wang, G.H.; Zhang, L.M. Manipulating formation and drug-release behavior of new sol-gel silica matrix by hydroxypropyl guar gum. J. Phys. Chem. B, 2007, 111(36), 10665-10670. doi: 10.1021/jp070370a PMID: 17711328
- Wang, G.H.; Zhang, L.M. A biofriendly silica gel for in situ protein entrapment: biopolymer-assisted formation and its kinetic mechanism. J. Phys. Chem. B, 2009, 113(9), 2688-2694. doi: 10.1021/jp810736v PMID: 19708206
- Shchipunov, Y.A.; Karpenko, T.Y.; Krekoten, A.V.; Postnova, I.V. Gelling of otherwise nongelable polysaccharides. J. Colloid Interface Sci., 2005, 287(2), 373-378. doi: 10.1016/j.jcis.2005.02.004 PMID: 15925600
- Chen, Y.; Brook, M.A. Starch-directed synthesis of worm-shaped silica microtubes. Materials, 2023, 16(7), 2831. doi: 10.3390/ma16072831 PMID: 37049125
- Feinle, A.; Elsaesser, M.S.; Hüsing, N. Sol-gel synthesis of monolithic materials with hierarchical porosity. Chem. Soc. Rev., 2016, 45(12), 3377-3399. doi: 10.1039/C5CS00710K PMID: 26563577
- Wang, G.H.; Zhang, L.M. Electroactive polyaniline/silica hybrid gels: Controllable sol-gel transition adjusted by chitosan derivatives. Carbohydr. Polym., 2018, 202, 523-529. doi: 10.1016/j.carbpol.2018.08.139 PMID: 30287031
- Shchipunov, Y.; Postnova, I. Cellulose mineralization as a route for novel functional materials. Adv. Funct. Mater., 2018, 28(27), 1705042. doi: 10.1002/adfm.201705042
- Postnova, I.; Shchipunov, Y. Tannic acid as a versatile template for silica monoliths engineering with catalytic gold and silver nanoparticles. Nanomaterials, 2022, 12(23), 4320. doi: 10.3390/nano12234320 PMID: 36500940
- Lavrova, D.G.; Zvonarev, A.N.; Alferov, V.A.; Khonina, T.G.; Shadrina, E.V.; Alferov, S.V.; Ponamoreva, O.N. Biocompatible silica-polyethylene glycol-based composites for immobilization of microbial cells by sol-gel synthesis. Polymers , 2023, 15(2), 458. doi: 10.3390/polym15020458 PMID: 36679338
- Khonina, T.G.; Shadrina, E.V.; Boyko, A.A.; Chupakhin, O.N.; Larionov, L.P.; Volkov, A.A.; Burda, V.D. Synthesis of hydrogels based on silicon polyolates. Russ. Chem. Bull., 2010, 59(1), 75-80. doi: 10.1007/s11172-010-0047-x
- Khonina, T.G.; Safronov, A.P.; Shadrina, E.V.; Ivanenko, M.V.; Suvorova, A.I.; Chupakhin, O.N. Mechanism of structural networking in hydrogels based on silicon and titanium glycerolates. J. Colloid Interface Sci., 2012, 365(1), 81-89. doi: 10.1016/j.jcis.2011.09.018 PMID: 21978403
- Khonina, T.G.; Safronov, A.P.; Ivanenko, M.V.; Shadrina, E.V.; Chupakhin, O.N. Features of silicon- and titanium-polyethylene glycol precursors in sol-gel synthesis of new hydrogels. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(27), 5490-5500. doi: 10.1039/C5TB00480B PMID: 32262520
- Khonina, T.G.; Ivanenko, M.V.; Chupakhin, O.N.; Safronov, A.P.; Bogdanova, E.A.; Karabanalov, M.S.; Permikin, V.V.; Larionov, L.P.; Drozdova, L.I. Silicon-zinc-glycerol hydrogel, a potential immunotropic agent for topical application. Eur. J. Pharm. Sci., 2017, 107, 197-202. doi: 10.1016/j.ejps.2017.07.012 PMID: 28709910
- Khonina, T.G.; Kungurov, N.V.; Zilberberg, N.V.; Evstigneeva, N.P.; Kokhan, MM.; Polishchuk, A.I.; Shadrina, E.V.; Nikitina, E.Y.; Permikin, V.V.; Chupakhin, O.N. Structural features and antimicrobial activity of hydrogels obtained by the sol-gel method from silicon, zinc, and boron glycerolates. J. Sol-Gel Sci. Technol., 2020, 95(3), 682-692. doi: 10.1007/s10971-020-05328-6
- Dziuba, E.V.; Nagaeva, M.O.; Khonina, T.G.; Shadrina, E.V.; Zhdanova, E.V. Preparation for the complex treatment of inflammatory periodontal and oral mucosa diseases. R.U. Patent 2,781,848, 2022.
- Bukharin, O.V.; Perunova, N.B.; Ivanova, E.V.; Danilova, E.I.; Chelpachenko, O.E.; Stadnikov, A.A.; Khonina, T.G.; Shadrina, E.V.; Chupakhin, O.N.; Larionov, L.P. Agent for treating inflammatory diseases of the joints. R.U. Patent 2,707,278, 2019.
- Grigorev, S.S.; Larionov, L.P.; Sablina, S.N.; Shadrina, E.V.; Tishin, D.S.; Babicheva, T.S.; Shipovskaia, A.B.; Khonina, T.G.; Chupakhin, O.N. Agent for local treatment of periodontitis and method of treatment of periodontitis. R.U. Patent 2,802,822, 2023.
- Khonina, T.G.; Nikitina, E.Y.; Germov, A.Y.; Goloborodsky, B.Y.; Mikhalev, K.N.; Bogdanova, E.A.; Tishin, D.S.; Demin, A.M.; Krasnov, V.P.; Chupakhin, O.N.; Charushin, V.N. Individual iron(III) glycerolate: synthesis and characterisation. RSC Advances, 2022, 12(7), 4042-4046. doi: 10.1039/D1RA08485B PMID: 35425460
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci., 2014, 19(2), 164-174. PMID: 24778671
- Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem., 2019, 195, 120-129. doi: 10.1016/j.jinorgbio.2019.03.013 PMID: 30939379
- Sánchez, M.; Sabio, L.; Gálvez, N.; Capdevila, M.; Dominguez-Vera, J.M. Iron chemistry at the service of life. IUBMB Life, 2017, 69(6), 382-388. doi: 10.1002/iub.1602 PMID: 28150902
- Nielsen, F.H. Update on the possible nutritional importance of silicon. J. Trace Elem. Med. Biol., 2014, 28(4), 379-382. doi: 10.1016/j.jtemb.2014.06.024 PMID: 25081495
- Rondanelli, M.; Faliva, M.A.; Peroni, G.; Gasparri, C.; Perna, S.; Riva, A.; Petrangolini, G.; Tartara, A. Silicon: A neglected micronutrient essential for bone health. Exp. Biol. Med., 2021, 246(13), 1500-1511. doi: 10.1177/1535370221997072 PMID: 33715532
- Walsh, C.T.; Sandstead, H.H.; Prasad, A.S.; Newberne, P.M.; Fraker, P.J. Zinc: health effects and research priorities for the 1990s. Environ. Health Perspect., 1994, 102(S2), 5-46. doi: 10.1289/ehp.941025 PMID: 7925188
- Glutsch, V.; Hamm, H.; Goebeler, M. Zink und Haut: Ein Update. J. Dtsch. Dermatol. Ges., 2019, 17(6), 589-596. doi: 10.1111/ddg.13811_g PMID: 31241838
- Nielsen, F.H. Update on human health effects of boron. J. Trace Elem. Med. Biol., 2014, 28(4), 383-387. doi: 10.1016/j.jtemb.2014.06.023 PMID: 25063690
- Khaliq, H.; Juming, Z.; Ke-Mei, P. The physiological role of boron on health. Biol. Trace Elem. Res., 2018, 186(1), 31-51. doi: 10.1007/s12011-018-1284-3 PMID: 29546541
- Bruylants, P.; Munaut, A.; Poncelet, G.; Ladriere, J.; Meyers, J.; Fripiat, J. IR and Mössbauer study of iron glycerolates. J. Inorg. Nucl. Chem., 1980, 42(11), 1603-1611. doi: 10.1016/0022-1902(80)80324-1
- Bartůněk, V.; Průcha, D.; vecová, M.; Ulbrich, P.; Huber, .; Sedmidubský, D.; Jankovský, O. Ultrafine ferromagnetic iron oxide nanoparticles: Facile synthesis by low temperature decomposition of iron glycerolate. Mater. Chem. Phys., 2016, 180, 272-278. doi: 10.1016/j.matchemphys.2016.06.007
- Gonçalves, J.M.; Hennemann, A.L.; Ruiz-Montoya, J.G.; Martins, P.R.; Araki, K.; Angnes, L.; Shahbazian-Yassar, R. Metal-glycerolates and their derivatives as electrode materials: A review on recent developments, challenges, and future perspectives. Coord. Chem. Rev., 2023, 477, 214954. doi: 10.1016/j.ccr.2022.214954
- Wang, M.; Jiang, J.; Ai, L. Layered bimetallic iron-nickel alkoxide microspheres as high-performance electrocatalysts for oxygen evolution reaction in alkaline media. ACS Sustain. Chem.& Eng., 2018, 6(5), 6117-6125. doi: 10.1021/acssuschemeng.7b04784
- Lau, P.C.; Kwong, T.L.; Yung, K.F. Effective heterogeneous transition metal glycerolates catalysts for one-step biodiesel production from low grade non-refined Jatropha oil and crude aqueous bioethanol. Sci. Rep., 2016, 6(1), 23822. doi: 10.1038/srep23822 PMID: 27029238
- Liu, X.; Gong, M.; Deng, S.; Zhao, T.; Zhang, J.; Wang, D. Recent advances on metal alkoxide-based electrocatalysts for water splitting. Mater. Energy Sustain., 2020, 8(20), 10130-10149. doi: 10.1039/D0TA03044A
- Larcher, D.; Sudant, G.; Patrice, R.; Tarascon, J.M. Some insights on the use of polyols-based metal alkoxides powders as precursors for tailored metal-oxides particles. Chem. Mater., 2003, 15(18), 3543-3551. doi: 10.1021/cm030048m
- Crețu, B.E.B.; Dodi, G.; Shavandi, A.; Gardikiotis, I.; Șerban, I.L.; Balan, V. Imaging constructs: The rise of iron oxide nanoparticles. Molecules, 2021, 26(11), 3437-3482. doi: 10.3390/molecules26113437 PMID: 34198906
- Li, H.; Wang, R.; Hong, R.; Li, Y. Preparation, biocompatibility and imaging performance of ultrasmall iron oxide magnetic fluids for T1/T2-weighted MRI. Colloids Surf. A Physicochem. Eng. Asp., 2022, 648, 129360. doi: 10.1016/j.colsurfa.2022.129360
- Popa, C.L.; Prodan, A.M.; Chapon, P.; Turculet, C.; Predoi, D. Inhibitory effect evaluation of glycerol-iron oxide thin films on methicillin-resistant staphylococcus aureus. J. Nanomater., 2015, 2015, 1-8. doi: 10.1155/2015/465034
- Khonina, T.G.; Demin, A.M.; Tishin, D.S.; Germov, A.Y.; Uimin, M.A.; Mekhaev, A.V.; Minin, A.S.; Karabanalov, M.S.; Mysik, A.A.; Bogdanova, E.A.; Krasnov, V.P. Magnetic nanocomposite materials based on Fe3O4 nanoparticles with iron and silica glycerolates shell: Synthesis and characterization. Int. J. Mol. Sci., 2023, 24(15), 12178. doi: 10.3390/ijms241512178 PMID: 37569552
- Matter, M.T.; Starsich, F.; Galli, M.; Hilber, M.; Schlegel, A.A.; Bertazzo, S.; Pratsinis, S.E.; Herrmann, I.K. Developing a tissue glue by engineering the adhesive and hemostatic properties of metal oxide nanoparticles. Nanoscale, 2017, 9(24), 8418-8426. doi: 10.1039/C7NR01176H PMID: 28604885
- Nuvvula, S.; Bandi, M.; Mallineni, S.K. Clinical applications of ferric sulfate in dentistry: A narrative review. J. Conserv. Dent., 2017, 20(4), 278-281. doi: 10.4103/JCD.JCD_259_16 PMID: 29259368
- Shabanova, E.M.; Drozdov, A.S.; Fakhardo, A.F.; Dudanov, I.P.; Kovalchuk, M.S.; Vinogradov, V.V. Thrombin@Fe3O4 nanoparticles for use as a hemostatic agent in internal bleeding. Sci. Rep., 2018, 8(1), 233. doi: 10.1038/s41598-017-18665-4 PMID: 29321571
- Khoshmohabat, H.; Paydar, S.; Kazemi, H.M.; Dalfardi, B. Overview of agents used for emergency hemostasis. Trauma Mon., 2016, 21(1), e26023. doi: 10.5812/traumamon.26023 PMID: 27218055
- Han, W.; Wang, S. Advances in hemostatic hydrogels that can adhere to wet surfaces. Gels, 2022, 9(1), 2. doi: 10.3390/gels9010002 PMID: 36661770
- Khonina, T.G.; Tishin, D.S.; Larionov, L.P.; Dobrinskaya, M.N.; Antropova, I.P.; Izmozherova, N.V.; Osipenko, A.V.; Shadrina, E.V.; Nikitina, E.Y.; Bogdanova, E.A.; Karabanalov, M.S.; Evstigneeva, N.P.; Kokhan, M.M.; Chupakhin, O.N. Bioactive silicon-iron-containing glycerohydrogel synthesized by the solgel method in the presence of chitosan. Russ. Chem. Bull., 2022, 71(11), 2342-2351. doi: 10.1007/s11172-022-3661-5
- Fan, P.; Zeng, Y.; Zaldivar-Silva, D.; Agüero, L.; Wang, S. Chitosan-based hemostatic hydrogels: The concept, mechanism, application, and prospects. Molecules, 2023, 28(3), 1473. doi: 10.3390/molecules28031473 PMID: 36771141
- Gheorghiță, D.; Moldovan, H.; Robu, A.; Bița, A.I.; Grosu, E.; Antoniac, A.; Corneschi, I.; Antoniac, I.; Bodog, A.D.; Băcilă, C.I. Chitosan-based biomaterials for hemostatic applications: A review of recent advances. Int. J. Mol. Sci., 2023, 24(13), 10540. doi: 10.3390/ijms241310540 PMID: 37445718
- Hu, Z.; Zhang, D.Y.; Lu, S.T.; Li, P.W.; Li, S.D. Chitosan-based composite materials for prospective hemostatic applications. Mar. Drugs, 2018, 16(8), 273. doi: 10.3390/md16080273 PMID: 30081571
- Song, F.; Kong, Y.; Shao, C.; Cheng, Y.; Lu, J.; Tao, Y.; Du, J.; Wang, H. Chitosan-based multifunctional flexible hemostatic bio-hydrogel. Acta Biomater., 2021, 136, 170-183. doi: 10.1016/j.actbio.2021.09.056 PMID: 34610476
- Mironov, A.N. Guidelines for preclinical trials of drugs; Grif i K: Moscow, 2012.
- Al-Afifi, N.A.; Alabsi, A.M.; Bakri, M.M.; Ramanathan, A. Acute and sub-acute oral toxicity of Dracaena cinnabari resin methanol extract in rats. BMC Complement. Altern. Med., 2018, 18(1), 50. doi: 10.1186/s12906-018-2110-3 PMID: 29402248
- Nalimu, F.; Oloro, J.; Peter, E.L.; Ogwang, P.E. Acute and sub-acute oral toxicity of aqueous whole leaf and green rind extracts of Aloe vera in Wistar rats. BMC Complement. Med. Ther., 2022, 22(1), 16. doi: 10.1186/s12906-021-03470-4 PMID: 35031035
- Zainal, Z.; Ong, A.; Yuen May, C.; Chang, S.K.; Abdul Rahim, A.; Khazaai, H. Acute and subchronic oral toxicity of oil palm puree in sprague-dawley rats. Int. J. Environ. Res. Public Health, 2020, 17(10), 3404. doi: 10.3390/ijerph17103404 PMID: 32414159
- Qu, J.; Pei, L.; Wang, X.; Fu, S.; Yong, L.; Xiao, X.; Xie, Q.; Fan, B.; Song, Y. Acute and subchronic oral toxicity of anthraquinone in sprague dawley rats. Int. J. Environ. Res. Public Health, 2022, 19(16), 10413. doi: 10.3390/ijerph191610413 PMID: 36012048
- Khonina, T.G.; Chupakhin, O.N.; Larionov, L.P.; Boyakovskaya, T.G.; Suvorov, A.L.; Shadrina, E.V. Synthesis, toxicity, and percutaneous activity of silicon glycerolates and related hydrogels. Pharm. Chem. J., 2008, 42(11), 609-613. doi: 10.1007/s11094-009-0199-x
- Kochan, J.; Schmidtová, Ľ.; Sadloňová, I.; Murányi, A.; Zigová, J.; Múčková, M. Hemostatic effect and distribution of new rhThrombin formulations in rats. Interdiscip. Toxicol., 2014, 7(4), 219-222. doi: 10.2478/intox-2014-0032 PMID: 26109904
- Krishnadoss, V.; Melillo, A.; Kanjilal, B.; Hannah, T.; Ellis, E.; Kapetanakis, A.; Hazelton, J.; San Roman, J.; Masoumi, A.; Leijten, J.; Noshadi, I. Bioionic liquid conjugation as universal approach to engineer hemostatic bioadhesives. ACS Appl. Mater. Interfaces, 2019, 11(42), 38373-38384. doi: 10.1021/acsami.9b08757 PMID: 31523968
- Sener, D.; Kocak, M.; Saracoglu, R.; Deveci, U.; Karadag, M. Histopathological effects of Algan hemostatic agent (AHA) in liver injury model in rats. Hepatol Forum, 2022, 3(1), 16-20. doi: 10.14744/hf.2021.2021.0040
- Gao, Y.; Ikeda-Imafuku, M.; Zhao, Z.; Joshi, M.; Mitragotri, S. A polymer‐based systemic hemostat for managing uncontrolled bleeding. Bioeng. Transl. Med., 2023, 8(3), e10516. doi: 10.1002/btm2.10516 PMID: 37206230
- Kopec, A.K.; Joshi, N.; Luyendyk, J.P. Role of hemostatic factors in hepatic injury and disease: animal models de‐liver. J. Thromb. Haemost., 2016, 14(7), 1337-1349. doi: 10.1111/jth.13327 PMID: 27060337
- Gonçalves, J.M.; Ghorbani, A.; Ritter, T.G.; Lima, I.S.; Tamadoni Saray, M.; Phakatkar, A.H.; Silva, V.D.; Pereira, R.S.; Yarin, A.L.; Angnes, L.; Shahbazian-Yassar, R. Multimetallic glycerolate as a precursor template of spherical porous high-entropy oxide microparticles. J. Colloid Interface Sci., 2023, 641, 643-652. doi: 10.1016/j.jcis.2023.03.089 PMID: 36963257
- Tran, H.D.N.; Moonshi, S.S.; Xu, Z.P.; Ta, H.T. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater. Sci., 2021, 10(1), 10-50. doi: 10.1039/D1BM01351C PMID: 34775503
- Charushin, V.N.; Kungurov, N.V.; Chupakhin, O.N.; Khonina, T.G.; Evstigneeva, N.P.; Kokhan, M.M.; Zilberberg, N.V.; Gerasimova, N.A.; Tishin, D.S.; Shadrina, E.V.; Nikitina, E.Yu.; Permikin, V.V.; Starikov, N.M.; Larionov, L.P.; Osipenko, A.V.; Dobrinskaya, M.N.; Sementsova, E.A.; Kotikova, A.Yu.; Mandra, Yu.V.; Bulatova, M.A. Silicon-iron(zinc, boron)containing glycerohydrogel for topical use, having hemostatic and antimicrobial activity (options). R.U. Patent 2,797,966, 2023.
补充文件
