Akkermansia muciniphila - A Potential Next-generation Probiotic for Non-alcoholic Fatty Liver Disease


Цитировать

Полный текст

Аннотация

Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver conditions, and its growing prevalence is a serious concern worldwide, especially in Western countries. Researchers have pointed out several genetic mutations associated with NAFLD; however, the imbalance of the gut microbial community also plays a critical role in the progression of NAFLD. Due to the lack of approved medicine, probiotics gain special attention in controlling metabolic disorders like NAFLD. Among these probiotics, Akkermansia muciniphila (a member of natural gut microflora) is considered one of the most efficient and important in maintaining gut health, energy homeostasis, and lipid metabolism. In this perspective, we discussed the probable molecular mechanism of A. muciniphila in controlling the progression of NAFLD and restoring liver health. The therapeutic potential of A. muciniphila in NAFLD has been tested primarily on animal models, and thus, more randomized human trials should be conducted to prove its efficacy.

Об авторах

Goutam Banerjee

Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign

Автор, ответственный за переписку.
Email: info@benthamscience.net

Suraya Papri

Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign

Email: info@benthamscience.net

Sanjaya Satapathy

Department of Medicine, Northwell Health Center for Liver Disease & Transplantation, North Shore University Hospital/Northwell Health

Автор, ответственный за переписку.
Email: info@benthamscience.net

Pratik Banerjee

Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Eslam, M.; Sanyal, A.J.; George, J.; Sanyal, A.; Neuschwander-Tetri, B.; Tiribelli, C. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology, 2020, 158(7), 1999-2014. doi: 10.1053/j.gastro.2019.11.312
  2. Satapathy, S.K.; Banerjee, P.; Pierre, J.F.; Higgins, D.; Dutta, S.; Heda, R.; Khan, S.D.; Mupparaju, V.K.; Mas, V.; Nair, S.; Eason, J.D.; Kleiner, D.E.; Maluf, D.G. Characterization of gut microbiome in liver transplant recipients with nonalcoholic steatohepatitis. Transplant. Direct, 2020, 6(12), e625. doi: 10.1097/TXD.0000000000001033 PMID: 33204823
  3. Neuschwander-Tetri, B.A. Non-alcoholic fatty liver disease. BMC Med., 2017, 15(1), 45. doi: 10.1186/s12916-017-0806-8 PMID: 28241825
  4. Hazlehurst, J.M.; Woods, C.; Marjot, T.; Cobbold, J.F.; Tomlinson, J.W. Non-alcoholic fatty liver disease and diabetes. Metabolism, 2016, 65(8), 1096-1108. doi: 10.1016/j.metabol.2016.01.001 PMID: 26856933
  5. Asgharpour, A.; Cazanave, S.C.; Pacana, T.; Seneshaw, M.; Vincent, R.; Banini, B.A.; Kumar, D.P.; Daita, K.; Min, H.K.; Mirshahi, F.; Bedossa, P.; Sun, X.; Hoshida, Y.; Koduru, S.V.; Contaifer, D., Jr; Warncke, U.O.; Wijesinghe, D.S.; Sanyal, A.J. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol., 2016, 65(3), 579-588. doi: 10.1016/j.jhep.2016.05.005 PMID: 27261415
  6. Miele, L.; Valenza, V.; La Torre, G.; Montalto, M.; Cammarota, G.; Ricci, R.; Mascianà, R.; Forgione, A.; Gabrieli, M.L.; Perotti, G.; Vecchio, F.M.; Rapaccini, G.; Gasbarrini, G.; Day, C.P.; Grieco, A. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology, 2009, 49(6), 1877-1887. doi: 10.1002/hep.22848 PMID: 19291785
  7. De Munck, T.J.I.; Xu, P.; Verwijs, H.J.A.; Masclee, A.A.M.; Jonkers, D.; Verbeek, J.; Koek, G.H. Intestinal permeability in human nonalcoholic fatty liver disease: A systematic review and meta-analysis. Liver Int., 2020, 40(12), 2906-2916. doi: 10.1111/liv.14696 PMID: 33037768
  8. Kim, S-K.; Guevarra, R.B.; Kim, Y-T.; Kwon, J.; Kim, H.; Cho, J.H. Role of probiotics in human gut microbiome-associated diseases. J. Microbiol. Biotechnol., 2019, 29(9), 1335-1340. doi: 10.4014/jmb.1906.06064
  9. Huang, Z.; Liu, K.; Ma, W.; Li, D.; Mo, T.; Liu, Q. The gut microbiome in human health and disease—Where are we and where are we going? A bibliometric analysis. Front. Microbiol., 2022, 13, 1018594. doi: 10.3389/fmicb.2022.1018594 PMID: 36590421
  10. Albhaisi, S.A.M.; Bajaj, J.S. The influence of the microbiome on NAFLD and NASH. Clin. Liver Dis., 2021, 17(1), 15-18. doi: 10.1002/cld.1010 PMID: 33552480
  11. Imajo, K.; Fujita, K.; Yoneda, M.; Nozaki, Y.; Ogawa, Y.; Shinohara, Y.; Kato, S.; Mawatari, H.; Shibata, W.; Kitani, H.; Ikejima, K.; Kirikoshi, H.; Nakajima, N.; Saito, S.; Maeyama, S.; Watanabe, S.; Wada, K.; Nakajima, A. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab., 2012, 16(1), 44-54. doi: 10.1016/j.cmet.2012.05.012 PMID: 22768838
  12. Zhu, L.; Baker, S.S.; Gill, C.; Liu, W.; Alkhouri, R.; Baker, R.D.; Gill, S.R. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH. Hepatology, 2013, 57(2), 601-609. doi: 10.1002/hep.26093 PMID: 23055155
  13. Wong, V.W.S.; Tse, C.H.; Lam, T.T.Y.; Wong, G.L.H.; Chim, A.M.L.; Chu, W.C.W.; Yeung, D.K.W.; Law, P.T.W.; Kwan, H.S.; Yu, J.; Sung, J.J.Y.; Chan, H.L.Y. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis--a longitudinal study. PLoS One, 2013, 8(4), e62885. doi: 10.1371/journal.pone.0062885 PMID: 23638162
  14. Mouzaki, M.; Comelli, E.M.; Arendt, B.M.; Bonengel, J.; Fung, S.K.; Fischer, S.E.; McGilvray, I.D.; Allard, J.P. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology, 2013, 58(1), 120-127. doi: 10.1002/hep.26319 PMID: 23401313
  15. Umirah, F.; Neoh, C.F.; Ramasamy, K.; Lim, S.M. Differential gut microbiota composition between type 2 diabetes mellitus patients and healthy controls: A systematic review. Diabetes Res. Clin. Pract., 2021, 173, 108689. doi: 10.1016/j.diabres.2021.108689 PMID: 33549678
  16. Hassouneh, R.; Kim, C.; Behary, J.; Zekry, A.; Bajaj, J. Microbiota and liver disease.: year in review. Microb. Health Dis., 2021, 3, e584. doi: 10.26355/mhd_20219_584
  17. Palmas, V.; Pisanu, S.; Madau, V.; Casula, E.; Deledda, A.; Cusano, R.; Uva, P.; Vascellari, S.; Loviselli, A.; Manzin, A.; Velluzzi, F. Gut microbiota markers associated with obesity and overweight in Italian adults. Sci. Rep., 2021, 11(1), 5532. doi: 10.1038/s41598-021-84928-w PMID: 33750881
  18. Ruuskanen, M.O.; Åberg, F.; Männistö, V.; Havulinna, A.S.; Méric, G.; Liu, Y.; Loomba, R.; Vázquez-Baeza, Y.; Tripathi, A.; Valsta, L.M.; Inouye, M.; Jousilahti, P.; Salomaa, V.; Jain, M.; Knight, R.; Lahti, L.; Niiranen, T.J. Links between gut microbiome composition and fatty liver disease in a large population sample. Gut Microbes, 2021, 13(1), 1888673. doi: 10.1080/19490976.2021.1888673 PMID: 33651661
  19. Ferguson, D.; Finck, B.N. Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2021, 17(8), 484-495. doi: 10.1038/s41574-021-00507-z PMID: 34131333
  20. Astbury, S.; Atallah, E.; Vijay, A.; Aithal, G.P.; Grove, J.I.; Valdes, A.M. Lower gut microbiome diversity and higher abundance of proinflammatory genus Collinsella are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes, 2020, 11(3), 569-580. doi: 10.1080/19490976.2019.1681861 PMID: 31696774
  21. Loomba, R.; Seguritan, V.; Li, W.; Long, T.; Klitgord, N.; Bhatt, A. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab., 2017, 25(5), 1054-1062. doi: 10.1016/j.cmet.2017.04.001
  22. Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology, 2023, 77(5), 1797-1835. doi: 10.1097/HEP.0000000000000323 PMID: 36727674
  23. Abenavoli, L.; Scarpellini, E.; Rouabhia, S.; Balsano, C.; Luzza, F. Probiotics in non-alcoholic fatty liver disease: Which and when. Ann. Hepatol., 2013, 12(3), 357-363. doi: 10.1016/S1665-2681(19)30997-4 PMID: 23619251
  24. Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N.M.; de Barsy, M.; Loumaye, A.; Hermans, M.P.; Thissen, J.P.; de Vos, W.M.; Cani, P.D. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med., 2019, 25(7), 1096-1103. doi: 10.1038/s41591-019-0495-2 PMID: 31263284
  25. Roshanravan, N.; Bastani, S.; Tutunchi, H.; Kafil, B.; Nikpayam, O.; Mesri Alamdari, N. A comprehensive systematic review of the effectiveness of Akkermansia muciniphila, a member of the gut microbiome, for the management of obesity and associated metabolic disorders. Arch. Physiol. Biochem., 2023, 129(3), 741-751. doi: 10.3390/microorganisms9051098 PMID: 33449810
  26. Derrien, M.; Vaughan, E.E.; Plugge, C.M.; de Vos, W.M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol., 2004, 54(5), 1469-1476. doi: 10.1099/ijs.0.02873-0 PMID: 15388697
  27. Zhang, T.; Ji, X.; Lu, G.; Zhang, F. The potential of akkermansia muciniphila in inflammatory bowel disease. Appl. Microbiol. Biotechnol., 2021, 105(14-15), 5785-5794. doi: 10.1007/s00253-021-11453-1 PMID: 34312713
  28. Shi, Z.; Lei, H.; Chen, G.; Yuan, P.; Cao, Z.; Ser, H.L.; Zhu, X.; Wu, F.; Liu, C.; Dong, M.; Song, Y.; Guo, Y.; Chen, C.; Hu, K.; Zhu, Y.; Zeng, X.; Zhou, J.; Lu, Y.; Patterson, A.D.; Zhang, L. Impaired intestinal Akkermansia muciniphila and aryl hydrocarbon receptor ligands contribute to nonalcoholic fatty liver disease in mice. mSystems, 2021, 6(1), e00985-e20. doi: 10.1128/mSystems.00985-20 PMID: 33622853
  29. Sanjiwani, M.I.D.; Aryadi, I.P.H.; Semadi, I.M.S. Review of literature on Akkermansia muciniphila and its possible role in the etiopathogenesis and therapy of type 2 diabetes mellitus. J. ASEAN Fed. Endocr. Soc., 2022, 37(1), 69-74. doi: 10.15605/jafes.037.01.13 PMID: 35800592
  30. Nistal, E.; Saenz de Miera, L.E.; Ballesteros Pomar, M.; Sánchez-Campos, S.; García-Mediavilla, M.V.; Álvarez-Cuenllas, B. An altered fecal microbiota profile in patients with non-alcoholic fatty liver disease (NAFLD) associated with obesity. Rev. Esp. Enferm. Dig., 2019, 111(4), 275-282. doi: 10.17235/reed.2019.6068/2018
  31. Perraudeau, F.; McMurdie, P.; Bullard, J.; Cheng, A.; Cutcliffe, C.; Deo, A.; Eid, J.; Gines, J.; Iyer, M.; Justice, N.; Loo, W.T.; Nemchek, M.; Schicklberger, M.; Souza, M.; Stoneburner, B.; Tyagi, S.; Kolterman, O. Improvements to postprandial glucose control in subjects with type 2 diabetes: A multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation. BMJ Open Diabetes Res. Care, 2020, 8(1), e001319. doi: 10.1136/bmjdrc-2020-001319 PMID: 32675291
  32. Rao, Y.; Kuang, Z.; Li, C.; Guo, S.; Xu, Y.; Zhao, D.; Hu, Y.; Song, B.; Jiang, Z.; Ge, Z.; Liu, X.; Li, C.; Chen, S.; Ye, J.; Huang, Z.; Lu, Y. Gut Akkermansia muciniphila ameliorates metabolic dysfunction-associated fatty liver disease by regulating the metabolism of L-aspartate via gut-liver axis. Gut Microbes, 2021, 13(1), 1927633. doi: 10.1080/19490976.2021.1927633 PMID: 34030573
  33. Zhou, J.; Zhang, Q.; Zhao, Y.; Zou, Y.; Chen, M.; Zhou, S.; Wang, Z. The relationship of megamonas species with nonalcoholic fatty liver disease in children and adolescents revealed by metagenomics of gut microbiota. Sci. Rep., 2022, 12(1), 22001. doi: 10.1038/s41598-022-25140-2 PMID: 36539432
  34. Liang, T.; Li, D.; Zunong, J.; Li, M.; Amaerjiang, N.; Xiao, H.; Khattab, N.; Vermund, S.; Hu, Y. Interplay of lymphocytes with the intestinal microbiota in children with nonalcoholic fatty liver disease. Nutrients, 2022, 14(21), 4641. doi: 10.3390/nu14214641 PMID: 36364902
  35. Jinato, T.; Chayanupatkul, M.; Dissayabutra, T.; Chutaputti, A.; Tangkijvanich, P.; Chuaypen, N. Litchi-derived polyphenol alleviates liver steatosis and gut dysbiosis in patients with non-alcoholic fatty liver disease: A randomized double-blinded, placebo-controlled study. Nutrients, 2022, 14(14), 2921. doi: 10.3390/nu14142921 PMID: 35889878
  36. Pan, X.; Kaminga, A.C.; Liu, A.; Wen, S.W.; Luo, M.; Luo, J. Gut microbiota, glucose, lipid, and water-electrolyte metabolism in children with nonalcoholic fatty liver disease. Front. Cell. Infect. Microbiol., 2021, 11, 683743. doi: 10.3389/fcimb.2021.683743 PMID: 34778099
  37. Schwimmer, J.B.; Johnson, J.S.; Angeles, J.E.; Behling, C.; Belt, P.H.; Borecki, I.; Bross, C.; Durelle, J.; Goyal, N.P.; Hamilton, G.; Holtz, M.L.; Lavine, J.E.; Mitreva, M.; Newton, K.P.; Pan, A.; Simpson, P.M.; Sirlin, C.B.; Sodergren, E.; Tyagi, R.; Yates, K.P.; Weinstock, G.M.; Salzman, N.H. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology, 2019, 157(4), 1109-1122. doi: 10.1053/j.gastro.2019.06.028 PMID: 31255652
  38. Iacono, A.; Raso, G.M.; Canani, R.B.; Calignano, A.; Meli, R. Probiotics as an emerging therapeutic strategy to treat NAFLD: Focus on molecular and biochemical mechanisms. J. Nutr. Biochem., 2011, 22(8), 699-711. doi: 10.1016/j.jnutbio.2010.10.002 PMID: 21292470
  39. Khan, A.; Ding, Z.; Ishaq, M.; Bacha, A.S.; Khan, I.; Hanif, A.; Li, W.; Guo, X. Understanding the effects of gut microbiota dysbiosis on nonalcoholic fatty liver disease and the possible probiotics role: Recent updates. Int. J. Biol. Sci., 2021, 17(3), 818-833. doi: 10.7150/ijbs.56214 PMID: 33767591
  40. Ritze, Y.; Bárdos, G.; Claus, A.; Ehrmann, V.; Bergheim, I.; Schwiertz, A.; Bischoff, S.C. Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS One, 2014, 9(1), e80169. doi: 10.1371/journal.pone.0080169 PMID: 24475018
  41. Yan, Y.; Liu, C.; Zhao, S.; Wang, X.; Wang, J.; Zhang, H.; Wang, Y.; Zhao, G. Probiotic Bifidobacterium lactis V9 attenuates hepatic steatosis and inflammation in rats with non-alcoholic fatty liver disease. AMB Express, 2020, 10(1), 101. doi: 10.1186/s13568-020-01038-y PMID: 32472368
  42. Si, J.; Kang, H.; You, H.J.; Ko, G. Revisiting the role of Akkermansia muciniphila as a therapeutic bacterium. Gut Microbes, 2022, 14(1), 2078619. doi: 10.1080/19490976.2022.2078619 PMID: 35613313
  43. Cao, F.; Ding, Q.; Zhuge, H.; Lai, S.; Chang, K.; Le, C.; Yang, G.; Valencak, T.G.; Li, S.; Ren, D. Lactobacillus plantarum ZJUIDS14 alleviates non-alcoholic fatty liver disease in mice in association with modulation in the gut microbiota. Front. Nutr., 2023, 9, 1071284. doi: 10.3389/fnut.2022.1071284 PMID: 36698477
  44. Depommier, C.; Vitale, R.M.; Iannotti, F.A.; Silvestri, C.; Flamand, N.; Druart, C.; Everard, A.; Pelicaen, R.; Maiter, D.; Thissen, J.P.; Loumaye, A.; Hermans, M.P.; Delzenne, N.M.; de Vos, W.M.; Di Marzo, V.; Cani, P.D. Beneficial effects of Akkermansia muciniphila are not associated with major changes in the circulating Endocannabinoidome but linked to higher Mono-Palmitoyl-Glycerol levels as new PPARα agonists. Cells, 2021, 10(1), 185. doi: 10.3390/cells10010185 PMID: 33477821
  45. Rau, M.; Rehman, A.; Dittrich, M.; Groen, A.K.; Hermanns, H.M.; Seyfried, F.; Beyersdorf, N.; Dandekar, T.; Rosenstiel, P.; Geier, A. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United European Gastroenterol. J., 2018, 6(10), 1496-1507. doi: 10.1177/2050640618804444 PMID: 30574320
  46. Yoon, S.J.; Yu, J.S.; Min, B.H.; Gupta, H.; Won, S.M.; Park, H.J.; Han, S.H.; Kim, B.Y.; Kim, K.H.; Kim, B.K.; Joung, H.C.; Park, T.S.; Ham, Y.L.; Lee, D.Y.; Suk, K.T. Bifidobacterium-derived short-chain fatty acids and indole compounds attenuate nonalcoholic fatty liver disease by modulating gut-liver axis. Front. Microbiol., 2023, 14, 1129904. doi: 10.3389/fmicb.2023.1129904 PMID: 36937300
  47. LeBlanc, J.G.; Chain, F.; Martín, R.; Bermúdez-Humarán, L.G.; Courau, S.; Langella, P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Fact., 2017, 16(1), 79. doi: 10.1186/s12934-017-0691-z PMID: 28482838
  48. Gou, H.Z.; Zhang, Y.L.; Ren, L.F.; Li, Z.J.; Zhang, L. How do intestinal probiotics restore the intestinal barrier? Front. Microbiol., 2022, 13, 929346. doi: 10.3389/fmicb.2022.929346 PMID: 35910620
  49. Nian, F.; Wu, L.; Xia, Q.; Tian, P.; Ding, C.; Lu, X. Akkermansia muciniphila and Bifidobacterium bifidum prevent NAFLD by regulating FXR expression and gut microbiota. J. Clin. Transl. Hepatol., 2023, 11, 763-776. doi: 10.14218/JCTH.2022.00415
  50. Kim, S.; Lee, Y.; Kim, Y.; Seo, Y.; Lee, H.; Ha, J.; Lee, J.; Choi, Y.; Oh, H.; Yoon, Y. Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis. Appl. Environ. Microbiol., 2020, 86(7), e03004-e03019. doi: 10.1128/AEM.03004-19 PMID: 31953338
  51. Cao, C.; Shou, D.; Xu, H.; Huang, H.; Xia, Y.; Mei, Q.; Quan, Y.; Chen, H.; Zhao, C.; Tang, W.; Chen, H.; Zhau, Y. IDDF2021-ABS-0205 Akkermansia viable bacteria improves liver steatosis induced by high-fat diet relating to the regulation of gut microbiota in C57BL/6J MICE. Gut, 2021, 70, A8-A9. doi: 10.1136/gutjnl-2021-IDDF.11
  52. Gu, C.; Zhou, Z.; Yu, Z.; He, M.; He, L.; Luo, Z.; Xiao, W.; Yang, Q.; Zhao, F.; Li, W.; Shen, L.; Han, J.; Cao, S.; Zuo, Z.; Deng, J.; Yan, Q.; Ren, Z.; Zhao, M.; Yu, S. The microbiota and it’s correlation with metabolites in the gut of mice with nonalcoholic fatty liver disease. Front. Cell. Infect. Microbiol., 2022, 12, 870785. doi: 10.3389/fcimb.2022.870785 PMID: 35694542
  53. Kersten, S. Integrated physiology and systems biology of PPARα. Mol. Metab., 2014, 3(4), 354-371. doi: 10.1016/j.molmet.2014.02.002 PMID: 24944896
  54. Hasan, A.; Rahman, A.; Kobori, H. Interactions between host PPARs and gut microbiota in health and disease. Int. J. Mol. Sci., 2019, 20(2), 387. doi: 10.3390/ijms20020387 PMID: 30658440
  55. Plovier, H.; Everard, A.; Druart, C.; Depommier, C.; Van Hul, M.; Geurts, L.; Chilloux, J.; Ottman, N.; Duparc, T.; Lichtenstein, L.; Myridakis, A.; Delzenne, N.M.; Klievink, J.; Bhattacharjee, A.; van der Ark, K.C.H.; Aalvink, S.; Martinez, L.O.; Dumas, M.E.; Maiter, D.; Loumaye, A.; Hermans, M.P.; Thissen, J.P.; Belzer, C.; de Vos, W.M.; Cani, P.D. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med., 2017, 23(1), 107-113. doi: 10.1038/nm.4236 PMID: 27892954
  56. Yan, J.; Pan, Y.; Shao, W.; Wang, C.; Wang, R.; He, Y.; Zhang, M.; Wang, Y.; Li, T.; Wang, Z.; Liu, W.; Wang, Z.; Sun, X.; Dong, S. Beneficial effect of the short-chain fatty acid propionate on vascular calcification through intestinal microbiota remodelling. Microbiome, 2022, 10(1), 195. doi: 10.1186/s40168-022-01390-0 PMID: 36380385
  57. Xiong, J.; Chen, X.; Zhao, Z.; Liao, Y.; Zhou, T.; Xiang, Q. A potential link between plasma short chain fatty acids, TNF-α level and disease progression in non alcoholic fatty liver disease: A retrospective study. Exp. Ther. Med., 2022, 24(3), 598. doi: 10.3892/etm.2022.11536 PMID: 35949337
  58. Raftar, S.K.A.; Ashrafian, F.; Abdollahiyan, S.; Yadegar, A.; Moradi, H.R.; Masoumi, M.; Vaziri, F.; Moshiri, A.; Siadat, S.D.; Zali, M.R. The anti-inflammatory effects of Akkermansia muciniphila and its derivates in HFD/CCL4-induced murine model of liver injury. Sci. Rep., 2022, 12(1), 2453. doi: 10.1038/s41598-022-06414-1 PMID: 35165344
  59. Martin-Gallausiaux, C.; Garcia-Weber, D.; Lashermes, A.; Larraufie, P.; Marinelli, L.; Teixeira, V.; Rolland, A.; Béguet-Crespel, F.; Brochard, V.; Quatremare, T.; Jamet, A.; Doré, J.; Gray-Owen, S.D.; Blottière, H.M.; Arrieumerlou, C.; Lapaque, N. Akkermansia muciniphila upregulates genes involved in maintaining the intestinal barrier function via ADP-heptose-dependent activation of the ALPK1/TIFA pathway. Gut Microbes, 2022, 14(1), 2110639. doi: 10.1080/19490976.2022.2110639 PMID: 36036242
  60. Han, Y.; Li, L.; Wang, B. Role of Akkermansia muciniphila in the development of nonalcoholic fatty liver disease: Current knowledge and perspectives. Front. Med., 2022, 16(5), 667-685. doi: 10.1007/s11684-022-0960-z PMID: 36318353

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024