Involvement of the Transient Receptor Channels in Preclinical Models of Musculoskeletal Pain
- Authors: Kudsi S.1, Viero F.1, Pereira L.2, Trevisan G.2
-
Affiliations:
- Programa de Pós-Graduação em Farmacologia,, Universidade Federal de Santa Maria (UFSM)
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM)
- Issue: Vol 22, No 1 (2024)
- Pages: 72-87
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644227
- DOI: https://doi.org/10.2174/1570159X21666230908094159
- ID: 644227
Cite item
Full Text
Abstract
Background:Musculoskeletal pain is a condition that affects bones, muscles, and tendons and is present in various diseases and/or clinical conditions. This type of pain represents a growing problem with enormous socioeconomic impacts, highlighting the importance of developing treatments tailored to the patient's needs. TRP is a large family of non-selective cation channels involved in pain perception. Vanilloid (TRPV1 and TRPV4), ankyrin (TRPA1), and melastatin (TRPM8) are involved in physiological functions, including nociception, mediation of neuropeptide release, heat/cold sensing, and mechanical sensation.
Objective:In this context, we provide an updated view of the most studied preclinical models of muscle hyperalgesia and the role of transient receptor potential (TRP) in these models.
Methods:This review describes preclinical models of muscle hyperalgesia induced by intramuscular administration of algogenic substances and/or induction of muscle damage by physical exercise in the masseter, gastrocnemius, and tibial muscles.
Results:The participation of TRPV1, TRPA1, and TRPV4 in different models of musculoskeletal pain was evaluated using pharmacological and genetic tools. All the studies detected the antinociceptive effect of respective antagonists or reduced nociception in knockout mice.
Conclusion:Hence, TRPV1, TRPV4, and TRPA1 blockers could potentially be utilized in the future for inducing analgesia in muscle hypersensitivity pathologies.
Keywords
About the authors
Sabrina Kudsi
Programa de Pós-Graduação em Farmacologia,, Universidade Federal de Santa Maria (UFSM)
Email: info@benthamscience.net
Fernanda Viero
Programa de Pós-Graduação em Farmacologia,, Universidade Federal de Santa Maria (UFSM)
Email: info@benthamscience.net
Leonardo Pereira
Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM)
Email: info@benthamscience.net
Gabriela Trevisan
Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM)
Author for correspondence.
Email: info@benthamscience.net
References
- El-Tallawy, S.N.; Nalamasu, R.; Salem, G.I.; LeQuang, J.A.K.; Pergolizzi, J.V.; Christo, P.J. Management of musculoskeletal pain: An update with emphasis on chronic musculoskeletal pain. Pain Ther., 2021, 10(1), 181-209. doi: 10.1007/s40122-021-00235-2 PMID: 33575952
- Queme, L.F.; Jankowski, M.P. Sex differences and mechanisms of muscle pain. Curr. Opin. Physiol., 2019, 11, 1-6. doi: 10.1016/j.cophys.2019.03.006 PMID: 31245656
- Queme, L.F.; Dourson, A.; Hofmann, M.C.; Butterfield, A.; Paladini, R.D.; Jankowski, MP. Disruption of hyaluronic acid in skeletal muscle induces decreased voluntary activity via chemosensitive muscle afferent sensitization in male mice. eNeuro, 2022, 9(2), ENEURO.0522-21.2022. doi: 10.1523/ENEURO.0522-21.2022 PMID: 35387844
- Perrot, S.; Cohen, M.; Barke, A.; Korwisi, B.; Rief, W.; Treede, R.D. The IASP classification of chronic pain for ICD-11: Chronic secondary musculoskeletal pain. Pain, 2019, 160(1), 77-82. doi: 10.1097/j.pain.0000000000001389 PMID: 30586074
- Treede, R.D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; Giamberardino, M.A.; Kaasa, S.; Korwisi, B.; Kosek, E.; Lavandhomme, P.; Nicholas, M.; Perrot, S.; Scholz, J.; Schug, S.; Smith, B.H.; Svensson, P.; Vlaeyen, J.W.S.; Wang, S.J. Chronic pain as a symptom or a disease: The IASP classification of chronic pain for the international classification of diseases (ICD-11). Pain, 2019, 160(1), 19-27. doi: 10.1097/j.pain.0000000000001384 PMID: 30586067
- SantAnna, J.P.C.; Pedrinelli, A.; Hernandez, A.J.; Fernandes, T.L. Muscle injury: Pathophysiology, diagnosis, and treatment. Rev. Bras. Ortop., 2022, 57(1), 1-13. doi: 10.1055/s-0041-1731417
- Singh, D.P.; Barani, L.Z.; Woodruff, M.A.; Parker, T.J.; Steck, R.; Peake, J.M. Effects of topical icing on inflammation, angiogenesis, revascularization, and myofiber regeneration in skeletal muscle following contusion injury. Front. Physiol., 2017, 8, 93. doi: 10.3389/fphys.2017.00093 PMID: 28326040
- Fernandes, T.L.; Pedrinelli, A.; Hernandez, A.J. Lesão muscular: Fsiopatologia, diagnóstico, tratamento e apresentação clínica. Rev. Bras. Ortop., 2011, 46(3), 247-255. doi: 10.1590/S0102-36162011000300003 PMID: 27047816
- Rosa, C.G.S.; Schemitt, E.G.; Hartmann, R.M.; Josieli, R.C.; Jayne, T.S.; Silvia, B.A.; Moreira, J.; Cristian, A.O.; Jaqueline, N.P.; Daniel, P.C.; Alexandre, S.D.; Norma, A.P.M. Effect of therapeutic ultrasound on the quadriceps muscle injury in rats: Evaluation of oxidative stress and inflammatory process. Am. J. Transl. Res., 2019, 11(10), 6660-6671. PMID: 31737216
- Kudsi, S.Q.; Antoniazzim, C.T.D.; Camponogara, C.; Evelyne, S.B.; Indiara, B.; Diulle, S.P. Susana, Paula, M.F.; Diéssica, P.D.; Carolina Dos Santos, S.; Rubya, P.Z.; Paulo, Cesar, L.S.; Rafael, N.M.; Sara, M.O.; Gabriela, T. Characterisation of nociception and inflammation observed in a traumatic muscle injury model in rats. Eur. J. Pharmacol., 2020, 883, 173284-4. doi: 10.1016/j.ejphar.2020.173284 PMID: 32679186
- Huard, J.; Lu, A.; Mu, X.; Guo, P.; Li, Y. Muscle injuries and repair: Whats new on the horizon! Cells Tissues Organs, 2016, 202(3-4), 227-236. doi: 10.1159/000443926 PMID: 27825155
- Howard, E.E.; Pasiakos, S.M.; Blesso, C.N.; Fussell, M.A.; Rodriguez, N.R. Divergent roles of inflammation in skeletal muscle recovery from injury. Front. Physiol., 2020, 11, 87. doi: 10.3389/fphys.2020.00087 PMID: 32116792
- Parihar, A.; Parihar, M.S.; Milner, S.; Bhat, S. Oxidative stress and anti-oxidative mobilization in burn injury. Burns, 2008, 34(1), 6-17. doi: 10.1016/j.burns.2007.04.009 PMID: 17905515
- Pinho-Ribeiro, F.A.; Verri, W.A., Jr; Chiu, I.M. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol., 2017, 38(1), 5-19. doi: 10.1016/j.it.2016.10.001 PMID: 27793571
- Riemann, A.; Schneider, B.; Ihling, A.; Martin, N.; Christoph, S.; Oliver, T.; Michael, G. Acidic environment leads to ROS-induced MAPK signaling in cancer cells. PLoS One, 2011, 6(7), e22445-e5. doi: 10.1371/journal.pone.0022445 PMID: 21818325
- De Logu, F. Simone, Li Puma.; Landini, L.; Francesca, P.; Alessandro Innocenti, Daniel, S. M. de A.; Malvin, N. J.; Riccardo, P.; Nigel, W. B.; Pierangelo, G.; Romina, N. Schwann cells expressing nociceptive channel TRPA1 orchestrate ethanol-evoked neuropathic pain in mice. J. Clin. Invest., 2019, 129(12), 5424-5441. doi: 10.1172/JCI128022 PMID: 31487269
- Lee, K.I.; Lee, H.T.; Lin, H.C.; Huey-Jen, T.; Feng-Chuan, T.; Song-K, S.; Tzong-Shyuan, L. Role of transient receptor potential ankyrin 1 channels in Alzheimers disease. J. Neuroinflammation, 2016, 13(1), 92-2. doi: 10.1186/s12974-016-0557-z PMID: 27121378
- Camponogara, C.; Oliveira, S.M. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? Environ. Toxicol. Pharmacol., 2022, 92, 103836-6. doi: 10.1016/j.etap.2022.103836 PMID: 35248760
- Taylor, D.F.; Bishop, D.J. Transcription factor movement and exercise-induced mitochondrial biogenesis in human skeletal muscle: Current knowledge and future perspectives. Int. J. Mol. Sci., 2022, 23(3), 1517-7. doi: 10.3390/ijms23031517 PMID: 35163441
- Loeser, J.D.; Treede, R.D. The kyoto protocol of IASP basic pain terminology. Pain, 2008, 137(3), 473-477. doi: 10.1016/j.pain.2008.04.025 PMID: 18583048
- Muley, M.M.; Krustev, E.; McDougall, J.J. Preclinical assessment of inflammatory pain. CNS Neurosci. Ther., 2016, 22(2), 88-101. doi: 10.1111/cns.12486 PMID: 26663896
- Lotteau, S.; Ducreux, S.; Romestaing, C.; Legrand, C.; Van Coppenolle, F. Characterization of functional TRPV1 channels in the sarcoplasmic reticulum of mouse skeletal muscle. PLoS One, 2013, 8(3), e58673-e3. doi: 10.1371/journal.pone.0058673 PMID: 23536811
- Lafoux, A.; Lotteau, S.; Huchet, C.; Ducreux, S. The contractile phenotype of skeletal muscle in TRPV1 knockout mice is gender-specific and exercise-dependent. Life, 2020, 10(10), 233-3. doi: 10.3390/life10100233 PMID: 33036239
- Kudsi, S.Q.; Piccoli, B.C.; Ardisson-Araújo, D.; Trevisan, G. Transcriptional landscape of TRPV1, TRPA1, TRPV4, and TRPM8 channels throughout human tissues. Life Sci., 2022, 308, 120977-7. doi: 10.1016/j.lfs.2022.120977 PMID: 36126722
- Gregory, N.S.; Whitley, P.E.; Sluka, K.A. Effect of intramuscular protons, lactate, and ATP on muscle hyperalgesia in rats. PLoS One, 2015, 10(9), e0138576. doi: 10.1371/journal.pone.0138576 PMID: 26378796
- Chang, C.T.; Fong, S.W.; Lee, C.H.; Chuang, Y.C.; Lin, S.H.; Chen, C.C. Involvement of acid-sensing ion channel 1b in the development of acid-induced chronic muscle pain. Front. Neurosci., 2019, 13, 1247. doi: 10.3389/fnins.2019.01247 PMID: 31824248
- Jorge, C.O.; de Azambuja, G.; Gomes, B.B.; Rodrigues, H.L.; Luchessi, A.D.; de Oliveira-Fusaro, M.C.G. P2X3 receptors contribute to transition from acute to chronic muscle pain. Purinergic Signal., 2020, 16(3), 403-414. doi: 10.1007/s11302-020-09718-x PMID: 32766958
- Barcelos, R.P.; Bresciani, G.; Cuevas, M.J.; Martínez-Flórez, S.; Soares, F.A.A.; González-Gallego, J. Diclofenac pretreatment modulates exercise-induced inflammation in skeletal muscle of rats through the TLR4/NF-κB pathway. Appl. Physiol. Nutr. Metab., 2017, 42(7), 757-764. doi: 10.1139/apnm-2016-0593 PMID: 28235185
- Silveira, P.C.L.; Victor, E.G.; Schefer, D.; Luciano, A.S.; Emilio, L.S.; Marcos, M.P.; Ricardo, A.P. Effects of therapeutic pulsed ultrasound and dimethylsulfoxide (DMSO) phonophoresis on parameters of oxidative stress in traumatized muscle. Ultrasound Med. Biol., 2010, 36(1), 44-50. doi: 10.1016/j.ultrasmedbio.2009.09.001 PMID: 19900747
- de Almeida, P.; Lopes-Martins, R.Á.B.; Tomazoni, S.S.; Gianna, M. Albuquerque-Pontes.; Larissa, A.S.; Adriane, A.V.; Lucio, F.; Rodolfo, P. V.; Regiane, A.; Paulo de T. Camillo de Carvalho, Ernesto, C. P. Leal-Junior. Low-level laser therapy and sodium diclofenac in acute inflammatory response induced by skeletal muscle trauma: effects in muscle morphology and mRNA gene expression of inflammatory markers. Photochem. Photobiol., 2013, 89(2), 501-507. doi: 10.1111/j.1751-1097.2012.01232.x PMID: 22937980
- Silveira, P.C.L.; Scheffer, D.L.; Glaser, V.; Aline, P.R. Ricardo, Aurino, P.; Aderbal, S.; Aguiar, J.; Alexandra, L. Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. Free Radic. Res., 2016, 50(5), 503-513. doi: 10.3109/10715762.2016.1147649 PMID: 26983894
- Malanga, G.A.; Yan, N.; Stark, J. Mechanisms and efficacy of heat and cold therapies for musculoskeletal injury. Postgrad. Med., 2015, 127(1), 57-65. doi: 10.1080/00325481.2015.992719 PMID: 25526231
- Mense, S.; Gerwin, R. Muscle Pain: Understanding the Mechanisms; Springer: Berlin, Heidelberg, 2010. doi: 10.1007/978-3-540-85021-2
- Startek, J.; Boonen, B.; Talavera, K.; Meseguer, V. TRP channels as sensors of chemically-induced changes in cell membrane mechanical properties. Int. J. Mol. Sci., 2019, 20(2), 371-1. doi: 10.3390/ijms20020371 PMID: 30654572
- Koivisto, A.P.; Belvisi, M.G.; Gaudet, R.; Szallasi, A. Advances in TRP channel drug discovery: From target validation to clinical studies. Nat. Rev. Drug Discov., 2022, 21(1), 41-59. doi: 10.1038/s41573-021-00268-4 PMID: 34526696
- Liu, C.; Montell, C. Forcing open TRP channels: Mechanical gating as a unifying activation mechanism. Biochem. Biophys. Res. Commun., 2015, 460(1), 22-25. doi: 10.1016/j.bbrc.2015.02.067 PMID: 25998730
- Julius, D. TRP channels and pain. Annu. Rev. Cell Dev. Biol., 2013, 29(1), 355-384. doi: 10.1146/annurev-cellbio-101011-155833 PMID: 24099085
- Nilius, B.; Voets, T.; Peters, J. TRP channels in disease. Sci. STKE, 2005, 2005(295), re8. doi: 10.1126/stke.2952005re8 PMID: 16077087
- Froghi, S.; Grant, C.R.; Tandon, R.; Quaglia, A.; Davidson, B.; Fuller, B. New insights on the role of TRP channels in calcium signalling and immunomodulation: Review of pathways and implications for clinical practice. Clin. Rev. Allergy Immunol., 2021, 60(2), 271-292. doi: 10.1007/s12016-020-08824-3 PMID: 33405100
- Laing, R.J.; Dhaka, A. ThermoTRPs and pain. Neuroscientist, 2016, 22(2), 171-187. doi: 10.1177/1073858414567884 PMID: 25608689
- Clapham, D.E.; Runnels, L.W.; Strübing, C. The trp ion channel family. Nat. Rev. Neurosci., 2001, 2(6), 387-396. doi: 10.1038/35077544 PMID: 11389472
- Maglie, R.; Souza, M. de A. D.; Antiga, E.; Geppetti, P.; Nassini, R.; De Logu, F. The role of TRPA1 in skin physiology and pathology. Int. J. Mol. Sci., 2021, 22(6), 3065-5. doi: 10.3390/ijms22063065 PMID: 33802836
- Moore, C.; Gupta, R.; Jordt, S.E.; Chen, Y.; Liedtke, W.B. Regulation of pain and itch by TRP channels. Neurosci. Bull., 2018, 34(1), 120-142. doi: 10.1007/s12264-017-0200-8 PMID: 29282613
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature, 1997, 389(6653), 816-824. doi: 10.1038/39807 PMID: 9349813
- Dietrich, A. Modulators of transient receptor potential (TRP) channels as therapeutic options in lung disease. Pharmaceuticals, 2019, 12(1), 23-3. doi: 10.3390/ph12010023 PMID: 30717260
- Storozhuk, M.V.; Moroz, O.F.; Zholos, A.V. Multifunctional TRPV1 ion channels in physiology and pathology with focus on the brain, vasculature, and some visceral systems. BioMed Res. Int., 2019, 2019, 1-12. doi: 10.1155/2019/5806321 PMID: 31263706
- Sugiyama, D.; Kang, S.; Arpey, N.; Arunakul, P.; Usachev, Y.M.; Brennan, T.J. Hydrogen peroxide induces muscle nociception via Transient receptor potential ankyrin 1 receptors. Anesthesiology, 2017, 127(4), 695-708. doi: 10.1097/ALN.0000000000001756 PMID: 28640016
- Sugiyama, D.; Kang, S.; Brennan, T.J. Muscle reactive oxygen species (ROS) contribute to post-incisional guarding via the TRPA1 receptor. PLoS One, 2017, 12(1), e0170410. doi: 10.1371/journal.pone.0170410 PMID: 28103292
- Fang, Y.; Zhu, J.; Duan, W.; Xie, Y.; Ma, C. Inhibition of muscular nociceptive afferents via the activation of cutaneous nociceptors in a rat model of inflammatory muscle pain. Neurosci. Bull., 2020, 36(1), 1-10. doi: 10.1007/s12264-019-00406-4 PMID: 31230211
- Simonic-Kocijan, S.; Zhao, X.; Liu, W.; Wu, Y.; Uhac, I.; Wang, K. TRPV1 channel-mediated bilateral allodynia induced by unilateral masseter muscle inflammation in rats. Mol. Pain, 2013, 9, 68. doi: 10.1186/1744-8069-9-68
- Wang, S.; Lim, J.; Joseph, J.; Sen, W.; Feng, W.; Jin, Y. Ro, Man-K. C. Spontaneous and bite-evoked muscle pain are mediated by a common nociceptive pathway with differential contribution by TRPV1. J. Pain, 2017, 18(11), 1333-1345. doi: 10.1016/j.jpain.2017.06.005 PMID: 28669862
- Wang, S.; Brigoli, B.; Lim, J.; Karley, A.; Chung, M.K. Roles of TRPV1 and TRPA1 in spontaneous pain from inflamed masseter muscle. Neuroscience, 2018, 384, 290-299. doi: 10.1016/j.neuroscience.2018.05.048 PMID: 29890293
- Bai, X.; Zhang, X.; Zhou, Q. Effect of testosterone on TRPV1 expression in a model of orofacial myositis pain in the rat. J. Mol. Neurosci., 2018, 64(1), 93-101. doi: 10.1007/s12031-017-1009-7 PMID: 29209900
- Ro, J.Y.; Lee, J.S.; Zhang, Y. Activation of TRPV1 and TRPA1 leads to muscle nociception and mechanical hyperalgesia. Pain, 2009, 144(3), 270-277. doi: 10.1016/j.pain.2009.04.021 PMID: 19464796
- Lee, J.; Saloman, J.L.; Weiland, G.; Auh, Q.S.; Chung, M.K.; Ro, J.Y. Functional interactions between NMDA receptors and TRPV1 in trigeminal sensory neurons mediate mechanical hyperalgesia in the rat masseter muscle. Pain, 2012, 153(7), 1514-1524. doi: 10.1016/j.pain.2012.04.015 PMID: 22609428
- Saloman, J.L.; Chung, M.K.; Ro, J.Y. P2X3 and TRPV1 functionally interact and mediate sensitization of trigeminal sensory neurons. Neuroscience, 2013, 232, 226-238. doi: 10.1016/j.neuroscience.2012.11.015 PMID: 23201260
- Chung, M.K.; Lee, J.; Joseph, J.; Saloman, J.; Ro, J.Y. Peripheral group I metabotropic glutamate receptor activation leads to muscle mechanical hyperalgesia through TRPV1 phosphorylation in the rat. J. Pain, 2015, 16(1), 67-76. doi: 10.1016/j.jpain.2014.10.008 PMID: 25451626
- Fujii, Y.; Ozaki, N.; Taguchi, T.; Mizumura, K.; Furukawa, K.; Sugiura, Y. TRP channels and ASICs mediate mechanical hyperalgesia in models of inflammatory muscle pain and delayed onset muscle soreness. Pain, 2008, 140(2), 292-304. doi: 10.1016/j.pain.2008.08.013 PMID: 18834667
- Murase, S.; Kato, K.; Taguchi, T.; Mizumura, K. Glial cell line-derived neurotrophic factor sensitized the mechanical response of muscular thin-fibre afferents in rats. Eur. J. Pain, 2014, 18(5), 629-638. doi: 10.1002/j.1532-2149.2013.00411.x PMID: 24174387
- Walder, R.Y.; Radhakrishnan, R.; Loo, L.; Lynn, A.R.; Durga, P.M.; Steven, P.W.; Kathleen, A.S. TRPV1 is important for mechanical and heat sensitivity in uninjured animals and development of heat hypersensitivity after muscle inflammation. Pain, 2012, 153(8), 1664-1672. doi: 10.1016/j.pain.2012.04.034 PMID: 22694790
- Chen, W.N.; Lee, C.H.; Lin, S.H.; Chia-Wen, W.; Wei-Hsin, S.; John, N.W.; Chih-Cheng, C. Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia. Mol. Pain, 2014, 10(1), 40. doi: 10.1016/j.jpain.2014.01.165 PMID: 24957987
- Schmelz, M.; Schmid, R.; Handwerker, H.O.; Torebjörk, H.E. Encoding of burning pain from capsaicin-treated human skin in two categories of unmyelinated nerve fibres. Brain, 2000, 123(3), 560-571. doi: 10.1093/brain/123.3.560 PMID: 10686178
- Marchettini, P.; Simone, D.A.; Caputi, G.; Ochoa, J. Pain from excitation of identified muscle nociceptors in humans. Brain Res., 1996, 740(1-2), 109-116. doi: 10.1016/S0006-8993(96)00851-7 PMID: 8973804
- Gregory, N.S.; Sluka, K.A. Anatomical and physiological factors contributing to chronic muscle pain. Curr. Top. Behav. Neurosci., 2014, 20, 327-348. doi: 10.1007/7854_2014_294
- Amann, M.; Sidhu, S.K.; Weavil, J.C.; Mangum, T.S.; Venturelli, M. Autonomic responses to exercise: Group III/IV muscle afferents and fatigue. Auton. Neurosci., 2015, 188, 19-23. doi: 10.1016/j.autneu.2014.10.018 PMID: 25458423
- Laurin, J.; Pertici, V.; Dousset, E.; Marqueste, T.; Decherchi, P. Group III and IV muscle afferents: Role on central motor drive and clinical implications. Neuroscience, 2015, 290, 543-551. doi: 10.1016/j.neuroscience.2015.01.065 PMID: 25659344
- Christianson, J.A.; McIlwrath, S.L.; Koerber, H.R.; Davis, B.M. Transient receptor potential vanilloid 1-immunopositive neurons in the mouse are more prevalent within colon afferents compared to skin and muscle afferents. Neuroscience, 2006, 140(1), 247-257. doi: 10.1016/j.neuroscience.2006.02.015 PMID: 16564640
- Shin, D.S.; Kim, E.H.; Song, K.Y.; Hong, H.J.; Kong, M.H.; Hwang, S.J. Neurochemical characterization of the TRPV1-positive nociceptive primary afferents innervating skeletal muscles in the rats. J. Korean Neurosurg. Soc., 2008, 43(2), 97-104. doi: 10.3340/jkns.2008.43.2.97 PMID: 19096612
- Lin, Y-W.; Chen, C-C. Electrophysiological characteristics of IB4-negative TRPV1-expressing muscle afferent DRG neurons. Biophysics, 2015, 11, 9-16. doi: 10.2142/biophysics.11.9
- Andersson, D.A.; Gentry, C.; Moss, S.; Bevan, S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J. Neurosci., 2008, 28(10), 2485-2494. doi: 10.1523/JNEUROSCI.5369-07.2008 PMID: 18322093
- Arendt-Nielsen, L.; Svensson, P.; Sessle, B.J.; Wang, K. Interactions between glutamate and capsaicin in inducing muscle pain and sensitization in humans. Eur. J. Pain, 2008, 12(5), 661-670. doi: 10.1016/j.ejpain.2007.10.013
- Connor, M.; Naves, L.A.; McCleskey, E.W. Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat. Mol. Pain, 2005, 1, 1744-8069-1-31. doi: 10.1186/1744-8069-1-31 PMID: 16242047
- Sato, M.; Sato, T.; Yajima, T.; Shimazaki, K.; Ichikawa, H. The transient receptor potential cation channel subfamily V members 1 and 2, P2X purinoceptor 3 and calcitonin gene-related peptide in sensory neurons of the rat trigeminal ganglion, innervating the periosteum, masseter muscle and facial skin. Arch. Oral Biol., 2018, 96, 66-73. doi: 10.1016/j.archoralbio.2018.08.012 PMID: 30195141
- Lindquist, K.A.; Belugin, S.; Hovhannisyan, A.H.; Corey, T.M.; Salmon, A.; Akopian, A.N. Identification of trigeminal sensory neuronal types innervating masseter muscle. eNeuro., 2021, 8(5), 0176-21.2021. doi: 10.1523/ENEURO.0176-21.2021
- Jordt, S.E.; Bautista, D.M.; Chuang, H.; David, D. McKemy, Peter, M. Z., Edward, D. H., Ian, D. M., David, J. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature, 2004, 427(6971), 260-265. doi: 10.1038/nature02282 PMID: 14712238
- Souza, M. de A.D.; Nassini, R.; Geppetti, P.; De Logu, F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin. Ther. Targets, 2020, 24(10), 997-1008. doi: 10.1080/14728222.2020.1815191 PMID: 32838583
- Takizawa, M.; Harada, K.; Nakamura, K.; Tsuboi, T. Transient receptor potential ankyrin 1 channels are involved in spontaneous peptide hormone release from astrocytes. Biochem. Biophys. Res. Commun., 2018, 501(4), 988-995. doi: 10.1016/j.bbrc.2018.05.097 PMID: 29777700
- Zeng, D.; Chen, C.; Zhou, W. Xuesu, Ma, Xi, P., Yue, Z., Weikang, Z., Fenglin, L. TRPA1 deficiency alleviates inflammation of atopic dermatitis by reducing macrophage infiltration. Life Sci., 2021, 266, 118906-6. doi: 10.1016/j.lfs.2020.118906 PMID: 33338502
- Osterloh, M.; Böhm, M.; Kalbe, B.; Osterloh, S.; Hatt, H. Identification and functional characterization of TRPA1 in human myoblasts. Pflugers Arch., 2016, 468(2), 321-333. doi: 10.1007/s00424-015-1729-x PMID: 26328519
- Asgar, J.; Zhang, Y.; Saloman, J.L.; Wang, S.; Chung, M.K.; Ro, J.Y. The role of TRPA1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats. Neuroscience, 2015, 310, 206-215. doi: 10.1016/j.neuroscience.2015.09.042 PMID: 26393428
- Mihara, H.; Boudaka, A.; Tominaga, M.; Sugiyama, T. Transient receptor potential vanilloid 4 regulation of adenosine triphosphate release by the adenosine triphosphate transporter vesicular nucleotide transporter, a novel therapeutic target for gastrointestinal baroreception and chronic inflammation. Digestion, 2020, 101(1), 6-11. doi: 10.1159/000504021 PMID: 31770754
- Rodrigues, P.; Ruviaro, N.A.; Trevisan, G. TRPV4 role in neuropathic pain mechanisms in rodents. Antioxidants, 2022, 12(1), 24-4. doi: 10.3390/antiox12010024 PMID: 36670886
- Ryskamp, D.A.; Jo, A.O.; Frye, A.M. Felix, Vazquez-Chona, Nanna, M., Wallace, B.T., David, K. Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia. J. Neurosci., 2014, 34(47), 15689-15700. doi: 10.1523/JNEUROSCI.2540-14.2014 PMID: 25411497
- Balemans, D.; Boeckxstaens, G.E.; Talavera, K.; Wouters, M.M. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity. Am. J. Physiol. Gastrointest. Liver Physiol., 2017, 312(6), G635-G648. doi: 10.1152/ajpgi.00401.2016 PMID: 28385695
- Chen, L.; Liu, C.; Liu, L. Changes in osmolality modulate voltage-gated calcium channels in trigeminal ganglion neurons. Brain Res., 2008, 1208, 56-66. doi: 10.1016/j.brainres.2008.02.048 PMID: 18378217
- Zhang, Y.; Wang, Y.H.; Ge, H.Y.; Arendt-Nielsen, L.; Wang, R.; Yue, S.W. A transient receptor potential vanilloid 4 contributes to mechanical allodynia following chronic compression of dorsal root ganglion in rats. Neurosci. Lett., 2008, 432(3), 222-227. doi: 10.1016/j.neulet.2007.12.028 PMID: 18206306
- Phan, M.N.; Leddy, H.A.; Votta, B.J.; Sanjay, K.; Dana, S. Levy, David, B.L., Suk, H.L., Wolfgang, L., Farshid, G. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum., 2009, 60(10), 3028-3037. doi: 10.1002/art.24799 PMID: 19790068
- Nishida, T.; Kubota, S. Roles of CCN2 as a mechano-sensing regulator of chondrocyte differentiation. Jpn. Dent. Sci. Rev., 2020, 56(1), 119-126. doi: 10.1016/j.jdsr.2020.07.001 PMID: 33088364
- Chen, Y.; Fang, Q.; Wang, Z.; Jennifer, Y.Z.; Amanda, S.M.; Russell, P.H.; Wolfgang, B.L. Transient receptor potential vanilloid 4 ion channel functions as a pruriceptor in epidermal keratinocytes to evoke histaminergic itch. J. Biol. Chem., 2016, 291(19), 10252-10262. doi: 10.1074/jbc.M116.716464 PMID: 26961876
- Kwon, M.; Baek, S.H.; Park, C.K.; Chung, G.; Oh, S.B. Single-cell RT-PCR and immunocytochemical detection of mechanosensitive transient receptor potential channels in acutely isolated rat odontoblasts. Arch. Oral Biol., 2014, 59(12), 1266-1271. doi: 10.1016/j.archoralbio.2014.07.016 PMID: 25150531
- Solé-Magdalena, A.; Martínez-Alonso, M.; Coronado, C.A.; Junquera, L.M.; Cobo, J.; Vega, J.A. Molecular basis of dental sensitivity: The odontoblasts are multisensory cells and express multifunctional ion channels. Ann. Anat., 2018, 215, 20-29. doi: 10.1016/j.aanat.2017.09.006 PMID: 28954208
- Benfenati, V.; Amiry-Moghaddam, M.; Caprini, M.; Mylonakou, M.N.; Rapisarda, C.; Ottersen, O.P.; Ferroni, S. Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes. Neuroscience, 2007, 148(4), 876-892. doi: 10.1016/j.neuroscience.2007.06.039 PMID: 17719182
- Kanju, P.; Liedtke, W. Pleiotropic function of TRPV4 ion channels in the central nervous system. Exp. Physiol., 2016, 101(12), 1472-1476. doi: 10.1113/EP085790 PMID: 27701788
- Konno, M.; Shirakawa, H.; Iida, S.; Shinya, S.; Ikkei, M.; Takahito, M.; Keiko, K.; Takayuki, N.; Koji, S.; Shuji, K. Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide. Glia, 2012, 60(5), 761-770. doi: 10.1002/glia.22306 PMID: 22331560
- White, J.P.M.; Cibelli, M.; Urban, L.; Nilius, B. McGeown. J.G., Nagy, I. TRPV4: Molecular conductor of a diverse orchestra. Physiol. Rev., 2016, 96(3), 911-973. doi: 10.1152/physrev.00016.2015 PMID: 27252279
- Denadai-Souza, A.; Martin, L.; de Paula, M.A.V.; Maria, C. Werneck, de A., Marcelo, N. M., Nathalie, V., Nicolas, C. Role of transient receptor potential vanilloid 4 in rat joint inflammation. Arthritis Rheum., 2012, 64(6), 1848-1858. doi: 10.1002/art.34345 PMID: 22184014
- Pritschow, B.W.; Lange, T.; Kasch, J.; Kunert-Keil, C.; Liedtke, W.; Brinkmeier, H. Functional TRPV4 channels are expressed in mouse skeletal muscle and can modulate resting Ca2+ influx and muscle fatigue. Pflugers Arch., 2011, 461(1), 115-122. doi: 10.1007/s00424-010-0883-4 PMID: 20924600
- Ota, H.; Katanosaka, K.; Murase, S.; Kashio, M.; Tominaga, M.; Mizumura, K. TRPV1 and TRPV4 play pivotal roles in delayed onset muscle soreness. PLoS One, 2013, 8(6), e65751. doi: 10.1371/journal.pone.0065751 PMID: 23799042
- Brum, E.S.; Fialho, M.F.P.; Fischer, S.P.M.; Diane, D.H.; Débora, F.G.; Rahisa, S.; Ricardo, A. Machado-de-Ávila, Cristiane, L., Dalla, C., Félix, A. A. S., Sara, M. O. Relevance of mitochondrial dysfunction in the reserpine-induced experimental fibromyalgia model. Mol. Neurobiol., 2020, 57(10), 4202-4217. doi: 10.1007/s12035-020-01996-1 PMID: 32685997
- Macfarlane, T.V.; Blinkhorn, A.S.; Davies, R.M.; Ryan, P.; Worthington, H.V.; Macfarlane, G.J. Orofacial pain: Just another chronic pain? Results from a population-based survey. Pain, 2002, 99(3), 453-458. doi: 10.1016/S0304-3959(02)00181-1 PMID: 12406520
- Schiffman, E.; Ohrbach, R.; Truelove, E.; John, L.; Gary, A.; Jean-Paul, G.; Thomas, L.; Peter, S.; Yoly, G.; Frank, L.; Ambra, M.; Sharon, L. B., Werner, C. Mark, D., Dominik, E., Charly, G., Louis, J. G., Jennifer, A H., Lars, H., Rigmor, J., Mike, T. J., Antoon, De Laat., Reny de Leeuw., William, M., Marylee, van der Meulen., Greg, M. M., Donald, R. N., Sandro, P., Arne, P., Paul, P., Barry, S., Corine, M. V. Joanna, Z., Samuel, F. D. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: Recommendations of the international RDC/TMD consortium network and orofacial pain special interest group. J. Oral Facial Pain Headache, 2014, 28(1), 6-27. doi: 10.11607/jop.1151 PMID: 24482784
- Lövgren, A.; Häggman-Henrikson, B.; Visscher, C.M.; Lobbezoo, F.; Marklund, S.; Wänman, A. Temporomandibular pain and jaw dysfunction at different ages covering the lifespan: A population based study. Eur. J. Pain, 2016, 20(4), 532-540. doi: 10.1002/ejp.755 PMID: 26311138
- Taheri, J.B.; Anbari, F.; Sani, S.K.; Mirmoezi, S.M.; Khalighi, H.R. A 10-year overview of chronic orofacial pain in patients at an oral medicine center in Iran. J. Dent. Anesth. Pain Med., 2022, 22(4), 289-294. doi: 10.17245/jdapm.2022.22.4.289 PMID: 35991358
- Shueb, S.S.; Nixdorf, D.R.; John, M.T.; Alonso, B.F.; Durham, J. What is the impact of acute and chronic orofacial pain on quality of life? J. Dent., 2015, 43(10), 1203-1210. doi: 10.1016/j.jdent.2015.06.001 PMID: 26073033
- Oghli, I.; List, T.; Su, N.; Häggman-Henrikson, B. The impact of oro‐facial pain conditions on oral health‐related quality of life: A systematic review. J. Oral Rehabil., 2020, 47(8), 1052-1064. doi: 10.1111/joor.12994 PMID: 32415993
- Sarlani, E.; Grace, E.G.; Reynolds, M.A.; Greenspan, J.D. Evidence for up-regulated central nociceptive processing in patients with masticatory myofascial pain. J. Orofac. Pain, 2004, 18(1), 41-55. PMID: 15029872
- Ferrillo, M.; Giudice, A.; Marotta, N.; Francesco, F. Daniela, Di V., Antonio, A., Pietro F., Alessandro, de, S. Pain management and rehabilitation for central sensitization in temporomandibular disorders: A comprehensive review. Int. J. Mol. Sci., 2022, 23(20), 12164-4. doi: 10.3390/ijms232012164 PMID: 36293017
- Matsuka, Y. Orofacial pain: Molecular mechanisms, diagnosis, and treatment 2021. Int. J. Mol. Sci., 2022, 23(9), 4826-6. doi: 10.3390/ijms23094826 PMID: 35563219
- Körtési, T.; Tuka, B.; Nyári, A.; Vécsei, L.; Tajti, J. The effect of orofacial complete Freunds adjuvant treatment on the expression of migraine-related molecules. J. Headache Pain, 2019, 20(1), 43-3. doi: 10.1186/s10194-019-0999-7 PMID: 31035923
- Okamoto, K.; Hasegawa, M.; Piriyaprasath, K.; Kakihara, Y.; Saeki, M.; Yamamura, K. Preclinical models of deep craniofacial nociception and temporomandibular disorder pain. Jpn. Dent. Sci. Rev., 2021, 57, 231-241. doi: 10.1016/j.jdsr.2021.10.002 PMID: 34815817
- Bagüés, A.; Martín-Fontelles, M.I.; Esteban-Hernández, J.; Sánchez-Robles, E.M. Characterization of the nociceptive effect of carrageenan: Masseter versus gastrocnemius. Muscle Nerve, 2017, 56(4), 804-813. doi: 10.1002/mus.25538 PMID: 28026014
- McCarson, K.E.; Fehrenbacher, J.C. Models of inflammation: Carrageenan‐ or complete freunds adjuvant (CFA)Induced edema and hypersensitivity in the rat. Curr. Protoc., 2021, 1(7), e202. doi: 10.1002/cpz1.202 PMID: 34314105
- Martínez-García, M.A.; Migueláñez-Medrán, B.C.; Goicoechea, C. Animal models in the study and treatment of orofacial pain. J. Clin. Exp. Dent., 2019, 11(4), e382. doi: 10.4317/jced.55429 PMID: 31110619
- Chung, M.K.; Park, J.; Asgar, J.; Ro, J.Y. Transcriptome analysis of trigeminal ganglia following masseter muscle inflammation in rats. Mol. Pain, 2016, 12, 1744806916668526. doi: 10.1177/1744806916668526 PMID: 27702909
- Chen, J.; Qin, H.J.; Yang, F.; Liu, J.; Guan, T.; Qu, F.M.; Zhang, G.H.; Shi, J.R.; Xie, X.C.; Yang, C.L.; Wu, K.H.; Li, Y.Q.; Lu, L. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se. Phys. Rev. Lett., 2010, 105(17), 176602-2. doi: 10.1103/PhysRevLett.105.176602 PMID: 21231064
- Häggman-Henrikson, B.; Liv, P.; Ilgunas, A.; Corine, M.V.; Frank, L.; Justin, D.; Anna, L. Increasing gender differences in the prevalence and chronification of orofacial pain in the population. Pain, 2020, 161(8), 1768-1775. doi: 10.1097/j.pain.0000000000001872 PMID: 32701837
- Hartmann, A.; Seeberger, R.; Bittner, M.; Rolke, R.; Welte-Jzyk, C.; Daubländer, M. Profiling intraoral neuropathic disturbances following lingual nerve injury and in burning mouth syndrome. BMC Oral Health, 2017, 17(1), 68. doi: 10.1186/s12903-017-0360-y PMID: 28330489
- Gazerani, P.; Andersen, O.K.; Arendt-Nielsen, L. Site-specific, dose-dependent, and sex-related responses to the experimental pain model induced by intradermal injection of capsaicin to the foreheads and forearms of healthy humans. J. Orofac. Pain, 2007, 21(4), 289-302. PMID: 18018990
- Hody, S.; Croisier, J.L.; Bury, T.; Rogister, B.; Leprince, P. Eccentric muscle contractions: Risks and benefits. Front. Physiol., 2019, 10, 536. doi: 10.3389/fphys.2019.00536 PMID: 31130877
- Mense, S. Muscle pain. Dtsch. Arztebl. Int., 2008, 105(12), 214-219. doi: 10.3238/artzebl.2008.0214 PMID: 19629211
- Fernandes, E.S.; Fernandes, M.A.; Keeble, J.E. The functions of TRPA1 and TRPV1: Moving away from sensory nerves. Br. J. Pharmacol., 2012, 166(2), 510-521. doi: 10.1111/j.1476-5381.2012.01851.x PMID: 22233379
- ONeill, J.; Brock, C.; Olesen, A.E.; Andresen, T.; Nilsson, M.; Dickenson, A.H. Unravelling the mystery of capsaicin: A tool to understand and treat pain. Pharmacol. Rev., 2012, 64(4), 939-971. doi: 10.1124/pr.112.006163 PMID: 23023032
- Chung, M.K.; Campbell, J. Use of capsaicin to treat pain: Mechanistic and therapeutic considerations. Pharmaceuticals, 2016, 9(4), 66. doi: 10.3390/ph9040066 PMID: 27809268
- Retamoso, L.T.; Silveira, M.E.P.; Lima, F.D.; Guilherme, L.B.; Guilherme, B.; Leandro, R.R.; Pietro, M.C.; Cristina, W.N.; Ana, C.M.B.; Ana, F.F.; Mauro, S.O. 7, Michele, R. F., Luiz, F. F. R. Increased xanthine oxidase-related ROS production and TRPV1 synthesis preceding DOMS post-eccentric exercise in rats. Life Sci., 2016, 152, 52-59. doi: 10.1016/j.lfs.2016.03.029 PMID: 26987748
- Abdelhamid, R.E.; Kovacs, K.J.; Pasley, J.D.; Nunez, M.G.; Larson, A.A. Forced swim-induced musculoskeletal hyperalgesia is mediated by CRF2 receptors but not by TRPV1 receptors. Neuropharmacology, 2013, 72, 29-37. doi: 10.1016/j.neuropharm.2013.04.016 PMID: 23624287
- Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell, 2009, 139(2), 267-284. doi: 10.1016/j.cell.2009.09.028 PMID: 19837031
Supplementary files
