Targeting Gut Dysbiosis and Microbiome Metabolites for the Development of Therapeutic Modalities for Neurological Disorders
- Authors: Wiefels M.1, Furar E.2, Eshraghi R.3, Mittal J.4, Memis I.4, Moosa M.5, Mittal R.6, Eshraghi A.7
-
Affiliations:
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngolog, Miller School of Medicine, University of Miami
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine,, Miller School of Medicine, University of Miami,
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, Miller School of Medicine, University of Miami
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology,, Miller School of Medicine, University of Miami
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology,, Miller School of Medicine, University of Miami,
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami,
- Issue: Vol 22, No 1 (2024)
- Pages: 123-139
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644248
- DOI: https://doi.org/10.2174/1570159X20666221003085508
- ID: 644248
Cite item
Full Text
Abstract
The gut microbiota, composed of numerous species of microbes, works in synergy with the various organ systems in the body to bolster our overall health and well-being. The most well-known function of the gut microbiome is to facilitate the metabolism and absorption of crucial nutrients, such as complex carbohydrates, while also generating vitamins. In addition, the gut microbiome plays a crucial role in regulating the functioning of the central nervous system (CNS). Host genetics, including specific genes and single nucleotide polymorphisms (SNPs), have been implicated in the pathophysiology of neurological disorders, including Parkinsons disease (PD), Alzheimers disease (AD), and autism spectrum disorder (ASD). The gut microbiome dysbiosis also plays a role in the pathogenesis of these neurodegenerative disorders, thus perturbing the gut-brain axis. Overproduction of certain metabolites synthesized by the gut microbiome, such as short-chain fatty acids (SCFAs) and p-cresyl sulfate, are known to interfere with microglial function and trigger misfolding of alpha-synuclein protein, which can build up inside neurons and cause damage. By determining the association of the gut microbiome and its metabolites with various diseases, such as neurological disorders, future research will pave the way for the development of effective preventive and treatment modalities.
About the authors
Matthew Wiefels
Hearing Research and Communication Disorders Laboratory, Department of Otolaryngolog, Miller School of Medicine, University of Miami
Email: info@benthamscience.net
Emily Furar
Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine,, Miller School of Medicine, University of Miami,
Email: info@benthamscience.net
Rebecca Eshraghi
Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, Miller School of Medicine, University of Miami
Email: info@benthamscience.net
Jeenu Mittal
Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology,, Miller School of Medicine, University of Miami
Email: info@benthamscience.net
Idil Memis
Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology,, Miller School of Medicine, University of Miami
Email: info@benthamscience.net
Moeed Moosa
Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology,, Miller School of Medicine, University of Miami,
Email: info@benthamscience.net
Rahul Mittal
Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami
Email: info@benthamscience.net
Adrien Eshraghi
Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami,
Author for correspondence.
Email: info@benthamscience.net
References
- Verhaar, B.J.H.; Hendriksen, H.M.A.; de Leeuw, F.A.; Doorduijn, A.S.; van Leeuwenstijn, M.; Teunissen, C.E.; Barkhof, F.; Scheltens, P.; Kraaij, R.; van Duijn, C.M.; Nieuwdorp, M.; Muller, M.; van der Flier, W.M. Gut microbiota composition is related to AD pathology. Front. Immunol., 2022, 12, 794519. doi: 10.3389/fimmu.2021.794519 PMID: 35173707
- Konopelski, P.; Mogilnicka, I. Biological effects of indole-3-propionic acid, a gut microbiota-derived metabolite, and its precursor tryptophan in mammals health and disease. Int. J. Mol. Sci., 2022, 23(3), 1222. doi: 10.3390/ijms23031222 PMID: 35163143
- Eshraghi, R.S.; Davies, C.; Iyengar, R.; Perez, L.; Mittal, R.; Eshraghi, A.A. Gut-induced inflammation during development may compromise the blood-brain barrier and predispose to autism spectrum disorder. J. Clin. Med., 2020, 10(1), 27. doi: 10.3390/jcm10010027 PMID: 33374296
- Eshraghi, R.S.; Deth, R.C.; Mittal, R.; Aranke, M.; Kay, S.I.S.; Moshiree, B.; Eshraghi, A.A. Early disruption of the microbiome leading to decreased antioxidant capacity and epigenetic changes: Implications for the rise in autism. Front. Cell. Neurosci., 2018, 12, 256. doi: 10.3389/fncel.2018.00256 PMID: 30158857
- Kim, C.H.; Jung, J.; Lee, Y.; Kim, K.; Kang, S.; Kang, G.; Chu, H.; Kim, S.Y.; Lee, S. Comparison of metabolites and gut microbes between patients with Parkinsons disease and healthy individuals a pilot clinical observational study (STROBE compliant). Healthcare (Basel), 2022, 10(2), 302. doi: 10.3390/healthcare10020302 PMID: 35206916
- Chen, S.J.; Chen, C.C.; Liao, H.Y.; Lin, Y.T.; Wu, Y.W.; Liou, J.M.; Wu, M.S.; Kuo, C.H.; Lin, C.H. Association of fecal and plasma levels of short-chain fatty acids with gut microbiota and clinical severity in patients with Parkinson disease. Neurology, 2022, 98(8), e848-e858. doi: 10.1212/WNL.0000000000013225 PMID: 34996879
- Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; Chesselet, M.F.; Keshavarzian, A.; Shannon, K.M.; Krajmalnik-Brown, R.; Wittung-Stafshede, P.; Knight, R.; Mazmanian, S.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinsons disease. Cell, 2016, 167(6), 1469-1480.e12. doi: 10.1016/j.cell.2016.11.018 PMID: 27912057
- Brody, H. The gut microbiome. Nature, 2020, 577(7792), S5. doi: 10.1038/d41586-020-00194-2 PMID: 31996824
- Cresci, G.A.; Bawden, E. Gut microbiome. Nutr. Clin. Pract., 2015, 30(6), 734-746. doi: 10.1177/0884533615609899 PMID: 26449893
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489(7415), 220-230. doi: 10.1038/nature11550 PMID: 22972295
- Shreiner, A.B.; Kao, J.Y.; Young, V.B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol., 2015, 31(1), 69-75. doi: 10.1097/MOG.0000000000000139 PMID: 25394236
- Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486(7402), 207-214. doi: 10.1038/nature11234 PMID: 22699609
- Manor, O.; Dai, C.L.; Kornilov, S.A.; Smith, B.; Price, N.D.; Lovejoy, J.C.; Gibbons, S.M.; Magis, A.T. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun., 2020, 11(1), 5206. doi: 10.1038/s41467-020-18871-1 PMID: 33060586
- Wu, Y.T.; Shen, S.J.; Liao, K.F.; Huang, C.Y. Dietary plant and animal protein sources oppositely modulate fecal Bilophila and Lachnoclostridium in vegetarians and omnivores. Microbiol. Spectr., 2022, 10(2), e02047-e21. doi: 10.1128/spectrum.02047-21 PMID: 35285706
- Tanes, C.; Bittinger, K.; Gao, Y.; Friedman, E.S.; Nessel, L.; Paladhi, U.R.; Chau, L.; Panfen, E.; Fischbach, M.A.; Braun, J.; Xavier, R.J.; Clish, C.B.; Li, H.; Bushman, F.D.; Lewis, J.D.; Wu, G.D. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host Microbe, 2021, 29(3), 394-407.e5. doi: 10.1016/j.chom.2020.12.012 PMID: 33440171
- Cahana, I.; Iraqi, F.A. Impact of host genetics on gut microbiome: Take‐home lessons from human and mouse studies. Animal Model. Exp. Med., 2020, 3(3), 229-236. doi: 10.1002/ame2.12134 PMID: 33024944
- Kurilshikov, A.; Medina-Gomez, C.; Bacigalupe, R.; Radjabzadeh, D.; Wang, J.; Demirkan, A.; Le Roy, C.I.; Raygoza Garay, J.A.; Finnicum, C.T.; Liu, X.; Zhernakova, D.V.; Bonder, M.J.; Hansen, T.H.; Frost, F.; Rühlemann, M.C.; Turpin, W.; Moon, J.Y.; Kim, H.N.; Lüll, K.; Barkan, E.; Shah, S.A.; Fornage, M.; Szopinska-Tokov, J.; Wallen, Z.D.; Borisevich, D.; Agreus, L.; Andreasson, A.; Bang, C.; Bedrani, L.; Bell, J.T.; Bisgaard, H.; Boehnke, M.; Boomsma, D.I.; Burk, R.D.; Claringbould, A.; Croitoru, K.; Davies, G.E.; van Duijn, C.M.; Duijts, L.; Falony, G.; Fu, J.; van der Graaf, A.; Hansen, T.; Homuth, G.; Hughes, D.A.; Ijzerman, R.G.; Jackson, M.A.; Jaddoe, V.W.V.; Joossens, M.; Jørgensen, T.; Keszthelyi, D.; Knight, R.; Laakso, M.; Laudes, M.; Launer, L.J.; Lieb, W.; Lusis, A.J.; Masclee, A.A.M.; Moll, H.A.; Mujagic, Z.; Qibin, Q.; Rothschild, D.; Shin, H.; Sørensen, S.J.; Steves, C.J.; Thorsen, J.; Timpson, N.J.; Tito, R.Y.; Vieira-Silva, S.; Völker, U.; Völzke, H.; Võsa, U.; Wade, K.H.; Walter, S.; Watanabe, K.; Weiss, S.; Weiss, F.U.; Weissbrod, O.; Westra, H.J.; Willemsen, G.; Payami, H.; Jonkers, D.M.A.E.; Arias Vasquez, A.; de Geus, E.J.C.; Meyer, K.A.; Stokholm, J.; Segal, E.; Org, E.; Wijmenga, C.; Kim, H.L.; Kaplan, R.C.; Spector, T.D.; Uitterlinden, A.G.; Rivadeneira, F.; Franke, A.; Lerch, M.M.; Franke, L.; Sanna, S.; DAmato, M.; Pedersen, O.; Paterson, A.D.; Kraaij, R.; Raes, J.; Zhernakova, A. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet., 2021, 53(2), 156-165. doi: 10.1038/s41588-020-00763-1 PMID: 33462485
- Schmidt, V.; Enav, H.; Spector, T.D.; Youngblut, N.D.; Ley, R.E. Strain-level analysis of Bifidobacterium spp. from gut microbiomes of adults with differing lactase persistence genotypes. mSystems, 2020, 5(5), e00911-e00920. doi: 10.1128/mSystems.00911-20 PMID: 32994293
- Kolde, R.; Franzosa, E.A.; Rahnavard, G.; Hall, A.B.; Vlamakis, H.; Stevens, C.; Daly, M.J.; Xavier, R.J.; Huttenhower, C. Host genetic variation and its microbiome interactions within the Human Microbiome Project. Genome Med., 2018, 10(1), 6. doi: 10.1186/s13073-018-0515-8 PMID: 29378630
- Lim, M.Y.; You, H.J.; Yoon, H.S.; Kwon, B.; Lee, J.Y.; Lee, S.; Song, Y.M.; Lee, K.; Sung, J.; Ko, G. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut, 2017, 66(6), 1031-1038. doi: 10.1136/gutjnl-2015-311326 PMID: 27053630
- Montgomery, T.L.; Künstner, A.; Kennedy, J.J.; Fang, Q.; Asarian, L.; Culp-Hill, R.; DAlessandro, A.; Teuscher, C.; Busch, H.; Krementsov, D.N. Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity. Proc. Natl. Acad. Sci. USA, 2020, 117(44), 27516-27527. doi: 10.1073/pnas.2002817117 PMID: 33077601
- Turpin, W.; Espin-Garcia, O.; Xu, W.; Silverberg, M.S.; Kevans, D.; Smith, M.I.; Guttman, D.S.; Griffiths, A.; Panaccione, R.; Otley, A.; Xu, L.; Shestopaloff, K.; Moreno-Hagelsieb, G.; Paterson, A.D.; Croitoru, K. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet., 2016, 48(11), 1413-1417. doi: 10.1038/ng.3693 PMID: 27694960
- Bubier, J.A.; Chesler, E.J.; Weinstock, G.M. Host genetic control of gut microbiome composition. Mamm. Genome, 2021, 32(4), 263-281. doi: 10.1007/s00335-021-09884-2 PMID: 34159422
- Tang, J.; Wu, X.; Mou, M.; Wang, C.; Wang, L.; Li, F.; Guo, M.; Yin, J.; Xie, W.; Wang, X.; Wang, Y.; Ding, Y.; Xue, W.; Zhu, F. GIMICA: Host genetic and immune factors shaping human microbiota. Nucleic Acids Res., 2021, 49(D1), D715-D722. doi: 10.1093/nar/gkaa851 PMID: 33045729
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. (Lausanne), 2020, 11, 25. doi: 10.3389/fendo.2020.00025 PMID: 32082260
- Mitchell, R.W.; On, N.H.; Del Bigio, M.R.; Miller, D.W.; Hatch, G.M. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J. Neurochem., 2011, 117(4), no. doi: 10.1111/j.1471-4159.2011.07245.x PMID: 21395585
- Lee, J.; Venna, V.R.; Durgan, D.J.; Shi, H.; Hudobenko, J.; Putluri, N.; Petrosino, J.; McCullough, L.D.; Bryan, R.M. Young versus aged microbiota transplants to germ-free mice: Increased short-chain fatty acids and improved cognitive performance. Gut Microbes, 2020, 12(1), 1814107. doi: 10.1080/19490976.2020.1814107 PMID: 32897773
- Unger, M.M.; Spiegel, J.; Dillmann, K.U.; Grundmann, D.; Philippeit, H.; Bürmann, J.; Faßbender, K.; Schwiertz, A.; Schäfer, K.H. Short chain fatty acids and gut microbiota differ between patients with Parkinsons disease and age-matched controls. Parkinsonism Relat. Disord., 2016, 32, 66-72. doi: 10.1016/j.parkreldis.2016.08.019 PMID: 27591074
- Thomas, R.H.; Meeking, M.M.; Mepham, J.R.; Tichenoff, L.; Possmayer, F.; Liu, S.; MacFabe, D.F. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: Further development of a rodent model of autism spectrum disorders. J. Neuroinflammation, 2012, 9(1), 695. doi: 10.1186/1742-2094-9-153 PMID: 22747852
- Thomas, R.H.; Foley, K.A.; Mepham, J.R.; Tichenoff, L.J.; Possmayer, F.; MacFabe, D.F. Altered brain phospholipid and acylcarnitine profiles in propionic acid infused rodents: Further development of a potential model of autism spectrum disorders. J. Neurochem., 2010, 113(2), 515-529. doi: 10.1111/j.1471-4159.2010.06614.x PMID: 20405543
- MacFabe, D.F.; Cain, N.E.; Boon, F.; Ossenkopp, K.P.; Cain, D.P. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav. Brain Res., 2011, 217(1), 47-54. doi: 10.1016/j.bbr.2010.10.005 PMID: 20937326
- Shultz, S.R.; MacFabe, D.F.; Martin, S.; Jackson, J.; Taylor, R.; Boon, F.; Ossenkopp, K.P.; Cain, D.P. Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the LongEvans rat: Further development of a rodent model of autism. Behav. Brain Res., 2009, 200(1), 33-41. doi: 10.1016/j.bbr.2008.12.023 PMID: 19154758
- Shultz, S.R.; MacFabe, D.F.; Ossenkopp, K.P.; Scratch, S.; Whelan, J.; Taylor, R.; Cain, D.P. Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: Implications for an animal model of autism. Neuropharmacology, 2008, 54(6), 901-911. doi: 10.1016/j.neuropharm.2008.01.013 PMID: 18395759
- Zheng, W.; He, R.; Yan, Z.; Huang, Y.; Huang, W.; Cai, Z.; Su, Y.; Liu, S.; Deng, Y.; Wang, Q.; Xie, H. Regulation of immune-driven pathogenesis in Parkinsons disease by gut microbiota. Brain Behav. Immun., 2020, 87, 890-897. doi: 10.1016/j.bbi.2020.01.009 PMID: 31931152
- Sharon, G.; Cruz, N.J.; Kang, D.W.; Gandal, M.J.; Wang, B.; Kim, Y.M.; Zink, E.M.; Casey, C.P.; Taylor, B.C.; Lane, C.J.; Bramer, L.M.; Isern, N.G.; Hoyt, D.W.; Noecker, C.; Sweredoski, M.J.; Moradian, A.; Borenstein, E.; Jansson, J.K.; Knight, R.; Metz, T.O.; Lois, C.; Geschwind, D.H.; Krajmalnik-Brown, R.; Mazmanian, S.K.; Mazmanian, S.K. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell, 2019, 177(6), 1600-1618.e17. doi: 10.1016/j.cell.2019.05.004 PMID: 31150625
- Mersman, B.; Zaidi, W.; Syed, N.I.; Xu, F. Taurine promotes neurite outgrowth and synapse development of both vertebrate and invertebrate central neurons. Front. Synaptic Neurosci., 2020, 12, 29. doi: 10.3389/fnsyn.2020.00029 PMID: 32792935
- Kaelberer, M.M.; Buchanan, K.L.; Klein, M.E.; Barth, B.B.; Montoya, M.M.; Shen, X.; Bohórquez, D.V. A gut-brain neural circuit for nutrient sensory transduction. Science, 2018, 361(6408), eaat5236. doi: 10.1126/science.aat5236 PMID: 30237325
- Needham, B.D.; Kaddurah-Daouk, R.; Mazmanian, S.K. Gut microbial molecules in behavioural and neurodegenerative conditions. Nat. Rev. Neurosci., 2020, 21(12), 717-731. doi: 10.1038/s41583-020-00381-0 PMID: 33067567
- Bermudez-Martin, P.; Becker, J.A.J.; Caramello, N.; Fernandez, S.P.; Costa-Campos, R.; Canaguier, J.; Barbosa, S.; Martinez-Gili, L.; Myridakis, A.; Dumas, M.E.; Bruneau, A.; Cherbuy, C.; Langella, P.; Callebert, J.; Launay, J.M.; Chabry, J.; Barik, J.; Le Merrer, J.; Glaichenhaus, N.; Davidovic, L. The microbial metabolite p-Cresol induces autistic-like behaviors in mice by remodeling the gut microbiota. Microbiome, 2021, 9(1), 157. doi: 10.1186/s40168-021-01103-z PMID: 34238386
- Needham, B.D.; Adame, M.D.; Serena, G.; Rose, D.R.; Preston, G.M.; Conrad, M.C.; Campbell, A.S.; Donabedian, D.H.; Fasano, A.; Ashwood, P.; Mazmanian, S.K. Plasma and fecal metabolite profiles in autism spectrum disorder. Biol. Psychiatry, 2021, 89(5), 451-462. doi: 10.1016/j.biopsych.2020.09.025 PMID: 33342544
- Hsiao, E.Y.; McBride, S.W.; Hsien, S.; Sharon, G.; Hyde, E.R.; McCue, T.; Codelli, J.A.; Chow, J.; Reisman, S.E.; Petrosino, J.F.; Patterson, P.H.; Mazmanian, S.K. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 2013, 155(7), 1451-1463. doi: 10.1016/j.cell.2013.11.024 PMID: 24315484
- Gabriele, S.; Sacco, R.; Cerullo, S.; Neri, C.; Urbani, A.; Tripi, G.; Malvy, J.; Barthelemy, C.; Bonnet-Brihault, F.; Persico, A.M. Urinary p -cresol is elevated in young French children with autism spectrum disorder: A replication study. Biomarkers, 2014, 19(6), 463-470. doi: 10.3109/1354750X.2014.936911 PMID: 25010144
- Gacias, M.; Gaspari, S.; Santos, P.M.G.; Tamburini, S.; Andrade, M.; Zhang, F.; Shen, N.; Tolstikov, V.; Kiebish, M.A.; Dupree, J.L.; Zachariou, V.; Clemente, J.C.; Casaccia, P. Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. eLife, 2016, 5, e13442. doi: 10.7554/eLife.13442 PMID: 27097105
- Guzmán-Salas, S.; Weber, A.; Malci, A.; Lin, X.; Herrera-Molina, R.; Cerpa, W.; Dorador, C.; Signorelli, J.; Zamorano, P. The metaboliteP ‐cresol impairs dendritic development, synaptogenesis, and synapse function in hippocampal neurons: Implications for autism spectrum disorder. J. Neurochem., 2022, 161(4), 335-349. doi: 10.1111/jnc.15604 PMID: 35257373
- Daneberga, Z.; Nakazawa-Miklasevica, M.; Berga-Svitina, E.; Murmane, D.; Isarova, D.; Cupane, L.; Masinska, M.; Nartisa, I.; Lazdane, A.; Miklasevics, E. Urinary organic acids spectra in children with altered gut microbiota composition and autistic spectrum disorder. Nord. J. Psychiatry, 2021, 1-7. doi: 10.1080/08039488.2021.2014954 PMID: 34935590
- Kang, D.W.; Adams, J.B.; Vargason, T.; Santiago, M.; Hahn, J.; Krajmalnik-Brown, R. Distinct fecal and plasma metabolites in children with autism spectrum disorders and their modulation after microbiota transfer therapy. MSphere, 2020, 5(5), e00314-e00320. doi: 10.1128/mSphere.00314-20 PMID: 33087514
- Gevi, F.; Belardo, A.; Zolla, L. A metabolomics approach to investigate urine levels of neurotransmitters and related metabolites in autistic children. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165859. doi: 10.1016/j.bbadis.2020.165859 PMID: 32512190
- Kang, D.W.; Ilhan, Z.E.; Isern, N.G.; Hoyt, D.W.; Howsmon, D.P.; Shaffer, M.; Lozupone, C.A.; Hahn, J.; Adams, J.B.; Krajmalnik-Brown, R. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe, 2018, 49, 121-131. doi: 10.1016/j.anaerobe.2017.12.007 PMID: 29274915
- Altieri, L.; Neri, C.; Sacco, R.; Curatolo, P.; Benvenuto, A.; Muratori, F.; Santocchi, E.; Bravaccio, C.; Lenti, C.; Saccani, M.; Rigardetto, R.; Gandione, M.; Urbani, A.; Persico, A.M. Urinary p -cresol is elevated in small children with severe autism spectrum disorder. Biomarkers, 2011, 16(3), 252-260. doi: 10.3109/1354750X.2010.548010 PMID: 21329489
- Velasquez, M.; Ramezani, A.; Manal, A.; Raj, D. Trimethylamine N-oxide: The good, the bad and the unknown. Toxins (Basel), 2016, 8(11), 326. doi: 10.3390/toxins8110326 PMID: 27834801
- Hoyles, L.; Pontifex, M.G.; Rodriguez-Ramiro, I.; Anis-Alavi, M.A.; Jelane, K.S.; Snelling, T.; Solito, E.; Fonseca, S.; Carvalho, A.L.; Carding, S.R.; Müller, M.; Glen, R.C.; Vauzour, D.; McArthur, S. Regulation of bloodbrain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide. Microbiome, 2021, 9(1), 235. doi: 10.1186/s40168-021-01181-z PMID: 34836554
- Gobbetti, T.; Cooray, S.N. Annexin A1 and resolution of inflammation: Tissue repairing properties and signalling signature. Biol. Chem., 2016, 397(10), 981-993. doi: 10.1515/hsz-2016-0200 PMID: 27447237
- Cristante, E.; McArthur, S.; Mauro, C.; Maggioli, E.; Romero, I.A.; Wylezinska-Arridge, M.; Couraud, P.O.; Lopez-Tremoleda, J.; Christian, H.C.; Weksler, B.B.; Malaspina, A.; Solito, E. Identification of an essential endogenous regulator of bloodbrain barrier integrity, and its pathological and therapeutic implications. Proc. Natl. Acad. Sci. USA, 2013, 110(3), 832-841. doi: 10.1073/pnas.1209362110 PMID: 23277546
- Matheoud, D.; Cannon, T.; Voisin, A.; Penttinen, A.M.; Ramet, L.; Fahmy, A.M.; Ducrot, C.; Laplante, A.; Bourque, M.J.; Zhu, L.; Cayrol, R.; Le Campion, A.; McBride, H.M.; Gruenheid, S.; Trudeau, L.E.; Desjardins, M. Intestinal infection triggers Parkinsons disease-like symptoms in Pink1−/− mice. Nature, 2019, 571(7766), 565-569. doi: 10.1038/s41586-019-1405-y PMID: 31316206
- Wei, G.Z.; Martin, K.A.; Xing, P.Y.; Agrawal, R.; Whiley, L.; Wood, T.K.; Hejndorf, S.; Ng, Y.Z.; Low, J.Z.Y.; Rossant, J.; Nechanitzky, R.; Holmes, E.; Nicholson, J.K.; Tan, E.K.; Matthews, P.M.; Pettersson, S. Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA, 2021, 118(27), e2021091118. doi: 10.1073/pnas.2021091118 PMID: 34210797
- Agirman, G.; Yu, K.B.; Hsiao, E.Y. Signaling inflammation across the gut-brain axis. Science, 2021, 374(6571), 1087-1092. doi: 10.1126/science.abi6087 PMID: 34822299
- Campos-Acuña, J.; Elgueta, D.; Pacheco, R. T-cell-driven inflammation as a mediator of the gut-brain axis involved in Parkinsons disease. Front. Immunol., 2019, 10, 239. doi: 10.3389/fimmu.2019.00239 PMID: 30828335
- Singh, V.; Roth, S.; Llovera, G.; Sadler, R.; Garzetti, D.; Stecher, B.; Dichgans, M.; Liesz, A. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci., 2016, 36(28), 7428-7440. doi: 10.1523/JNEUROSCI.1114-16.2016 PMID: 27413153
- Rothhammer, V.; Mascanfroni, I.D.; Bunse, L.; Takenaka, M.C.; Kenison, J.E.; Mayo, L.; Chao, C.C.; Patel, B.; Yan, R.; Blain, M.; Alvarez, J.I.; Kébir, H.; Anandasabapathy, N.; Izquierdo, G.; Jung, S.; Obholzer, N.; Pochet, N.; Clish, C.B.; Prinz, M.; Prat, A.; Antel, J.; Quintana, F.J. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med., 2016, 22(6), 586-597. doi: 10.1038/nm.4106 PMID: 27158906
- Wolf, S.A.; Boddeke, H.W.G.M.; Kettenmann, H. Microglia in physiology and disease. Annu. Rev. Physiol., 2017, 79(1), 619-643. doi: 10.1146/annurev-physiol-022516-034406 PMID: 27959620
- Erny, D.; Hrabě de Angelis, A.L.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Keren-Shaul, H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T.; Schwierzeck, V.; Utermöhlen, O.; Chun, E.; Garrett, W.S.; McCoy, K.D.; Diefenbach, A.; Staeheli, P.; Stecher, B.; Amit, I.; Prinz, M. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci., 2015, 18(7), 965-977. doi: 10.1038/nn.4030 PMID: 26030851
- Martins-Silva, T.; Salatino-Oliveira, A.; Genro, J.P.; Meyer, F.D.T.; Li, Y.; Rohde, L.A.; Hutz, M.H.; Tovo-Rodrigues, L. Host genetics influences the relationship between the gut microbiome and psychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 106, 110153. doi: 10.1016/j.pnpbp.2020.110153 PMID: 33130294
- Santos, S.F.; de Oliveira, H.L.; Yamada, E.S.; Neves, B.C.; Pereira, A., Jr The gut and Parkinsons diseasea bidirectional pathway. Front. Neurol., 2019, 10, 574. doi: 10.3389/fneur.2019.00574 PMID: 31214110
- Perez Visñuk, D.; Savoy de Giori, G.; LeBlanc, J.G.; de Moreno de LeBlanc, A. Neuroprotective effects associated with immune modulation by selected lactic acid bacteria in a Parkinsons disease model. Nutrition, 2020, 79-80, 110995. doi: 10.1016/j.nut.2020.110995 PMID: 32977125
- Cheng, L.H.; Liu, Y.W.; Wu, C.C.; Wang, S.; Tsai, Y.C. Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. Yao Wu Shi Pin Fen Xi, 2019, 27(3), 632-648. PMID: 31324280
- Cerdó, T.; Ruíz, A.; Suárez, A.; Campoy, C. Probiotic, prebiotic, and brain development. Nutrients, 2017, 9(11), 1247. doi: 10.3390/nu9111247 PMID: 29135961
- Tahami Monfared, A.A.; Byrnes, M.J.; White, L.A.; Zhang, Q. Alzheimers disease: Epidemiology and clinical progression. Neurol. Ther., 2022, 11(2), 553-569. doi: 10.1007/s40120-022-00338-8 PMID: 35286590
- Fisher, R.A.; Miners, J.S.; Love, S. Pathological changes within the cerebral vasculature in Alzheimers disease: New perspectives. Brain Pathol., 2022, e13061. doi: 10.1111/bpa.13061 PMID: 35289012
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimers disease. Lancet, 2021, 397(10284), 1577-1590. doi: 10.1016/S0140-6736(20)32205-4 PMID: 33667416
- Rezaei, A.Z.; Sepehri, G.; Salami, M. Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimers disease. Behav. Brain Res., 2019, 376, 112183. doi: 10.1016/j.bbr.2019.112183 PMID: 31472194
- Babür, E.; Tan, B.; Delibaş, S.; Yousef, M.; Dursun, N.; Süer, C. Depotentiation of long-term potentiation is associated with epitope-specific tau hyper-/hypophosphorylation in the hippocampus of adult rats. J. Mol. Neurosci., 2019, 67(2), 193-203. doi: 10.1007/s12031-018-1224-x PMID: 30498986
- Athari, N.A.S.; Djazayeri, A.; Safa, M.; Azami, K.; Djalali, M.; Sharifzadeh, M.; Vafa, M. Probiotics improve insulin resistance status in an experimental model of Alzheimers disease. Med. J. Islam. Repub. Iran, 2017, 31(1), 699-704. doi: 10.14196/mjiri.31.103 PMID: 29951404
- Yamin, G. NMDA receptor-dependent signaling pathways that underlie amyloid β-protein disruption of LTP in the hippocampus. J. Neurosci. Res., 2009, 87(8), 1729-1736. doi: 10.1002/jnr.21998 PMID: 19170166
- Wiatrak, B.; Jawień, P.; Matuszewska, A.; Szeląg, A.; Kubis-Kubiak, A. Effect of amyloid-β on the redox system activity in SH-SY5Y cells preincubated with lipopolysaccharide or co-cultured with microglia cells. Biomed. Pharmacother., 2022, 149, 112880. doi: 10.1016/j.biopha.2022.112880 PMID: 35367762
- Hemert, S.V.; Ormel, G. Influence of the multispecies probiotic Ecologic® BARRIER on parameters of intestinal barrier function. Food Nutr. Sci., 2014, 5(18), 1739-1745. doi: 10.4236/fns.2014.518187
- Romo-Araiza, A.; Gutiérrez-Salmeán, G.; Galván, E.J.; Hernández-Frausto, M.; Herrera-López, G.; Romo-Parra, H.; García-Contreras, V.; Fernández-Presas, A.M.; Jasso-Chávez, R.; Borlongan, C.V.; Ibarra, A. Probiotics and prebiotics as a therapeutic strategy to improve memory in a model of middle-aged rats. Front. Aging Neurosci., 2018, 10, 416. doi: 10.3389/fnagi.2018.00416 PMID: 30618722
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed; ATA: Washington, USA, 2013.
- Gao, J.; Wang, X.; Sun, H.; Cao, Y.; Liang, S.; Wang, H.; Wang, Y.; Yang, F.; Zhang, F.; Wu, L. Neuroprotective effects of docosahexaenoic acid on hippocampal cell death and learning and memory impairments in a valproic acid‐induced rat autism model. Int. J. Dev. Neurosci., 2016, 49(1), 67-78. doi: 10.1016/j.ijdevneu.2015.11.006 PMID: 26639559
- Dan, Z.; Mao, X.; Liu, Q.; Guo, M.; Zhuang, Y.; Liu, Z.; Chen, K.; Chen, J.; Xu, R.; Tang, J.; Qin, L.; Gu, B.; Liu, K.; Su, C.; Zhang, F.; Xia, Y.; Hu, Z.; Liu, X. Altered gut microbial profile is associated with abnormal metabolism activity of Autism Spectrum Disorder. Gut Microbes, 2020, 11(5), 1246-1267. doi: 10.1080/19490976.2020.1747329 PMID: 32312186
- Golubeva, A.V.; Joyce, S.A.; Moloney, G.; Burokas, A.; Sherwin, E.; Arboleya, S.; Flynn, I.; Khochanskiy, D.; Moya-Pérez, A.; Peterson, V.; Rea, K.; Murphy, K.; Makarova, O.; Buravkov, S.; Hyland, N.P.; Stanton, C.; Clarke, G.; Gahan, C.G.M.; Dinan, T.G.; Cryan, J.F. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. EBioMedicine, 2017, 24, 166-178. doi: 10.1016/j.ebiom.2017.09.020 PMID: 28965876
- Liu, Z.; Mao, X.; Dan, Z.; Pei, Y.; Xu, R.; Guo, M.; Liu, K.; Zhang, F.; Chen, J.; Su, C.; Zhuang, Y.; Tang, J.; Xia, Y.; Qin, L.; Hu, Z.; Liu, X. Gene variations in Autism Spectrum Disorder are associated with alternation of gut microbiota, metabolites and cytokines. Gut Microbes, 2021, 13(1), 1854967. doi: 10.1080/19490976.2020.1854967 PMID: 33412999
- Sabit, H.; Tombuloglu, H.; Rehman, S.; Almandil, N.B.; Cevik, E.; Abdel-Ghany, S.; Rashwan, S.; Abasiyanik, M.F.; Yee Waye, M.M. Gut microbiota metabolites in autistic children: An epigenetic perspective. Heliyon, 2021, 7(1), e06105. doi: 10.1016/j.heliyon.2021.e06105 PMID: 33553761
- Jyonouchi, H.; Sun, S.; Itokazu, N. Innate immunity associated with inflammatory responses and cytokine production against common dietary proteins in patients with autism spectrum disorder. Neuropsychobiology, 2002, 46(2), 76-84. doi: 10.1159/000065416 PMID: 12378124
- MacFabe, D.; Cain, D.; Rodriguezcapote, K.; Franklin, A.; Hoffman, J.; Boon, F.; Taylor, A.; Kavaliers, M.; Ossenkopp, K. Neurobiological effects of intraventricular propionic acid in rats: Possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav. Brain Res., 2007, 176(1), 149-169. doi: 10.1016/j.bbr.2006.07.025 PMID: 16950524
- De Angelis, M.; Piccolo, M.; Vannini, L.; Siragusa, S.; De Giacomo, A.; Serrazzanetti, D.I.; Cristofori, F.; Guerzoni, M.E.; Gobbetti, M.; Francavilla, R. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One, 2013, 8(10), e76993. doi: 10.1371/journal.pone.0076993 PMID: 24130822
- DEufemia, P.; Celli, M.; Finocchiaro, R.; Pacifico, L.; Viozzi, L.; Zaccagnini, M.; Cardi, E.; Giardini, O. Abnormal intestinal permeability in children with autism. Acta Paediatr., 1996, 85(9), 1076-1079. doi: 10.1111/j.1651-2227.1996.tb14220.x PMID: 8888921
- Kang, D.W.; Park, J.G.; Ilhan, Z.E.; Wallstrom, G.; LaBaer, J.; Adams, J.B.; Krajmalnik-Brown, R. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One, 2013, 8(7), e68322. doi: 10.1371/journal.pone.0068322 PMID: 23844187
- Luna, R.A.; Oezguen, N.; Balderas, M.; Venkatachalam, A.; Runge, J.K.; Versalovic, J.; Veenstra-VanderWeele, J.; Anderson, G.M.; Savidge, T.; Williams, K.C. Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. Cell. Mol. Gastroenterol. Hepatol., 2017, 3(2), 218-230. doi: 10.1016/j.jcmgh.2016.11.008 PMID: 28275689
- McElhanon, B.O.; McCracken, C.; Karpen, S.; Sharp, W.G. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics, 2014, 133(5), 872-883. doi: 10.1542/peds.2013-3995 PMID: 24777214
- Tomova, A.; Husarova, V.; Lakatosova, S.; Bakos, J.; Vlkova, B.; Babinska, K.; Ostatnikova, D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav., 2015, 138, 179-187. doi: 10.1016/j.physbeh.2014.10.033 PMID: 25446201
- Peralta-Marzal, L.N.; Prince, N.; Bajic, D.; Roussin, L.; Naudon, L.; Rabot, S.; Garssen, J.; Kraneveld, A.D.; Perez-Pardo, P. The impact of gut microbiota-derived metabolites in autism spectrum disorders. Int. J. Mol. Sci., 2021, 22(18), 10052. doi: 10.3390/ijms221810052 PMID: 34576216
- Kociszewska, D.; Vlajkovic, S.M. The association of inflammatory gut diseases with neuroinflammatory and auditory disorders. Front. Biosci. (Elite Ed.), 2022, 14(2), 8. doi: 10.31083/j.fbe1402008 PMID: 35730449
- Frost, G.; Sleeth, M.L.; Sahuri-Arisoylu, M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir, M.; Zhang, S.; Carling, D.; Swann, J.R.; Gibson, G.; Viardot, A.; Morrison, D.; Louise, T.E.; Bell, J.D. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun., 2014, 5(1), 3611. doi: 10.1038/ncomms4611 PMID: 24781306
- Morimoto, M.; Hashimoto, T.; Tsuda, Y.; Nakatsu, T.; Kitaoka, T.; Kyotani, S. Assessment of oxidative stress in autism spectrum disorder using reactive oxygen metabolites and biological antioxidant potential. PLoS One, 2020, 15(5), e0233550. doi: 10.1371/journal.pone.0233550 PMID: 32442231
- Greene, W.C.; Chen, L.F. Regulation of NF-kappaB action by reversible acetylation. Novartis Found. Symp., 2004, 259, 208-217. PMID: 15171256
- Nankova, B.B.; Agarwal, R.; MacFabe, D.F.; La Gamma, E.F. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells-possible relevance to autism spectrum disorders. PLoS One, 2014, 9(8), e103740. doi: 10.1371/journal.pone.0103740 PMID: 25170769
- Al-Lahham, S.H.; Peppelenbosch, M.P.; Roelofsen, H.; Vonk, R.J.; Venema, K. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2010, 1801(11), 1175-1183. doi: 10.1016/j.bbalip.2010.07.007 PMID: 20691280
- Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med., 2018, 50(8), 1-9. doi: 10.1038/s12276-018-0126-x PMID: 30115904
- Günzel, D.; Yu, A.S.L. Claudins and the modulation of tight junction permeability. Physiol. Rev., 2013, 93(2), 525-569. doi: 10.1152/physrev.00019.2012 PMID: 23589827
- Beatch, M.; Jesaitis, L.A.; Gallin, W.J.; Goodenough, D.A.; Stevenson, B.R. The tight junction protein ZO-2 contains three PDZ (PSD-95/Discs-Large/ZO-1) domains and an alternatively spliced region. J. Biol. Chem., 1996, 271(42), 25723-25726. doi: 10.1074/jbc.271.42.25723 PMID: 8824195
- Itoh, M.; Furuse, M.; Morita, K.; Kubota, K.; Saitou, M.; Tsukita, S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J. Cell Biol., 1999, 147(6), 1351-1363. doi: 10.1083/jcb.147.6.1351 PMID: 10601346
- Feldman, G.; Mullin, J.; Ryan, M. Occludin: Structure, function and regulation. Adv. Drug Deliv. Rev., 2005, 57(6), 883-917. doi: 10.1016/j.addr.2005.01.009 PMID: 15820558
- Allam-Ndoul, B.; Castonguay-Paradis, S.; Veilleux, A. Gut microbiota and intestinal trans-epithelial permeability. Int. J. Mol. Sci., 2020, 21(17), 6402. doi: 10.3390/ijms21176402 PMID: 32899147
- Han, X.; Lee, A.; Huang, S.; Gao, J.; Spence, J.R.; Owyang, C. Lactobacillus rhamnosus GG prevents epithelial barrier dysfunction induced by interferon-gamma and fecal supernatants from irritable bowel syndrome patients in human intestinal enteroids and colonoids. Gut Microbes, 2019, 10(1), 59-76. doi: 10.1080/19490976.2018.1479625 PMID: 30040527
- Yoshida, N.; Emoto, T.; Yamashita, T.; Watanabe, H.; Hayashi, T.; Tabata, T.; Hoshi, N.; Hatano, N.; Ozawa, G.; Sasaki, N.; Mizoguchi, T.; Amin, H.Z.; Hirota, Y.; Ogawa, W.; Yamada, T.; Hirata, K. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation, 2018, 138(22), 2486-2498. doi: 10.1161/CIRCULATIONAHA.118.033714 PMID: 30571343
- Chelakkot, C.; Choi, Y.; Kim, D.K.; Park, H.T.; Ghim, J.; Kwon, Y.; Jeon, J.; Kim, M.S.; Jee, Y.K.; Gho, Y.S.; Park, H.S.; Kim, Y.K.; Ryu, S.H. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med., 2018, 50(2), e450. doi: 10.1038/emm.2017.282 PMID: 29472701
- Anderson, R.C.; Cookson, A.L.; McNabb, W.C.; Park, Z.; McCann, M.J.; Kelly, W.J.; Roy, N.C. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol., 2010, 10(1), 316. doi: 10.1186/1471-2180-10-316 PMID: 21143932
- Bhattarai, Y. Microbiota-gut-brain axis: Interaction of gut microbes and their metabolites with host epithelial barriers. Neurogastroenterol. Motil., 2018, 30(6), e13366. doi: 10.1111/nmo.13366 PMID: 29878576
- Ma, X.; Fan, P.X.; Li, L.S.; Qiao, S.Y.; Zhang, G.L.; Li, D.F. Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions. J. Anim. Sci., 2012, 90(Suppl. 4), 266-268. doi: 10.2527/jas.50965 PMID: 23365351
- Pradhan, S.; Karve, S.S.; Weiss, A.A.; Hawkins, J.; Poling, H.M.; Helmrath, M.A.; Wells, J.M.; McCauley, H.A. Tissue responses to Shiga toxin in human intestinal organoids. Cell. Mol. Gastroenterol. Hepatol., 2020, 10(1), 171-190. doi: 10.1016/j.jcmgh.2020.02.006 PMID: 32145469
- Shi, H.; Yu, Y.; Lin, D.; Zheng, P.; Zhang, P.; Hu, M.; Wang, Q.; Pan, W.; Yang, X.; Hu, T.; Li, Q.; Tang, R.; Zhou, F.; Zheng, K.; Huang, X.F. β-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice. Microbiome, 2020, 8(1), 143. doi: 10.1186/s40168-020-00920-y PMID: 33008466
- Tulyeu, J.; Kumagai, H.; Jimbo, E.; Watanabe, S.; Yokoyama, K.; Cui, L.; Osaka, H.; Mieno, M.; Yamagata, T. Probiotics prevents sensitization to oral antigen and subsequent increases in intestinal tight junction permeability in juvenile-young adult rats. Microorganisms, 2019, 7(10), 463. doi: 10.3390/microorganisms7100463 PMID: 31623229
- Davenport, E.R.; Sanders, J.G.; Song, S.J.; Amato, K.R.; Clark, A.G.; Knight, R. The human microbiome in evolution. BMC Biol., 2017, 15(1), 127. doi: 10.1186/s12915-017-0454-7 PMID: 29282061
- Wang, X.; Zhang, A.; Miao, J.; Sun, H.; Yan, G.; Wu, F.; Wang, X. Gut microbiota as important modulator of metabolism in health and disease. RSC Advances, 2018, 8(74), 42380-42389. doi: 10.1039/C8RA08094A PMID: 35558413
- Gagliardi, A.; Totino, V.; Cacciotti, F.; Iebba, V.; Neroni, B.; Bonfiglio, G.; Trancassini, M.; Passariello, C.; Pantanella, F.; Schippa, S. Rebuilding the gut microbiota ecosystem. Int. J. Environ. Res. Public Health, 2018, 15(8), 1679. doi: 10.3390/ijerph15081679 PMID: 30087270
- Manzoor, S.; Wani, S.M.; Ahmad Mir, S.; Rizwan, D. Role of probiotics and prebiotics in mitigation of different diseases. Nutrition, 2022, 96, 111602. doi: 10.1016/j.nut.2022.111602 PMID: 35182833
- Chen, M.; Liu, C.; Dai, M.; Wang, Q.; Li, C.; Hung, W. Bifidobacterium lactis BL-99 modulates intestinal inflammation and functions in zebrafish models. PLoS One, 2022, 17(2), e0262942. doi: 10.1371/journal.pone.0262942 PMID: 35171916
- Lu, J.; Lu, L.; Yu, Y.; Baranowski, J.; Claud, E.C. Maternal administration of probiotics promotes brain development and protects offsprings brain from postnatal inflammatory insults in C57/BL6J mice. Sci. Rep., 2020, 10(1), 8178. doi: 10.1038/s41598-020-65180-0 PMID: 32424168
- Tamtaji, O.R.; Taghizadeh, M.; Daneshvar Kakhaki, R.; Kouchaki, E.; Bahmani, F.; Borzabadi, S.; Oryan, S.; Mafi, A.; Asemi, Z. Clinical and metabolic response to probiotic administration in people with Parkinsons disease: A randomized, double-blind, placebo-controlled trial. Clin. Nutr., 2019, 38(3), 1031-1035. doi: 10.1016/j.clnu.2018.05.018 PMID: 29891223
- Chudzik, A.; Orzyłowska, A.; Rola, R.; Stanisz, G.J. Probiotics, prebiotics and postbiotics on mitigation of depression symptoms: Modulation of the brain-gut-microbiome axis. Biomolecules, 2021, 11(7), 1000. doi: 10.3390/biom11071000 PMID: 34356624
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics a step beyond pre- and probiotics. Nutrients, 2020, 12(8), 2189. doi: 10.3390/nu12082189 PMID: 32717965
- Gu, Z.; Meng, S.; Wang, Y.; Lyu, B.; Li, P.; Shang, N. A novel bioactive postbiotics: From microbiota-derived extracellular nanoparticles to health promoting. Crit. Rev. Food Sci. Nutr., 2022, 1-15. Advance online publication doi: 10.1080/10408398.2022.2039897 PMID: 35179102
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; Calder, P.C.; Sanders, M.E. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 506-514. doi: 10.1038/nrgastro.2014.66 PMID: 24912386
- Vallianou, N.; Stratigou, T.; Christodoulatos, G.S.; Tsigalou, C.; Dalamaga, M. Probiotics, prebiotics, synbiotics, postbiotics, and obesity: Current evidence, controversies, and perspectives. Curr. Obes. Rep., 2020, 9(3), 179-192. doi: 10.1007/s13679-020-00379-w PMID: 32472285
- Li, H.Y.; Zhou, D.D.; Gan, R.Y.; Huang, S.Y.; Zhao, C.N.; Shang, A.; Xu, X.Y.; Li, H.B. Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: A narrative review. Nutrients, 2021, 13(9), 3211. doi: 10.3390/nu13093211 PMID: 34579087
- Garrett, W.S.; Lord, G.M.; Punit, S.; Lugo-Villarino, G.; Mazmanian, S.K.; Ito, S.; Glickman, J.N.; Glimcher, L.H. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell, 2007, 131(1), 33-45. doi: 10.1016/j.cell.2007.08.017 PMID: 17923086
- Richards, J.L.; Yap, Y.A.; McLeod, K.H.; Mackay, C.R.; Mariño, E. Dietary metabolites and the gut microbiota: An alternative approach to control inflammatory and autoimmune diseases. Clin. Transl. Immunology, 2016, 5(5), e82. doi: 10.1038/cti.2016.29 PMID: 27350881
- Sonnenburg, E.D.; Smits, S.A.; Tikhonov, M.; Higginbottom, S.K.; Wingreen, N.S.; Sonnenburg, J.L. Diet-induced extinctions in the gut microbiota compound over generations. Nature, 2016, 529(7585), 212-215. doi: 10.1038/nature16504 PMID: 26762459
- Hua, X.; Zhu, J.; Yang, T.; Guo, M.; Li, Q.; Chen, J.; Li, T. The gut microbiota and associated metabolites are altered in sleep disorder of children with autism spectrum disorders. Front. Psychiatry, 2020, 11, 855. doi: 10.3389/fpsyt.2020.00855 PMID: 32982808
- Agus, A.; Planchais, J.; Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe, 2018, 23(6), 716-724. doi: 10.1016/j.chom.2018.05.003 PMID: 29902437
- Ossenkopp, K.P.; Foley, K.A.; Gibson, J.; Fudge, M.A.; Kavaliers, M.; Cain, D.P.; MacFabe, D.F. Systemic treatment with the enteric bacterial fermentation product, propionic acid, produces both conditioned taste avoidance and conditioned place avoidance in rats. Behav. Brain Res., 2012, 227(1), 134-141. doi: 10.1016/j.bbr.2011.10.045 PMID: 22085877
- Hou, Y.; Li, X.; Liu, C.; Zhang, M.; Zhang, X.; Ge, S.; Zhao, L. Neuroprotective effects of short-chain fatty acids in MPTP induced mice model of Parkinsons disease. Exp. Gerontol., 2021, 150, 111376. doi: 10.1016/j.exger.2021.111376 PMID: 33905875
- Page, M.J.; Pretorius, E. Platelet behavior contributes to neuropathologies: A focus on Alzheimers and Parkinsons disease. Semin. Thromb. Hemost., 2022, 48(3), 382-404. doi: 10.1055/s-0041-1733960 PMID: 34624913
- Abdel-Rahman, E.A.; Zaky, E.A.; Aboulsaoud, M.; Elhossiny, R.M.; Youssef, W.Y.; Mahmoud, A.M.; Ali, S.S. Autism spectrum disorder (ASD)-associated mitochondrial deficits are revealed in childrens platelets but unimproved by hyperbaric oxygen therapy. Free Radic. Res., 2021, 55(1), 26-40. doi: 10.1080/10715762.2020.1856376 PMID: 33402007
- Xie, Z.; Liu, X.; Huang, X.; Liu, Q.; Yang, M.; Huang, D.; Zhao, P.; Tian, J.; Wang, X.; Hou, J. Remodelling of gut microbiota by Berberine attenuates trimethylamine N-oxide-induced platelet hyperreaction and thrombus formation. Eur. J. Pharmacol., 2021, 911, 174526. doi: 10.1016/j.ejphar.2021.174526 PMID: 34599914
- Anderson, G.; Rodriguez, M.; Reiter, R.J. Multiple sclerosis: Melatonin, orexin, and ceramide interact with platelet activation coagulation factors and gut-microbiome-derived butyrate in the circadian dysregulation of mitochondria in glia and immune cells. Int. J. Mol. Sci., 2019, 20(21), 5500. doi: 10.3390/ijms20215500 PMID: 31694154
- Chen, Z.; Liu, C.; Jiang, Y.; Liu, H.; Shao, L.; Zhang, K.; Cheng, D.; Zhou, Y.; Chong, W. HDAC inhibitor attenuated NETs formation induced by activated platelets in vitro, partially through downregulating platelet secretion. Shock, 2020, 54(3), 321-329. doi: 10.1097/SHK.0000000000001518 PMID: 32044829
- Anderson, G.; Maes, M. Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: Assessment, treatment and classification implications. Curr. Top. Med. Chem., 2020, 20(7), 524-539. doi: 10.2174/1568026620666200131094445 PMID: 32003689
- Ghafouri-Fard, S.; Namvar, A.; Arsang-Jang, S.; Komaki, A.; Taheri, M. Expression analysis of BDNF, BACE1, and their natural occurring antisenses in autistic patients. J. Mol. Neurosci., 2020, 70(2), 194-200. doi: 10.1007/s12031-019-01432-7 PMID: 31760580
Supplementary files
