The Role of Total White Blood Cell Count in Antipsychotic Treatment for Patients with Schizophrenia

  • Authors: Zhang Y.1, Tao S.2, Coid J.2, Wei W.1, Wang Q.2, Yue W.3, Yan H.3, Tan L.4, Chen Q.5, Yang G.6, Lu T.7, Wang L.3, Zhang F.8, Yang J.9, Li K.10, Lv L.11, Tan Q.12, Zhang H.7, Ma X.5, Yang F.13, Li L.14, Wang C.5, Zhao L.2, Deng W.1, Guo W.1, Ma X.2, Zhang D.3, Li T.1
  • Affiliations:
    1. Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine
    2. Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University
    3. Institute of Mental Health, Peking University Sixth Hospital
    4. Second Xiangya Hospital, Central South University
    5. Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University
    6. , Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital
    7. Peking University Sixth Hospital, Institute of Mental Health
    8. Wuxi Mental Health Center, Nanjing Medical University
    9. Institute of Mental Health, Tianjin Anding Hospital
    10. , Hebei Mental Health Center
    11. Second Affiliated Hospital, Xinxiang Medical University
    12. Department of Psychiatry, Xijing Hospital, Fourth Military Medical University
    13. , Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital,
    14. Second Xiangya Hospital,, Central South University,
  • Issue: Vol 22, No 1 (2024)
  • Pages: 159-167
  • Section: Neurology
  • URL: https://hum-ecol.ru/1570-159X/article/view/644273
  • DOI: https://doi.org/10.2174/1570159X21666230104090046
  • ID: 644273

Cite item

Full Text

Abstract

Background:Total white blood cell count (TWBCc), an index of chronic and low-grade inflammation, is associated with clinical symptoms and metabolic alterations in patients with schizophrenia. The effect of antipsychotics on TWBCc, predictive values of TWBCc for drug response, and role of metabolic alterations require further study.

Methods:Patients with schizophrenia were randomized to monotherapy with risperidone, olanzapine, quetiapine, aripiprazole, ziprasidone, perphenazine or haloperidol in a 6-week pharmacological trial. We repeatedly measured clinical symptoms, TWBCc, and metabolic measures (body mass index, blood pressure, waist circumference, fasting blood lipids and glucose). We used mixed-effect linear regression models to test whether TWBCc can predict drug response. Mediation analysis to investigate metabolic alteration effects on drug response.

Results:At baseline, TWBCc was higher among patients previously medicated. After treatment with risperidone, olanzapine, quetiapine, perphenazine, and haloperidol, TWBCc decreased significantly (p < 0.05). Lower baseline TWBCc predicted greater reductions in Positive and Negative Syndrome Scale (PANSS) total and negative scores over time (p < 0.05). We found significant mediation of TWBCc for effects of waist circumference, fasting low-density lipoprotein cholesterol, and glucose on reductions in PANSS total scores and PANSS negative subscale scores (p < 0.05).

Conclusion:TWBCc is affected by certain antipsychotics among patients with schizophrenia, with decreases observed following short-term, but increases following long-term treatment. TWBCc is predictive of drug response, with lower TWBCc predicting better responses to antipsychotics. It also mediates the effects of certain metabolic measures on improvement of negative symptoms. This indicates that the metabolic state may affect clinical manifestations through inflammation.

About the authors

Yamin Zhang

Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine

Email: info@benthamscience.net

Shiwan Tao

Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University

Email: info@benthamscience.net

Jeremy Coid

Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University

Email: info@benthamscience.net

Wei Wei

Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine

Email: info@benthamscience.net

Qiang Wang

Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University

Email: info@benthamscience.net

Weihua Yue

Institute of Mental Health, Peking University Sixth Hospital

Email: info@benthamscience.net

Hao Yan

Institute of Mental Health, Peking University Sixth Hospital

Email: info@benthamscience.net

Liwen Tan

Second Xiangya Hospital, Central South University

Email: info@benthamscience.net

Qi Chen

Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University

Email: info@benthamscience.net

Guigang Yang

, Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital

Email: info@benthamscience.net

Tianlan Lu

Peking University Sixth Hospital, Institute of Mental Health

Email: info@benthamscience.net

Lifang Wang

Institute of Mental Health, Peking University Sixth Hospital

Email: info@benthamscience.net

Fuquan Zhang

Wuxi Mental Health Center, Nanjing Medical University

Email: info@benthamscience.net

Jianli Yang

Institute of Mental Health, Tianjin Anding Hospital

Email: info@benthamscience.net

Keqing Li

, Hebei Mental Health Center

Email: info@benthamscience.net

Luxian Lv

Second Affiliated Hospital, Xinxiang Medical University

Email: info@benthamscience.net

Qingrong Tan

Department of Psychiatry, Xijing Hospital, Fourth Military Medical University

Email: info@benthamscience.net

Hongyan Zhang

Peking University Sixth Hospital, Institute of Mental Health

Email: info@benthamscience.net

Xin Ma

Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University

Email: info@benthamscience.net

Fude Yang

, Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital,

Email: info@benthamscience.net

Lingjiang Li

Second Xiangya Hospital,, Central South University,

Email: info@benthamscience.net

Chuanyue Wang

Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University

Email: info@benthamscience.net

Liansheng Zhao

Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University

Email: info@benthamscience.net

Wei Deng

Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine

Email: info@benthamscience.net

Wanjun Guo

Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine

Email: info@benthamscience.net

Xiaohong Ma

Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University

Email: info@benthamscience.net

Dai Zhang

Institute of Mental Health, Peking University Sixth Hospital

Email: info@benthamscience.net

Tao Li

Department of Neurobiology and Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. McGrath, J.; Saha, S.; Chant, D.; Welham, J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol. Rev., 2008, 30(1), 67-76. doi: 10.1093/epirev/mxn001 PMID: 18480098
  2. Muller, N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr. Bull., 2018, 44(5), 973-982. doi: 10.1093/schbul/sby024
  3. Kroken, R.A.; Sommer, I.E.; Steen, V.M.; Dieset, I.; Johnsen, E. Constructing the immune signature of schizophrenia for clinical use and research; An integrative review translating descriptives into diagnostics. Front. Psychiatry, 2019, 9, 753. doi: 10.3389/fpsyt.2018.00753 PMID: 30766494
  4. Jackson, A.J.; Miller, B.J. Meta-analysis of total and differential white blood cell counts in schizophrenia. Acta Psychiatr. Scand., 2020, 142(1), 18-26. doi: 10.1111/acps.13140
  5. Moody, G.; Miller, B.J. Total and differential white blood cell counts and hemodynamic parameters in first-episode psychosis. Psychiatry Res., 2018, 260, 307-312. doi: 10.1016/j.psychres.2017.11.086 PMID: 29223800
  6. Fan, X.; Liu, E.Y.; Freudenreich, O. Higher white blood cell counts are associated with an increased risk for metabolic syndrome and more severe psychopathology in non-diabetic patients with schizophrenia. Schizophr. Res., 2010, 118(1-3), 211-217. doi: 10.1016/j.schres.2010.02.1028
  7. Liemburg, E.J.; Nolte, I.M.; Klein, H.C.; Knegtering, H. Relation of inflammatory markers with symptoms of psychotic disorders: a large cohort study. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 86, 89-94. doi: 10.1016/j.pnpbp.2018.04.006 PMID: 29778547
  8. Myles, N.; Myles, H.; Xia, S. A meta-analysis of controlled studies comparing the association between clozapine and other antipsychotic medications and the development of neutropenia. Aust. N. Z. J. Psychiatry, 2019, 53(5), 403-412. doi: 10.1177/0004867419833166
  9. Mauri, M.C.; Volonteri, L.S.; Dell’Osso, B. Predictors of clinical outcome in schizophrenic patients responding to clozapine. J. Clin. Psychopharmacol., 2003, 23(6), 660-664.
  10. Oda, E.; Kawai, R. The prevalence of metabolic syndrome and diabetes increases through the quartiles of white blood cell count in japanese men and women. Intern. Med., 2009, 48(13), 1127-1134. doi: 10.2169/internalmedicine.48.2138
  11. Nilsson, G.; Hedberg, P.; Jonason, T. White blood cell counts associate more strongly to the metabolic syndrome in 75-year-old women than in men: A population based study. Metab. Syndr. Relat. Disord., 2007, 5(4), 359-364.
  12. Prestwood, T.R.; Asgariroozbehani, R.; Wu, S.; Agarwal, S.M.; Logan, R.W.; Ballon, J.S.; Hahn, M.K.; Freyberg, Z. Roles of inflammation in intrinsic pathophysiology and antipsychotic drug-induced metabolic disturbances of schizophrenia. Behav. Brain Res., 2021, 402, 113101. doi: 10.1016/j.bbr.2020.113101 PMID: 33453341
  13. Andersen, C.J.; Murphy, K.E.; Fernandez, M.L. Impact of obesity and metabolic syndrome on immunity. Adv. Nutr., 2016, 7(1), 66-75. doi: 10.3945/an.115.010207
  14. Pavlović M.; Babić D.; Rastović P.; Babić R.; Vasilj, M. Metabolic syndrome, total and differential white blood cell counts in patients with schizophrenia. Psychiatr. Danub., 2016, 28(Suppl. 2), 216-222. PMID: 28035126
  15. Kelly, C.W.; McEvoy, J.P.; Miller, B.J. Total and differential white blood cell counts, inflammatory markers, adipokines, and incident metabolic syndrome in phase 1 of the clinical antipsychotic trials of intervention effectiveness study. Schizophr. Res., 2019, 209, 193-197. doi: 10.1016/j.schres.2019.04.021 PMID: 31118157
  16. Honig, G.J. Schizophrenia and antipsychotics: Metabolic alterations and therapeutic effectivity. Vertex, 2018, 29(138), 139-147.
  17. Pillinger, T.; McCutcheon, R.A.; Vano, L.; Mizuno, Y.; Arumuham, A.; Hindley, G.; Beck, K.; Natesan, S.; Efthimiou, O.; Cipriani, A.; Howes, O.D. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: A systematic review and network meta-analysis. Lancet Psychiatry, 2020, 7(1), 64-77. doi: 10.1016/S2215-0366(19)30416-X PMID: 31860457
  18. Detry, M.A.; Ma, Y. Analyzing repeated measurements using mixed models. JAMA, 2016, 315(4), 407-408. doi: 10.1001/jama.2015.19394
  19. Fennig, S.; Craig, T.; Lavelle, J.; Kovasznay, B.; Bromet, E.J. Best-estimate versus structured interview-based diagnosis in first-admission psychosis. Compr. Psychiatry, 1994, 35(5), 341-348. doi: 10.1016/0010-440X(94)90273-9
  20. Wang, Q.; Man, W.H.; Yue, W. Effect of damaging rare mutations in synapse-related gene sets on response to short-term antipsychotic medication in chinese patients with schizophrenia: A randomized clinical trial. Jama Psychiatry, 2018, 75(12), 1261-1269. doi: 10.1001/jamapsychiatry.2018.3039
  21. Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (panss) for schizophrenia. Schizophr. Bull., 1987, 13(2), 261-276.
  22. Nitta, M.; Kishimoto, T.; Muller, N. Adjunctive use of nonsteroidal anti-inflammatory drugs for schizophrenia: A meta-analytic investigation of randomized controlled trials. Schizophr. Bull., 2013, 39(6), 1230-1241. doi: 10.1093/schbul/sbt070
  23. Cho, M.; Lee, T.Y.; Kwak, Y.B.; Yoon, Y.B.; Kim, M.; Kwon, J.S. Adjunctive use of anti-inflammatory drugs for schizophrenia: A meta-analytic investigation of randomized controlled trials. Aust. N. Z. J. Psychiatry, 2019, 53(8), 742-759. doi: 10.1177/0004867419835028 PMID: 30864461
  24. Zheng, L.T.; Hwang, J.; Ock, J. The antipsychotic spiperone attenuates inflammatory response in cultured microglia via the reduction of proinflammatory cytokine expression and nitric oxide production. J. Neurochem., 2008, 107(5), 1225-1235.
  25. Kato, T.; Monji, A.; Hashioka, S.; Kanba, S. Risperidone significantly inhibits interferon-gamma-induced microglial activation in vitro. Schizophr. Res., 2007, 92(1-3), 108-115.
  26. Chen, M.L.; Tsai, T.C.; Wang, L.K. Clozapine inhibits th1 cell differentiation and causes the suppression of ifn-gamma production in peripheral blood mononuclear cells. Immunopharmacol. Immunotoxicol., 2012, 34(4), 686-694.
  27. Stapel, B.; Sieve, I.; Falk, C.S.; Bleich, S.; Hilfiker-Kleiner, D.; Kahl, K.G. Second generation atypical antipsychotics olanzapine and aripiprazole reduce expression and secretion of inflammatory cytokines in human immune cells. J. Psychiatr. Res., 2018, 105, 95-102. doi: 10.1016/j.jpsychires.2018.08.017 PMID: 30216787
  28. Uranova, N.A.; Bonartsev, P.D.; Androsova, L.V.; Rakhmanova, V.I.; Kaleda, V.G. Impaired monocyte activation in schizophrenia: ultrastructural abnormalities and increased IL-1beta production. Eur. Arch. Psychiatry Clin. Neurosci., 2017, 267(5), 417-426. doi: 10.1007/s00406-017-0782-1
  29. Capannolo, M.; Fasciani, I.; Romeo, S. The atypical antipsychotic clozapine selectively inhibits interleukin 8 (IL-8)-induced neutrophil chemotaxis. Eur. Neuropsychopharmacol., 2015, 25(3), 413-424.
  30. Comer, A.L.; Carrier, M.; Tremblay, M.È.; Cruz-Martín, A. The inflamed brain in schizophrenia: the convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation. Front. Cell. Neurosci., 2020, 14, 274. doi: 10.3389/fncel.2020.00274 PMID: 33061891
  31. Wicinski, M.; Weclewicz, M.M. Clozapine-induced agranulocytosis/granulocytopenia: mechanisms and monitoring. Curr. Opin. Hematol., 2018, 25(1), 22-28.
  32. Momtazmanesh, S.; Zare-Shahabadi, A.; Rezaei, N. Cytokine alterations in Schizophrenia: An updated review. Front. Psychiatry, 2019, 10, 892. doi: 10.3389/fpsyt.2019.00892 PMID: 31908647
  33. Zhang, Y.; Ren, H.; Wang, Q.; Deng, W.; Yue, W.; Yan, H.; Tan, L.; Chen, Q.; Yang, G.; Lu, T.; Wang, L.; Zhang, F.; Yang, J.; Li, K.; Lv, L.; Tan, Q.; Zhang, H.; Ma, X.; Yang, F.; Li, L.; Wang, C.; Zhang, D.; Zhao, L.; Wang, H.; Li, X.; Guo, W.; Hu, X.; Tian, Y.; Ma, X.; Li, T. Testing the role of genetic variation of the mc4r gene in chinese population in antipsychotic-induced metabolic disturbance. Sci. China Life Sci., 2019, 62(4), 535-543. doi: 10.1007/s11427-018-9489-x PMID: 30929193
  34. Mondelli, V.; Ciufolini, S.; Belvederi, M.M. Cortisol and inflammatory biomarkers predict poor treatment response in first episode psychosis. Schizophr. Bull., 2015, 41(5), 1162-1170. doi: 10.1093/schbul/sbv028
  35. Chen, Y.Q.; Li, X.R.; Zhang, L.; Zhu, W.B.; Wu, Y.Q.; Guan, X.N.; Xiu, M.H.; Zhang, X.Y. Therapeutic response is associated with antipsychotic-induced weight gain in drug-naive first-episode patients with schizophrenia: an 8-week prospective study. J. Clin. Psychiatry, 2021, 82(3), 20m13469. doi: 10.4088/JCP.20m13469 PMID: 34004092
  36. Kim, D.D.; Barr, A.M.; Fredrikson, D.H.; Honer, W.G.; Procyshyn, R.M. Association between serum lipids and antipsychotic response in schizophrenia. Curr. Neuropharmacol., 2019, 17(9), 852-860. doi: 10.2174/1570159X17666190228113348
  37. Zhang, Y.; Wang, Q.; Reynolds, G.P.; Yue, W.; Deng, W.; Yan, H.; Tan, L.; Wang, C.; Yang, G.; Lu, T.; Wang, L.; Zhang, F.; Yang, J.; Li, K.; Lv, L.; Tan, Q.; Li, Y.; Yu, H.; Zhang, H.; Ma, X.; Yang, F.; Li, L.; Chen, Q.; Wei, W.; Zhao, L.; Wang, H.; Li, X.; Guo, W.; Hu, X.; Tian, Y.; Ren, H.; Ma, X.; Coid, J.; Zhang, D.; Li, T. Metabolic effects of 7 antipsychotics on patients with schizophrenia: A short-term, randomized, open-label, multicenter, pharmacologic trial. J. Clin. Psychiatry, 2020, 81(3), 19m12785. doi: 10.4088/JCP.19m12785 PMID: 32237292
  38. Dunleavy, C.; Elsworthy, R.J.; Upthegrove, R.; Wood, S.J.; Aldred, S. Inflammation in first-episode psychosis: the contribution of inflammatory biomarkers to the emergence of negative symptoms, a systematic review and meta-analysis. Acta Psychiatr. Scand., 2022, 146(1), 6-20. doi: 10.1111/acps.13416 PMID: 35202480
  39. Jeppesen, R.; Christensen, R.H.B.; Pedersen, E.M.J.; Nordentoft, M.; Hjorthøj, C.; Köhler-Forsberg, O.; Benros, M.E. Efficacy and safety of anti-inflammatory agents in treatment of psychotic disorders - A comprehensive systematic review and meta-analysis. Brain Behav. Immun., 2020, 90, 364-380. doi: 10.1016/j.bbi.2020.08.028 PMID: 32890697
  40. Zunszain, P.A.; Anacker, C.; Cattaneo, A. Interleukin-1beta: A new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacol., 2012, 37(4), 939-949.
  41. Cakici, N.; van Beveren, N.; Judge-Hundal, G.; Koola, M.M.; Sommer, I. An update on the efficacy of anti-inflammatory agents for patients with schizophrenia: A meta-analysis. Psychol. Med., 2019, 49(14), 2307-2319.
  42. Pollak, T.A.; Drndarski, S.; Stone, J.M. The blood-brain barrier in psychosis. Lancet Psychiatry, 2018, 5(1), 79-92. doi: 10.1016/S2215-0366(17)30293-6
  43. Carvalheira, J.B.; Qiu, Y.; Chawla, A. Blood spotlight on leukocytes and obesity. Blood, 2013, 122(19), 3263-3267. doi: 10.1182/blood-2013-04-459446
  44. Talukdar, S.; Oh, D.Y.; Bandyopadhyay, G. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med., 2012, 18(9), 1407-1412. doi: 10.1038/nm.2885
  45. Cipolletta, D.; Feuerer, M.; Li, A. Ppar-gamma is a major driver of the accumulation and phenotype of adipose tissue treg cells. Nature, 2012, 486(7404), 549-553.
  46. Weinstock, A.; Moura, S.H.; Moore, K.J.; Schmidt, A.M.; Fisher, E.A. Leukocyte heterogeneity in adipose tissue, including in obesity. Circ. Res., 2020, 126(11), 1590-1612. doi: 10.1161/CIRCRESAHA.120.316203
  47. Heald, A.; Montejo, A.L.; Millar, H.; De Hert, M.; McCrae, J.; Correll, C.U. Management of physical health in patients with schizophrenia: Practical recommendations. Eur. Psychiatry, 2010, 25(S2)(Suppl. 2), S41-S45. doi: 10.1016/S0924-9338(10)71706-5 PMID: 20620887
  48. Mazza, M.G.; Capellazzi, M.; Lucchi, S. Monocyte count in schizophrenia and related disorders: A systematic review and meta-analysis. Acta Neuropsychiatr., 2020, 32(5), 229-236. doi: 10.1017/neu.2020.12

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers