Insights Into the Role of Copper in Neurodegenerative Diseases and the Therapeutic Potential of Natural Compounds


Cite item

Full Text

Abstract

Neurodegenerative diseases encompass a collection of neurological disorders originating from the progressive degeneration of neurons, resulting in the dysfunction of neurons. Unfortunately, effective therapeutic interventions for these diseases are presently lacking. Copper (Cu), a crucial trace element within the human body, assumes a pivotal role in various biological metabolic processes, including energy metabolism, antioxidant defense, and neurotransmission. These processes are vital for the sustenance, growth, and development of organisms. Mounting evidence suggests that disrupted copper homeostasis contributes to numerous age-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), Menkes disease (MD), prion diseases, and multiple sclerosis (MS). This comprehensive review investigates the connection between the imbalance of copper homeostasis and neurodegenerative diseases, summarizing pertinent drugs and therapies that ameliorate neuropathological changes, motor deficits, and cognitive impairments in these conditions through the modulation of copper metabolism. These interventions include Metal-Protein Attenuating Compounds (MPACs), copper chelators, copper supplements, and zinc salts. Moreover, this review highlights the potential of active compounds derived from natural plant medicines to enhance neurodegenerative disease outcomes by regulating copper homeostasis. Among these compounds, polyphenols are particularly abundant. Consequently, this review holds significant implications for the future development of innovative drugs targeting the treatment of neurodegenerative diseases.

About the authors

Ziying Chen

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Xinyue Cao

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Tianyao Li

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Jinman Liu

, Affiliated Jiangmen TCM Hospital of Ji'nan University

Author for correspondence.
Email: info@benthamscience.net

Qi Wang

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

Guangcheng Zhong

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Xinyue Wang

The Sixth Affiliated Hospital, Sun Yat-sen Universit

Email: info@benthamscience.net

Jiaqi Li

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Zhouyuan Xie

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Qiqing Wu

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Jiaxin Chen

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

Yiyun Wang

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine

Email: info@benthamscience.net

References

  1. Hetz, C.; Saxena, S. ER stress and the unfolded protein response in neurodegeneration. Nat. Rev. Neurol., 2017, 13(8), 477-491. doi: 10.1038/nrneurol.2017.99 PMID: 28731040
  2. Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov., 2004, 3(3), 205-214. doi: 10.1038/nrd1330 PMID: 15031734
  3. Nixon, R.A. The role of autophagy in neurodegenerative disease. Nat. Med., 2013, 19(8), 983-997. doi: 10.1038/nm.3232 PMID: 23921753
  4. Ross, C.A.; Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med., 2004, 10(S7)(Suppl.), S10-S17. doi: 10.1038/nm1066 PMID: 15272267
  5. Nguyen, P.H.; Ramamoorthy, A.; Sahoo, B.R.; Zheng, J.; Faller, P.; Straub, J.E.; Dominguez, L.; Shea, J.E.; Dokholyan, N.V.; De Simone, A.; Ma, B.; Nussinov, R.; Najafi, S.; Ngo, S.T.; Loquet, A.; Chiricotto, M.; Ganguly, P.; McCarty, J.; Li, M.S.; Hall, C.; Wang, Y.; Miller, Y.; Melchionna, S.; Habenstein, B.; Timr, S.; Chen, J.; Hnath, B.; Strodel, B.; Kayed, R.; Lesné, S.; Wei, G.; Sterpone, F.; Doig, A.J.; Derreumaux, P. Amyloid oligomers: a joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, Type II diabetes, and amyotrophic lateral sclerosis. Chem. Rev., 2021, 121(4), 2545-2647. doi: 10.1021/acs.chemrev.0c01122 PMID: 33543942
  6. Arnal, N.; Castillo, O.; de Alaniz, M.J.T.; Marra, C.A. Effects of copper and/or cholesterol overload on mitochondrial function in a rat model of incipient neurodegeneration. Int. J. Alzheimers Dis., 2013, 2013, 1-14. doi: 10.1155/2013/645379 PMID: 24363953
  7. Ke, Y.; Qian, Z.M. Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurol., 2003, 2(4), 246-253. doi: 10.1016/S1474-4422(03)00353-3 PMID: 12849213
  8. Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch., 2020, 472(10), 1415-1429. doi: 10.1007/s00424-020-02412-2 PMID: 32506322
  9. Russell, K.; Gillanders, L.K.; Orr, D.W.; Plank, L.D. Dietary copper restriction in Wilson’s disease. Eur. J. Clin. Nutr., 2018, 72(3), 326-331. doi: 10.1038/s41430-017-0002-0 PMID: 29235558
  10. Kolbaum, A.E.; Sarvan, I.; Bakhiya, N.; Spolders, M.; Pieper, R.; Schubert, J.; Jung, C.; Hackethal, C.; Sieke, C.; Grünewald, K.H.; Lindtner, O. Long-term dietary exposure to copper in the population in Germany – Results from the BfR MEAL study. Food Chem. Toxicol., 2023, 176, 113759. doi: 10.1016/j.fct.2023.113759 PMID: 37028745
  11. Tokuşoǧlu, Ö.; Aycan, Ş.; Akalin, S.; Koçak, S.; Ersoy, N. Simultaneous differential pulse polarographic determination of cadmium, lead, and copper in milk and dairy products. J. Agric. Food Chem., 2004, 52(7), 1795-1799. doi: 10.1021/jf034860l PMID: 15053511
  12. Zheng, W.; Monnot, A.D. Regulation of brain iron and copper homeostasis by brain barrier systems: Implication in neurodegenerative diseases. Pharmacol. Ther., 2012, 133(2), 177-188. doi: 10.1016/j.pharmthera.2011.10.006 PMID: 22115751
  13. Brewer, G. Copper-2 ingestion, plus increased meat eating leading to increased copper absorption, are major factors behind the current epidemic of Alzheimer’s disease. Nutrients, 2015, 7(12), 10053-10064. doi: 10.3390/nu7125513 PMID: 26633489
  14. Ruiz, L.M.; Libedinsky, A.; Elorza, A.A. Role of copper on mitochondrial function and metabolism. Front. Mol. Biosci., 2021, 8, 711227. doi: 10.3389/fmolb.2021.711227 PMID: 34504870
  15. Scheiber, I.F.; Mercer, J.F.B.; Dringen, R. Metabolism and functions of copper in brain. Prog. Neurobiol., 2014, 116, 33-57. doi: 10.1016/j.pneurobio.2014.01.002 PMID: 24440710
  16. Arredondo, M.; Núñez, M.T. Iron and copper metabolism. Mol. Aspects Med., 2005, 26(4-5), 313-327. doi: 10.1016/j.mam.2005.07.010 PMID: 16112186
  17. Gromadzka, G.; Tarnacka, B.; Flaga, A.; Adamczyk, A. Copper dyshomeostasis in neurodegenerative diseases-therapeutic implications. Int. J. Mol. Sci., 2020, 21(23), 9259. doi: 10.3390/ijms21239259 PMID: 33291628
  18. Kaler, S.G. ATP7A-related copper transport diseases—emerging concepts and future trends. Nat. Rev. Neurol., 2011, 7(1), 15-29. doi: 10.1038/nrneurol.2010.180 PMID: 21221114
  19. Rasoul, A.A.; Khudhur, Z.O.; Hamad, M.S.; Ismaeal, Y.S.; Smail, S.W.; Rasul, M.F.; Mohammad, K.A.; Bapir, A.A.; Omar, S.A.; Qadir, M.K.; Rajab, M.F.; Salihi, A.; Kaleem, M.; Rizwan, M.A.; Qureshi, A.S.; Iqbal, Z.M. Qudratullah. The role of oxidative stress and haematological parameters in relapsing-remitting multiple sclerosis in Kurdish population. Mult. Scler. Relat. Disord., 2021, 56, 103228. doi: 10.1016/j.msard.2021.103228 PMID: 34492630
  20. Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; Eaton, J.K.; Frenkel, E.; Kocak, M.; Corsello, S.M.; Lutsenko, S.; Kanarek, N.; Santagata, S.; Golub, T.R. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 2022, 375(6586), 1254-1261. doi: 10.1126/science.abf0529 PMID: 35298263
  21. An, Y.; Li, S.; Huang, X.; Chen, X.; Shan, H.; Zhang, M. The role of copper homeostasis in brain disease. Int. J. Mol. Sci., 2022, 23(22), 13850. doi: 10.3390/ijms232213850 PMID: 36430330
  22. Law, B.Y.K.; Wu, A.G.; Wang, M.J.; Zhu, Y.Z. Chinese medicine: a hope for neurodegenerative diseases? J. Alzheimers Dis., 2017, 60(s1), S151-S160. doi: 10.3233/JAD-170374 PMID: 28671133
  23. Pei, H.; Ma, L.; Cao, Y.; Wang, F.; Li, Z.; Liu, N.; Liu, M.; Wei, Y.; Li, H. Traditional Chinese medicine for Alzheimer’s disease and other cognitive impairment: A review. Am. J. Chin. Med., 2020, 48(3), 487-511. doi: 10.1142/S0192415X20500251 PMID: 32329645
  24. De Riccardis, L.; Buccolieri, A.; Muci, M.; Pitotti, E.; De Robertis, F.; Trianni, G.; Manno, D.; Maffia, M. Copper and ceruloplasmin dyshomeostasis in serum and cerebrospinal fluid of multiple sclerosis subjects. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(5), 1828-1838. doi: 10.1016/j.bbadis.2018.03.007 PMID: 29524632
  25. Sheykhansari, S.; Kozielski, K.; Bill, J.; Sitti, M.; Gemmati, D.; Zamboni, P.; Singh, A.V. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: A review. Cell Death Dis., 2018, 9(3), 348. doi: 10.1038/s41419-018-0379-2 PMID: 29497049
  26. Hung, Y.H.; Bush, A.I.; La Fontaine, S. Links between copper and cholesterol in Alzheimer’s disease. Front. Physiol., 2013, 4, 111. doi: 10.3389/fphys.2013.00111 PMID: 23720634
  27. Tokuda, E.; Okawa, E.; Ono, S. Dysregulation of intracellular copper trafficking pathway in a mouse model of mutant copper/zinc superoxide dismutase-linked familial amyotrophic lateral sclerosis. J. Neurochem., 2009, 111(1), 181-191. doi: 10.1111/j.1471-4159.2009.06310.x PMID: 19656261
  28. Liu, Y.; Miao, J. An emerging role of defective copper metabolism in heart disease. Nutrients, 2022, 14(3), 700. doi: 10.3390/nu14030700 PMID: 35277059
  29. Gil-Bea, F.J.; Aldanondo, G.; Lasa-Fernández, H.; López de Munain, A.; Vallejo-Illarramendi, A. Insights into the mechanisms of copper dyshomeostasis in amyotrophic lateral sclerosis. Expert Rev. Mol. Med., 2017, 19, e7. doi: 10.1017/erm.2017.9 PMID: 28597807
  30. Davies, K.M.; Hare, D.J.; Cottam, V.; Chen, N.; Hilgers, L.; Halliday, G.; Mercer, J.F.B.; Double, K.L. Localization of copper and copper transporters in the human brain. Metallomics, 2013, 5(1), 43-51. doi: 10.1039/C2MT20151H PMID: 23076575
  31. Skjørringe, T.; Møller, L.B.; Moos, T. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders. Front. Pharmacol., 2012, 3, 169. doi: 10.3389/fphar.2012.00169 PMID: 23055972
  32. Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150. doi: 10.1038/nrneurol.2017.188 PMID: 29377008
  33. Haywood, S.; Vaillant, C. Overexpression of copper transporter CTR1 in the brain barrier of North Ronaldsay sheep: Implications for the study of neurodegenerative disease. J. Comp. Pathol., 2014, 150(2-3), 216-224. doi: 10.1016/j.jcpa.2013.09.002 PMID: 24172593
  34. Hsu, H.W.; Bondy, S.C.; Kitazawa, M. Environmental and dietary exposure to copper and its cellular mechanisms linking to Alzheimer’s disease. Toxicol. Sci., 2018, 163(2), 338-345. doi: 10.1093/toxsci/kfy025 PMID: 29409005
  35. Ijomone, O.M.; Ifenatuoha, C.W.; Aluko, O.M.; Ijomone, O.K.; Aschner, M. The aging brain: impact of heavy metal neurotoxicity. Crit. Rev. Toxicol., 2020, 50(9), 801-814. doi: 10.1080/10408444.2020.1838441 PMID: 33210961
  36. Madsen, E.; Gitlin, J.D. Copper and iron disorders of the brain. Annu. Rev. Neurosci., 2007, 30(1), 317-337. doi: 10.1146/annurev.neuro.30.051606.094232 PMID: 17367269
  37. Prasad, A.N.; Ojha, R. Menkes disease: What a multidisciplinary approach can do. J. Multidiscip. Healthc., 2016, 9, 371-385. doi: 10.2147/JMDH.S93454 PMID: 27574440
  38. Goedert, M. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ tau, and α-synuclein. Science, 2015, 349(6248), 1255555. doi: 10.1126/science.1255555 PMID: 26250687
  39. Sinyor, B.; Mineo, J.; Ochner, C. Alzheimer’s disease, inflammation, and the role of antioxidants. J. Alzheimers Dis. Rep., 2020, 4(1), 175-183. doi: 10.3233/ADR-200171 PMID: 32715278
  40. Squitti, R.; Pasqualetti, P.; Dal Forno, G.; Moffa, F.; Cassetta, E.; Lupoi, D.; Vernieri, F.; Rossi, L.; Baldassini, M.; Rossini, P.M. Excess of serum copper not related to ceruloplasmin in Alzheimer disease. Neurology, 2005, 64(6), 1040-1046. doi: 10.1212/01.WNL.0000154531.79362.23 PMID: 15781823
  41. Robert, A.; Liu, Y.; Nguyen, M.; Meunier, B. Regulation of copper and iron homeostasis by metal chelators: A possible chemotherapy for Alzheimer’s disease. Acc. Chem. Res., 2015, 48(5), 1332-1339. doi: 10.1021/acs.accounts.5b00119 PMID: 25946460
  42. Lovell, M.A.; Robertson, J.D.; Teesdale, W.J.; Campbell, J.L.; Markesbery, W.R. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci., 1998, 158(1), 47-52. doi: 10.1016/S0022-510X(98)00092-6 PMID: 9667777
  43. Ejaz, H.W.; Wang, W.; Lang, M. Copper toxicity links to pathogenesis of Alzheimer’s disease and therapeutics approaches. Int. J. Mol. Sci., 2020, 21(20), 7660. doi: 10.3390/ijms21207660 PMID: 33081348
  44. Deibel, M.A.; Ehmann, W.D.; Markesbery, W.R. Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: Possible relation to oxidative stress. J. Neurol. Sci., 1996, 143(1-2), 137-142. doi: 10.1016/S0022-510X(96)00203-1 PMID: 8981312
  45. Rivera-Mancía, S.; Pérez-Neri, I.; Ríos, C.; Tristán-López, L.; Rivera-Espinosa, L.; Montes, S. The transition metals copper and iron in neurodegenerative diseases. Chem. Biol. Interact., 2010, 186(2), 184-199. doi: 10.1016/j.cbi.2010.04.010 PMID: 20399203
  46. Loeffler, D.A.; LeWitt, P.A.; Juneau, P.L.; Sima, A.A.F.; Nguyen, H.U.; DeMaggio, A.J.; Brickman, C.M.; Brewer, G.J.; Dick, R.D.; Troyer, M.D.; Kanaley, L. Increased regional brain concentrations of ceruloplasmin in neurodegenerative disorders. Brain Res., 1996, 738(2), 265-274. doi: 10.1016/S0006-8993(96)00782-2 PMID: 8955522
  47. Choo, X.Y.; Alukaidey, L.; White, A.R.; Grubman, A. Neuroinflammation and copper in Alzheimer’s disease. Int. J. Alzheimers Dis., 2013, 2013, 1-12. doi: 10.1155/2013/145345 PMID: 24369524
  48. Bagheri, S.; Squitti, R.; Haertlé, T.; Siotto, M.; Saboury, A.A. Role of Copper in the onset of Alzheimer’s disease compared to other metals. Front. Aging Neurosci., 2018, 9, 446. doi: 10.3389/fnagi.2017.00446 PMID: 29472855
  49. Zubčić K.; Hof, P.R.; Šimić G.; Jazvinšćak Jembrek, M. The role of copper in tau-related pathology in Alzheimer’s disease. Front. Mol. Neurosci., 2020, 13, 572308. doi: 10.3389/fnmol.2020.572308 PMID: 33071757
  50. Voss, K.; Harris, C.; Ralle, M.; Duffy, M.; Murchison, C.; Quinn, J.F. Modulation of tau phosphorylation by environmental copper. Transl. Neurodegener., 2014, 3(1), 24. doi: 10.1186/2047-9158-3-24 PMID: 25671100
  51. Singh, I.; Sagare, A.P.; Coma, M.; Perlmutter, D.; Gelein, R.; Bell, R.D.; Deane, R.J.; Zhong, E.; Parisi, M.; Ciszewski, J.; Kasper, R.T.; Deane, R. Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance. Proc. Natl. Acad. Sci. USA, 2013, 110(36), 14771-14776. doi: 10.1073/pnas.1302212110 PMID: 23959870
  52. Busche, M.A.; Hyman, B.T. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci., 2020, 23(10), 1183-1193. doi: 10.1038/s41593-020-0687-6 PMID: 32778792
  53. Aaseth, J.; Skalny, A.V.; Roos, P.M.; Alexander, J.; Aschner, M.; Tinkov, A.A. Copper, iron, selenium and lipo-glycemic dysmetabolism in Alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(17), 9461. doi: 10.3390/ijms22179461 PMID: 34502369
  54. Pal, A. Copper toxicity induced hepatocerebral and neurodegenerative diseases: An urgent need for prognostic biomarkers. Neurotoxicology, 2014, 40, 97-101. doi: 10.1016/j.neuro.2013.12.001 PMID: 24342654
  55. Pal, A.; Kumar, A.; Prasad, R. Predictive association of copper metabolism proteins with Alzheimer’s disease and Parkinson’s disease: a preliminary perspective. Biometals, 2014, 27(1), 25-31. doi: 10.1007/s10534-013-9702-7 PMID: 24435851
  56. Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet, 2021, 397(10291), 2284-2303. doi: 10.1016/S0140-6736(21)00218-X PMID: 33848468
  57. Aaseth, J.; Dusek, P.; Roos, P.M. Prevention of progression in Parkinson’s disease. Biometals, 2018, 31(5), 737-747. doi: 10.1007/s10534-018-0131-5 PMID: 30030679
  58. Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol., 2021, 20(5), 385-397. doi: 10.1016/S1474-4422(21)00030-2 PMID: 33894193
  59. Montes, S.; Rivera-Mancia, S.; Diaz-Ruiz, A.; Tristan-Lopez, L.; Rios, C. Copper and copper proteins in Parkinson’s disease. Oxid. Med. Cell. Longev., 2014, 2014, 1-15. doi: 10.1155/2014/147251 PMID: 24672633
  60. Wang, Q.; Luo, Y.; Ray Chaudhuri, K.; Reynolds, R.; Tan, E.K.; Pettersson, S. The role of gut dysbiosis in Parkinson’s disease: mechanistic insights and therapeutic options. Brain, 2021, 144(9), 2571-2593. doi: 10.1093/brain/awab156 PMID: 33856024
  61. Gangania, M.K.; Batra, J.; Kushwaha, S.; Agarwal, R. Role of iron and copper in the pathogenesis of Parkinson’s disease. Indian J. Clin. Biochem., 2017, 32(3), 353-356. doi: 10.1007/s12291-016-0614-5 PMID: 28811697
  62. Raj, K.; Kaur, P.; Gupta, G.D.; Singh, S. Metals associated neurodegeneration in Parkinson’s disease: Insight to physiological, pathological mechanisms and management. Neurosci. Lett., 2021, 753, 135873. doi: 10.1016/j.neulet.2021.135873 PMID: 33812934
  63. Cherny, R.A.; Ayton, S.; Finkelstein, D.I.; Bush, A.I.; McColl, G.; Massa, S.M. PBT2 reduces toxicity in a c. elegans model of polyQ aggregation and extends lifespan, reduces striatal atrophy and improves motor performance in the R6/2 mouse model of Huntington’s disease. J. Huntingtons Dis., 2012, 1(2), 211-219. doi: 10.3233/JHD-120029 PMID: 25063332
  64. Hands, S.L.; Mason, R.; Sajjad, M.U.; Giorgini, F.; Wyttenbach, A. Metallothioneins and copper metabolism are candidate therapeutic targets in Huntington’s disease. Biochem. Soc. Trans., 2010, 38(2), 552-558. doi: 10.1042/BST0380552 PMID: 20298220
  65. Dexter, D.T.; Carayon, A.; Javoy-Agid, F.; Agid, Y.; Wells, F.R.; Daniel, S.E.; Lees, A.J.; Jenner, P.; Marsden, C.D. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain, 1991, 114(4), 1953-1975. doi: 10.1093/brain/114.4.1953 PMID: 1832073
  66. Scholefield, M.; Unwin, R.D.; Cooper, G.J.S. Shared perturbations in the metallome and metabolome of Alzheimer’s, Parkinson’s, Huntington’s, and dementia with Lewy bodies: A systematic review. Ageing Res. Rev., 2020, 63, 101152. doi: 10.1016/j.arr.2020.101152 PMID: 32846222
  67. Grubman, A.; White, A.R.; Liddell, J.R. Mitochondrial metals as a potential therapeutic target in neurodegeneration. Br. J. Pharmacol., 2014, 171(8), 2159-2173. doi: 10.1111/bph.12513 PMID: 24206195
  68. Maung, M.T.; Carlson, A.; Olea-Flores, M.; Elkhadragy, L.; Schachtschneider, K.M.; Navarro-Tito, N.; Padilla-Benavides, T. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J., 2021, 35(9), e21810. doi: 10.1096/fj.202100273RR PMID: 34390520
  69. Fox, J.H.; Kama, J.A.; Lieberman, G.; Chopra, R.; Dorsey, K.; Chopra, V.; Volitakis, I.; Cherny, R.A.; Bush, A.I.; Hersch, S. Mechanisms of copper ion mediated Huntington’s disease progression. PLoS One, 2007, 2(3), e334. doi: 10.1371/journal.pone.0000334 PMID: 17396163
  70. Clarke, B.E.; Patani, R. The microglial component of amyotrophic lateral sclerosis. Brain, 2020, 143(12), 3526-3539. doi: 10.1093/brain/awaa309 PMID: 33427296
  71. Van Harten, A.C.M.; Phatnani, H.; Przedborski, S. Non-cell-autonomous pathogenic mechanisms in amyotrophic lateral sclerosis. Trends Neurosci., 2021, 44(8), 658-668. doi: 10.1016/j.tins.2021.04.008 PMID: 34006386
  72. Gellein, K.; Garruto, R.M.; Syversen, T.; Sjøbakk, T.E.; Flaten, T.P. Concentrations of Cd, Co, Cu, Fe, Mn, Rb, V, and Zn in formalin-fixed brain tissue in amyotrophic lateral sclerosis and Parkinsonism-dementia complex of Guam determined by High-resolution ICP-MS. Biol. Trace Elem. Res., 2003, 96(1-3), 39-60. doi: 10.1385/BTER:96:1-3:39 PMID: 14716085
  73. Kapaki, E.; Zournas, C.; Kanias, G.; Zambelis, T.; Kakami, A.; Papageorgiou, C. Essential trace element alterations in amyotrophic lateral sclerosis. J. Neurol. Sci., 1997, 147(2), 171-175. doi: 10.1016/S0022-510X(96)05334-8 PMID: 9106124
  74. Barros, A.N.A.B.; Dourado, M.E.T., Jr; Pedrosa, L.F.C.; Leite-Lais, L. Association of copper status with lipid profile and functional status in patients with amyotrophic lateral sclerosis. J. Nutr. Metab., 2018, 2018, 1-7. doi: 10.1155/2018/5678698 PMID: 30116640
  75. Kreuzer, M. Stamenković S.; Chen, S.; Andjus, P.; Dučić T. Lipids status and copper in a single astrocyte of the rat model for amyotrophic lateral sclerosis: Correlative synchrotron‐based X‐ray and infrared imaging. J. Biophotonics, 2020, 13(10), e202000069. doi: 10.1002/jbio.202000069 PMID: 32463554
  76. Abati, E.; Bresolin, N.; Comi, G.; Corti, S. Silence superoxide dismutase 1 (SOD1): a promising therapeutic target for amyotrophic lateral sclerosis (ALS). Expert Opin. Ther. Targets, 2020, 24(4), 295-310. doi: 10.1080/14728222.2020.1738390 PMID: 32125907
  77. Hilton, J.B.; White, A.R.; Crouch, P.J. Metal-deficient SOD1 in amyotrophic lateral sclerosis. J. Mol. Med. (Berl.), 2015, 93(5), 481-487. doi: 10.1007/s00109-015-1273-3 PMID: 25754173
  78. Enge, T.G.; Ecroyd, H.; Jolley, D.F.; Yerbury, J.J.; Kalmar, B.; Dosseto, A. Assessment of metal concentrations in the SOD1G93A mouse model of amyotrophic lateral sclerosis and its potential role in muscular denervation, with particular focus on muscle tissue. Mol. Cell. Neurosci., 2018, 88, 319-329. doi: 10.1016/j.mcn.2018.03.001 PMID: 29524628
  79. Tokuda, E.; Nomura, T.; Ohara, S.; Watanabe, S.; Yamanaka, K.; Morisaki, Y.; Misawa, H.; Furukawa, Y. A copper-deficient form of mutant Cu/Zn-superoxide dismutase as an early pathological species in amyotrophic lateral sclerosis. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(6), 2119-2130. doi: 10.1016/j.bbadis.2018.03.015 PMID: 29551730
  80. Sirangelo, I.; Iannuzzi, C. The role of metal binding in the amyotrophic lateral sclerosis-related aggregation of copper-zinc superoxide dismutase. Molecules, 2017, 22(9), 1429. doi: 10.3390/molecules22091429 PMID: 28850080
  81. Sauzéat, L.; Bernard, E.; Perret-Liaudet, A.; Quadrio, I.; Vighetto, A.; Krolak-Salmon, P.; Broussolle, E.; Leblanc, P.; Balter, V. Isotopic evidence for disrupted copper metabolism in amyotrophic lateral sclerosis. iScience, 2018, 6, 264-271. doi: 10.1016/j.isci.2018.07.023 PMID: 30240616
  82. Tarnacka, B.; Jopowicz, A. Maślińska, M. Copper, iron, and manganese toxicity in neuropsychiatric conditions. Int. J. Mol. Sci., 2021, 22(15), 7820. doi: 10.3390/ijms22157820 PMID: 34360586
  83. Kurlander, H.M.; Patten, B.M. Metals in spinal cord tissue of patients dying of motor neuron disease. Ann. Neurol., 1979, 6(1), 21-24. doi: 10.1002/ana.410060105 PMID: 507754
  84. Katzeff, J.S.; Bright, F.; Phan, K.; Kril, J.J.; Ittner, L.M.; Kassiou, M.; Hodges, J.R.; Piguet, O.; Kiernan, M.C.; Halliday, G.M.; Kim, W.S. Biomarker discovery and development for frontotemporal dementia and amyotrophic lateral sclerosis. Brain, 2022, 145(5), 1598-1609. doi: 10.1093/brain/awac077 PMID: 35202463
  85. Tokuda, E.; Ono, S.; Ishige, K.; Watanabe, S.; Okawa, E.; Ito, Y.; Suzuki, T. Ammonium tetrathiomolybdate delays onset, prolongs survival, and slows progression of disease in a mouse model for amyotrophic lateral sclerosis. Exp. Neurol., 2008, 213(1), 122-128. doi: 10.1016/j.expneurol.2008.05.011 PMID: 18617166
  86. Bandmann, O.; Weiss, K.H.; Kaler, S.G. Wilson’s disease and other neurological copper disorders. Lancet Neurol., 2015, 14(1), 103-113. doi: 10.1016/S1474-4422(14)70190-5 PMID: 25496901
  87. Lalioti, V.; Sandoval, I.; Cassio, D.; Duclos-Vallée, J.C. Molecular pathology of Wilson’s disease: A brief. J. Hepatol., 2010, 53(6), 1151-1153. doi: 10.1016/j.jhep.2010.07.008 PMID: 20832891
  88. Xu, R.; Jiang, Y.; Zhang, Y.; Yang, X. The optimal threshold of serum ceruloplasmin in the diagnosis of Wilson’s disease: A large hospital-based study. PLoS One, 2018, 13(1), e0190887. doi: 10.1371/journal.pone.0190887 PMID: 29324775
  89. Yang, Y.; Hao, W.; Wei, T.; Tang, L.; Qian, N.; Yang, Y.; Xi, H.; Zhang, S.; Yang, W. Role of serum ceruloplasmin in the diagnosis of Wilson’s disease: A large Chinese study. Front. Neurol., 2022, 13, 1058642. doi: 10.3389/fneur.2022.1058642 PMID: 36570465
  90. Ala, A.; Walker, A.P.; Ashkan, K.; Dooley, J.S.; Schilsky, M.L. Wilson’s disease. Lancet, 2007, 369(9559), 397-408. doi: 10.1016/S0140-6736(07)60196-2 PMID: 17276780
  91. Lutsenko, S. Atp7b −/− mice as a model for studies of Wilson’s disease. Biochem. Soc. Trans., 2008, 36(6), 1233-1238. doi: 10.1042/BST0361233 PMID: 19021531
  92. Wooton-Kee, C.R.; Jain, A.K.; Wagner, M.; Grusak, M.A.; Finegold, M.J.; Lutsenko, S.; Moore, D.D. Elevated copper impairs hepatic nuclear receptor function in Wilson’s disease. J. Clin. Invest., 2015, 125(9), 3449-3460. doi: 10.1172/JCI78991 PMID: 26241054
  93. Shribman, S.; Poujois, A.; Bandmann, O.; Czlonkowska, A.; Warner, T.T. Wilson’s disease: update on pathogenesis, biomarkers and treatments. J. Neurol. Neurosurg. Psychiatry, 2021, 92(10), 1053-1061. doi: 10.1136/jnnp-2021-326123 PMID: 34341141
  94. Zischka, H.; Lichtmannegger, J. Pathological mitochondrial copper overload in livers of Wilson’s disease patients and related animal models. Ann. N. Y. Acad. Sci., 2014, 1315(1), 6-15. doi: 10.1111/nyas.12347 PMID: 24517326
  95. Litwin, T.; Gromadzka, G.; Szpak, G.M. Jabłonka-Salach, K.; Bulska, E.; Członkowska, A. Brain metal accumulation in Wilson’s disease. J. Neurol. Sci., 2013, 329(1-2), 55-58. doi: 10.1016/j.jns.2013.03.021 PMID: 23597670
  96. Lech, T.; Hydzik, P.; Kosowski, B. Significance of copper determination in late onset of Wilson’s disease. Clin. Toxicol. (Phila.), 2007, 45(6), 688-694. doi: 10.1080/15563650701502535 PMID: 17849244
  97. Sokol, R.J.; Twedt, D.; McKim, J.M., Jr; Devereaux, M.W.; Karrer, F.M.; Kam, I.; Von Steigman, G.; Narkewicz, M.R.; Bacon, B.R.; Britton, R.S.; Neuschwander-Tetri, B.A. Oxidant injury to hepatic mitochondria in patients with Wilson’s disease and Bedlington terriers with copper toxicosis. Gastroenterology, 1994, 107(6), 1788-1798. doi: 10.1016/0016-5085(94)90822-2 PMID: 7958693
  98. Brewer, G.J.; Askari, F.; Dick, R.B.; Sitterly, J.; Fink, J.K.; Carlson, M.; Kluin, K.J.; Lorincz, M.T. Treatment of Wilson’s disease with tetrathiomolybdate: V. control of free copper by tetrathiomolybdate and a comparison with trientine. Transl. Res., 2009, 154(2), 70-77. doi: 10.1016/j.trsl.2009.05.002 PMID: 19595438
  99. Tümer, Z. An overview and update of ATP7A mutations leading to Menkes disease and occipital horn syndrome. Hum. Mutat., 2013, 34(3), 417-429. doi: 10.1002/humu.22266 PMID: 23281160
  100. Donsante, A.; Yi, L.; Zerfas, P.M.; Brinster, L.R.; Sullivan, P.; Goldstein, D.S.; Prohaska, J.; Centeno, J.A.; Rushing, E.; Kaler, S.G. ATP7A gene addition to the choroid plexus results in long-term rescue of the lethal copper transport defect in a Menkes disease mouse model. Mol. Ther., 2011, 19(12), 2114-2123. doi: 10.1038/mt.2011.143 PMID: 21878905
  101. Bertini, I.; Rosato, A. Menkes disease. Cell. Mol. Life Sci., 2008, 65(1), 89-91. doi: 10.1007/s00018-007-7439-6 PMID: 17989919
  102. Lenartowicz, M.; Krzeptowski, W. Lipiński, P.; Grzmil, P.; Starzyński, R.; Pierzchała, O.; Møller, L.B. Mottled mice and non-mammalian models of Menkes disease. Front. Mol. Neurosci., 2015, 8, 72. doi: 10.3389/fnmol.2015.00072 PMID: 26732058
  103. Giampietro, R.; Spinelli, F.; Contino, M.; Colabufo, N.A. The pivotal role of copper in neurodegeneration: A new strategy for the therapy of neurodegenerative disorders. Mol. Pharm., 2018, 15(3), 808-820. doi: 10.1021/acs.molpharmaceut.7b00841 PMID: 29323501
  104. Horn, N.; Wittung-Stafshede, P. ATP7A-regulated enzyme metalation and trafficking in the Menkes disease puzzle. Biomedicines, 2021, 9(4), 391. doi: 10.3390/biomedicines9040391 PMID: 33917579
  105. Guo, Y.; Xia, W.; Peng, X.; Shao, J. Almost misdiagnosed Menkes disease: A case report. Heliyon, 2022, 8(4), e09268. doi: 10.1016/j.heliyon.2022.e09268 PMID: 35464712
  106. Aguzzi, A.; Zhu, C. Microglia in prion diseases. J. Clin. Invest., 2017, 127(9), 3230-3239. doi: 10.1172/JCI90605 PMID: 28714865
  107. Choi, C.J.; Kanthasamy, A.; Anantharam, V.; Kanthasamy, A.G. Interaction of metals with prion protein: Possible role of divalent cations in the pathogenesis of prion diseases. Neurotoxicology, 2006, 27(5), 777-787. doi: 10.1016/j.neuro.2006.06.004 PMID: 16860868
  108. Johnson, R.T. Prion diseases. Lancet Neurol., 2005, 4(10), 635-642. doi: 10.1016/S1474-4422(05)70192-7 PMID: 16168932
  109. Unterberger, U.; Voigtländer, T.; Budka, H. Pathogenesis of prion diseases. Acta Neuropathol., 2005, 109(1), 32-48. doi: 10.1007/s00401-004-0953-9 PMID: 15645262
  110. Kawahara, M.; Kato-Negishi, M.; Tanaka, K. Neurometals in the pathogenesis of Prion diseases. Int. J. Mol. Sci., 2021, 22(3), 1267. doi: 10.3390/ijms22031267 PMID: 33525334
  111. Kretzschmar, H.A. Molecular pathogenesis of prion diseases. Eur. Arch. Psychiatry Clin. Neurosci., 1999, 249(S3)(Suppl. 3), S56-S63. doi: 10.1007/PL00014175 PMID: 10654101
  112. Aguzzi, A.; Nuvolone, M.; Zhu, C. The immunobiology of prion diseases. Nat. Rev. Immunol., 2013, 13(12), 888-902. doi: 10.1038/nri3553 PMID: 24189576
  113. Soto, C.; Satani, N. The intricate mechanisms of neurodegeneration in prion diseases. Trends Mol. Med., 2011, 17(1), 14-24. doi: 10.1016/j.molmed.2010.09.001 PMID: 20889378
  114. Aguzzi, A.; Heikenwalder, M. Pathogenesis of prion diseases: current status and future outlook. Nat. Rev. Microbiol., 2006, 4(10), 765-775. doi: 10.1038/nrmicro1492 PMID: 16980938
  115. Wong, B.S.; Chen, S.G.; Colucci, M.; Xie, Z.; Pan, T.; Liu, T.; Li, R.; Gambetti, P.; Sy, M.S.; Brown, D.R. Aberrant metal binding by prion protein in human prion disease. J. Neurochem., 2001, 78(6), 1400-1408. doi: 10.1046/j.1471-4159.2001.00522.x PMID: 11579148
  116. Leach, S.P.; Salman, M.D.; Hamar, D. Trace elements and prion diseases: a review of the interactions of copper, manganese and zinc with the prion protein. Anim. Health Res. Rev., 2006, 7(1-2), 97-105. doi: 10.1017/S1466252307001181 PMID: 17389057
  117. Meneghetti, E.; Gasperini, L.; Virgilio, T.; Moda, F.; Tagliavini, F.; Benetti, F.; Legname, G. Prions strongly reduce NMDA receptor s-nitrosylation levels at pre-symptomatic and terminal stages of Prion diseases. Mol. Neurobiol., 2019, 56(9), 6035-6045. doi: 10.1007/s12035-019-1505-6 PMID: 30710214
  118. Emwas, A.H.M.; Al-Talla, Z.A.; Guo, X.; Al-Ghamdi, S.; Al-Masri, H.T. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. Magn. Reson. Chem., 2013, 51(5), 255-268. doi: 10.1002/mrc.3936 PMID: 23436479
  119. Varela-Nallar, L.; González, A.; Inestrosa, N. Role of copper in prion diseases: deleterious or beneficial? Curr. Pharm. Des., 2006, 12(20), 2587-2595. doi: 10.2174/138161206777698873 PMID: 16842180
  120. Lehmann, S. Metal ions and prion diseases. Curr. Opin. Chem. Biol., 2002, 6(2), 187-192. doi: 10.1016/S1367-5931(02)00295-8 PMID: 12039003
  121. Alsiary, R.A.; Alghrably, M.; Saoudi, A.; Al-Ghamdi, S.; Jaremko, L.; Jaremko, M.; Emwas, A.H. Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurol. Sci., 2020, 41(9), 2389-2406. doi: 10.1007/s10072-020-04321-9 PMID: 32328835
  122. Bounias, M.; Purdey, M. Transmissible spongiform encephalopathies: a family of etiologically complex diseases—a review. Sci. Total Environ., 2002, 297(1-3), 1-19. doi: 10.1016/S0048-9697(02)00140-7 PMID: 12389776
  123. Bar-Or, A.; Li, R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurol., 2021, 20(6), 470-483. doi: 10.1016/S1474-4422(21)00063-6 PMID: 33930317
  124. Bierhansl, L.; Hartung, H.P.; Aktas, O.; Ruck, T.; Roden, M.; Meuth, S.G. Thinking outside the box: non-canonical targets in multiple sclerosis. Nat. Rev. Drug Discov., 2022, 21(8), 578-600. doi: 10.1038/s41573-022-00477-5 PMID: 35668103
  125. Colombo, E.; Triolo, D.; Bassani, C.; Bedogni, F.; Di Dario, M.; Dina, G.; Fredrickx, E.; Fermo, I.; Martinelli, V.; Newcombe, J.; Taveggia, C.; Quattrini, A.; Comi, G.; Farina, C. Dysregulated copper transport in multiple sclerosis may cause demyelination via astrocytes. Proc. Natl. Acad. Sci. USA, 2021, 118(27), e2025804118. doi: 10.1073/pnas.2025804118 PMID: 34183414
  126. Malosio, M.L.; Tecchio, F.; Squitti, R. Molecular mechanisms underlying copper function and toxicity in neurons and their possible therapeutic exploitation for Alzheimer’s disease. Aging Clin. Exp. Res., 2021, 33(7), 2027-2030. doi: 10.1007/s40520-019-01463-5 PMID: 31965480
  127. Burk, K.; Pasterkamp, R.J. Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathol., 2019, 137(6), 859-877. doi: 10.1007/s00401-019-01964-7 PMID: 30721407
  128. Fasae, K.D.; Abolaji, A.O.; Faloye, T.R.; Odunsi, A.Y.; Oyetayo, B.O.; Enya, J.I.; Rotimi, J.A.; Akinyemi, R.O.; Whitworth, A.J.; Aschner, M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer’s disease: Limitations, and current and future perspectives. J. Trace Elem. Med. Biol., 2021, 67, 126779. doi: 10.1016/j.jtemb.2021.126779 PMID: 34034029
  129. Barnham, K.J.; Bush, A.I. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem. Soc. Rev., 2014, 43(19), 6727-6749. doi: 10.1039/C4CS00138A PMID: 25099276
  130. Das, N.; Raymick, J.; Sarkar, S. Role of metals in Alzheimer’s disease. Metab. Brain Dis., 2021, 36(7), 1627-1639. doi: 10.1007/s11011-021-00765-w PMID: 34313926
  131. Davies, K.M.; Mercer, J.F.B.; Chen, N.; Double, K.L. Copper dyshomoeostasis in Parkinson’s disease: implications for pathogenesis and indications for novel therapeutics. Clin. Sci. (Lond.), 2016, 130(8), 565-574. doi: 10.1042/CS20150153 PMID: 26957644
  132. Safety, tolerability, and efficacy of PBT2 in Huntington’s disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2015, 14(1), 39-47. doi: 10.1016/S1474-4422(14)70262-5 PMID: 25467848
  133. Choi, B.Y.; Jang, B.G.; Kim, J.H.; Seo, J.N.; Wu, G.; Sohn, M.; Chung, T.N.; Suh, S.W. Copper/zinc chelation by clioquinol reduces spinal cord white matter damage and behavioral deficits in a murine MOG-induced multiple sclerosis model. Neurobiol. Dis., 2013, 54, 382-391. doi: 10.1016/j.nbd.2013.01.012 PMID: 23360710
  134. Hung, Y.H.; Bush, A.I.; Cherny, R.A. Copper in the brain and Alzheimer’s disease. J. Biol. Inorg. Chem., 2010, 15(1), 61-76. doi: 10.1007/s00775-009-0600-y PMID: 19862561
  135. Squitti, R.; Rossini, P.M.; Cassetta, E.; Moffa, F.; Pasqualetti, P.; Cortesi, M.; Colloca, A.; Rossi, L.; Finazzi-Agró, A. d-penicillamine reduces serum oxidative stress in Alzheimer’s disease patients. Eur. J. Clin. Invest., 2002, 32(1), 51-59. doi: 10.1046/j.1365-2362.2002.00933.x PMID: 11851727
  136. Brewer, G.J.; Askari, F.K. Wilson's disease: Clinical management and therapy. J Hepatol., 2005, 42(Suppl(1)), S13-S21. doi: 10.1016/j.jhep.2004.11.013 PMID: 15777568
  137. Nomura, S.; Nozaki, S.; Hamazaki, T.; Takeda, T.; Ninomiya, E.; Kudo, S.; Hayashinaka, E.; Wada, Y.; Hiroki, T.; Fujisawa, C.; Kodama, H.; Shintaku, H.; Watanabe, Y. PET imaging analysis with 64Cu in disulfiram treatment for aberrant copper biodistribution in Menkes disease mouse model. J. Nucl. Med., 2014, 55(5), 845-851. doi: 10.2967/jnumed.113.131797 PMID: 24627433
  138. Zhao, J.; Shi, Q.; Tian, H.; Li, Y.; Liu, Y.; Xu, Z.; Robert, A.; Liu, Q.; Meunier, B. TDMQ20, a specific copper chelator, reduces memory impairments in Alzheimer’s disease mouse models. ACS Chem. Neurosci., 2021, 12(1), 140-149. doi: 10.1021/acschemneuro.0c00621 PMID: 33322892
  139. Tümer, Z.; Møller, L.B. Menkes disease. Eur. J. Hum. Genet., 2010, 18(5), 511-518. doi: 10.1038/ejhg.2009.187 PMID: 19888294
  140. Squitti, R.; Siotto, M.; Arciello, M.; Rossi, L. Non-ceruloplasmin bound copper and ATP7B gene variants in Alzheimer’s disease. Metallomics, 2016, 8(9), 863-873. doi: 10.1039/C6MT00101G PMID: 27499330
  141. Lalioti, V.; Tsubota, A.; Sandoval, I. Disorders in hepatic copper secretion: Wilson’s disease and pleomorphic syndromes. Semin. Liver Dis., 2017, 37(2), 175-188. doi: 10.1055/s-0037-1602764 PMID: 28564725
  142. Mathys, Z.K.; White, A.R. Copper and Alzheimer’s disease. Adv. Neurobiol., 2017, 18, 199-216. doi: 10.1007/978-3-319-60189-2_10 PMID: 28889269
  143. Ellett, L.J.; Hung, L.W.; Munckton, R.; Sherratt, N.A.; Culvenor, J.; Grubman, A.; Furness, J.B.; White, A.R.; Finkelstein, D.I.; Barnham, K.J.; Lawson, V.A. Restoration of intestinal function in an MPTP model of Parkinson’s Disease. Sci. Rep., 2016, 6(1), 30269. doi: 10.1038/srep30269 PMID: 27471168
  144. Abbaoui, A.; Chatoui, H.; El Hiba, O.; Gamrani, H. Neuroprotective effect of curcumin-I in copper-induced dopaminergic neurotoxicity in rats: A possible link with Parkinson’s disease. Neurosci. Lett., 2017, 660, 103-108. doi: 10.1016/j.neulet.2017.09.032 PMID: 28919537
  145. Roberts, B.R.; Lim, N.K.H.; McAllum, E.J.; Donnelly, P.S.; Hare, D.J.; Doble, P.A.; Turner, B.J.; Price, K.A.; Chun Lim, S.; Paterson, B.M.; Hickey, J.L.; Rhoads, T.W.; Williams, J.R.; Kanninen, K.M.; Hung, L.W.; Liddell, J.R.; Grubman, A.; Monty, J.F.; Llanos, R.M.; Kramer, D.R.; Mercer, J.F.B.; Bush, A.I.; Masters, C.L.; Duce, J.A.; Li, Q.X.; Beckman, J.S.; Barnham, K.J.; White, A.R.; Crouch, P.J. Oral treatment with Cu(II)(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurosci., 2014, 34(23), 8021-8031. doi: 10.1523/JNEUROSCI.4196-13.2014 PMID: 24899723
  146. Tokuda, E.; Furukawa, Y. Copper homeostasis as a therapeutic target in amyotrophic lateral sclerosis with sod1 mutations. Int. J. Mol. Sci., 2016, 17(5), 636. doi: 10.3390/ijms17050636 PMID: 27136532
  147. Guthrie, L.M.; Soma, S.; Yuan, S.; Silva, A.; Zulkifli, M.; Snavely, T.C.; Greene, H.F.; Nunez, E.; Lynch, B.; De Ville, C.; Shanbhag, V.; Lopez, F.R.; Acharya, A.; Petris, M.J.; Kim, B.E.; Gohil, V.M.; Sacchettini, J.C. Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice. Science, 2020, 368(6491), 620-625. doi: 10.1126/science.aaz8899 PMID: 32381719
  148. Kempuraj, D.; Thangavel, R.; Kempuraj, D.D.; Ahmed, M.E.; Selvakumar, G.P.; Raikwar, S.P.; Zaheer, S.A.; Iyer, S.S.; Govindarajan, R.; Chandrasekaran, P.N.; Zaheer, A. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. Biofactors, 2021, 47(2), 190-197. doi: 10.1002/biof.1687 PMID: 33098588
  149. Liu, Q.S.; Jiang, H.L.; Wang, Y.; Wang, L.L.; Zhang, J.X.; He, C.H.; Shao, S.; Zhang, T.T.; Xing, J.G.; Liu, R. Total flavonoid extract from Dracoephalum moldavica L. attenuates β-amyloid-induced toxicity through anti-amyloidogenesic and neurotrophic pathways. Life Sci., 2018, 193, 214-225. doi: 10.1016/j.lfs.2017.10.041 PMID: 29100755
  150. Liu, R.; Meng, F.; Zhang, L.; Liu, A.; Qin, H.; Lan, X.; Li, L.; Du, G. Luteolin isolated from the medicinal plant Elsholtzia rugulosa (Labiatae) prevents copper-mediated toxicity in β-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Molecules, 2011, 16(3), 2084-2096. doi: 10.3390/molecules16032084 PMID: 21368720
  151. Xu, Y.; Yang, J.; Lu, Y.; Qian, L.L.; Yang, Z.Y.; Han, R.M.; Zhang, J.P.; Skibsted, L.H. Copper(II) coordination and translocation in luteolin and effect on radical scavenging. J. Phys. Chem. B, 2020, 124(2), 380-388. doi: 10.1021/acs.jpcb.9b10531 PMID: 31845805
  152. Zhao, L.; Wang, J.L.; Liu, R.; Li, X.X.; Li, J.F.; Zhang, L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules, 2013, 18(8), 9949-9965. doi: 10.3390/molecules18089949 PMID: 23966081
  153. Zhao, L.; Wang, J.; Wang, Y.; Fa, X. Apigenin attenuates copper-mediated β-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model. Brain Res., 2013, 1492, 33-45. doi: 10.1016/j.brainres.2012.11.019 PMID: 23178511
  154. Peng, H.; Xing, Y.; Gao, L.; Zhang, L.; Zhang, G. Simultaneous separation of apigenin, luteolin and rosmarinic acid from the aerial parts of the copper-tolerant plant Elsholtzia splendens. Environ. Sci. Pollut. Res. Int., 2014, 21(13), 8124-8132. doi: 10.1007/s11356-014-2747-5 PMID: 24671394
  155. Wang, Q.; Jiang, H.; Wang, L.; Yi, H.; Li, Z.; Liu, R. Vitegnoside mitigates neuronal injury, mitochondrial apoptosis, and inflammation in an Alzheimer’s disease cell model via the p38 MAPK/JNK Pathway. J. Alzheimers Dis., 2019, 72(1), 199-214. doi: 10.3233/JAD-190640 PMID: 31561371
  156. Lin, M.C.; Liu, C.C.; Liao, C.S.; Ro, J.H. Neuroprotective effect of quercetin during cerebral ischemic injury involves regulation of essential elements, transition metals, cu/zn ratio, and antioxidant activity. Molecules, 2021, 26(20), 6128. doi: 10.3390/molecules26206128 PMID: 34684707
  157. Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxid. Med. Cell. Longev., 2020, 2020, 1-13. doi: 10.1155/2020/8825387 PMID: 33488935
  158. Du, G.; Zhao, Z.; Chen, Y.; Li, Z.; Tian, Y.; Liu, Z.; Liu, B.; Song, J. Quercetin protects rat cortical neurons against traumatic brain injury. Mol. Med. Rep., 2018, 17(6), 7859-7865. doi: 10.3892/mmr.2018.8801 PMID: 29620218
  159. Jomova, K.; Lawson, M.; Drostinova, L.; Lauro, P.; Poprac, P.; Brezova, V.; Michalik, M.; Lukes, V.; Valko, M. Protective role of quercetin against copper(II)-induced oxidative stress: A spectroscopic, theoretical and DNA damage study. Food Chem. Toxicol., 2017, 110, 340-350. doi: 10.1016/j.fct.2017.10.042 PMID: 29107026
  160. Chakraborty, J.; Pakrashi, S.; Sarbajna, A.; Dutta, M.; Bandyopadhyay, J. Quercetin attenuates copper-induced apoptotic cell death and endoplasmic reticulum stress in SH-SY5Y cells by autophagic modulation. Biol. Trace Elem. Res., 2022, 200(12), 5022-5041. doi: 10.1007/s12011-022-03093-x PMID: 35149956
  161. Zubčić K.; Radovanović V.; Vlainić J.; Hof, P.R.; Oršolić N.; Šimić G.; Jazvinšćak Jembrek, M. PI3K/Akt and ERK1/2 signalling are involved in quercetin-mediated neuroprotection against copper-induced injury. Oxid. Med. Cell. Longev., 2020, 2020, 1-14. doi: 10.1155/2020/9834742 PMID: 32733640
  162. Kuo, S.M.; Huang, C.T.; Blum, P.; Chang, C. Quercetin cumulatively enhances copper induction of metallothionein in intestinal cells. Biol. Trace Elem. Res., 2001, 84(1-3), 001-010. doi: 10.1385/BTER:84:1-3:001 PMID: 11817679
  163. Gan, R.Y.; Li, H.B.; Sui, Z.Q.; Corke, H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit. Rev. Food Sci. Nutr., 2018, 58(6), 924-941. doi: 10.1080/10408398.2016.1231168 PMID: 27645804
  164. Steinmann, J.; Buer, J.; Pietschmann, T.; Steinmann, E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br. J. Pharmacol., 2013, 168(5), 1059-1073. doi: 10.1111/bph.12009 PMID: 23072320
  165. Koh, S.H.; Lee, S.M.; Kim, H.Y.; Lee, K.Y.; Lee, Y.J.; Kim, H.T.; Kim, J.; Kim, M.H.; Hwang, M.S.; Song, C.; Yang, K.W.; Lee, K.W.; Kim, S.H.; Kim, O.H. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci. Lett., 2006, 395(2), 103-107. doi: 10.1016/j.neulet.2005.10.056 PMID: 16356650
  166. Teng, Y.; Zhao, J.; Ding, L.; Ding, Y.; Zhou, P. Complex of EGCG with Cu(II) suppresses amyloid aggregation and Cu(II)-induced cytotoxicity of alpha-synuclein. Molecules, 2019, 24(16), 2940. doi: 10.3390/molecules24162940 PMID: 31416122
  167. Li, J.; Xiang, H.; Huang, C.; Lu, J. Pharmacological actions of myricetin in the nervous system: a comprehensive review of preclinical studies in animals and cell models. Front. Pharmacol., 2021, 12, 797298. doi: 10.3389/fphar.2021.797298 PMID: 34975495
  168. Zhang, X.H.; Ma, Z.G.; Rowlands, D.K.; Gou, Y.L.; Fok, K.L.; Wong, H.Y.; Yu, M.K.; Tsang, L.L.; Mu, L.; Chen, L.; Yung, W.H.; Chung, Y.W.; Zhang, B.L.; Zhao, H.; Chan, H.C. Flavonoid myricetin modulates GABA(A) receptor activity through activation of Ca(2+) channels and CaMK-II pathway. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-10. doi: 10.1155/2012/758097 PMID: 23258999
  169. Ding, P.; Liao, X.; Shi, B. Adsorption chromatography separation of the flavonols kaempferol, quercetin and myricetin using cross-linked collagen fibre as the stationary phase. J. Sci. Food Agric., 2013, 93(7), 1575-1583. doi: 10.1002/jsfa.5924 PMID: 23152137
  170. DeToma, A.S.; Choi, J.S.; Braymer, J.J.; Lim, M.H. Myricetin: a naturally occurring regulator of metal-induced amyloid-β aggregation and neurotoxicity. ChemBioChem, 2011, 12(8), 1198-1201. doi: 10.1002/cbic.201000790 PMID: 21538759
  171. Xiang, B.; Li, D.; Chen, Y.; Li, M.; Zhang, Y.; Sun, T.; Tang, S. Curcumin ameliorates copper-induced neurotoxicity through inhibiting oxidative stress and mitochondrial apoptosis in SH-SY5Y cells. Neurochem. Res., 2021, 46(2), 367-378. doi: 10.1007/s11064-020-03173-1 PMID: 33201401
  172. Abolaji, A.O.; Fasae, K.D.; Iwezor, C.E.; Aschner, M.; Farombi, E.O. Curcumin attenuates copper-induced oxidative stress and neurotoxicity in Drosophila melanogaster. Toxicol. Rep., 2020, 7, 261-268. doi: 10.1016/j.toxrep.2020.01.015 PMID: 32025502
  173. RA Mans, D. Djotaroeno, M.; Friperson, P.; Pawirodihardjo, J. Phytochemical and pharmacological support for the traditional uses of Zingiberacea species in suriname - a review of the literature. Pharmacogn. J., 2019, 11(6s), 1511-1525. doi: 10.5530/pj.2019.11.232
  174. Abbaoui, A.; Gamrani, H. Obvious anxiogenic-like effects of subchronic copper intoxication in rats, outcomes on spatial learning and memory and neuromodulatory potential of curcumin. J. Chem. Neuroanat., 2019, 96, 86-93. doi: 10.1016/j.jchemneu.2019.01.001 PMID: 30611899
  175. Ho, W.I.; Hu, Y.; Cheng, C.W.; Wei, R.; Yang, J.; Li, N.; Au, K.W.; Tse, Y.L.; Wang, Q.; Ng, K.M.; Esteban, M.A.; Tse, H.F. Liposome-encapsulated curcumin attenuates HMGB1-mediated hepatic inflammation and fibrosis in a murine model of Wilson’s disease. Biomed. Pharmacother., 2022, 152, 113197. doi: 10.1016/j.biopha.2022.113197 PMID: 35687913
  176. Motavaf, M.; Sadeghizadeh, M.; Babashah, S.; Zare, L.; Javan, M. Protective effects of a nano-formulation of curcumin against cuprizone-induced demyelination in the mouse corpus callosum. Iran. J. Pharm. Res., 2020, 19(3), 310-320. PMID: 33680032
  177. Huang, H.C.; Lin, C.J.; Liu, W.J.; Jiang, R.R.; Jiang, Z.F. Dual effects of curcumin on neuronal oxidative stress in the presence of Cu(II). Food Chem. Toxicol., 2011, 49(7), 1578-1583. doi: 10.1016/j.fct.2011.04.004 PMID: 21501647
  178. Sarawi, W.S.; Alhusaini, A.M.; Fadda, L.M.; Alomar, H.A.; Albaker, A.B.; Aljrboa, A.S.; Alotaibi, A.M.; Hasan, I.H.; Mahmoud, A.M. Curcumin and Nano-curcumin mitigate copper neurotoxicity by modulating oxidative stress, inflammation, and Akt/GSK-3beta signaling. Molecules, 2021, 26(18), 5591. doi: 10.3390/molecules26185591 PMID: 34577062
  179. Abbaoui, A.; Gamrani, H. Neuronal, astroglial and locomotor injuries in subchronic copper intoxicated rats are repaired by curcumin: A possible link with Parkinson’s disease. Acta Histochem., 2018, 120(6), 542-550. doi: 10.1016/j.acthis.2018.06.005 PMID: 29954586
  180. Lin, R.; Chen, X.; Li, W.; Han, Y.; Liu, P.; Pi, R. Exposure to metal ions regulates mRNA levels of APP and BACE1 in PC12 cells: Blockage by curcumin. Neurosci. Lett., 2008, 440(3), 344-347. doi: 10.1016/j.neulet.2008.05.070 PMID: 18583042
  181. Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a Potent antioxidant: implications for neurodegenerative disorders. Oxid. Med. Cell. Longev., 2018, 2018, 1-17. doi: 10.1155/2018/6241017 PMID: 30050657
  182. Arowoogun, J.; Akanni, O.O.; Adefisan, A.O.; Owumi, S.E.; Tijani, A.S.; Adaramoye, O.A. Rutin ameliorates copper sulfate‐induced brain damage via antioxidative and anti‐inflammatory activities in rats. J. Biochem. Mol. Toxicol., 2021, 35(1), e22623. doi: 10.1002/jbt.22623 PMID: 32881150
  183. Lin, M.C.; Liu, C.C.; Lin, Y.C.; Liao, C.S. Resveratrol protects against cerebral ischemic injury via restraining lipid peroxidation, transition elements, and toxic metal levels, but enhancing anti-oxidant activity. Antioxidants, 2021, 10(10), 1515. doi: 10.3390/antiox10101515 PMID: 34679650
  184. Tian, C.; Zhang, R.; Ye, X.; Zhang, C.; Jin, X.; Yamori, Y.; Hao, L.; Sun, X.; Ying, C. Resveratrol ameliorates high-glucose-induced hyperpermeability mediated by caveolae via VEGF/KDR pathway. Genes Nutr., 2013, 8(2), 231-239. doi: 10.1007/s12263-012-0319-1 PMID: 22983702
  185. Majewski, M.; Ognik, K.; Thoene, M.; Rawicka, A. Juśkiewicz, J. Resveratrol modulates the blood plasma levels of Cu and Zn, the antioxidant status and the vascular response of thoracic arteries in copper deficient Wistar rats. Toxicol. Appl. Pharmacol., 2020, 390, 114877. doi: 10.1016/j.taap.2020.114877 PMID: 31917326
  186. Matos, L.; Gouveia, A.M.; Almeida, H. Resveratrol attenuates copper-induced senescence by improving cellular proteostasis. Oxid. Med. Cell. Longev., 2017, 2017, 3793817. PMID: 28280523
  187. Asadi, S.; Moradi, M.N.; Khyripour, N.; Goodarzi, M.T.; Mahmoodi, M. Resveratrol attenuates copper and zinc homeostasis and ameliorates oxidative stress in Type 2 diabetic rats. Biol. Trace Elem. Res., 2017, 177(1), 132-138. doi: 10.1007/s12011-016-0861-6 PMID: 27744600
  188. Muselin, F.; Gârban, Z.; Cristina, R.T.; Doma, A.O.; Dumitrescu, E. Vițălaru, A.B.; Bănățean-Dunea, I. Homeostatic changes of some trace elements in geriatric rats in the condition of oxidative stress induced by aluminum and the beneficial role of resveratrol. J. Trace Elem. Med. Biol., 2019, 55, 136-142. doi: 10.1016/j.jtemb.2019.06.013 PMID: 31345351
  189. Majewski, M.; Ognik, K. Juśkiewicz, J. The interaction between resveratrol and two forms of copper as carbonate and nanoparticles on antioxidant mechanisms and vascular function in Wistar rats. Pharmacol. Rep., 2019, 71(5), 862-869. doi: 10.1016/j.pharep.2019.03.011 PMID: 31408785
  190. Khalid, S.; Afzal, N.; Khan, J.A.; Hussain, Z.; Qureshi, A.S.; Anwar, H.; Jamil, Y. Antioxidant resveratrol protects against copper oxide nanoparticle toxicity in vivo. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(10), 1053-1062. doi: 10.1007/s00210-018-1526-0 PMID: 29936585
  191. Summers, K.L.; Roseman, G.P.; Sopasis, G.J.; Millhauser, G.L.; Harris, H.H.; Pickering, I.J.; George, G.N. Copper(II) binding to pbt2 differs from that of other 8-hydroxyquinoline chelators: implications for the treatment of neurodegenerative protein misfolding diseases. Inorg. Chem., 2020, 59(23), 17519-17534. doi: 10.1021/acs.inorgchem.0c02754 PMID: 33226796
  192. Dzieżyc, K.; Karliński, M.; Litwin, T.; Członkowska, A. Compliant treatment with anti-copper agents prevents clinically overt Wilson’s disease in pre-symptomatic patients. Eur. J. Neurol., 2014, 21(2), 332-337. doi: 10.1111/ene.12320 PMID: 24313946
  193. Kaler, S.G.; Holmes, C.S.; Goldstein, D.S.; Tang, J.; Godwin, S.C.; Donsante, A.; Liew, C.J.; Sato, S.; Patronas, N. Neonatal diagnosis and treatment of Menkes disease. N. Engl. J. Med., 2008, 358(6), 605-614. doi: 10.1056/NEJMoa070613 PMID: 18256395
  194. Tosato, M.; Di Marco, V. Metal chelation therapy and Parkinson’s disease: a critical review on the thermodynamics of complex formation between relevant metal ions and promising or established drugs. Biomolecules, 2019, 9(7), 269. doi: 10.3390/biom9070269 PMID: 31324037
  195. Gou, D.H.; Huang, T.T.; Li, W.; Gao, X.D.; Haikal, C.; Wang, X.H.; Song, D.Y.; Liang, X.; Zhu, L.; Tang, Y.; Ding, C.; Li, J.Y. Inhibition of copper transporter 1 prevents α-synuclein pathology and alleviates nigrostriatal degeneration in AAV-based mouse model of Parkinson’s disease. Redox Biol., 2021, 38, 101795. doi: 10.1016/j.redox.2020.101795 PMID: 33232911
  196. Chen, L.; Min, J.; Wang, F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther., 2022, 7(1), 378. doi: 10.1038/s41392-022-01229-y PMID: 36414625
  197. Arnal, N.; Morel, G.R.; de Alaniz, M.J.T.; Castillo, O.; Marra, C.A. Role of copper and cholesterol association in the neurodegenerative process. Int. J. Alzheimers Dis., 2013, 2013, 1-15. doi: 10.1155/2013/414817 PMID: 24288650
  198. Murillo, O.; Collantes, M.; Gazquez, C.; Moreno, D.; Hernandez-Alcoceba, R.; Barberia, M.; Ecay, M.; Tamarit, B.; Douar, A.; Ferrer, V.; Combal, J.P.; Peñuelas, I.; Bénichou, B.; Gonzalez-Aseguinolaza, G. High value of 64Cu as a tool to evaluate the restoration of physiological copper excretion after gene therapy in Wilson’s disease. Mol. Ther. Methods Clin. Dev., 2022, 26, 98-106. doi: 10.1016/j.omtm.2022.06.001 PMID: 35795774
  199. Cai, H.; Cheng, X.; Wang, X.P. ATP7B gene therapy of autologous reprogrammed hepatocytes alleviates copper accumulation in a mouse model of Wilson’s disease. Hepatology, 2022, 76(4), 1046-1057. doi: 10.1002/hep.32484 PMID: 35340061
  200. Du, A.; Cai, R.; Shi, J.; Wu, Q. Protective effects of icariin on traumatic brain injury. Curr. Neurovasc. Res., 2021, 18(5), 508-514. doi: 10.2174/1567202619666211223125628 PMID: 34951380
  201. Abbaoui, A.; Hiba, O.E.; Gamrani, H. Neuroprotective potential of Aloe arborescens against copper induced neurobehavioral features of Parkinson’s disease in rat. Acta Histochem., 2017, 119(5), 592-601. doi: 10.1016/j.acthis.2017.06.003 PMID: 28619286
  202. Pan, C.; Liu, N.; Zhang, P.; Wu, Q.; Deng, H.; Xu, F.; Lian, L.; Liang, Q.; Hu, Y.; Zhu, S.; Tang, Z. EGb761 ameliorates neuronal apoptosis and promotes angiogenesis in experimental intracerebral hemorrhage via RSK1/GSK3beta pathway. Mol. Neurobiol., 2018, 55(2), 1556-1567. doi: 10.1007/s12035-016-0363-8 PMID: 28185127
  203. Rojas, P.; Montes, S.; Serrano-García, N.; Rojas-Castañeda, J. Effect of EGb761 supplementation on the content of copper in mouse brain in an animal model of Parkinson’s disease. Nutrition, 2009, 25(4), 482-485. doi: 10.1016/j.nut.2008.10.013 PMID: 19091511
  204. Cao, J.; Li, C.; Ma, P.; Ding, Y.; Gao, J.; Jia, Q.; Zhu, J.; Zhang, T. Effect of kaempferol on IgE-mediated anaphylaxis in C57BL/6 mice and LAD2 cells. Phytomedicine, 2020, 79, 153346. doi: 10.1016/j.phymed.2020.153346 PMID: 33002828
  205. Simunkova, M.; Barbierikova, Z.; Jomova, K.; Hudecova, L.; Lauro, P.; Alwasel, S.H.; Alhazza, I.; Rhodes, C.J.; Valko, M. Antioxidant vs. Prooxidant properties of the flavonoid, kaempferol, in the presence of Cu(II) ions: a ros-scavenging activity, fenton reaction and dna damage study. Int. J. Mol. Sci., 2021, 22(4), 1619. doi: 10.3390/ijms22041619 PMID: 33562744
  206. Fachel, F.N.S.; Schuh, R.S.; Veras, K.S.; Bassani, V.L.; Koester, L.S.; Henriques, A.T.; Braganhol, E.; Teixeira, H.F. An overview of the neuroprotective potential of rosmarinic acid and its association with nanotechnology-based delivery systems: A novel approach to treating neurodegenerative disorders. Neurochem. Int., 2019, 122, 47-58. doi: 10.1016/j.neuint.2018.11.003 PMID: 30439384
  207. Kola, A.; Hecel, A.; Lamponi, S.; Valensin, D. Novel perspective on Alzheimer’s disease treatment: rosmarinic acid molecular interplay with Copper(II) and amyloid beta. Life (Basel), 2020, 10(7), 118. doi: 10.3390/life10070118 PMID: 32698429
  208. Costa, I.M.; Lima, F.O.V.; Fernandes, L.C.B.; Norrara, B.; Neta, F.I.; Alves, R.D.; Cavalcanti, J.R.L.P.; Lucena, E.E.S.; Cavalcante, J.S.; Rego, A.C.M.; Filho, I.A.; Queiroz, D.B.; Freire, M.A.M.; Guzen, F.P. Astragaloside IV supplementation promotes a neuroprotective effect in experimental models of neurological disorders: a systematic review. Curr. Neuropharmacol., 2019, 17(7), 648-665. doi: 10.2174/1570159X16666180911123341 PMID: 30207235
  209. Ma, M.; Qiu, B.; Jin, J.; Wang, J.; Nie, Y.; Liang, Y.; Yu, Z.; Teng, C.B. Establishment of a specific in vivo Cu(Ⅰ) reporting system based on metallothionein screening. Metallomics, 2021, 13(7), mfab035. doi: 10.1093/mtomcs/mfab035 PMID: 34114637
  210. Memariani, Z.; Abbas, S.Q. ul Hassan, S.S.; Ahmadi, A.; Chabra, A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol. Res., 2021, 171, 105264. doi: 10.1016/j.phrs.2020.105264 PMID: 33166734
  211. Yuan, J.; Wei, F.; Luo, X.; Zhang, M.; Qiao, R.; Zhong, M.; Chen, H.; Yang, W. Multi-component comparative pharmacokinetics in rats after oral administration of Fructus aurantii extract, naringin, neohesperidin, and naringin-neohesperidin. Front. Pharmacol., 2020, 11, 933. doi: 10.3389/fphar.2020.00933 PMID: 32636752
  212. Chen, K.Y.; Lin, K.C.; Chen, Y.S.; Yao, C.H. A novel porous gelatin composite containing naringin for bone repair. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-10. doi: 10.1155/2013/283941 PMID: 23431335
  213. Guo, L.X. Sun, B. N′-1,10-Bis(Naringin) Triethylenetetraamine, synthesis and as a Cu(II) chelator for Alzheimer’s disease therapy. Biol. Pharm. Bull., 2021, 44(1), 51-56. doi: 10.1248/bpb.b20-00574 PMID: 33162492
  214. Saini, R.K.; Shuaib, S.; Goyal, D.; Goyal, B. Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ42 aggregation and protofibril destabilization: A molecular dynamics simulation study. J. Biomol. Struct. Dyn., 2019, 37(12), 3183-3197. doi: 10.1080/07391102.2018.1511475 PMID: 30582723
  215. Mao, F.; Yan, J.; Li, J.; Jia, X.; Miao, H.; Sun, Y.; Huang, L.; Li, X. New multi-target-directed small molecules against Alzheimer’s disease: a combination of resveratrol and clioquinol. Org. Biomol. Chem., 2014, 12(31), 5936-5944. doi: 10.1039/C4OB00998C PMID: 24986600

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers