Insights Into the Role of Copper in Neurodegenerative Diseases and the Therapeutic Potential of Natural Compounds
- Authors: Chen Z.1, Cao X.1, Li T.1, Liu J.2, Wang Q.1, Zhong G.1, Wang X.3, Li J.1, Xie Z.1, Wu Q.1, Chen J.1, Wang Y.1
-
Affiliations:
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine
- , Affiliated Jiangmen TCM Hospital of Ji'nan University
- The Sixth Affiliated Hospital, Sun Yat-sen Universit
- Issue: Vol 22, No 10 (2024)
- Pages: 1650-1671
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644306
- DOI: https://doi.org/10.2174/1570159X22666231103085859
- ID: 644306
Cite item
Full Text
Abstract
Neurodegenerative diseases encompass a collection of neurological disorders originating from the progressive degeneration of neurons, resulting in the dysfunction of neurons. Unfortunately, effective therapeutic interventions for these diseases are presently lacking. Copper (Cu), a crucial trace element within the human body, assumes a pivotal role in various biological metabolic processes, including energy metabolism, antioxidant defense, and neurotransmission. These processes are vital for the sustenance, growth, and development of organisms. Mounting evidence suggests that disrupted copper homeostasis contributes to numerous age-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Wilson's disease (WD), Menkes disease (MD), prion diseases, and multiple sclerosis (MS). This comprehensive review investigates the connection between the imbalance of copper homeostasis and neurodegenerative diseases, summarizing pertinent drugs and therapies that ameliorate neuropathological changes, motor deficits, and cognitive impairments in these conditions through the modulation of copper metabolism. These interventions include Metal-Protein Attenuating Compounds (MPACs), copper chelators, copper supplements, and zinc salts. Moreover, this review highlights the potential of active compounds derived from natural plant medicines to enhance neurodegenerative disease outcomes by regulating copper homeostasis. Among these compounds, polyphenols are particularly abundant. Consequently, this review holds significant implications for the future development of innovative drugs targeting the treatment of neurodegenerative diseases.
About the authors
Ziying Chen
Science and Technology Innovation Center, Guangzhou University of Chinese Medicine
Email: info@benthamscience.net
Xinyue Cao
Science and Technology Innovation Center, Guangzhou University of Chinese Medicine
Email: info@benthamscience.net
Tianyao Li
Science and Technology Innovation Center, Guangzhou University of Chinese Medicine
Email: info@benthamscience.net
Jinman Liu
, Affiliated Jiangmen TCM Hospital of Ji'nan University
Author for correspondence.
Email: info@benthamscience.net
Qi Wang
Science and Technology Innovation Center, Guangzhou University of Chinese Medicine
Author for correspondence.
Email: info@benthamscience.net
Guangcheng Zhong
Science and Technology Innovation Center, Guangzhou University of Chinese Medicine
Email: info@benthamscience.net
Xinyue Wang
The Sixth Affiliated Hospital, Sun Yat-sen Universit
Email: info@benthamscience.net
Jiaqi Li
Science and Technology Innovation Center, Guangzhou University of Chinese Medicine
Email: info@benthamscience.net
Zhouyuan Xie
Science and Technology Innovation Center, Guangzhou University of Chinese Medicine
Email: info@benthamscience.net
Qiqing Wu
Science and Technology Innovation Center, Guangzhou University of Chinese Medicine
Email: info@benthamscience.net
Jiaxin Chen
Science and Technology Innovation Center, Guangzhou University of Chinese Medicine
Email: info@benthamscience.net
Yiyun Wang
Science and Technology Innovation Center, Guangzhou University of Chinese Medicine
Email: info@benthamscience.net
References
- Hetz, C.; Saxena, S. ER stress and the unfolded protein response in neurodegeneration. Nat. Rev. Neurol., 2017, 13(8), 477-491. doi: 10.1038/nrneurol.2017.99 PMID: 28731040
- Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov., 2004, 3(3), 205-214. doi: 10.1038/nrd1330 PMID: 15031734
- Nixon, R.A. The role of autophagy in neurodegenerative disease. Nat. Med., 2013, 19(8), 983-997. doi: 10.1038/nm.3232 PMID: 23921753
- Ross, C.A.; Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med., 2004, 10(S7)(Suppl.), S10-S17. doi: 10.1038/nm1066 PMID: 15272267
- Nguyen, P.H.; Ramamoorthy, A.; Sahoo, B.R.; Zheng, J.; Faller, P.; Straub, J.E.; Dominguez, L.; Shea, J.E.; Dokholyan, N.V.; De Simone, A.; Ma, B.; Nussinov, R.; Najafi, S.; Ngo, S.T.; Loquet, A.; Chiricotto, M.; Ganguly, P.; McCarty, J.; Li, M.S.; Hall, C.; Wang, Y.; Miller, Y.; Melchionna, S.; Habenstein, B.; Timr, S.; Chen, J.; Hnath, B.; Strodel, B.; Kayed, R.; Lesné, S.; Wei, G.; Sterpone, F.; Doig, A.J.; Derreumaux, P. Amyloid oligomers: a joint experimental/computational perspective on Alzheimers disease, Parkinsons disease, Type II diabetes, and amyotrophic lateral sclerosis. Chem. Rev., 2021, 121(4), 2545-2647. doi: 10.1021/acs.chemrev.0c01122 PMID: 33543942
- Arnal, N.; Castillo, O.; de Alaniz, M.J.T.; Marra, C.A. Effects of copper and/or cholesterol overload on mitochondrial function in a rat model of incipient neurodegeneration. Int. J. Alzheimers Dis., 2013, 2013, 1-14. doi: 10.1155/2013/645379 PMID: 24363953
- Ke, Y.; Qian, Z.M. Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurol., 2003, 2(4), 246-253. doi: 10.1016/S1474-4422(03)00353-3 PMID: 12849213
- Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch., 2020, 472(10), 1415-1429. doi: 10.1007/s00424-020-02412-2 PMID: 32506322
- Russell, K.; Gillanders, L.K.; Orr, D.W.; Plank, L.D. Dietary copper restriction in Wilsons disease. Eur. J. Clin. Nutr., 2018, 72(3), 326-331. doi: 10.1038/s41430-017-0002-0 PMID: 29235558
- Kolbaum, A.E.; Sarvan, I.; Bakhiya, N.; Spolders, M.; Pieper, R.; Schubert, J.; Jung, C.; Hackethal, C.; Sieke, C.; Grünewald, K.H.; Lindtner, O. Long-term dietary exposure to copper in the population in Germany Results from the BfR MEAL study. Food Chem. Toxicol., 2023, 176, 113759. doi: 10.1016/j.fct.2023.113759 PMID: 37028745
- Tokuşoǧlu, Ö.; Aycan, Ş.; Akalin, S.; Koçak, S.; Ersoy, N. Simultaneous differential pulse polarographic determination of cadmium, lead, and copper in milk and dairy products. J. Agric. Food Chem., 2004, 52(7), 1795-1799. doi: 10.1021/jf034860l PMID: 15053511
- Zheng, W.; Monnot, A.D. Regulation of brain iron and copper homeostasis by brain barrier systems: Implication in neurodegenerative diseases. Pharmacol. Ther., 2012, 133(2), 177-188. doi: 10.1016/j.pharmthera.2011.10.006 PMID: 22115751
- Brewer, G. Copper-2 ingestion, plus increased meat eating leading to increased copper absorption, are major factors behind the current epidemic of Alzheimers disease. Nutrients, 2015, 7(12), 10053-10064. doi: 10.3390/nu7125513 PMID: 26633489
- Ruiz, L.M.; Libedinsky, A.; Elorza, A.A. Role of copper on mitochondrial function and metabolism. Front. Mol. Biosci., 2021, 8, 711227. doi: 10.3389/fmolb.2021.711227 PMID: 34504870
- Scheiber, I.F.; Mercer, J.F.B.; Dringen, R. Metabolism and functions of copper in brain. Prog. Neurobiol., 2014, 116, 33-57. doi: 10.1016/j.pneurobio.2014.01.002 PMID: 24440710
- Arredondo, M.; Núñez, M.T. Iron and copper metabolism. Mol. Aspects Med., 2005, 26(4-5), 313-327. doi: 10.1016/j.mam.2005.07.010 PMID: 16112186
- Gromadzka, G.; Tarnacka, B.; Flaga, A.; Adamczyk, A. Copper dyshomeostasis in neurodegenerative diseases-therapeutic implications. Int. J. Mol. Sci., 2020, 21(23), 9259. doi: 10.3390/ijms21239259 PMID: 33291628
- Kaler, S.G. ATP7A-related copper transport diseasesemerging concepts and future trends. Nat. Rev. Neurol., 2011, 7(1), 15-29. doi: 10.1038/nrneurol.2010.180 PMID: 21221114
- Rasoul, A.A.; Khudhur, Z.O.; Hamad, M.S.; Ismaeal, Y.S.; Smail, S.W.; Rasul, M.F.; Mohammad, K.A.; Bapir, A.A.; Omar, S.A.; Qadir, M.K.; Rajab, M.F.; Salihi, A.; Kaleem, M.; Rizwan, M.A.; Qureshi, A.S.; Iqbal, Z.M. Qudratullah. The role of oxidative stress and haematological parameters in relapsing-remitting multiple sclerosis in Kurdish population. Mult. Scler. Relat. Disord., 2021, 56, 103228. doi: 10.1016/j.msard.2021.103228 PMID: 34492630
- Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; Eaton, J.K.; Frenkel, E.; Kocak, M.; Corsello, S.M.; Lutsenko, S.; Kanarek, N.; Santagata, S.; Golub, T.R. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 2022, 375(6586), 1254-1261. doi: 10.1126/science.abf0529 PMID: 35298263
- An, Y.; Li, S.; Huang, X.; Chen, X.; Shan, H.; Zhang, M. The role of copper homeostasis in brain disease. Int. J. Mol. Sci., 2022, 23(22), 13850. doi: 10.3390/ijms232213850 PMID: 36430330
- Law, B.Y.K.; Wu, A.G.; Wang, M.J.; Zhu, Y.Z. Chinese medicine: a hope for neurodegenerative diseases? J. Alzheimers Dis., 2017, 60(s1), S151-S160. doi: 10.3233/JAD-170374 PMID: 28671133
- Pei, H.; Ma, L.; Cao, Y.; Wang, F.; Li, Z.; Liu, N.; Liu, M.; Wei, Y.; Li, H. Traditional Chinese medicine for Alzheimers disease and other cognitive impairment: A review. Am. J. Chin. Med., 2020, 48(3), 487-511. doi: 10.1142/S0192415X20500251 PMID: 32329645
- De Riccardis, L.; Buccolieri, A.; Muci, M.; Pitotti, E.; De Robertis, F.; Trianni, G.; Manno, D.; Maffia, M. Copper and ceruloplasmin dyshomeostasis in serum and cerebrospinal fluid of multiple sclerosis subjects. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(5), 1828-1838. doi: 10.1016/j.bbadis.2018.03.007 PMID: 29524632
- Sheykhansari, S.; Kozielski, K.; Bill, J.; Sitti, M.; Gemmati, D.; Zamboni, P.; Singh, A.V. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: A review. Cell Death Dis., 2018, 9(3), 348. doi: 10.1038/s41419-018-0379-2 PMID: 29497049
- Hung, Y.H.; Bush, A.I.; La Fontaine, S. Links between copper and cholesterol in Alzheimers disease. Front. Physiol., 2013, 4, 111. doi: 10.3389/fphys.2013.00111 PMID: 23720634
- Tokuda, E.; Okawa, E.; Ono, S. Dysregulation of intracellular copper trafficking pathway in a mouse model of mutant copper/zinc superoxide dismutase-linked familial amyotrophic lateral sclerosis. J. Neurochem., 2009, 111(1), 181-191. doi: 10.1111/j.1471-4159.2009.06310.x PMID: 19656261
- Liu, Y.; Miao, J. An emerging role of defective copper metabolism in heart disease. Nutrients, 2022, 14(3), 700. doi: 10.3390/nu14030700 PMID: 35277059
- Gil-Bea, F.J.; Aldanondo, G.; Lasa-Fernández, H.; López de Munain, A.; Vallejo-Illarramendi, A. Insights into the mechanisms of copper dyshomeostasis in amyotrophic lateral sclerosis. Expert Rev. Mol. Med., 2017, 19, e7. doi: 10.1017/erm.2017.9 PMID: 28597807
- Davies, K.M.; Hare, D.J.; Cottam, V.; Chen, N.; Hilgers, L.; Halliday, G.; Mercer, J.F.B.; Double, K.L. Localization of copper and copper transporters in the human brain. Metallomics, 2013, 5(1), 43-51. doi: 10.1039/C2MT20151H PMID: 23076575
- Skjørringe, T.; Møller, L.B.; Moos, T. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders. Front. Pharmacol., 2012, 3, 169. doi: 10.3389/fphar.2012.00169 PMID: 23055972
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Bloodbrain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150. doi: 10.1038/nrneurol.2017.188 PMID: 29377008
- Haywood, S.; Vaillant, C. Overexpression of copper transporter CTR1 in the brain barrier of North Ronaldsay sheep: Implications for the study of neurodegenerative disease. J. Comp. Pathol., 2014, 150(2-3), 216-224. doi: 10.1016/j.jcpa.2013.09.002 PMID: 24172593
- Hsu, H.W.; Bondy, S.C.; Kitazawa, M. Environmental and dietary exposure to copper and its cellular mechanisms linking to Alzheimers disease. Toxicol. Sci., 2018, 163(2), 338-345. doi: 10.1093/toxsci/kfy025 PMID: 29409005
- Ijomone, O.M.; Ifenatuoha, C.W.; Aluko, O.M.; Ijomone, O.K.; Aschner, M. The aging brain: impact of heavy metal neurotoxicity. Crit. Rev. Toxicol., 2020, 50(9), 801-814. doi: 10.1080/10408444.2020.1838441 PMID: 33210961
- Madsen, E.; Gitlin, J.D. Copper and iron disorders of the brain. Annu. Rev. Neurosci., 2007, 30(1), 317-337. doi: 10.1146/annurev.neuro.30.051606.094232 PMID: 17367269
- Prasad, A.N.; Ojha, R. Menkes disease: What a multidisciplinary approach can do. J. Multidiscip. Healthc., 2016, 9, 371-385. doi: 10.2147/JMDH.S93454 PMID: 27574440
- Goedert, M. Alzheimers and Parkinsons diseases: The prion concept in relation to assembled Aβ tau, and α-synuclein. Science, 2015, 349(6248), 1255555. doi: 10.1126/science.1255555 PMID: 26250687
- Sinyor, B.; Mineo, J.; Ochner, C. Alzheimers disease, inflammation, and the role of antioxidants. J. Alzheimers Dis. Rep., 2020, 4(1), 175-183. doi: 10.3233/ADR-200171 PMID: 32715278
- Squitti, R.; Pasqualetti, P.; Dal Forno, G.; Moffa, F.; Cassetta, E.; Lupoi, D.; Vernieri, F.; Rossi, L.; Baldassini, M.; Rossini, P.M. Excess of serum copper not related to ceruloplasmin in Alzheimer disease. Neurology, 2005, 64(6), 1040-1046. doi: 10.1212/01.WNL.0000154531.79362.23 PMID: 15781823
- Robert, A.; Liu, Y.; Nguyen, M.; Meunier, B. Regulation of copper and iron homeostasis by metal chelators: A possible chemotherapy for Alzheimers disease. Acc. Chem. Res., 2015, 48(5), 1332-1339. doi: 10.1021/acs.accounts.5b00119 PMID: 25946460
- Lovell, M.A.; Robertson, J.D.; Teesdale, W.J.; Campbell, J.L.; Markesbery, W.R. Copper, iron and zinc in Alzheimers disease senile plaques. J. Neurol. Sci., 1998, 158(1), 47-52. doi: 10.1016/S0022-510X(98)00092-6 PMID: 9667777
- Ejaz, H.W.; Wang, W.; Lang, M. Copper toxicity links to pathogenesis of Alzheimers disease and therapeutics approaches. Int. J. Mol. Sci., 2020, 21(20), 7660. doi: 10.3390/ijms21207660 PMID: 33081348
- Deibel, M.A.; Ehmann, W.D.; Markesbery, W.R. Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimers disease: Possible relation to oxidative stress. J. Neurol. Sci., 1996, 143(1-2), 137-142. doi: 10.1016/S0022-510X(96)00203-1 PMID: 8981312
- Rivera-Mancía, S.; Pérez-Neri, I.; Ríos, C.; Tristán-López, L.; Rivera-Espinosa, L.; Montes, S. The transition metals copper and iron in neurodegenerative diseases. Chem. Biol. Interact., 2010, 186(2), 184-199. doi: 10.1016/j.cbi.2010.04.010 PMID: 20399203
- Loeffler, D.A.; LeWitt, P.A.; Juneau, P.L.; Sima, A.A.F.; Nguyen, H.U.; DeMaggio, A.J.; Brickman, C.M.; Brewer, G.J.; Dick, R.D.; Troyer, M.D.; Kanaley, L. Increased regional brain concentrations of ceruloplasmin in neurodegenerative disorders. Brain Res., 1996, 738(2), 265-274. doi: 10.1016/S0006-8993(96)00782-2 PMID: 8955522
- Choo, X.Y.; Alukaidey, L.; White, A.R.; Grubman, A. Neuroinflammation and copper in Alzheimers disease. Int. J. Alzheimers Dis., 2013, 2013, 1-12. doi: 10.1155/2013/145345 PMID: 24369524
- Bagheri, S.; Squitti, R.; Haertlé, T.; Siotto, M.; Saboury, A.A. Role of Copper in the onset of Alzheimers disease compared to other metals. Front. Aging Neurosci., 2018, 9, 446. doi: 10.3389/fnagi.2017.00446 PMID: 29472855
- Zubčić K.; Hof, P.R.; imić G.; Jazvinćak Jembrek, M. The role of copper in tau-related pathology in Alzheimers disease. Front. Mol. Neurosci., 2020, 13, 572308. doi: 10.3389/fnmol.2020.572308 PMID: 33071757
- Voss, K.; Harris, C.; Ralle, M.; Duffy, M.; Murchison, C.; Quinn, J.F. Modulation of tau phosphorylation by environmental copper. Transl. Neurodegener., 2014, 3(1), 24. doi: 10.1186/2047-9158-3-24 PMID: 25671100
- Singh, I.; Sagare, A.P.; Coma, M.; Perlmutter, D.; Gelein, R.; Bell, R.D.; Deane, R.J.; Zhong, E.; Parisi, M.; Ciszewski, J.; Kasper, R.T.; Deane, R. Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance. Proc. Natl. Acad. Sci. USA, 2013, 110(36), 14771-14776. doi: 10.1073/pnas.1302212110 PMID: 23959870
- Busche, M.A.; Hyman, B.T. Synergy between amyloid-β and tau in Alzheimers disease. Nat. Neurosci., 2020, 23(10), 1183-1193. doi: 10.1038/s41593-020-0687-6 PMID: 32778792
- Aaseth, J.; Skalny, A.V.; Roos, P.M.; Alexander, J.; Aschner, M.; Tinkov, A.A. Copper, iron, selenium and lipo-glycemic dysmetabolism in Alzheimers disease. Int. J. Mol. Sci., 2021, 22(17), 9461. doi: 10.3390/ijms22179461 PMID: 34502369
- Pal, A. Copper toxicity induced hepatocerebral and neurodegenerative diseases: An urgent need for prognostic biomarkers. Neurotoxicology, 2014, 40, 97-101. doi: 10.1016/j.neuro.2013.12.001 PMID: 24342654
- Pal, A.; Kumar, A.; Prasad, R. Predictive association of copper metabolism proteins with Alzheimers disease and Parkinsons disease: a preliminary perspective. Biometals, 2014, 27(1), 25-31. doi: 10.1007/s10534-013-9702-7 PMID: 24435851
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinsons disease. Lancet, 2021, 397(10291), 2284-2303. doi: 10.1016/S0140-6736(21)00218-X PMID: 33848468
- Aaseth, J.; Dusek, P.; Roos, P.M. Prevention of progression in Parkinsons disease. Biometals, 2018, 31(5), 737-747. doi: 10.1007/s10534-018-0131-5 PMID: 30030679
- Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W. Challenges in the diagnosis of Parkinsons disease. Lancet Neurol., 2021, 20(5), 385-397. doi: 10.1016/S1474-4422(21)00030-2 PMID: 33894193
- Montes, S.; Rivera-Mancia, S.; Diaz-Ruiz, A.; Tristan-Lopez, L.; Rios, C. Copper and copper proteins in Parkinsons disease. Oxid. Med. Cell. Longev., 2014, 2014, 1-15. doi: 10.1155/2014/147251 PMID: 24672633
- Wang, Q.; Luo, Y.; Ray Chaudhuri, K.; Reynolds, R.; Tan, E.K.; Pettersson, S. The role of gut dysbiosis in Parkinsons disease: mechanistic insights and therapeutic options. Brain, 2021, 144(9), 2571-2593. doi: 10.1093/brain/awab156 PMID: 33856024
- Gangania, M.K.; Batra, J.; Kushwaha, S.; Agarwal, R. Role of iron and copper in the pathogenesis of Parkinsons disease. Indian J. Clin. Biochem., 2017, 32(3), 353-356. doi: 10.1007/s12291-016-0614-5 PMID: 28811697
- Raj, K.; Kaur, P.; Gupta, G.D.; Singh, S. Metals associated neurodegeneration in Parkinsons disease: Insight to physiological, pathological mechanisms and management. Neurosci. Lett., 2021, 753, 135873. doi: 10.1016/j.neulet.2021.135873 PMID: 33812934
- Cherny, R.A.; Ayton, S.; Finkelstein, D.I.; Bush, A.I.; McColl, G.; Massa, S.M. PBT2 reduces toxicity in a c. elegans model of polyQ aggregation and extends lifespan, reduces striatal atrophy and improves motor performance in the R6/2 mouse model of Huntingtons disease. J. Huntingtons Dis., 2012, 1(2), 211-219. doi: 10.3233/JHD-120029 PMID: 25063332
- Hands, S.L.; Mason, R.; Sajjad, M.U.; Giorgini, F.; Wyttenbach, A. Metallothioneins and copper metabolism are candidate therapeutic targets in Huntingtons disease. Biochem. Soc. Trans., 2010, 38(2), 552-558. doi: 10.1042/BST0380552 PMID: 20298220
- Dexter, D.T.; Carayon, A.; Javoy-Agid, F.; Agid, Y.; Wells, F.R.; Daniel, S.E.; Lees, A.J.; Jenner, P.; Marsden, C.D. Alterations in the levels of iron, ferritin and other trace metals in Parkinsons disease and other neurodegenerative diseases affecting the basal ganglia. Brain, 1991, 114(4), 1953-1975. doi: 10.1093/brain/114.4.1953 PMID: 1832073
- Scholefield, M.; Unwin, R.D.; Cooper, G.J.S. Shared perturbations in the metallome and metabolome of Alzheimers, Parkinsons, Huntingtons, and dementia with Lewy bodies: A systematic review. Ageing Res. Rev., 2020, 63, 101152. doi: 10.1016/j.arr.2020.101152 PMID: 32846222
- Grubman, A.; White, A.R.; Liddell, J.R. Mitochondrial metals as a potential therapeutic target in neurodegeneration. Br. J. Pharmacol., 2014, 171(8), 2159-2173. doi: 10.1111/bph.12513 PMID: 24206195
- Maung, M.T.; Carlson, A.; Olea-Flores, M.; Elkhadragy, L.; Schachtschneider, K.M.; Navarro-Tito, N.; Padilla-Benavides, T. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J., 2021, 35(9), e21810. doi: 10.1096/fj.202100273RR PMID: 34390520
- Fox, J.H.; Kama, J.A.; Lieberman, G.; Chopra, R.; Dorsey, K.; Chopra, V.; Volitakis, I.; Cherny, R.A.; Bush, A.I.; Hersch, S. Mechanisms of copper ion mediated Huntingtons disease progression. PLoS One, 2007, 2(3), e334. doi: 10.1371/journal.pone.0000334 PMID: 17396163
- Clarke, B.E.; Patani, R. The microglial component of amyotrophic lateral sclerosis. Brain, 2020, 143(12), 3526-3539. doi: 10.1093/brain/awaa309 PMID: 33427296
- Van Harten, A.C.M.; Phatnani, H.; Przedborski, S. Non-cell-autonomous pathogenic mechanisms in amyotrophic lateral sclerosis. Trends Neurosci., 2021, 44(8), 658-668. doi: 10.1016/j.tins.2021.04.008 PMID: 34006386
- Gellein, K.; Garruto, R.M.; Syversen, T.; Sjøbakk, T.E.; Flaten, T.P. Concentrations of Cd, Co, Cu, Fe, Mn, Rb, V, and Zn in formalin-fixed brain tissue in amyotrophic lateral sclerosis and Parkinsonism-dementia complex of Guam determined by High-resolution ICP-MS. Biol. Trace Elem. Res., 2003, 96(1-3), 39-60. doi: 10.1385/BTER:96:1-3:39 PMID: 14716085
- Kapaki, E.; Zournas, C.; Kanias, G.; Zambelis, T.; Kakami, A.; Papageorgiou, C. Essential trace element alterations in amyotrophic lateral sclerosis. J. Neurol. Sci., 1997, 147(2), 171-175. doi: 10.1016/S0022-510X(96)05334-8 PMID: 9106124
- Barros, A.N.A.B.; Dourado, M.E.T., Jr; Pedrosa, L.F.C.; Leite-Lais, L. Association of copper status with lipid profile and functional status in patients with amyotrophic lateral sclerosis. J. Nutr. Metab., 2018, 2018, 1-7. doi: 10.1155/2018/5678698 PMID: 30116640
- Kreuzer, M. Stamenković S.; Chen, S.; Andjus, P.; Dučić T. Lipids status and copper in a single astrocyte of the rat model for amyotrophic lateral sclerosis: Correlative synchrotron‐based X‐ray and infrared imaging. J. Biophotonics, 2020, 13(10), e202000069. doi: 10.1002/jbio.202000069 PMID: 32463554
- Abati, E.; Bresolin, N.; Comi, G.; Corti, S. Silence superoxide dismutase 1 (SOD1): a promising therapeutic target for amyotrophic lateral sclerosis (ALS). Expert Opin. Ther. Targets, 2020, 24(4), 295-310. doi: 10.1080/14728222.2020.1738390 PMID: 32125907
- Hilton, J.B.; White, A.R.; Crouch, P.J. Metal-deficient SOD1 in amyotrophic lateral sclerosis. J. Mol. Med. (Berl.), 2015, 93(5), 481-487. doi: 10.1007/s00109-015-1273-3 PMID: 25754173
- Enge, T.G.; Ecroyd, H.; Jolley, D.F.; Yerbury, J.J.; Kalmar, B.; Dosseto, A. Assessment of metal concentrations in the SOD1G93A mouse model of amyotrophic lateral sclerosis and its potential role in muscular denervation, with particular focus on muscle tissue. Mol. Cell. Neurosci., 2018, 88, 319-329. doi: 10.1016/j.mcn.2018.03.001 PMID: 29524628
- Tokuda, E.; Nomura, T.; Ohara, S.; Watanabe, S.; Yamanaka, K.; Morisaki, Y.; Misawa, H.; Furukawa, Y. A copper-deficient form of mutant Cu/Zn-superoxide dismutase as an early pathological species in amyotrophic lateral sclerosis. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(6), 2119-2130. doi: 10.1016/j.bbadis.2018.03.015 PMID: 29551730
- Sirangelo, I.; Iannuzzi, C. The role of metal binding in the amyotrophic lateral sclerosis-related aggregation of copper-zinc superoxide dismutase. Molecules, 2017, 22(9), 1429. doi: 10.3390/molecules22091429 PMID: 28850080
- Sauzéat, L.; Bernard, E.; Perret-Liaudet, A.; Quadrio, I.; Vighetto, A.; Krolak-Salmon, P.; Broussolle, E.; Leblanc, P.; Balter, V. Isotopic evidence for disrupted copper metabolism in amyotrophic lateral sclerosis. iScience, 2018, 6, 264-271. doi: 10.1016/j.isci.2018.07.023 PMID: 30240616
- Tarnacka, B.; Jopowicz, A. Maślińska, M. Copper, iron, and manganese toxicity in neuropsychiatric conditions. Int. J. Mol. Sci., 2021, 22(15), 7820. doi: 10.3390/ijms22157820 PMID: 34360586
- Kurlander, H.M.; Patten, B.M. Metals in spinal cord tissue of patients dying of motor neuron disease. Ann. Neurol., 1979, 6(1), 21-24. doi: 10.1002/ana.410060105 PMID: 507754
- Katzeff, J.S.; Bright, F.; Phan, K.; Kril, J.J.; Ittner, L.M.; Kassiou, M.; Hodges, J.R.; Piguet, O.; Kiernan, M.C.; Halliday, G.M.; Kim, W.S. Biomarker discovery and development for frontotemporal dementia and amyotrophic lateral sclerosis. Brain, 2022, 145(5), 1598-1609. doi: 10.1093/brain/awac077 PMID: 35202463
- Tokuda, E.; Ono, S.; Ishige, K.; Watanabe, S.; Okawa, E.; Ito, Y.; Suzuki, T. Ammonium tetrathiomolybdate delays onset, prolongs survival, and slows progression of disease in a mouse model for amyotrophic lateral sclerosis. Exp. Neurol., 2008, 213(1), 122-128. doi: 10.1016/j.expneurol.2008.05.011 PMID: 18617166
- Bandmann, O.; Weiss, K.H.; Kaler, S.G. Wilsons disease and other neurological copper disorders. Lancet Neurol., 2015, 14(1), 103-113. doi: 10.1016/S1474-4422(14)70190-5 PMID: 25496901
- Lalioti, V.; Sandoval, I.; Cassio, D.; Duclos-Vallée, J.C. Molecular pathology of Wilsons disease: A brief. J. Hepatol., 2010, 53(6), 1151-1153. doi: 10.1016/j.jhep.2010.07.008 PMID: 20832891
- Xu, R.; Jiang, Y.; Zhang, Y.; Yang, X. The optimal threshold of serum ceruloplasmin in the diagnosis of Wilsons disease: A large hospital-based study. PLoS One, 2018, 13(1), e0190887. doi: 10.1371/journal.pone.0190887 PMID: 29324775
- Yang, Y.; Hao, W.; Wei, T.; Tang, L.; Qian, N.; Yang, Y.; Xi, H.; Zhang, S.; Yang, W. Role of serum ceruloplasmin in the diagnosis of Wilsons disease: A large Chinese study. Front. Neurol., 2022, 13, 1058642. doi: 10.3389/fneur.2022.1058642 PMID: 36570465
- Ala, A.; Walker, A.P.; Ashkan, K.; Dooley, J.S.; Schilsky, M.L. Wilsons disease. Lancet, 2007, 369(9559), 397-408. doi: 10.1016/S0140-6736(07)60196-2 PMID: 17276780
- Lutsenko, S. Atp7b −/− mice as a model for studies of Wilsons disease. Biochem. Soc. Trans., 2008, 36(6), 1233-1238. doi: 10.1042/BST0361233 PMID: 19021531
- Wooton-Kee, C.R.; Jain, A.K.; Wagner, M.; Grusak, M.A.; Finegold, M.J.; Lutsenko, S.; Moore, D.D. Elevated copper impairs hepatic nuclear receptor function in Wilsons disease. J. Clin. Invest., 2015, 125(9), 3449-3460. doi: 10.1172/JCI78991 PMID: 26241054
- Shribman, S.; Poujois, A.; Bandmann, O.; Czlonkowska, A.; Warner, T.T. Wilsons disease: update on pathogenesis, biomarkers and treatments. J. Neurol. Neurosurg. Psychiatry, 2021, 92(10), 1053-1061. doi: 10.1136/jnnp-2021-326123 PMID: 34341141
- Zischka, H.; Lichtmannegger, J. Pathological mitochondrial copper overload in livers of Wilsons disease patients and related animal models. Ann. N. Y. Acad. Sci., 2014, 1315(1), 6-15. doi: 10.1111/nyas.12347 PMID: 24517326
- Litwin, T.; Gromadzka, G.; Szpak, G.M. Jabłonka-Salach, K.; Bulska, E.; Członkowska, A. Brain metal accumulation in Wilsons disease. J. Neurol. Sci., 2013, 329(1-2), 55-58. doi: 10.1016/j.jns.2013.03.021 PMID: 23597670
- Lech, T.; Hydzik, P.; Kosowski, B. Significance of copper determination in late onset of Wilsons disease. Clin. Toxicol. (Phila.), 2007, 45(6), 688-694. doi: 10.1080/15563650701502535 PMID: 17849244
- Sokol, R.J.; Twedt, D.; McKim, J.M., Jr; Devereaux, M.W.; Karrer, F.M.; Kam, I.; Von Steigman, G.; Narkewicz, M.R.; Bacon, B.R.; Britton, R.S.; Neuschwander-Tetri, B.A. Oxidant injury to hepatic mitochondria in patients with Wilsons disease and Bedlington terriers with copper toxicosis. Gastroenterology, 1994, 107(6), 1788-1798. doi: 10.1016/0016-5085(94)90822-2 PMID: 7958693
- Brewer, G.J.; Askari, F.; Dick, R.B.; Sitterly, J.; Fink, J.K.; Carlson, M.; Kluin, K.J.; Lorincz, M.T. Treatment of Wilsons disease with tetrathiomolybdate: V. control of free copper by tetrathiomolybdate and a comparison with trientine. Transl. Res., 2009, 154(2), 70-77. doi: 10.1016/j.trsl.2009.05.002 PMID: 19595438
- Tümer, Z. An overview and update of ATP7A mutations leading to Menkes disease and occipital horn syndrome. Hum. Mutat., 2013, 34(3), 417-429. doi: 10.1002/humu.22266 PMID: 23281160
- Donsante, A.; Yi, L.; Zerfas, P.M.; Brinster, L.R.; Sullivan, P.; Goldstein, D.S.; Prohaska, J.; Centeno, J.A.; Rushing, E.; Kaler, S.G. ATP7A gene addition to the choroid plexus results in long-term rescue of the lethal copper transport defect in a Menkes disease mouse model. Mol. Ther., 2011, 19(12), 2114-2123. doi: 10.1038/mt.2011.143 PMID: 21878905
- Bertini, I.; Rosato, A. Menkes disease. Cell. Mol. Life Sci., 2008, 65(1), 89-91. doi: 10.1007/s00018-007-7439-6 PMID: 17989919
- Lenartowicz, M.; Krzeptowski, W. Lipiński, P.; Grzmil, P.; Starzyński, R.; Pierzchała, O.; Møller, L.B. Mottled mice and non-mammalian models of Menkes disease. Front. Mol. Neurosci., 2015, 8, 72. doi: 10.3389/fnmol.2015.00072 PMID: 26732058
- Giampietro, R.; Spinelli, F.; Contino, M.; Colabufo, N.A. The pivotal role of copper in neurodegeneration: A new strategy for the therapy of neurodegenerative disorders. Mol. Pharm., 2018, 15(3), 808-820. doi: 10.1021/acs.molpharmaceut.7b00841 PMID: 29323501
- Horn, N.; Wittung-Stafshede, P. ATP7A-regulated enzyme metalation and trafficking in the Menkes disease puzzle. Biomedicines, 2021, 9(4), 391. doi: 10.3390/biomedicines9040391 PMID: 33917579
- Guo, Y.; Xia, W.; Peng, X.; Shao, J. Almost misdiagnosed Menkes disease: A case report. Heliyon, 2022, 8(4), e09268. doi: 10.1016/j.heliyon.2022.e09268 PMID: 35464712
- Aguzzi, A.; Zhu, C. Microglia in prion diseases. J. Clin. Invest., 2017, 127(9), 3230-3239. doi: 10.1172/JCI90605 PMID: 28714865
- Choi, C.J.; Kanthasamy, A.; Anantharam, V.; Kanthasamy, A.G. Interaction of metals with prion protein: Possible role of divalent cations in the pathogenesis of prion diseases. Neurotoxicology, 2006, 27(5), 777-787. doi: 10.1016/j.neuro.2006.06.004 PMID: 16860868
- Johnson, R.T. Prion diseases. Lancet Neurol., 2005, 4(10), 635-642. doi: 10.1016/S1474-4422(05)70192-7 PMID: 16168932
- Unterberger, U.; Voigtländer, T.; Budka, H. Pathogenesis of prion diseases. Acta Neuropathol., 2005, 109(1), 32-48. doi: 10.1007/s00401-004-0953-9 PMID: 15645262
- Kawahara, M.; Kato-Negishi, M.; Tanaka, K. Neurometals in the pathogenesis of Prion diseases. Int. J. Mol. Sci., 2021, 22(3), 1267. doi: 10.3390/ijms22031267 PMID: 33525334
- Kretzschmar, H.A. Molecular pathogenesis of prion diseases. Eur. Arch. Psychiatry Clin. Neurosci., 1999, 249(S3)(Suppl. 3), S56-S63. doi: 10.1007/PL00014175 PMID: 10654101
- Aguzzi, A.; Nuvolone, M.; Zhu, C. The immunobiology of prion diseases. Nat. Rev. Immunol., 2013, 13(12), 888-902. doi: 10.1038/nri3553 PMID: 24189576
- Soto, C.; Satani, N. The intricate mechanisms of neurodegeneration in prion diseases. Trends Mol. Med., 2011, 17(1), 14-24. doi: 10.1016/j.molmed.2010.09.001 PMID: 20889378
- Aguzzi, A.; Heikenwalder, M. Pathogenesis of prion diseases: current status and future outlook. Nat. Rev. Microbiol., 2006, 4(10), 765-775. doi: 10.1038/nrmicro1492 PMID: 16980938
- Wong, B.S.; Chen, S.G.; Colucci, M.; Xie, Z.; Pan, T.; Liu, T.; Li, R.; Gambetti, P.; Sy, M.S.; Brown, D.R. Aberrant metal binding by prion protein in human prion disease. J. Neurochem., 2001, 78(6), 1400-1408. doi: 10.1046/j.1471-4159.2001.00522.x PMID: 11579148
- Leach, S.P.; Salman, M.D.; Hamar, D. Trace elements and prion diseases: a review of the interactions of copper, manganese and zinc with the prion protein. Anim. Health Res. Rev., 2006, 7(1-2), 97-105. doi: 10.1017/S1466252307001181 PMID: 17389057
- Meneghetti, E.; Gasperini, L.; Virgilio, T.; Moda, F.; Tagliavini, F.; Benetti, F.; Legname, G. Prions strongly reduce NMDA receptor s-nitrosylation levels at pre-symptomatic and terminal stages of Prion diseases. Mol. Neurobiol., 2019, 56(9), 6035-6045. doi: 10.1007/s12035-019-1505-6 PMID: 30710214
- Emwas, A.H.M.; Al-Talla, Z.A.; Guo, X.; Al-Ghamdi, S.; Al-Masri, H.T. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. Magn. Reson. Chem., 2013, 51(5), 255-268. doi: 10.1002/mrc.3936 PMID: 23436479
- Varela-Nallar, L.; González, A.; Inestrosa, N. Role of copper in prion diseases: deleterious or beneficial? Curr. Pharm. Des., 2006, 12(20), 2587-2595. doi: 10.2174/138161206777698873 PMID: 16842180
- Lehmann, S. Metal ions and prion diseases. Curr. Opin. Chem. Biol., 2002, 6(2), 187-192. doi: 10.1016/S1367-5931(02)00295-8 PMID: 12039003
- Alsiary, R.A.; Alghrably, M.; Saoudi, A.; Al-Ghamdi, S.; Jaremko, L.; Jaremko, M.; Emwas, A.H. Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurol. Sci., 2020, 41(9), 2389-2406. doi: 10.1007/s10072-020-04321-9 PMID: 32328835
- Bounias, M.; Purdey, M. Transmissible spongiform encephalopathies: a family of etiologically complex diseasesa review. Sci. Total Environ., 2002, 297(1-3), 1-19. doi: 10.1016/S0048-9697(02)00140-7 PMID: 12389776
- Bar-Or, A.; Li, R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurol., 2021, 20(6), 470-483. doi: 10.1016/S1474-4422(21)00063-6 PMID: 33930317
- Bierhansl, L.; Hartung, H.P.; Aktas, O.; Ruck, T.; Roden, M.; Meuth, S.G. Thinking outside the box: non-canonical targets in multiple sclerosis. Nat. Rev. Drug Discov., 2022, 21(8), 578-600. doi: 10.1038/s41573-022-00477-5 PMID: 35668103
- Colombo, E.; Triolo, D.; Bassani, C.; Bedogni, F.; Di Dario, M.; Dina, G.; Fredrickx, E.; Fermo, I.; Martinelli, V.; Newcombe, J.; Taveggia, C.; Quattrini, A.; Comi, G.; Farina, C. Dysregulated copper transport in multiple sclerosis may cause demyelination via astrocytes. Proc. Natl. Acad. Sci. USA, 2021, 118(27), e2025804118. doi: 10.1073/pnas.2025804118 PMID: 34183414
- Malosio, M.L.; Tecchio, F.; Squitti, R. Molecular mechanisms underlying copper function and toxicity in neurons and their possible therapeutic exploitation for Alzheimers disease. Aging Clin. Exp. Res., 2021, 33(7), 2027-2030. doi: 10.1007/s40520-019-01463-5 PMID: 31965480
- Burk, K.; Pasterkamp, R.J. Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathol., 2019, 137(6), 859-877. doi: 10.1007/s00401-019-01964-7 PMID: 30721407
- Fasae, K.D.; Abolaji, A.O.; Faloye, T.R.; Odunsi, A.Y.; Oyetayo, B.O.; Enya, J.I.; Rotimi, J.A.; Akinyemi, R.O.; Whitworth, A.J.; Aschner, M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimers disease: Limitations, and current and future perspectives. J. Trace Elem. Med. Biol., 2021, 67, 126779. doi: 10.1016/j.jtemb.2021.126779 PMID: 34034029
- Barnham, K.J.; Bush, A.I. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem. Soc. Rev., 2014, 43(19), 6727-6749. doi: 10.1039/C4CS00138A PMID: 25099276
- Das, N.; Raymick, J.; Sarkar, S. Role of metals in Alzheimers disease. Metab. Brain Dis., 2021, 36(7), 1627-1639. doi: 10.1007/s11011-021-00765-w PMID: 34313926
- Davies, K.M.; Mercer, J.F.B.; Chen, N.; Double, K.L. Copper dyshomoeostasis in Parkinsons disease: implications for pathogenesis and indications for novel therapeutics. Clin. Sci. (Lond.), 2016, 130(8), 565-574. doi: 10.1042/CS20150153 PMID: 26957644
- Safety, tolerability, and efficacy of PBT2 in Huntingtons disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2015, 14(1), 39-47. doi: 10.1016/S1474-4422(14)70262-5 PMID: 25467848
- Choi, B.Y.; Jang, B.G.; Kim, J.H.; Seo, J.N.; Wu, G.; Sohn, M.; Chung, T.N.; Suh, S.W. Copper/zinc chelation by clioquinol reduces spinal cord white matter damage and behavioral deficits in a murine MOG-induced multiple sclerosis model. Neurobiol. Dis., 2013, 54, 382-391. doi: 10.1016/j.nbd.2013.01.012 PMID: 23360710
- Hung, Y.H.; Bush, A.I.; Cherny, R.A. Copper in the brain and Alzheimers disease. J. Biol. Inorg. Chem., 2010, 15(1), 61-76. doi: 10.1007/s00775-009-0600-y PMID: 19862561
- Squitti, R.; Rossini, P.M.; Cassetta, E.; Moffa, F.; Pasqualetti, P.; Cortesi, M.; Colloca, A.; Rossi, L.; Finazzi-Agró, A. d-penicillamine reduces serum oxidative stress in Alzheimers disease patients. Eur. J. Clin. Invest., 2002, 32(1), 51-59. doi: 10.1046/j.1365-2362.2002.00933.x PMID: 11851727
- Brewer, G.J.; Askari, F.K. Wilson's disease: Clinical management and therapy. J Hepatol., 2005, 42(Suppl(1)), S13-S21. doi: 10.1016/j.jhep.2004.11.013 PMID: 15777568
- Nomura, S.; Nozaki, S.; Hamazaki, T.; Takeda, T.; Ninomiya, E.; Kudo, S.; Hayashinaka, E.; Wada, Y.; Hiroki, T.; Fujisawa, C.; Kodama, H.; Shintaku, H.; Watanabe, Y. PET imaging analysis with 64Cu in disulfiram treatment for aberrant copper biodistribution in Menkes disease mouse model. J. Nucl. Med., 2014, 55(5), 845-851. doi: 10.2967/jnumed.113.131797 PMID: 24627433
- Zhao, J.; Shi, Q.; Tian, H.; Li, Y.; Liu, Y.; Xu, Z.; Robert, A.; Liu, Q.; Meunier, B. TDMQ20, a specific copper chelator, reduces memory impairments in Alzheimers disease mouse models. ACS Chem. Neurosci., 2021, 12(1), 140-149. doi: 10.1021/acschemneuro.0c00621 PMID: 33322892
- Tümer, Z.; Møller, L.B. Menkes disease. Eur. J. Hum. Genet., 2010, 18(5), 511-518. doi: 10.1038/ejhg.2009.187 PMID: 19888294
- Squitti, R.; Siotto, M.; Arciello, M.; Rossi, L. Non-ceruloplasmin bound copper and ATP7B gene variants in Alzheimers disease. Metallomics, 2016, 8(9), 863-873. doi: 10.1039/C6MT00101G PMID: 27499330
- Lalioti, V.; Tsubota, A.; Sandoval, I. Disorders in hepatic copper secretion: Wilsons disease and pleomorphic syndromes. Semin. Liver Dis., 2017, 37(2), 175-188. doi: 10.1055/s-0037-1602764 PMID: 28564725
- Mathys, Z.K.; White, A.R. Copper and Alzheimers disease. Adv. Neurobiol., 2017, 18, 199-216. doi: 10.1007/978-3-319-60189-2_10 PMID: 28889269
- Ellett, L.J.; Hung, L.W.; Munckton, R.; Sherratt, N.A.; Culvenor, J.; Grubman, A.; Furness, J.B.; White, A.R.; Finkelstein, D.I.; Barnham, K.J.; Lawson, V.A. Restoration of intestinal function in an MPTP model of Parkinsons Disease. Sci. Rep., 2016, 6(1), 30269. doi: 10.1038/srep30269 PMID: 27471168
- Abbaoui, A.; Chatoui, H.; El Hiba, O.; Gamrani, H. Neuroprotective effect of curcumin-I in copper-induced dopaminergic neurotoxicity in rats: A possible link with Parkinsons disease. Neurosci. Lett., 2017, 660, 103-108. doi: 10.1016/j.neulet.2017.09.032 PMID: 28919537
- Roberts, B.R.; Lim, N.K.H.; McAllum, E.J.; Donnelly, P.S.; Hare, D.J.; Doble, P.A.; Turner, B.J.; Price, K.A.; Chun Lim, S.; Paterson, B.M.; Hickey, J.L.; Rhoads, T.W.; Williams, J.R.; Kanninen, K.M.; Hung, L.W.; Liddell, J.R.; Grubman, A.; Monty, J.F.; Llanos, R.M.; Kramer, D.R.; Mercer, J.F.B.; Bush, A.I.; Masters, C.L.; Duce, J.A.; Li, Q.X.; Beckman, J.S.; Barnham, K.J.; White, A.R.; Crouch, P.J. Oral treatment with Cu(II)(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis. J. Neurosci., 2014, 34(23), 8021-8031. doi: 10.1523/JNEUROSCI.4196-13.2014 PMID: 24899723
- Tokuda, E.; Furukawa, Y. Copper homeostasis as a therapeutic target in amyotrophic lateral sclerosis with sod1 mutations. Int. J. Mol. Sci., 2016, 17(5), 636. doi: 10.3390/ijms17050636 PMID: 27136532
- Guthrie, L.M.; Soma, S.; Yuan, S.; Silva, A.; Zulkifli, M.; Snavely, T.C.; Greene, H.F.; Nunez, E.; Lynch, B.; De Ville, C.; Shanbhag, V.; Lopez, F.R.; Acharya, A.; Petris, M.J.; Kim, B.E.; Gohil, V.M.; Sacchettini, J.C. Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice. Science, 2020, 368(6491), 620-625. doi: 10.1126/science.aaz8899 PMID: 32381719
- Kempuraj, D.; Thangavel, R.; Kempuraj, D.D.; Ahmed, M.E.; Selvakumar, G.P.; Raikwar, S.P.; Zaheer, S.A.; Iyer, S.S.; Govindarajan, R.; Chandrasekaran, P.N.; Zaheer, A. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. Biofactors, 2021, 47(2), 190-197. doi: 10.1002/biof.1687 PMID: 33098588
- Liu, Q.S.; Jiang, H.L.; Wang, Y.; Wang, L.L.; Zhang, J.X.; He, C.H.; Shao, S.; Zhang, T.T.; Xing, J.G.; Liu, R. Total flavonoid extract from Dracoephalum moldavica L. attenuates β-amyloid-induced toxicity through anti-amyloidogenesic and neurotrophic pathways. Life Sci., 2018, 193, 214-225. doi: 10.1016/j.lfs.2017.10.041 PMID: 29100755
- Liu, R.; Meng, F.; Zhang, L.; Liu, A.; Qin, H.; Lan, X.; Li, L.; Du, G. Luteolin isolated from the medicinal plant Elsholtzia rugulosa (Labiatae) prevents copper-mediated toxicity in β-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Molecules, 2011, 16(3), 2084-2096. doi: 10.3390/molecules16032084 PMID: 21368720
- Xu, Y.; Yang, J.; Lu, Y.; Qian, L.L.; Yang, Z.Y.; Han, R.M.; Zhang, J.P.; Skibsted, L.H. Copper(II) coordination and translocation in luteolin and effect on radical scavenging. J. Phys. Chem. B, 2020, 124(2), 380-388. doi: 10.1021/acs.jpcb.9b10531 PMID: 31845805
- Zhao, L.; Wang, J.L.; Liu, R.; Li, X.X.; Li, J.F.; Zhang, L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimers disease mouse model. Molecules, 2013, 18(8), 9949-9965. doi: 10.3390/molecules18089949 PMID: 23966081
- Zhao, L.; Wang, J.; Wang, Y.; Fa, X. Apigenin attenuates copper-mediated β-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model. Brain Res., 2013, 1492, 33-45. doi: 10.1016/j.brainres.2012.11.019 PMID: 23178511
- Peng, H.; Xing, Y.; Gao, L.; Zhang, L.; Zhang, G. Simultaneous separation of apigenin, luteolin and rosmarinic acid from the aerial parts of the copper-tolerant plant Elsholtzia splendens. Environ. Sci. Pollut. Res. Int., 2014, 21(13), 8124-8132. doi: 10.1007/s11356-014-2747-5 PMID: 24671394
- Wang, Q.; Jiang, H.; Wang, L.; Yi, H.; Li, Z.; Liu, R. Vitegnoside mitigates neuronal injury, mitochondrial apoptosis, and inflammation in an Alzheimers disease cell model via the p38 MAPK/JNK Pathway. J. Alzheimers Dis., 2019, 72(1), 199-214. doi: 10.3233/JAD-190640 PMID: 31561371
- Lin, M.C.; Liu, C.C.; Liao, C.S.; Ro, J.H. Neuroprotective effect of quercetin during cerebral ischemic injury involves regulation of essential elements, transition metals, cu/zn ratio, and antioxidant activity. Molecules, 2021, 26(20), 6128. doi: 10.3390/molecules26206128 PMID: 34684707
- Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxid. Med. Cell. Longev., 2020, 2020, 1-13. doi: 10.1155/2020/8825387 PMID: 33488935
- Du, G.; Zhao, Z.; Chen, Y.; Li, Z.; Tian, Y.; Liu, Z.; Liu, B.; Song, J. Quercetin protects rat cortical neurons against traumatic brain injury. Mol. Med. Rep., 2018, 17(6), 7859-7865. doi: 10.3892/mmr.2018.8801 PMID: 29620218
- Jomova, K.; Lawson, M.; Drostinova, L.; Lauro, P.; Poprac, P.; Brezova, V.; Michalik, M.; Lukes, V.; Valko, M. Protective role of quercetin against copper(II)-induced oxidative stress: A spectroscopic, theoretical and DNA damage study. Food Chem. Toxicol., 2017, 110, 340-350. doi: 10.1016/j.fct.2017.10.042 PMID: 29107026
- Chakraborty, J.; Pakrashi, S.; Sarbajna, A.; Dutta, M.; Bandyopadhyay, J. Quercetin attenuates copper-induced apoptotic cell death and endoplasmic reticulum stress in SH-SY5Y cells by autophagic modulation. Biol. Trace Elem. Res., 2022, 200(12), 5022-5041. doi: 10.1007/s12011-022-03093-x PMID: 35149956
- Zubčić K.; Radovanović V.; Vlainić J.; Hof, P.R.; Orolić N.; imić G.; Jazvinćak Jembrek, M. PI3K/Akt and ERK1/2 signalling are involved in quercetin-mediated neuroprotection against copper-induced injury. Oxid. Med. Cell. Longev., 2020, 2020, 1-14. doi: 10.1155/2020/9834742 PMID: 32733640
- Kuo, S.M.; Huang, C.T.; Blum, P.; Chang, C. Quercetin cumulatively enhances copper induction of metallothionein in intestinal cells. Biol. Trace Elem. Res., 2001, 84(1-3), 001-010. doi: 10.1385/BTER:84:1-3:001 PMID: 11817679
- Gan, R.Y.; Li, H.B.; Sui, Z.Q.; Corke, H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit. Rev. Food Sci. Nutr., 2018, 58(6), 924-941. doi: 10.1080/10408398.2016.1231168 PMID: 27645804
- Steinmann, J.; Buer, J.; Pietschmann, T.; Steinmann, E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br. J. Pharmacol., 2013, 168(5), 1059-1073. doi: 10.1111/bph.12009 PMID: 23072320
- Koh, S.H.; Lee, S.M.; Kim, H.Y.; Lee, K.Y.; Lee, Y.J.; Kim, H.T.; Kim, J.; Kim, M.H.; Hwang, M.S.; Song, C.; Yang, K.W.; Lee, K.W.; Kim, S.H.; Kim, O.H. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci. Lett., 2006, 395(2), 103-107. doi: 10.1016/j.neulet.2005.10.056 PMID: 16356650
- Teng, Y.; Zhao, J.; Ding, L.; Ding, Y.; Zhou, P. Complex of EGCG with Cu(II) suppresses amyloid aggregation and Cu(II)-induced cytotoxicity of alpha-synuclein. Molecules, 2019, 24(16), 2940. doi: 10.3390/molecules24162940 PMID: 31416122
- Li, J.; Xiang, H.; Huang, C.; Lu, J. Pharmacological actions of myricetin in the nervous system: a comprehensive review of preclinical studies in animals and cell models. Front. Pharmacol., 2021, 12, 797298. doi: 10.3389/fphar.2021.797298 PMID: 34975495
- Zhang, X.H.; Ma, Z.G.; Rowlands, D.K.; Gou, Y.L.; Fok, K.L.; Wong, H.Y.; Yu, M.K.; Tsang, L.L.; Mu, L.; Chen, L.; Yung, W.H.; Chung, Y.W.; Zhang, B.L.; Zhao, H.; Chan, H.C. Flavonoid myricetin modulates GABA(A) receptor activity through activation of Ca(2+) channels and CaMK-II pathway. Evid. Based Complement. Alternat. Med., 2012, 2012, 1-10. doi: 10.1155/2012/758097 PMID: 23258999
- Ding, P.; Liao, X.; Shi, B. Adsorption chromatography separation of the flavonols kaempferol, quercetin and myricetin using cross-linked collagen fibre as the stationary phase. J. Sci. Food Agric., 2013, 93(7), 1575-1583. doi: 10.1002/jsfa.5924 PMID: 23152137
- DeToma, A.S.; Choi, J.S.; Braymer, J.J.; Lim, M.H. Myricetin: a naturally occurring regulator of metal-induced amyloid-β aggregation and neurotoxicity. ChemBioChem, 2011, 12(8), 1198-1201. doi: 10.1002/cbic.201000790 PMID: 21538759
- Xiang, B.; Li, D.; Chen, Y.; Li, M.; Zhang, Y.; Sun, T.; Tang, S. Curcumin ameliorates copper-induced neurotoxicity through inhibiting oxidative stress and mitochondrial apoptosis in SH-SY5Y cells. Neurochem. Res., 2021, 46(2), 367-378. doi: 10.1007/s11064-020-03173-1 PMID: 33201401
- Abolaji, A.O.; Fasae, K.D.; Iwezor, C.E.; Aschner, M.; Farombi, E.O. Curcumin attenuates copper-induced oxidative stress and neurotoxicity in Drosophila melanogaster. Toxicol. Rep., 2020, 7, 261-268. doi: 10.1016/j.toxrep.2020.01.015 PMID: 32025502
- RA Mans, D. Djotaroeno, M.; Friperson, P.; Pawirodihardjo, J. Phytochemical and pharmacological support for the traditional uses of Zingiberacea species in suriname - a review of the literature. Pharmacogn. J., 2019, 11(6s), 1511-1525. doi: 10.5530/pj.2019.11.232
- Abbaoui, A.; Gamrani, H. Obvious anxiogenic-like effects of subchronic copper intoxication in rats, outcomes on spatial learning and memory and neuromodulatory potential of curcumin. J. Chem. Neuroanat., 2019, 96, 86-93. doi: 10.1016/j.jchemneu.2019.01.001 PMID: 30611899
- Ho, W.I.; Hu, Y.; Cheng, C.W.; Wei, R.; Yang, J.; Li, N.; Au, K.W.; Tse, Y.L.; Wang, Q.; Ng, K.M.; Esteban, M.A.; Tse, H.F. Liposome-encapsulated curcumin attenuates HMGB1-mediated hepatic inflammation and fibrosis in a murine model of Wilsons disease. Biomed. Pharmacother., 2022, 152, 113197. doi: 10.1016/j.biopha.2022.113197 PMID: 35687913
- Motavaf, M.; Sadeghizadeh, M.; Babashah, S.; Zare, L.; Javan, M. Protective effects of a nano-formulation of curcumin against cuprizone-induced demyelination in the mouse corpus callosum. Iran. J. Pharm. Res., 2020, 19(3), 310-320. PMID: 33680032
- Huang, H.C.; Lin, C.J.; Liu, W.J.; Jiang, R.R.; Jiang, Z.F. Dual effects of curcumin on neuronal oxidative stress in the presence of Cu(II). Food Chem. Toxicol., 2011, 49(7), 1578-1583. doi: 10.1016/j.fct.2011.04.004 PMID: 21501647
- Sarawi, W.S.; Alhusaini, A.M.; Fadda, L.M.; Alomar, H.A.; Albaker, A.B.; Aljrboa, A.S.; Alotaibi, A.M.; Hasan, I.H.; Mahmoud, A.M. Curcumin and Nano-curcumin mitigate copper neurotoxicity by modulating oxidative stress, inflammation, and Akt/GSK-3beta signaling. Molecules, 2021, 26(18), 5591. doi: 10.3390/molecules26185591 PMID: 34577062
- Abbaoui, A.; Gamrani, H. Neuronal, astroglial and locomotor injuries in subchronic copper intoxicated rats are repaired by curcumin: A possible link with Parkinsons disease. Acta Histochem., 2018, 120(6), 542-550. doi: 10.1016/j.acthis.2018.06.005 PMID: 29954586
- Lin, R.; Chen, X.; Li, W.; Han, Y.; Liu, P.; Pi, R. Exposure to metal ions regulates mRNA levels of APP and BACE1 in PC12 cells: Blockage by curcumin. Neurosci. Lett., 2008, 440(3), 344-347. doi: 10.1016/j.neulet.2008.05.070 PMID: 18583042
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a Potent antioxidant: implications for neurodegenerative disorders. Oxid. Med. Cell. Longev., 2018, 2018, 1-17. doi: 10.1155/2018/6241017 PMID: 30050657
- Arowoogun, J.; Akanni, O.O.; Adefisan, A.O.; Owumi, S.E.; Tijani, A.S.; Adaramoye, O.A. Rutin ameliorates copper sulfate‐induced brain damage via antioxidative and anti‐inflammatory activities in rats. J. Biochem. Mol. Toxicol., 2021, 35(1), e22623. doi: 10.1002/jbt.22623 PMID: 32881150
- Lin, M.C.; Liu, C.C.; Lin, Y.C.; Liao, C.S. Resveratrol protects against cerebral ischemic injury via restraining lipid peroxidation, transition elements, and toxic metal levels, but enhancing anti-oxidant activity. Antioxidants, 2021, 10(10), 1515. doi: 10.3390/antiox10101515 PMID: 34679650
- Tian, C.; Zhang, R.; Ye, X.; Zhang, C.; Jin, X.; Yamori, Y.; Hao, L.; Sun, X.; Ying, C. Resveratrol ameliorates high-glucose-induced hyperpermeability mediated by caveolae via VEGF/KDR pathway. Genes Nutr., 2013, 8(2), 231-239. doi: 10.1007/s12263-012-0319-1 PMID: 22983702
- Majewski, M.; Ognik, K.; Thoene, M.; Rawicka, A. Juśkiewicz, J. Resveratrol modulates the blood plasma levels of Cu and Zn, the antioxidant status and the vascular response of thoracic arteries in copper deficient Wistar rats. Toxicol. Appl. Pharmacol., 2020, 390, 114877. doi: 10.1016/j.taap.2020.114877 PMID: 31917326
- Matos, L.; Gouveia, A.M.; Almeida, H. Resveratrol attenuates copper-induced senescence by improving cellular proteostasis. Oxid. Med. Cell. Longev., 2017, 2017, 3793817. PMID: 28280523
- Asadi, S.; Moradi, M.N.; Khyripour, N.; Goodarzi, M.T.; Mahmoodi, M. Resveratrol attenuates copper and zinc homeostasis and ameliorates oxidative stress in Type 2 diabetic rats. Biol. Trace Elem. Res., 2017, 177(1), 132-138. doi: 10.1007/s12011-016-0861-6 PMID: 27744600
- Muselin, F.; Gârban, Z.; Cristina, R.T.; Doma, A.O.; Dumitrescu, E. Vițălaru, A.B.; Bănățean-Dunea, I. Homeostatic changes of some trace elements in geriatric rats in the condition of oxidative stress induced by aluminum and the beneficial role of resveratrol. J. Trace Elem. Med. Biol., 2019, 55, 136-142. doi: 10.1016/j.jtemb.2019.06.013 PMID: 31345351
- Majewski, M.; Ognik, K. Juśkiewicz, J. The interaction between resveratrol and two forms of copper as carbonate and nanoparticles on antioxidant mechanisms and vascular function in Wistar rats. Pharmacol. Rep., 2019, 71(5), 862-869. doi: 10.1016/j.pharep.2019.03.011 PMID: 31408785
- Khalid, S.; Afzal, N.; Khan, J.A.; Hussain, Z.; Qureshi, A.S.; Anwar, H.; Jamil, Y. Antioxidant resveratrol protects against copper oxide nanoparticle toxicity in vivo. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(10), 1053-1062. doi: 10.1007/s00210-018-1526-0 PMID: 29936585
- Summers, K.L.; Roseman, G.P.; Sopasis, G.J.; Millhauser, G.L.; Harris, H.H.; Pickering, I.J.; George, G.N. Copper(II) binding to pbt2 differs from that of other 8-hydroxyquinoline chelators: implications for the treatment of neurodegenerative protein misfolding diseases. Inorg. Chem., 2020, 59(23), 17519-17534. doi: 10.1021/acs.inorgchem.0c02754 PMID: 33226796
- Dzieżyc, K.; Karliński, M.; Litwin, T.; Członkowska, A. Compliant treatment with anti-copper agents prevents clinically overt Wilsons disease in pre-symptomatic patients. Eur. J. Neurol., 2014, 21(2), 332-337. doi: 10.1111/ene.12320 PMID: 24313946
- Kaler, S.G.; Holmes, C.S.; Goldstein, D.S.; Tang, J.; Godwin, S.C.; Donsante, A.; Liew, C.J.; Sato, S.; Patronas, N. Neonatal diagnosis and treatment of Menkes disease. N. Engl. J. Med., 2008, 358(6), 605-614. doi: 10.1056/NEJMoa070613 PMID: 18256395
- Tosato, M.; Di Marco, V. Metal chelation therapy and Parkinsons disease: a critical review on the thermodynamics of complex formation between relevant metal ions and promising or established drugs. Biomolecules, 2019, 9(7), 269. doi: 10.3390/biom9070269 PMID: 31324037
- Gou, D.H.; Huang, T.T.; Li, W.; Gao, X.D.; Haikal, C.; Wang, X.H.; Song, D.Y.; Liang, X.; Zhu, L.; Tang, Y.; Ding, C.; Li, J.Y. Inhibition of copper transporter 1 prevents α-synuclein pathology and alleviates nigrostriatal degeneration in AAV-based mouse model of Parkinsons disease. Redox Biol., 2021, 38, 101795. doi: 10.1016/j.redox.2020.101795 PMID: 33232911
- Chen, L.; Min, J.; Wang, F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther., 2022, 7(1), 378. doi: 10.1038/s41392-022-01229-y PMID: 36414625
- Arnal, N.; Morel, G.R.; de Alaniz, M.J.T.; Castillo, O.; Marra, C.A. Role of copper and cholesterol association in the neurodegenerative process. Int. J. Alzheimers Dis., 2013, 2013, 1-15. doi: 10.1155/2013/414817 PMID: 24288650
- Murillo, O.; Collantes, M.; Gazquez, C.; Moreno, D.; Hernandez-Alcoceba, R.; Barberia, M.; Ecay, M.; Tamarit, B.; Douar, A.; Ferrer, V.; Combal, J.P.; Peñuelas, I.; Bénichou, B.; Gonzalez-Aseguinolaza, G. High value of 64Cu as a tool to evaluate the restoration of physiological copper excretion after gene therapy in Wilsons disease. Mol. Ther. Methods Clin. Dev., 2022, 26, 98-106. doi: 10.1016/j.omtm.2022.06.001 PMID: 35795774
- Cai, H.; Cheng, X.; Wang, X.P. ATP7B gene therapy of autologous reprogrammed hepatocytes alleviates copper accumulation in a mouse model of Wilsons disease. Hepatology, 2022, 76(4), 1046-1057. doi: 10.1002/hep.32484 PMID: 35340061
- Du, A.; Cai, R.; Shi, J.; Wu, Q. Protective effects of icariin on traumatic brain injury. Curr. Neurovasc. Res., 2021, 18(5), 508-514. doi: 10.2174/1567202619666211223125628 PMID: 34951380
- Abbaoui, A.; Hiba, O.E.; Gamrani, H. Neuroprotective potential of Aloe arborescens against copper induced neurobehavioral features of Parkinsons disease in rat. Acta Histochem., 2017, 119(5), 592-601. doi: 10.1016/j.acthis.2017.06.003 PMID: 28619286
- Pan, C.; Liu, N.; Zhang, P.; Wu, Q.; Deng, H.; Xu, F.; Lian, L.; Liang, Q.; Hu, Y.; Zhu, S.; Tang, Z. EGb761 ameliorates neuronal apoptosis and promotes angiogenesis in experimental intracerebral hemorrhage via RSK1/GSK3beta pathway. Mol. Neurobiol., 2018, 55(2), 1556-1567. doi: 10.1007/s12035-016-0363-8 PMID: 28185127
- Rojas, P.; Montes, S.; Serrano-García, N.; Rojas-Castañeda, J. Effect of EGb761 supplementation on the content of copper in mouse brain in an animal model of Parkinsons disease. Nutrition, 2009, 25(4), 482-485. doi: 10.1016/j.nut.2008.10.013 PMID: 19091511
- Cao, J.; Li, C.; Ma, P.; Ding, Y.; Gao, J.; Jia, Q.; Zhu, J.; Zhang, T. Effect of kaempferol on IgE-mediated anaphylaxis in C57BL/6 mice and LAD2 cells. Phytomedicine, 2020, 79, 153346. doi: 10.1016/j.phymed.2020.153346 PMID: 33002828
- Simunkova, M.; Barbierikova, Z.; Jomova, K.; Hudecova, L.; Lauro, P.; Alwasel, S.H.; Alhazza, I.; Rhodes, C.J.; Valko, M. Antioxidant vs. Prooxidant properties of the flavonoid, kaempferol, in the presence of Cu(II) ions: a ros-scavenging activity, fenton reaction and dna damage study. Int. J. Mol. Sci., 2021, 22(4), 1619. doi: 10.3390/ijms22041619 PMID: 33562744
- Fachel, F.N.S.; Schuh, R.S.; Veras, K.S.; Bassani, V.L.; Koester, L.S.; Henriques, A.T.; Braganhol, E.; Teixeira, H.F. An overview of the neuroprotective potential of rosmarinic acid and its association with nanotechnology-based delivery systems: A novel approach to treating neurodegenerative disorders. Neurochem. Int., 2019, 122, 47-58. doi: 10.1016/j.neuint.2018.11.003 PMID: 30439384
- Kola, A.; Hecel, A.; Lamponi, S.; Valensin, D. Novel perspective on Alzheimers disease treatment: rosmarinic acid molecular interplay with Copper(II) and amyloid beta. Life (Basel), 2020, 10(7), 118. doi: 10.3390/life10070118 PMID: 32698429
- Costa, I.M.; Lima, F.O.V.; Fernandes, L.C.B.; Norrara, B.; Neta, F.I.; Alves, R.D.; Cavalcanti, J.R.L.P.; Lucena, E.E.S.; Cavalcante, J.S.; Rego, A.C.M.; Filho, I.A.; Queiroz, D.B.; Freire, M.A.M.; Guzen, F.P. Astragaloside IV supplementation promotes a neuroprotective effect in experimental models of neurological disorders: a systematic review. Curr. Neuropharmacol., 2019, 17(7), 648-665. doi: 10.2174/1570159X16666180911123341 PMID: 30207235
- Ma, M.; Qiu, B.; Jin, J.; Wang, J.; Nie, Y.; Liang, Y.; Yu, Z.; Teng, C.B. Establishment of a specific in vivo Cu(Ⅰ) reporting system based on metallothionein screening. Metallomics, 2021, 13(7), mfab035. doi: 10.1093/mtomcs/mfab035 PMID: 34114637
- Memariani, Z.; Abbas, S.Q. ul Hassan, S.S.; Ahmadi, A.; Chabra, A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacol. Res., 2021, 171, 105264. doi: 10.1016/j.phrs.2020.105264 PMID: 33166734
- Yuan, J.; Wei, F.; Luo, X.; Zhang, M.; Qiao, R.; Zhong, M.; Chen, H.; Yang, W. Multi-component comparative pharmacokinetics in rats after oral administration of Fructus aurantii extract, naringin, neohesperidin, and naringin-neohesperidin. Front. Pharmacol., 2020, 11, 933. doi: 10.3389/fphar.2020.00933 PMID: 32636752
- Chen, K.Y.; Lin, K.C.; Chen, Y.S.; Yao, C.H. A novel porous gelatin composite containing naringin for bone repair. Evid. Based Complement. Alternat. Med., 2013, 2013, 1-10. doi: 10.1155/2013/283941 PMID: 23431335
- Guo, L.X. Sun, B. N′-1,10-Bis(Naringin) Triethylenetetraamine, synthesis and as a Cu(II) chelator for Alzheimers disease therapy. Biol. Pharm. Bull., 2021, 44(1), 51-56. doi: 10.1248/bpb.b20-00574 PMID: 33162492
- Saini, R.K.; Shuaib, S.; Goyal, D.; Goyal, B. Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ42 aggregation and protofibril destabilization: A molecular dynamics simulation study. J. Biomol. Struct. Dyn., 2019, 37(12), 3183-3197. doi: 10.1080/07391102.2018.1511475 PMID: 30582723
- Mao, F.; Yan, J.; Li, J.; Jia, X.; Miao, H.; Sun, Y.; Huang, L.; Li, X. New multi-target-directed small molecules against Alzheimers disease: a combination of resveratrol and clioquinol. Org. Biomol. Chem., 2014, 12(31), 5936-5944. doi: 10.1039/C4OB00998C PMID: 24986600
Supplementary files
