Metabolic Reprogramming in Gliocyte Post-cerebral Ischemia/ Reperfusion: From Pathophysiology to Therapeutic Potential


Cite item

Full Text

Abstract

Ischemic stroke is a leading cause of disability and death worldwide. However, the clinical efficacy of recanalization therapy as a preferred option is significantly hindered by reperfusion injury. The transformation between different phenotypes of gliocytes is closely associated with cerebral ischemia/ reperfusion injury (CI/RI). Moreover, gliocyte polarization induces metabolic reprogramming, which refers to the shift in gliocyte phenotype and the overall transformation of the metabolic network to compensate for energy demand and building block requirements during CI/RI caused by hypoxia, energy deficiency, and oxidative stress. Within microglia, the pro-inflammatory phenotype exhibits upregulated glycolysis, pentose phosphate pathway, fatty acid synthesis, and glutamine synthesis, whereas the anti-inflammatory phenotype demonstrates enhanced mitochondrial oxidative phosphorylation and fatty acid oxidation. Reactive astrocytes display increased glycolysis but impaired glycogenolysis and reduced glutamate uptake after CI/RI. There is mounting evidence suggesting that manipulation of energy metabolism homeostasis can induce microglial cells and astrocytes to switch from neurotoxic to neuroprotective phenotypes. A comprehensive understanding of underlying mechanisms and manipulation strategies targeting metabolic pathways could potentially enable gliocytes to be reprogrammed toward beneficial functions while opening new therapeutic avenues for CI/RI treatment. This review provides an overview of current insights into metabolic reprogramming mechanisms in microglia and astrocytes within the pathophysiological context of CI/RI, along with potential pharmacological targets. Herein, we emphasize the potential of metabolic reprogramming of gliocytes as a therapeutic target for CI/RI and aim to offer a novel perspective in the treatment of CI/RI.

About the authors

Lipeng Gong

Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine

Email: info@benthamscience.net

Junjie Liang

Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine

Email: info@benthamscience.net

Letian Xie

Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine

Email: info@benthamscience.net

Zhanwei Zhang

Department of Neurosurgery, First Affiliated Hospita, Hunan University of Traditional Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

Zhigang Mei

Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

Wenli Zhang

School of Pharmacy, Hunan University of Chinese Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Katan, M.; Luft, A. Global burden of stroke. Semin. Neurol., 2018, 38(2), 208-211. doi: 10.1055/s-0038-1649503 PMID: 29791947
  2. Lin, L.; Wang, X.; Yu, Z. Ischemia-reperfusion injury in the brain: Mechanisms and potential therapeutic strategies. Biochem. Pharmacol., 2016, 5(4), 213. doi: 10.4172/2167-0501.1000213 PMID: 29888120
  3. Rabinstein, A.A. Update on treatment of acute ischemic stroke. Continuum (Minneap. Minn.), 2020, 26(2), 268-286. doi: 10.1212/CON.0000000000000840 PMID: 32224752
  4. Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; Jauch, E.C.; Kidwell, C.S.; Leslie-Mazwi, T.M.; Ovbiagele, B.; Scott, P.A.; Sheth, K.N.; Southerland, A.M.; Summers, D.V.; Tirschwell, D.L. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke, 2019, 50(12), e344-e418. doi: 10.1161/STR.0000000000000211 PMID: 31662037
  5. Jurcau, A.; Ardelean, I.A. Molecular pathophysiological mechanisms of ischemia/reperfusion injuries after recanalization therapy for acute ischemic stroke. J. Integr. Neurosci., 2021, 20(3), 727-744. doi: 10.31083/j.jin2003078 PMID: 34645107
  6. Luo, X.L.; Liu, S.Y.; Wang, L.J.; Zhang, Q.Y.; Xu, P.; Pan, L.L.; Hu, J.F. A tetramethoxychalcone from Chloranthus henryi suppresses lipopolysaccharide-induced inflammatory responses in BV2 microglia. Eur. J. Pharmacol., 2016, 774, 135-143. doi: 10.1016/j.ejphar.2016.02.013 PMID: 26852953
  7. Skirving, D.J.; Dan, N.G. A 20-year review of percutaneous balloon compression of the trigeminal ganglion. J. Neurosurg., 2001, 94(6), 913-917. doi: 10.3171/jns.2001.94.6.0913 PMID: 11409519
  8. Sieweke, M.H.; Allen, J.E. Beyond stem cells: Self-renewal of differentiated macrophages. Science, 2013, 342(6161), 1242974. doi: 10.1126/science.1242974 PMID: 24264994
  9. Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487. doi: 10.1038/nature21029 PMID: 28099414
  10. Xu, S.; Lu, J.; Shao, A.; Zhang, J.H.; Zhang, J. Glial cells: Role of the immune response in ischemic stroke. Front. Immunol., 2020, 11, 294. doi: 10.3389/fimmu.2020.00294 PMID: 32174916
  11. Cheng, X.; Yang, Y.L.; Li, W.H.; Liu, M.; Zhang, S.S.; Wang, Y.H.; Du, G.H. Dynamic alterations of brain injury, functional recovery, and metabolites profile after cerebral ischemia/reperfusion in rats contributes to potential biomarkers. J. Mol. Neurosci., 2020, 70(5), 667-676. doi: 10.1007/s12031-019-01474-x PMID: 31907865
  12. Shen, L.; Gan, Q.; Yang, Y.; Reis, C.; Zhang, Z.; Xu, S.; Zhang, T.; Sun, C. Mitophagy in cerebral ischemia and ischemia/reperfusion injury. Front. Aging Neurosci., 2021, 13, 687246. doi: 10.3389/fnagi.2021.687246 PMID: 34168551
  13. Lauro, C.; Limatola, C. Metabolic reprograming of microglia in the regulation of the innate inflammatory response. Front. Immunol., 2020, 11, 493. doi: 10.3389/fimmu.2020.00493 PMID: 32265936
  14. Sofroniew, M.V. Astrocyte reactivity: Subtypes, states, and functions in cns innate immunity. Trends Immunol., 2020, 41(9), 758-770. doi: 10.1016/j.it.2020.07.004 PMID: 32819810
  15. Ghosh, S.; Castillo, E.; Frias, E.S.; Swanson, R.A. Bioenergetic regulation of microglia. Glia, 2018, 66(6), 1200-1212. doi: 10.1002/glia.23271 PMID: 29219210
  16. Hu, X.; Li, P.; Guo, Y.; Wang, H.; Leak, R.K.; Chen, S.; Gao, Y.; Chen, J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke, 2012, 43(11), 3063-3070. doi: 10.1161/STROKEAHA.112.659656 PMID: 22933588
  17. Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev., 2009, 22(2), 240-273. doi: 10.1128/CMR.00046-08 PMID: 19366914
  18. Falkowska, A.; Gutowska, I.; Goschorska, M.; Nowacki, P.; Chlubek, D.; Baranowska-Bosiacka, I. Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int. J. Mol. Sci., 2015, 16(11), 25959-25981. doi: 10.3390/ijms161125939 PMID: 26528968
  19. Borbor, M.; Yin, D.; Brockmeier, U.; Wang, C.; Doeckel, M.; Pillath-Eilers, M.; Kaltwasser, B.; Hermann, D.M.; Dzyubenko, E. Neurotoxicity of ischemic astrocytes involves STAT3 ‐mediated metabolic switching and depends on glycogen usage. Glia, 2023, 71(6), 1553-1569. doi: 10.1002/glia.24357 PMID: 36810803
  20. Cai, Y.; Guo, H.; Fan, Z.; Zhang, X.; Wu, D.; Tang, W.; Gu, T.; Wang, S.; Yin, A.; Tao, L.; Ji, X.; Dong, H.; Li, Y.; Xiong, L. Glycogenolysis is crucial for astrocytic glycogen accumulation and brain damage after reperfusion in ischemic stroke. iScience, 2020, 23(5), 101136. doi: 10.1016/j.isci.2020.101136 PMID: 32446205
  21. Yang, S.; Qin, C.; Hu, Z.W.; Zhou, L.Q.; Yu, H.H.; Chen, M.; Bosco, D.B.; Wang, W.; Wu, L.J.; Tian, D.S. Microglia reprogram metabolic profiles for phenotype and function changes in central nervous system. Neurobiol. Dis., 2021, 152, 105290. doi: 10.1016/j.nbd.2021.105290 PMID: 33556540
  22. Pearce, E.L.; Pearce, E.J. Metabolic pathways in immune cell activation and quiescence. Immunity, 2013, 38(4), 633-643. doi: 10.1016/j.immuni.2013.04.005 PMID: 23601682
  23. Lynch, M.A. Can the emerging field of immunometabolism provide insights into neuroinflammation? Prog. Neurobiol., 2020, 184, 101719. doi: 10.1016/j.pneurobio.2019.101719 PMID: 31704314
  24. Bruce, K.D.; Gorkhali, S.; Given, K.; Coates, A.M.; Boyle, K.E.; Macklin, W.B.; Eckel, R.H. Lipoprotein lipase is a feature of alternatively-activated microglia and may facilitate lipid uptake in the cns during demyelination. Front. Mol. Neurosci., 2018, 11, 57. doi: 10.3389/fnmol.2018.00057 PMID: 29599706
  25. Peruzzotti-Jametti, L.; Pluchino, S. Targeting mitochondrial metabolism in neuroinflammation: Towards a therapy for progressive multiple sclerosis. Trends Mol. Med., 2018, 24(10), 838-855. doi: 10.1016/j.molmed.2018.07.007 PMID: 30100517
  26. Wang, L.; Pavlou, S.; Du, X.; Bhuckory, M.; Xu, H.; Chen, M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol. Neurodegener., 2019, 14(1), 2. doi: 10.1186/s13024-019-0305-9 PMID: 30634998
  27. Zhang, Y.; Chen, K.; Sloan, S.A.; Bennett, M.L.; Scholze, A.R.; O’Keeffe, S.; Phatnani, H.P.; Guarnieri, P.; Caneda, C.; Ruderisch, N.; Deng, S.; Liddelow, S.A.; Zhang, C.; Daneman, R.; Maniatis, T.; Barres, B.A.; Wu, J.Q. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci., 2014, 34(36), 11929-11947. doi: 10.1523/JNEUROSCI.1860-14.2014 PMID: 25186741
  28. Kelly, B.; O’Neill, L.A.J. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res., 2015, 25(7), 771-784. doi: 10.1038/cr.2015.68 PMID: 26045163
  29. Van den Bossche, J.; Baardman, J.; Otto, N.A.; van der Velden, S.; Neele, A.E.; van den Berg, S.M.; Luque-Martin, R.; Chen, H.J.; Boshuizen, M.C.S.; Ahmed, M.; Hoeksema, M.A.; de Vos, A.F.; de Winther, M.P.J. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep., 2016, 17(3), 684-696. doi: 10.1016/j.celrep.2016.09.008 PMID: 27732846
  30. Mills, E.L.; Kelly, B.; Logan, A.; Costa, A.S.H.; Varma, M.; Bryant, C.E.; Tourlomousis, P.; Däbritz, J.H.M.; Gottlieb, E.; Latorre, I.; Corr, S.C.; McManus, G.; Ryan, D.; Jacobs, H.T.; Szibor, M.; Xavier, R.J.; Braun, T.; Frezza, C.; Murphy, M.P.; O’Neill, L.A. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell, 2016, 167(2), 457-470.e13. doi: 10.1016/j.cell.2016.08.064 PMID: 27667687
  31. Klimaszewska-Łata, J.; Gul-Hinc, S.; Bielarczyk, H.; Ronowska, A.; Zyśk, M.; Grużewska, K.; Pawełczyk, T.; Szutowicz, A. Differential effects of lipopolysaccharide on energy metabolism in murine microglial N9 and cholinergic SN 56 neuronal cells. J. Neurochem., 2015, 133(2), 284-297. doi: 10.1111/jnc.12979 PMID: 25345568
  32. Bolanos, J.; García-Nogales, P.; Almeida, A. Provoking neuroprotection by peroxynitrite. Curr. Pharm. Des., 2004, 10(8), 867-877. doi: 10.2174/1381612043452910 PMID: 15032690
  33. West, A.P.; Brodsky, I.E.; Rahner, C.; Woo, D.K.; Erdjument-Bromage, H.; Tempst, P.; Walsh, M.C.; Choi, Y.; Shadel, G.S.; Ghosh, S. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 2011, 472(7344), 476-480. doi: 10.1038/nature09973 PMID: 21525932
  34. Zhang, Z-B.; Feng, X.; Li, M.; Tan, L-L.; Jiang, X-L.; Xu, L-X.; Li, G.; Feng, C-X.; Ding, X.; Sun, B.; Qin, Z-H. TP53-induced glycolysis and apoptosis regulator alleviates hypoxia/ischemia-induced microglial pyroptosis and ischemic brain damage. Neural Regen. Res., 2021, 16(6), 1037-1043. doi: 10.4103/1673-5374.300453 PMID: 33269748
  35. Hu, Y.; Mai, W.; Chen, L.; Cao, K.; Zhang, B.; Zhang, Z.; Liu, Y.; Lou, H.; Duan, S.; Gao, Z. mTOR‐mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP. Glia, 2020, 68(5), 1031-1045. doi: 10.1002/glia.23760 PMID: 31793691
  36. He, C.; Zhou, C.; Kennedy, B.K. The yeast replicative aging model. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(9), 2690-2696. doi: 10.1016/j.bbadis.2018.02.023 PMID: 29524633
  37. Hardie, D.G. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol., 2007, 8(10), 774-785. doi: 10.1038/nrm2249 PMID: 17712357
  38. Baik, S.H.; Kang, S.; Lee, W.; Choi, H.; Chung, S.; Kim, J.I.; Mook-Jung, I. A breakdown in metabolic reprogramming causes microglia dysfunction in alzheimer’s disease. Cell Metab., 2019, 30(3), 493-507.e6. doi: 10.1016/j.cmet.2019.06.005 PMID: 31257151
  39. Cheng, S.C.; Quintin, J.; Cramer, R.A.; Shepardson, K.M.; Saeed, S.; Kumar, V.; Giamarellos-Bourboulis, E.J.; Martens, J.H.A.; Rao, N.A.; Aghajanirefah, A.; Manjeri, G.R.; Li, Y.; Ifrim, D.C.; Arts, R.J.W.; van der Veer, B.M.J.W.; Deen, P.M.T.; Logie, C.; O’Neill, L.A.; Willems, P.; van de Veerdonk, F.L.; van der Meer, J.W.M.; Ng, A.; Joosten, L.A.B.; Wijmenga, C.; Stunnenberg, H.G.; Xavier, R.J.; Netea, M.G. mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, 345(6204), 1250684. doi: 10.1126/science.1250684 PMID: 25258083
  40. Denko, N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer, 2008, 8(9), 705-713. doi: 10.1038/nrc2468 PMID: 19143055
  41. Gimeno-Bayón, J.; López-López, A.; Rodríguez, M.J.; Mahy, N. Glucose pathways adaptation supports acquisition of activated microglia phenotype. J. Neurosci. Res., 2014, 92(6), 723-731. doi: 10.1002/jnr.23356 PMID: 24510633
  42. Yalcin, A.; Clem, B.F.; Imbert-Fernandez, Y.; Ozcan, S.C.; Peker, S.; O’Neal, J.; Klarer, A.C.; Clem, A.L.; Telang, S.; Chesney, J. 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis., 2014, 5(7), e1337. doi: 10.1038/cddis.2014.292 PMID: 25032860
  43. Ros, S.; Schulze, A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab., 2013, 1(1), 8. doi: 10.1186/2049-3002-1-8 PMID: 24280138
  44. Holland, R.; McIntosh, A.L.; Finucane, O.M.; Mela, V.; Rubio-Araiz, A.; Timmons, G.; McCarthy, S.A.; Gun’ko, Y.K.; Lynch, M.A. Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain Behav. Immun., 2018, 68, 183-196. doi: 10.1016/j.bbi.2017.10.017 PMID: 29061364
  45. Rubio-Araiz, A.; Finucane, O.M.; Keogh, S.; Lynch, M.A. Anti-TLR2 antibody triggers oxidative phosphorylation in microglia and increases phagocytosis of β-amyloid. J. Neuroinflammation, 2018, 15(1), 247. doi: 10.1186/s12974-018-1281-7 PMID: 30170611
  46. McIntosh, A.; Mela, V.; Harty, C.; Minogue, A.M.; Costello, D.A.; Kerskens, C.; Lynch, M.A. Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice. Brain Pathol., 2019, 29(5), 606-621. doi: 10.1111/bpa.12704 PMID: 30661261
  47. Finucane, O.M.; Sugrue, J.; Rubio-Araiz, A.; Guillot-Sestier, M.V.; Lynch, M.A. The NLRP3 inflammasome modulates glycolysis by increasing PFKFB3 in an IL-1β-dependent manner in macrophages. Sci. Rep., 2019, 9(1), 4034. doi: 10.1038/s41598-019-40619-1 PMID: 30858427
  48. Nair, S.; Sobotka, K.S.; Joshi, P.; Gressens, P.; Fleiss, B.; Thornton, C.; Mallard, C.; Hagberg, H. Lipopolysaccharide‐induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia, 2019, 67(6), 1047-1061. doi: 10.1002/glia.23587 PMID: 30637805
  49. Qiao, H.; He, X.; Zhang, Q.; Yuan, H.; Wang, D.; Li, L.; Hui, Y.; Wu, Z.; Li, W.; Zhang, N. Alpha-synuclein induces microglial migration via PKM2-dependent glycolysis. Int. J. Biol. Macromol., 2019, 129, 601-607. doi: 10.1016/j.ijbiomac.2019.02.029 PMID: 30738168
  50. Jha, A.K.; Huang, S.C.C.; Sergushichev, A.; Lampropoulou, V.; Ivanova, Y.; Loginicheva, E.; Chmielewski, K.; Stewart, K.M.; Ashall, J.; Everts, B.; Pearce, E.J.; Driggers, E.M.; Artyomov, M.N. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 2015, 42(3), 419-430. doi: 10.1016/j.immuni.2015.02.005 PMID: 25786174
  51. Mehla, K.; Singh, P.K. Metabolic regulation of macrophage polarization in cancer. Trends Cancer, 2019, 5(12), 822-834. doi: 10.1016/j.trecan.2019.10.007 PMID: 31813459
  52. Bernier, L.P.; York, E.M.; Kamyabi, A.; Choi, H.B.; Weilinger, N.L.; MacVicar, B.A. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat. Commun., 2020, 11(1), 1559. doi: 10.1038/s41467-020-15267-z PMID: 32214088
  53. Kaushik, D.K.; Yong, V.W. Metabolic needs of brain‐infiltrating leukocytes and microglia in multiple sclerosis. J. Neurochem., 2021, 158(1), 14-24. doi: 10.1111/jnc.15206 PMID: 33025576
  54. Sun, H.N.; Kim, S.U.; Lee, M.S.; Kim, S.K.; Kim, J.M.; Yim, M.; Yu, D.Y.; Lee, D.S. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of phosphoinositide 3-kinase and p38 mitogen-activated protein kinase signal pathways is required for lipopolysaccharide-induced microglial phagocytosis. Biol. Pharm. Bull., 2008, 31(9), 1711-1715. doi: 10.1248/bpb.31.1711 PMID: 18758064
  55. Zhai, L.; Ruan, S.; Wang, J.; Guan, Q.; Zha, L. NADPH oxidase 4 regulate the glycolytic metabolic reprogramming of microglial cells to promote M1 polarization. J. Biochem. Mol. Toxicol., 2023, 37(5), e23318. doi: 10.1002/jbt.23318 PMID: 36762617
  56. Tu, D.; Gao, Y.; Yang, R.; Guan, T.; Hong, J.S.; Gao, H.M. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. J. Neuroinflammation, 2019, 16(1), 255. doi: 10.1186/s12974-019-1659-1 PMID: 31805953
  57. Mela, V.; Mota, B.C.; Milner, M.; McGinley, A.; Mills, K.H.G.; Kelly, Á.M.; Lynch, M.A. Exercise-induced re-programming of age-related metabolic changes in microglia is accompanied by a reduction in senescent cells. Brain Behav. Immun., 2020, 87, 413-428. doi: 10.1016/j.bbi.2020.01.012 PMID: 31978523
  58. Orihuela, R.; McPherson, C.A.; Harry, G.J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol., 2016, 173(4), 649-665. doi: 10.1111/bph.13139 PMID: 25800044
  59. Haschemi, A.; Kosma, P.; Gille, L.; Evans, C.R.; Burant, C.F.; Starkl, P.; Knapp, B.; Haas, R.; Schmid, J.A.; Jandl, C.; Amir, S.; Lubec, G.; Park, J.; Esterbauer, H.; Bilban, M.; Brizuela, L.; Pospisilik, J.A.; Otterbein, L.E.; Wagner, O. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab., 2012, 15(6), 813-826. doi: 10.1016/j.cmet.2012.04.023 PMID: 22682222
  60. Chausse, B.; Lewen, A.; Poschet, G.; Kann, O. Selective inhibition of mitochondrial respiratory complexes controls the transition of microglia into a neurotoxic phenotype in situ. Brain Behav. Immun., 2020, 88, 802-814. doi: 10.1016/j.bbi.2020.05.052 PMID: 32446944
  61. Mills, E.L.; Ryan, D.G.; Prag, H.A.; Dikovskaya, D.; Menon, D.; Zaslona, Z.; Jedrychowski, M.P.; Costa, A.S.H.; Higgins, M.; Hams, E.; Szpyt, J.; Runtsch, M.C.; King, M.S.; McGouran, J.F.; Fischer, R.; Kessler, B.M.; McGettrick, A.F.; Hughes, M.M.; Carroll, R.G.; Booty, L.M.; Knatko, E.V.; Meakin, P.J.; Ashford, M.L.J.; Modis, L.K.; Brunori, G.; Sévin, D.C.; Fallon, P.G.; Caldwell, S.T.; Kunji, E.R.S.; Chouchani, E.T.; Frezza, C.; Dinkova-Kostova, A.T.; Hartley, R.C.; Murphy, M.P.; O’Neill, L.A. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature, 2018, 556(7699), 113-117. doi: 10.1038/nature25986 PMID: 29590092
  62. Cordes, T.; Wallace, M.; Michelucci, A.; Divakaruni, A.S.; Sapcariu, S.C.; Sousa, C.; Koseki, H.; Cabrales, P.; Murphy, A.N.; Hiller, K.; Metallo, C.M. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J. Biol. Chem., 2016, 291(27), 14274-14284. doi: 10.1074/jbc.M115.685792 PMID: 27189937
  63. Kuo, P.C.; Weng, W.T.; Scofield, B.A.; Paraiso, H.C.; Brown, D.A.; Wang, P.Y.; Yu, I.C.; Yen, J.H. Dimethyl itaconate, an itaconate derivative, exhibits immunomodulatory effects on neuroinflammation in experimental autoimmune encephalomyelitis. J. Neuroinflammation, 2020, 17(1), 138. doi: 10.1186/s12974-020-01768-7 PMID: 32349768
  64. Kuo, P.C.; Weng, W.T.; Scofield, B.A.; Furnas, D.; Paraiso, H.C.; Yu, I.C.; Yen, J.H. Immunoresponsive gene 1 modulates the severity of brain injury in cerebral ischaemia. Brain Commun., 2021, 3(3), fcab187. doi: 10.1093/braincomms/fcab187 PMID: 34557667
  65. Bao, M.W.; Cai, Z.; Zhang, X.J.; Li, L.; Liu, X.; Wan, N.; Hu, G.; Wan, F.; Zhang, R.; Zhu, X.; Xia, H.; Li, H. Dickkopf-3 protects against cardiac dysfunction and ventricular remodelling following myocardial infarction. Basic Res. Cardiol., 2015, 110(3), 25. doi: 10.1007/s00395-015-0481-x PMID: 25840773
  66. Caffo, M.; Fusco, R.; Siracusa, R.; Caruso, G.; Barresi, V.; Di Paola, R.; Cuzzocrea, S.; Germanò, A.F.; Cardali, S.M. Molecular investigation of DKK3 in cerebral ischemic/reperfusion injury. Biomedicines, 2023, 11(3), 815. doi: 10.3390/biomedicines11030815 PMID: 36979794
  67. Xu, Y.; Nowrangi, D.; Liang, H.; Wang, T.; Yu, L.; Lu, T.; Lu, Z.; Zhang, J.H.; Luo, B.; Tang, J. DKK3 attenuates JNK and AP-1 induced inflammation via Kremen-1 and DVL-1 in mice following intracerebral hemorrhage. J. Neuroinflammation, 2020, 17(1), 130. doi: 10.1186/s12974-020-01794-5 PMID: 32331523
  68. Zhang, L.Q.; Gao, S.J.; Sun, J.; Li, D.Y.; Wu, J.Y.; Song, F.H.; Liu, D.Q.; Zhou, Y.Q.; Mei, W. DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation. J. Neuroinflammation, 2022, 19(1), 129. doi: 10.1186/s12974-022-02495-x PMID: 35658977
  69. Geng, J.; Zhang, Y.; Li, S.; Li, S.; Wang, J.; Wang, H.; Aa, J.; Wang, G. Metabolomic profiling reveals that reprogramming of cerebral glucose metabolism is involved in ischemic preconditioning-induced neuroprotection in a rodent model of ischemic stroke. J. Proteome Res., 2019, 18(1), 57-68. PMID: 30362349
  70. Ito, M.; Aswendt, M.; Lee, A.G.; Ishizaka, S.; Cao, Z.; Wang, E.H.; Levy, S.L.; Smerin, D.L.; McNab, J.A.; Zeineh, M.; Leuze, C.; Goubran, M.; Cheng, M.Y.; Steinberg, G.K. RNA-sequencing analysis revealed a distinct motor cortex transcriptome in spontaneously recovered mice after stroke. Stroke, 2018, 49(9), 2191-2199. doi: 10.1161/STROKEAHA.118.021508 PMID: 30354987
  71. Li, Y.; Lu, B.; Sheng, L.; Zhu, Z.; Sun, H.; Zhou, Y.; Yang, Y.; Xue, D.; Chen, W.; Tian, X.; Du, Y.; Yan, M.; Zhu, W.; Xing, F.; Li, K.; Lin, S.; Qiu, P.; Su, X.; Huang, Y.; Yan, G.; Yin, W. Hexokinase 2‐dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury. J. Neurochem., 2018, 144(2), 186-200. doi: 10.1111/jnc.14267 PMID: 29205357
  72. Ma, W.; Wu, Q.; Wang, S.; Wang, H.; Ye, J.; Sun, H.; Feng, Z.; He, W.; Chu, S.; Zhang, Z.; Chen, N. A breakdown of metabolic reprogramming in microglia induced by CKLF1 exacerbates immune tolerance in ischemic stroke. J. Neuroinflammation, 2023, 20(1), 97. doi: 10.1186/s12974-023-02779-w PMID: 37098609
  73. Michelakis, E.D.; Webster, L.; Mackey, J.R. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer, 2008, 99(7), 989-994. doi: 10.1038/sj.bjc.6604554 PMID: 18766181
  74. Hong, D.K.; Kho, A.R.; Choi, B.Y.; Lee, S.H.; Jeong, J.H.; Lee, S.H.; Park, K.H.; Park, J.B.; Suh, S.W. Combined treatment with dichloroacetic acid and pyruvate reduces hippocampal neuronal death after transient cerebral ischemia. Front. Neurol., 2018, 9, 137. doi: 10.3389/fneur.2018.00137 PMID: 29593636
  75. Cheng, J.; Zhang, R.; Xu, Z.; Ke, Y.; Sun, R.; Yang, H.; Zhang, X.; Zhen, X.; Zheng, L.T. Early glycolytic reprogramming controls microglial inflammatory activation. J. Neuroinflammation, 2021, 18(1), 129. doi: 10.1186/s12974-021-02187-y PMID: 34107997
  76. Guo, C.; Ludvik, A.E.; Arlotto, M.E.; Hayes, M.G.; Armstrong, L.L.; Scholtens, D.M.; Brown, C.D.; Newgard, C.B.; Becker, T.C.; Layden, B.T.; Lowe, W.L.; Reddy, T.E. Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1. Nat. Commun., 2015, 6(1), 6069. doi: 10.1038/ncomms7069 PMID: 25648650
  77. Lauro, C.; Catalano, M.; Trettel, F.; Limatola, C. Fractalkine in the nervous system: neuroprotective or neurotoxic molecule? Ann. N. Y. Acad. Sci., 2015, 1351(1), 141-148. doi: 10.1111/nyas.12805 PMID: 26084002
  78. Lauro, C.; Chece, G.; Monaco, L.; Antonangeli, F.; Peruzzi, G.; Rinaldo, S.; Paone, A.; Cutruzzolà, F.; Limatola, C. Fractalkine modulates microglia metabolism in brain ischemia. Front. Cell. Neurosci., 2019, 13, 414. doi: 10.3389/fncel.2019.00414 PMID: 31607865
  79. Cipriani, R.; Villa, P.; Chece, G.; Lauro, C.; Paladini, A.; Micotti, E.; Perego, C.; De Simoni, M.G.; Fredholm, B.B.; Eusebi, F.; Limatola, C. CX3CL1 is neuroprotective in permanent focal cerebral ischemia in rodents. J. Neurosci., 2011, 31(45), 16327-16335. doi: 10.1523/JNEUROSCI.3611-11.2011 PMID: 22072684
  80. Shen, H.; Pei, H.; Zhai, L.; Guan, Q.; Wang, G. Salvianolic acid C improves cerebral ischemia reperfusion injury through suppressing microglial cell M1 polarization and promoting cerebral angiogenesis. Int. Immunopharmacol., 2022, 110, 109021. doi: 10.1016/j.intimp.2022.109021 PMID: 35810493
  81. Song, S.; Yu, L.; Hasan, M.N.; Paruchuri, S.S.; Mullett, S.J.; Sullivan, M.L.G.; Fiesler, V.M.; Young, C.B.; Stolz, D.B.; Wendell, S.G.; Sun, D. Elevated microglial oxidative phosphorylation and phagocytosis stimulate post-stroke brain remodeling and cognitive function recovery in mice. Commun. Biol., 2022, 5(1), 35. doi: 10.1038/s42003-021-02984-4 PMID: 35017668
  82. Jin, W.N.; Shi, S.X.Y.; Li, Z.; Li, M.; Wood, K.; Gonzales, R.J.; Liu, Q. Depletion of microglia exacerbates postischemic inflammation and brain injury. J. Cereb. Blood Flow Metab., 2017, 37(6), 2224-2236. doi: 10.1177/0271678X17694185 PMID: 28273719
  83. Gomes, A.S.; Ramos, H.; Soares, J.; Saraiva, L. p53 and glucose metabolism: An orchestra to be directed in cancer therapy. Pharmacol. Res., 2018, 131, 75-86. doi: 10.1016/j.phrs.2018.03.015 PMID: 29580896
  84. Bensaad, K.; Tsuruta, A.; Selak, M.A.; Vidal, M.N.C.; Nakano, K.; Bartrons, R.; Gottlieb, E.; Vousden, K.H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 2006, 126(1), 107-120. doi: 10.1016/j.cell.2006.05.036 PMID: 16839880
  85. Li, Q.Q.; Li, J.Y.; Zhou, M.; Qin, Z.H.; Sheng, R. Targeting neuroinflammation to treat cerebral ischemia - The role of TIGAR/NADPH axis. Neurochem. Int., 2021, 148, 105081. doi: 10.1016/j.neuint.2021.105081 PMID: 34082063
  86. Herrero-Mendez, A.; Almeida, A.; Fernández, E.; Maestre, C.; Moncada, S.; Bolaños, J.P. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1. Nat. Cell Biol., 2009, 11(6), 747-752. doi: 10.1038/ncb1881 PMID: 19448625
  87. Green, D.R.; Chipuk, J.E. p53 and Metabolism: Inside the TIGAR. Cell, 2006, 126(1), 30-32. doi: 10.1016/j.cell.2006.06.032 PMID: 16839873
  88. Patra, K.C.; Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci., 2014, 39(8), 347-354. doi: 10.1016/j.tibs.2014.06.005 PMID: 25037503
  89. Li, M.; Zhou, Z.P.; Sun, M.; Cao, L.; Chen, J.; Qin, Y.Y.; Gu, J.H.; Han, F.; Sheng, R.; Wu, J.C.; Ding, Y.; Qin, Z.H. Reduced nicotinamide adenine dinucleotide phosphate, a pentose phosphate pathway product, might be a novel drug candidate for ischemic stroke. Stroke, 2016, 47(1), 187-195. doi: 10.1161/STROKEAHA.115.009687 PMID: 26564104
  90. Li, M.; Sun, M.; Cao, L.; Gu, J.; Ge, J.; Chen, J.; Han, R.; Qin, Y.Y.; Zhou, Z.P.; Ding, Y.; Qin, Z.H. A TIGAR-regulated metabolic pathway is critical for protection of brain ischemia. J. Neurosci., 2014, 34(22), 7458-7471. doi: 10.1523/JNEUROSCI.4655-13.2014 PMID: 24872551
  91. Cao, L.; Zhang, D.; Chen, J.; Qin, Y.Y.; Sheng, R.; Feng, X.; Chen, Z.; Ding, Y.; Li, M.; Qin, Z.H. G6PD plays a neuroprotective role in brain ischemia through promoting pentose phosphate pathway. Free Radic. Biol. Med., 2017, 112, 433-444. doi: 10.1016/j.freeradbiomed.2017.08.011 PMID: 28823591
  92. Hu, J.; Baydyuk, M.; Huang, J.K. Impact of amino acids on microglial activation and CNS remyelination. Curr. Opin. Pharmacol., 2022, 66, 102287. doi: 10.1016/j.coph.2022.102287 PMID: 36067684
  93. Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; Zheng, L.; Gardet, A.; Tong, Z.; Jany, S.S.; Corr, S.C.; Haneklaus, M.; Caffrey, B.E.; Pierce, K.; Walmsley, S.; Beasley, F.C.; Cummins, E.; Nizet, V.; Whyte, M.; Taylor, C.T.; Lin, H.; Masters, S.L.; Gottlieb, E.; Kelly, V.P.; Clish, C.; Auron, P.E.; Xavier, R.J.; O’Neill, L.A.J. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444), 238-242. doi: 10.1038/nature11986 PMID: 23535595
  94. Tretter, L.; Patocs, A.; Chinopoulos, C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta Bioenerg., 2016, 1857(8), 1086-1101. doi: 10.1016/j.bbabio.2016.03.012 PMID: 26971832
  95. Palsson-McDermott, E.M.; O’Neill, L.A.J. The Warburg effect then and now: From cancer to inflammatory diseases. BioEssays, 2013, 35(11), 965-973. doi: 10.1002/bies.201300084 PMID: 24115022
  96. McKenna, M.C. The glutamate‐glutamine cycle is not stoichiometric: Fates of glutamate in brain. J. Neurosci. Res., 2007, 85(15), 3347-3358. doi: 10.1002/jnr.21444 PMID: 17847118
  97. Tani, H.; Dulla, C.G.; Farzampour, Z.; Taylor-Weiner, A.; Huguenard, J.R.; Reimer, R.J. A local glutamate-glutamine cycle sustains synaptic excitatory transmitter release. Neuron, 2014, 81(4), 888-900. doi: 10.1016/j.neuron.2013.12.026 PMID: 24559677
  98. Bak, L.K.; Schousboe, A.; Waagepetersen, H.S. The glutamate/GABA‐glutamine cycle: Aspects of transport, neurotransmitter homeostasis and ammonia transfer. J. Neurochem., 2006, 98(3), 641-653. doi: 10.1111/j.1471-4159.2006.03913.x PMID: 16787421
  99. Durán, R.V.; Oppliger, W.; Robitaille, A.M.; Heiserich, L.; Skendaj, R.; Gottlieb, E.; Hall, M.N. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell, 2012, 47(3), 349-358. doi: 10.1016/j.molcel.2012.05.043 PMID: 22749528
  100. Jewell, J.L.; Kim, Y.C.; Russell, R.C.; Yu, F.X.; Park, H.W.; Plouffe, S.W.; Tagliabracci, V.S.; Guan, K.L. Differential regulation of mTORC1 by leucine and glutamine. Science, 2015, 347(6218), 194-198. doi: 10.1126/science.1259472 PMID: 25567907
  101. Madry, C.; Arancibia-Cárcamo, I.L.; Kyrargyri, V.; Chan, V.T.T.; Hamilton, N.B.; Attwell, D. Effects of the ecto-ATPase apyrase on microglial ramification and surveillance reflect cell depolarization, not ATP depletion. Proc. Natl. Acad. Sci., 2018, 115(7), E1608-E1617. doi: 10.1073/pnas.1715354115 PMID: 29382767
  102. Vergen, J.; Hecht, C.; Zholudeva, L.V.; Marquardt, M.M.; Hallworth, R.; Nichols, M.G. Metabolic imaging using two-photon excited NADH intensity and fluorescence lifetime imaging. Microsc. Microanal., 2012, 18(4), 761-770. doi: 10.1017/S1431927612000529 PMID: 22832200
  103. Palmieri, E.M.; Menga, A.; Lebrun, A.; Hooper, D.C.; Butterfield, D.A.; Mazzone, M.; Castegna, A. Blockade of glutamine synthetase enhances inflammatory response in microglial cells. Antioxid. Redox Signal., 2017, 26(8), 351-363. doi: 10.1089/ars.2016.6715 PMID: 27758118
  104. Jayasooriya, R.G.P.T.; Molagoda, I.M.N.; Dilshara, M.G.; Choi, Y.H.; Kim, G.Y. Glutamine cooperatively upregulates lipopolysaccharide-induced nitric oxide production in BV2 microglial cells through the ERK and Nrf-2/HO-1 signaling pathway. Antioxidants, 2020, 9(6), 536. doi: 10.3390/antiox9060536 PMID: 32575515
  105. Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775. doi: 10.1038/nrn2214 PMID: 17882254
  106. Džoljić, E.; Grbatinić, I.; Kostić, V. Why is nitric oxide important for our brain? Funct. Neurol., 2015, 30(3), 159-163. PMID: 26910176
  107. Rao, J.S.; Kellom, M.; Kim, H.W.; Rapoport, S.I.; Reese, E.A. Neuroinflammation and synaptic loss. Neurochem. Res., 2012, 37(5), 903-910. doi: 10.1007/s11064-012-0708-2 PMID: 22311128
  108. Yuste, J.E.; Tarragon, E.; Campuzano, C.M.; Ros-Bernal, F. Implications of glial nitric oxide in neurodegenerative diseases. Front. Cell. Neurosci., 2015, 9, 322. doi: 10.3389/fncel.2015.00322 PMID: 26347610
  109. Iadecola, C.; Alexander, M. Cerebral ischemia and inflammation. Curr. Opin. Neurol., 2001, 14(1), 89-94. doi: 10.1097/00019052-200102000-00014 PMID: 11176223
  110. Paolocci, N.; Biondi, R.; Bettini, M.; Lee, C.I.; Berlowitz, C.O.; Rossi, R.; Xia, Y.; Ambrosio, G.; L’Abbate, A.; Kass, D.A.; Zweier, J.L. Oxygen radical-mediated reduction in basal and agonist-evoked NO release in isolated rat heart. J. Mol. Cell. Cardiol., 2001, 33(4), 671-679. doi: 10.1006/jmcc.2000.1334 PMID: 11341236
  111. Albrecht, J.; Sidoryk-Węgrzynowicz, M.; Zielińska, M.; Aschner, M. Roles of glutamine in neurotransmission. Neuron Glia Biol., 2010, 6(4), 263-276. doi: 10.1017/S1740925X11000093 PMID: 22018046
  112. Jurga, A.M.; Paleczna, M.; Kuter, K.Z. Overview of general and discriminating markers of differential microglia phenotypes. Front. Cell. Neurosci., 2020, 14, 198. doi: 10.3389/fncel.2020.00198 PMID: 32848611
  113. Jobgen, W.S.; Fried, S.K.; Fu, W.J.; Meininger, C.J.; Wu, G. Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem., 2006, 17(9), 571-588. doi: 10.1016/j.jnutbio.2005.12.001 PMID: 16524713
  114. Mantovani, A.; Biswas, S.K.; Galdiero, M.R.; Sica, A.; Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol., 2013, 229(2), 176-185. doi: 10.1002/path.4133 PMID: 23096265
  115. Calabrese, C.; Poppleton, H.; Kocak, M.; Hogg, T.L.; Fuller, C.; Hamner, B.; Oh, E.Y.; Gaber, M.W.; Finklestein, D.; Allen, M.; Frank, A.; Bayazitov, I.T.; Zakharenko, S.S.; Gajjar, A.; Davidoff, A.; Gilbertson, R.J. A perivascular niche for brain tumor stem cells. Cancer Cell, 2007, 11(1), 69-82. doi: 10.1016/j.ccr.2006.11.020 PMID: 17222791
  116. Chen, S.F.; Pan, M.X.; Tang, J.C.; Cheng, J.; Zhao, D.; Zhang, Y.; Liao, H.B.; Liu, R.; Zhuang, Y.; Zhang, Z.F.; Chen, J.; Lei, R.X.; Li, S.F.; Li, H.T.; Wang, Z.F.; Wan, Q. Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Mol. Brain, 2020, 13(1), 63. doi: 10.1186/s13041-020-00601-9 PMID: 32321555
  117. Hsieh, K.F.; Shih, J.M.; Shih, Y.M.; Pai, M.H.; Yeh, S.L. Arginine administration increases circulating endothelial progenitor cells and attenuates tissue injury in a mouse model of hind limb ischemia/reperfusion. Nutrition, 2018, 55-56, 29-35. doi: 10.1016/j.nut.2018.02.019 PMID: 29960153
  118. Zhao, D.; Chen, J.; Zhang, Y.; Liao, H.B.; Zhang, Z.F.; Zhuang, Y.; Pan, M.X.; Tang, J.C.; Liu, R.; Lei, Y.; Wang, S.; Qin, X.P.; Feng, Y.G.; Chen, Y.; Wan, Q. Glycine confers neuroprotection through PTEN/AKT signal pathway in experimental intracerebral hemorrhage. Biochem. Biophys. Res. Commun., 2018, 501(1), 85-91. doi: 10.1016/j.bbrc.2018.04.171 PMID: 29698679
  119. Liu, R.; Liao, X.Y.; Pan, M.X.; Tang, J.C.; Chen, S.F.; Zhang, Y.; Lu, P.X.; Lu, L.J.; Zou, Y.Y.; Qin, X.P.; Bu, L.H.; Wan, Q. Glycine exhibits neuroprotective effects in ischemic stroke in rats through the inhibition of M1 microglial polarization via the NF-κB p65/Hif-1α signaling pathway. J. Immunol., 2019, 202(6), 1704-1714. doi: 10.4049/jimmunol.1801166 PMID: 30710045
  120. Chen, S.; Dong, Z.; Cheng, M.; Zhao, Y.; Wang, M.; Sai, N.; Wang, X.; Liu, H.; Huang, G.; Zhang, X. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J. Neuroinflammation, 2017, 14(1), 187. doi: 10.1186/s12974-017-0963-x PMID: 28923114
  121. De Simone, R.; Vissicchio, F.; Mingarelli, C.; De Nuccio, C.; Visentin, S.; Ajmone-Cat, M.A.; Minghetti, L. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(5), 650-659. doi: 10.1016/j.bbadis.2013.02.001 PMID: 23402925
  122. Chi, O.Z.; Hunter, C.; Liu, X.; Weiss, H.R. Effects of exogenous excitatory amino acid neurotransmitters on blood-brain barrier disruption in focal cerebral ischemia. Neurochem. Res., 2009, 34(7), 1249-1254. doi: 10.1007/s11064-008-9902-7 PMID: 19127429
  123. Lucas, D.R.; Newhouse, J.P. The toxic effect of sodium L-glutamate on the inner layers of the retina. Arch. Ophthalmol., 1957, 58(2), 193-201. doi: 10.1001/archopht.1957.00940010205006 PMID: 13443577
  124. Gao, G.; Li, C.; Zhu, J.; Wang, Y.; Huang, Y.; Zhao, S.; Sheng, S.; Song, Y.; Ji, C.; Li, C.; Yang, X.; Ye, L.; Qi, X.; Zhang, Y.; Xia, X.; Zheng, J.C. Glutaminase 1 regulates neuroinflammation after cerebral ischemia through enhancing microglial activation and pro-inflammatory exosome release. Front. Immunol., 2020, 11, 161. doi: 10.3389/fimmu.2020.00161 PMID: 32117296
  125. White, C.J.; Lee, J.; Choi, J.; Chu, T.; Scafidi, S.; Wolfgang, M.J. Determining the bioenergetic capacity for fatty acid oxidation in the mammalian nervous system. Mol. Cell. Biol., 2020, 40(10), e00037-e20. doi: 10.1128/MCB.00037-20 PMID: 32123009
  126. Brown, G.C.; Neher, J.J. Microglial phagocytosis of live neurons. Nat. Rev. Neurosci., 2014, 15(4), 209-216. doi: 10.1038/nrn3710 PMID: 24646669
  127. Gao, Y.; Vidal-Itriago, A.; Kalsbeek, M.J.; Layritz, C.; García-Cáceres, C.; Tom, R.Z.; Eichmann, T.O.; Vaz, F.M.; Houtkooper, R.H.; van der Wel, N.; Verhoeven, A.J.; Yan, J.; Kalsbeek, A.; Eckel, R.H.; Hofmann, S.M.; Yi, C.X. Lipoprotein lipase maintains microglial innate immunity in obesity. Cell Rep., 2017, 20(13), 3034-3042. doi: 10.1016/j.celrep.2017.09.008 PMID: 28954222
  128. Mauerer, R.; Walczak, Y.; Langmann, T. Comprehensive mRNA profiling of lipid-related genes in microglia and macrophages using taqman arrays. Methods Mol. Biol., 2009, 580, 187-201. doi: 10.1007/978-1-60761-325-1_10 PMID: 19784600
  129. Mecha, M.; Feliú, A.; Carrillo-Salinas, F.J.; Rueda-Zubiaurre, A.; Ortega-Gutiérrez, S.; de Sola, R.G.; Guaza, C. Endocannabinoids drive the acquisition of an alternative phenotype in microglia. Brain Behav. Immun., 2015, 49, 233-245. doi: 10.1016/j.bbi.2015.06.002 PMID: 26086345
  130. Nadjar, A. Role of metabolic programming in the modulation of microglia phagocytosis by lipids. Prostaglandins Leukot. Essent. Fatty Acids, 2018, 135, 63-73. doi: 10.1016/j.plefa.2018.07.006 PMID: 30103935
  131. Zhou, Y.; Song, W.M.; Andhey, P.S.; Swain, A.; Levy, T.; Miller, K.R.; Poliani, P.L.; Cominelli, M.; Grover, S.; Gilfillan, S.; Cella, M.; Ulland, T.K.; Zaitsev, K.; Miyashita, A.; Ikeuchi, T.; Sainouchi, M.; Kakita, A.; Bennett, D.A.; Schneider, J.A.; Nichols, M.R.; Beausoleil, S.A.; Ulrich, J.D.; Holtzman, D.M.; Artyomov, M.N.; Colonna, M. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med., 2020, 26(1), 131-142. doi: 10.1038/s41591-019-0695-9 PMID: 31932797
  132. Keren-Shaul, H.; Spinrad, A.; Weiner, A.; Matcovitch-Natan, O.; Dvir-Szternfeld, R.; Ulland, T.K.; David, E.; Baruch, K.; Lara-Astaiso, D.; Toth, B.; Itzkovitz, S.; Colonna, M.; Schwartz, M.; Amit, I. A unique microglia type associated with restricting development of alzheimer’s disease. Cell, 2017, 169(7), 1276-1290.e17. doi: 10.1016/j.cell.2017.05.018 PMID: 28602351
  133. Mudò, G.; Frinchi, M.; Nuzzo, D.; Scaduto, P.; Plescia, F.; Massenti, M.F.; Di Carlo, M.; Cannizzaro, C.; Cassata, G.; Cicero, L.; Ruscica, M.; Belluardo, N.; Grimaldi, L.M. Anti-inflammatory and cognitive effects of interferon-β1a (IFNβ1a) in a rat model of Alzheimer’s disease. J. Neuroinflammation, 2019, 16(1), 44. doi: 10.1186/s12974-019-1417-4 PMID: 30777084
  134. Gill, E.L.; Raman, S.; Yost, R.A.; Garrett, T.J.; Vedam-Mai, V. L -carnitine inhibits lipopolysaccharide-induced nitric oxide production of SIM-A9 microglia cells. ACS Chem. Neurosci., 2018, 9(5), 901-905. doi: 10.1021/acschemneuro.7b00468 PMID: 29370524
  135. Odegaard, J.I.; Ricardo-Gonzalez, R.R.; Goforth, M.H.; Morel, C.R.; Subramanian, V.; Mukundan, L.; Eagle, A.R.; Vats, D.; Brombacher, F.; Ferrante, A.W.; Chawla, A. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature, 2007, 447(7148), 1116-1120. doi: 10.1038/nature05894 PMID: 17515919
  136. Vats, D.; Mukundan, L.; Odegaard, J.I.; Zhang, L.; Smith, K.L.; Morel, C.R.; Greaves, D.R.; Murray, P.J.; Chawla, A.; Chawla, A. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab., 2006, 4(1), 13-24. doi: 10.1016/j.cmet.2006.05.011 PMID: 16814729
  137. Infantino, V.; Convertini, P.; Cucci, L.; Panaro, M.A.; Di Noia, M.A.; Calvello, R.; Palmieri, F.; Iacobazzi, V. The mitochondrial citrate carrier: A new player in inflammation. Biochem. J., 2011, 438(3), 433-436. doi: 10.1042/BJ20111275 PMID: 21787310
  138. Laplante, M.; Sabatini, D.M. An emerging role of mTOR in lipid biosynthesis. Curr. Biol., 2009, 19(22), R1046-R1052. doi: 10.1016/j.cub.2009.09.058 PMID: 19948145
  139. Gaber, T.; Strehl, C.; Buttgereit, F. Metabolic regulation of inflammation. Nat. Rev. Rheumatol., 2017, 13(5), 267-279. doi: 10.1038/nrrheum.2017.37 PMID: 28331208
  140. Samokhvalov, V.; Ussher, J.R.; Fillmore, N.; Armstrong, I.K.G.; Keung, W.; Moroz, D.; Lopaschuk, D.G.; Seubert, J.; Lopaschuk, G.D. Inhibition of malonyl-CoA decarboxylase reduces the inflammatory response associated with insulin resistance. Am. J. Physiol. Endocrinol. Metab., 2012, 303(12), E1459-E1468. doi: 10.1152/ajpendo.00018.2012 PMID: 23074239
  141. Foster, D.W. Malonyl-CoA: The regulator of fatty acid synthesis and oxidation. J. Clin. Invest., 2012, 122(6), 1958-1959. doi: 10.1172/JCI63967 PMID: 22833869
  142. Wang, Z.; Liu, D.; Wang, F.; Liu, S.; Zhao, S.; Ling, E.A.; Hao, A. Saturated fatty acids activate microglia via Toll-like receptor 4/NF-κB signalling. Br. J. Nutr., 2012, 107(2), 229-241. doi: 10.1017/S0007114511002868 PMID: 21733316
  143. Rapoport, S.I.; Chang, M.C.J.; Spector, A.A. Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J. Lipid Res., 2001, 42(5), 678-685. doi: 10.1016/S0022-2275(20)31629-1 PMID: 11352974
  144. Chausse, B.; Kakimoto, P.A.; Caldeira-da-Silva, C.C.; Chaves-Filho, A.B.; Yoshinaga, M.Y.; da Silva, R.P.; Miyamoto, S.; Kowaltowski, A.J. Distinct metabolic patterns during microglial remodeling by oleate and palmitate. Biosci. Rep., 2019, 39(4), BSR20190072. doi: 10.1042/BSR20190072 PMID: 30867255
  145. Feng, J.; Han, J.; Pearce, S.F.A.; Silverstein, R.L.; Gotto, A.M., Jr; Hajjar, D.P.; Nicholson, A.C. Induction of CD36 expression by oxidized LDL and IL-4 by a common signaling pathway dependent on protein kinase C and PPAR-γ. J. Lipid Res., 2000, 41(5), 688-696. doi: 10.1016/S0022-2275(20)32377-4 PMID: 10787429
  146. Hernando, S.; Requejo, C.; Herran, E.; Ruiz-Ortega, J.A.; Morera-Herreras, T.; Lafuente, J.V.; Ugedo, L.; Gainza, E.; Pedraz, J.L.; Igartua, M.; Hernandez, R.M. Beneficial effects of n-3 polyunsaturated fatty acids administration in a partial lesion model of Parkinson’s disease: The role of glia and NRf2 regulation. Neurobiol. Dis., 2019, 121, 252-262. doi: 10.1016/j.nbd.2018.10.001 PMID: 30296616
  147. Jump, D.B.; Clarke, S.D. Regulation of gene expression by dietary fat. Annu. Rev. Nutr., 1999, 19(1), 63-90. doi: 10.1146/annurev.nutr.19.1.63 PMID: 10448517
  148. Jiang, X.; Pu, H.; Hu, X.; Wei, Z.; Hong, D.; Zhang, W.; Gao, Y.; Chen, J.; Shi, Y. A post-stroke therapeutic regimen with omega-3 polyunsaturated fatty acids that promotes white matter integrity and beneficial microglial responses after cerebral ischemia. Transl. Stroke Res., 2016, 7(6), 548-561. doi: 10.1007/s12975-016-0502-6 PMID: 27714669
  149. Talamonti, E.; Sasso, V.; To, H.; Haslam, R.P.; Napier, J.A.; Ulfhake, B.; Pernold, K.; Asadi, A.; Hessa, T.; Jacobsson, A.; Chiurchiù, V.; Viscomi, M.T. Impairment of DHA synthesis alters the expression of neuronal plasticity markers and the brain inflammatory status in mice. FASEB J., 2020, 34(2), 2024-2040. doi: 10.1096/fj.201901890RR PMID: 31909582
  150. Chang, P.K.Y.; Khatchadourian, A.; McKinney, R.A.; Maysinger, D. Docosahexaenoic acid (DHA): A modulator of microglia activity and dendritic spine morphology. J. Neuroinflammation, 2015, 12(1), 34. doi: 10.1186/s12974-015-0244-5 PMID: 25889069
  151. Fernandez, R.F.; Kim, S.Q.; Zhao, Y.; Foguth, R.M.; Weera, M.M.; Counihan, J.L.; Nomura, D.K.; Chester, J.A.; Cannon, J.R.; Ellis, J.M. Acyl-CoA synthetase 6 enriches the neuroprotective omega-3 fatty acid DHA in the brain. Proc. Natl. Acad. Sci., 2018, 115(49), 12525-12530. doi: 10.1073/pnas.1807958115 PMID: 30401738
  152. Duffy, C.M.; Xu, H.; Nixon, J.P.; Bernlohr, D.A.; Butterick, T.A. Identification of a fatty acid binding protein4-UCP2 axis regulating microglial mediated neuroinflammation. Mol. Cell. Neurosci., 2017, 80, 52-57. doi: 10.1016/j.mcn.2017.02.004 PMID: 28214555
  153. Duffy, C.M.; Yuan, C.; Wisdorf, L.E.; Billington, C.J.; Kotz, C.M.; Nixon, J.P.; Butterick, T.A. Role of orexin A signaling in dietary palmitic acid-activated microglial cells. Neurosci. Lett., 2015, 606, 140-144. doi: 10.1016/j.neulet.2015.08.033 PMID: 26306651
  154. Button, E.B.; Mitchell, A.S.; Domingos, M.M.; Chung, J.H.J.; Bradley, R.M.; Hashemi, A.; Marvyn, P.M.; Patterson, A.C.; Stark, K.D.; Quadrilatero, J.; Duncan, R.E. Microglial cell activation increases saturated and decreases monounsaturated fatty acid content, but both lipid species are proinflammatory. Lipids, 2014, 49(4), 305-316. doi: 10.1007/s11745-014-3882-y PMID: 24473753
  155. Filipello, F.; Goldsbury, C.; You, S.F.; Locca, A.; Karch, C.M.; Piccio, L. Soluble TREM2: Innocent bystander or active player in neurological diseases? Neurobiol. Dis., 2022, 165, 105630. doi: 10.1016/j.nbd.2022.105630 PMID: 35041990
  156. Ulland, T.K.; Song, W.M.; Huang, S.C.C.; Ulrich, J.D.; Sergushichev, A.; Beatty, W.L.; Loboda, A.A.; Zhou, Y.; Cairns, N.J.; Kambal, A.; Loginicheva, E.; Gilfillan, S.; Cella, M.; Virgin, H.W.; Unanue, E.R.; Wang, Y.; Artyomov, M.N.; Holtzman, D.M.; Colonna, M. TREM2 maintains microglial metabolic fitness in alzheimer’s disease. Cell, 2017, 170(4), 649-663.e13. doi: 10.1016/j.cell.2017.07.023 PMID: 28802038
  157. Piers, T.M.; Cosker, K.; Mallach, A.; Johnson, G.T.; Guerreiro, R.; Hardy, J.; Pocock, J.M. A locked immunometabolic switch underlies TREM2 R47H loss of function in human iPSC‐derived microglia. FASEB J., 2020, 34(2), 2436-2450. doi: 10.1096/fj.201902447R PMID: 31907987
  158. Krasemann, S.; Madore, C.; Cialic, R.; Baufeld, C.; Calcagno, N.; El Fatimy, R.; Beckers, L.; O’Loughlin, E.; Xu, Y.; Fanek, Z.; Greco, D.J.; Smith, S.T.; Tweet, G.; Humulock, Z.; Zrzavy, T.; Conde-Sanroman, P.; Gacias, M.; Weng, Z.; Chen, H.; Tjon, E.; Mazaheri, F.; Hartmann, K.; Madi, A.; Ulrich, J.D.; Glatzel, M.; Worthmann, A.; Heeren, J.; Budnik, B.; Lemere, C.; Ikezu, T.; Heppner, F.L.; Litvak, V.; Holtzman, D.M.; Lassmann, H.; Weiner, H.L.; Ochando, J.; Haass, C.; Butovsky, O. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity, 2017, 47(3), 566-581.e9. doi: 10.1016/j.immuni.2017.08.008 PMID: 28930663
  159. Dong, Y.; D’Mello, C.; Pinsky, W.; Lozinski, B.M.; Kaushik, D.K.; Ghorbani, S.; Moezzi, D.; Brown, D.; Melo, F.C.; Zandee, S.; Vo, T.; Prat, A.; Whitehead, S.N.; Yong, V.W. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat. Neurosci., 2021, 24(4), 489-503. doi: 10.1038/s41593-021-00801-z PMID: 33603230
  160. Churchward, M.A.; Tchir, D.R.; Todd, K.G. Microglial function during glucose deprivation: Inflammatory and neuropsychiatric implications. Mol. Neurobiol., 2018, 55(2), 1477-1487. doi: 10.1007/s12035-017-0422-9 PMID: 28176274
  161. Liao, B.; Geng, L.; Zhang, F.; Shu, L.; Wei, L.; Yeung, P.K.K.; Lam, K.S.L.; Chung, S.K.; Chang, J.; Vanhoutte, P.M.; Xu, A.; Wang, K.; Hoo, R.L.C. Adipocyte fatty acid-binding protein exacerbates cerebral ischaemia injury by disrupting the blood-brain barrier. Eur. Heart J., 2020, 41(33), 3169-3180. doi: 10.1093/eurheartj/ehaa207 PMID: 32350521
  162. Loppi, S.H.; Tavera-Garcia, M.A.; Becktel, D.A.; Maiyo, B.K.; Johnson, K.E.; Nguyen, T.V.V.; Schnellmann, R.G.; Doyle, K.P. Increased fatty acid metabolism and decreased glycolysis are hallmarks of metabolic reprogramming within microglia in degenerating white matter during recovery from experimental stroke. J. Cereb. Blood Flow Metab., 2023, 43(7), 1099-1114. doi: 10.1177/0271678X231157298 PMID: 36772984
  163. Wang, J.; Shi, Y.; Zhang, L.; Zhang, F.; Hu, X.; Zhang, W.; Leak, R.K.; Gao, Y.; Chen, L.; Chen, J. Omega-3 polyunsaturated fatty acids enhance cerebral angiogenesis and provide long-term protection after stroke. Neurobiol. Dis., 2014, 68, 91-103. doi: 10.1016/j.nbd.2014.04.014 PMID: 24794156
  164. Zhang, M.; Wang, S.; Mao, L.; Leak, R.K.; Shi, Y.; Zhang, W.; Hu, X.; Sun, B.; Cao, G.; Gao, Y.; Xu, Y.; Chen, J.; Zhang, F. Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J. Neurosci., 2014, 34(5), 1903-1915. doi: 10.1523/JNEUROSCI.4043-13.2014 PMID: 24478369
  165. Orr, S.K.; Trépanier, M.O.; Bazinet, R.P. n-3 Polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins Leukot. Essent. Fatty Acids, 2013, 88(1), 97-103. doi: 10.1016/j.plefa.2012.05.008 PMID: 22770766
  166. Pu, H.; Jiang, X.; Hu, X.; Xia, J.; Hong, D.; Zhang, W.; Gao, Y.; Chen, J.; Shi, Y. Delayed docosahexaenoic acid treatment combined with dietary supplementation of omega-3 fatty acids promotes long-term neurovascular restoration after ischemic stroke. Transl. Stroke Res., 2016, 7(6), 521-534. doi: 10.1007/s12975-016-0498-y PMID: 27566736
  167. Bacarin, C.C.; Godinho, J.; de Oliveira, R.M.W.; Matsushita, M.; Gohara, A.K.; Cardozo-Filho, L.; Lima, J.C.; Previdelli, I.S.; Melo, S.R.; Ribeiro, M.H.D.M.; Milani, H. Postischemic fish oil treatment restores long-term retrograde memory and dendritic density: An analysis of the time window of efficacy. Behav. Brain Res., 2016, 311, 425-439. doi: 10.1016/j.bbr.2016.05.047 PMID: 27235715
  168. Correia, B.C.; Mori, M.A.; Dias, F.F.E.; Valério, R.C.; Weffort de Oliveira, R.M.; Milani, H. Fish oil provides robust and sustained memory recovery after cerebral ischemia: Influence of treatment regimen. Physiol. Behav., 2013, 119, 61-71. doi: 10.1016/j.physbeh.2013.06.001 PMID: 23770426
  169. Blondeau, N.; Nguemeni, C.; Debruyne, D.N.; Piens, M.; Wu, X.; Pan, H.; Hu, X.; Gandin, C.; Lipsky, R.H.; Plumier, J.C.; Marini, A.M.; Heurteaux, C. Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: A versatile potential therapy for stroke. Neuropsychopharmacology, 2009, 34(12), 2548-2559. doi: 10.1038/npp.2009.84 PMID: 19641487
  170. Miao, Z.; Schultzberg, M.; Wang, X.; Zhao, Y. Role of polyunsaturated fatty acids in ischemic stroke - A perspective of specialized pro-resolving mediators. Clin. Nutr., 2021, 40(5), 2974-2987. doi: 10.1016/j.clnu.2020.12.037 PMID: 33509668
  171. Ren, Z.; Chen, L.; Wang, Y.; Wei, X.; Zeng, S.; Zheng, Y.; Gao, C.; Liu, H. Activation of the omega-3 fatty acid receptor GPR120 protects against focal cerebral ischemic injury by preventing inflammation and apoptosis in mice. J. Immunol., 2019, 202(3), 747-759. doi: 10.4049/jimmunol.1800637 PMID: 30598514
  172. Zendedel, A.; Habib, P.; Dang, J.; Lammerding, L.; Hoffmann, S.; Beyer, C.; Slowik, A. Omega-3 polyunsaturated fatty acids ameliorate neuroinflammation and mitigate ischemic stroke damage through interactions with astrocytes and microglia. J. Neuroimmunol., 2015, 278, 200-211. doi: 10.1016/j.jneuroim.2014.11.007 PMID: 25468770
  173. Fourrier, C.; Remus-Borel, J.; Greenhalgh, A.D.; Guichardant, M.; Bernoud-Hubac, N.; Lagarde, M.; Joffre, C.; Layé, S. Docosahexaenoic acid-containing choline phospholipid modulates LPS-induced neuroinflammation in vivo and in microglia in vitro. J. Neuroinflammation, 2017, 14(1), 170. doi: 10.1186/s12974-017-0939-x PMID: 28838312
  174. Zhang, W.; Wang, H.; Zhang, H.; Leak, R.K.; Shi, Y.; Hu, X.; Gao, Y.; Chen, J. Dietary supplementation with omega-3 polyunsaturated fatty acids robustly promotes neurovascular restorative dynamics and improves neurological functions after stroke. Exp. Neurol., 2015, 272, 170-180. doi: 10.1016/j.expneurol.2015.03.005 PMID: 25771800
  175. Giaume, C.; McCarthy, K.D. Control of gap-junctional communication in astrocytic networks. Trends Neurosci., 1996, 19(8), 319-325. doi: 10.1016/0166-2236(96)10046-1 PMID: 8843600
  176. Liddelow, S.A.; Barres, B.A. Reactive astrocytes: Production, function, and therapeutic potential. Immunity, 2017, 46(6), 957-967. doi: 10.1016/j.immuni.2017.06.006 PMID: 28636962
  177. Basic Kes, V.; Simundic, A.M.; Nikolac, N.; Topic, E.; Demarin, V. Pro-inflammatory and anti-inflammatory cytokines in acute ischemic stroke and their relation to early neurological deficit and stroke outcome. Clin. Biochem., 2008, 41(16-17), 1330-1334. doi: 10.1016/j.clinbiochem.2008.08.080 PMID: 18801351
  178. Zamanian, J.L.; Xu, L.; Foo, L.C.; Nouri, N.; Zhou, L.; Giffard, R.G.; Barres, B.A. Genomic analysis of reactive astrogliosis. J. Neurosci., 2012, 32(18), 6391-6410. doi: 10.1523/JNEUROSCI.6221-11.2012 PMID: 22553043
  179. Rakers, C.; Schleif, M.; Blank, N.; Matušková, H.; Ulas, T.; Händler, K.; Torres, S.V.; Schumacher, T.; Tai, K.; Schultze, J.L.; Jackson, W.S.; Petzold, G.C. Stroke target identification guided by astrocyte transcriptome analysis. Glia, 2019, 67(4), 619-633. doi: 10.1002/glia.23544 PMID: 30585358
  180. Pekny, M.; Wilhelmsson, U.; Pekna, M. The dual role of astrocyte activation and reactive gliosis. Neurosci. Lett., 2014, 565, 30-38. doi: 10.1016/j.neulet.2013.12.071 PMID: 24406153
  181. Filous, A.R.; Silver, J. Targeting astrocytes in CNS injury and disease: A translational research approach. Prog. Neurobiol., 2016, 144, 173-187. doi: 10.1016/j.pneurobio.2016.03.009 PMID: 27026202
  182. Liu, Z.; Chopp, M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog. Neurobiol., 2016, 144, 103-120. doi: 10.1016/j.pneurobio.2015.09.008 PMID: 26455456
  183. Takahashi, S. Neuroprotective function of high glycolytic activity in astrocytes: Common roles in stroke and neurodegenerative diseases. Int. J. Mol. Sci., 2021, 22(12), 6568. doi: 10.3390/ijms22126568 PMID: 34207355
  184. Magistretti, P.J.; Allaman, I. Lactate in the brain: From metabolic end-product to signalling molecule. Nat. Rev. Neurosci., 2018, 19(4), 235-249. doi: 10.1038/nrn.2018.19 PMID: 29515192
  185. Wiesinger, H.; Hamprecht, B.; Dringen, R. Metabolic pathways for glucose in astrocytes. Glia, 1997, 21(1), 22-34. doi: 10.1002/(SICI)1098-1136(199709)21:13.0.CO;2-3 PMID: 9298844
  186. Pellerin, L.; Magistretti, P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci., 1994, 91(22), 10625-10629. doi: 10.1073/pnas.91.22.10625 PMID: 7938003
  187. Dienel, G.A. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. J. Neurosci. Res., 2017, 95(11), 2103-2125. doi: 10.1002/jnr.24015 PMID: 28151548
  188. Brown, A.M.; Sickmann, H.M.; Fosgerau, K.; Lund, T.M.; Schousboe, A.; Waagepetersen, H.S.; Ransom, B.R. Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J. Neurosci. Res., 2005, 79(1-2), 74-80. doi: 10.1002/jnr.20335 PMID: 15578727
  189. Brown, A.M.; Ransom, B.R. Astrocyte glycogen and brain energy metabolism. Glia, 2007, 55(12), 1263-1271. doi: 10.1002/glia.20557 PMID: 17659525
  190. Schurr, A.; Payne, R.S. Lactate, not pyruvate, is neuronal aerobic glycolysis end product: An in vitro electrophysiological study. Neuroscience, 2007, 147(3), 613-619. doi: 10.1016/j.neuroscience.2007.05.002 PMID: 17560727
  191. Schurr, A.; Payne, R.S.; Miller, J.J.; Rigor, B.M. Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: An in vitro study. Brain Res., 1997, 744(1), 105-111. doi: 10.1016/S0006-8993(96)01106-7 PMID: 9030418
  192. Marcoux, J.; McArthur, D.A.; Miller, C.; Glenn, T.C.; Villablanca, P.; Martin, N.A.; Hovda, D.A.; Alger, J.R.; Vespa, P.M. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit. Care Med., 2008, 36(10), 2871-2877. doi: 10.1097/CCM.0b013e318186a4a0 PMID: 18766106
  193. Guo, H.; Fan, Z.; Wang, S.; Ma, L.; Wang, J.; Yu, D.; Zhang, Z.; Wu, L.; Peng, Z.; Liu, W.; Hou, W.; Cai, Y. Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke. J. Neuroinflammation, 2021, 18(1), 230. doi: 10.1186/s12974-021-02284-y PMID: 34645472
  194. Lv, Y.; Zhang, B.; Zhai, C.; Qiu, J.; Zhang, Y.; Yao, W.; Zhang, C. PFKFB3-mediated glycolysis is involved in reactive astrocyte proliferation after oxygen-glucose deprivation/reperfusion and is regulated by Cdh1. Neurochem. Int., 2015, 91, 26-33. doi: 10.1016/j.neuint.2015.10.006 PMID: 26498254
  195. Rossi, D.J.; Brady, J.D.; Mohr, C. Astrocyte metabolism and signaling during brain ischemia. Nat. Neurosci., 2007, 10(11), 1377-1386. doi: 10.1038/nn2004 PMID: 17965658
  196. Bak, L.K.; Walls, A.B.; Schousboe, A.; Waagepetersen, H.S. Astrocytic glycogen metabolism in the healthy and diseased brain. J. Biol. Chem., 2018, 293(19), 7108-7116. doi: 10.1074/jbc.R117.803239 PMID: 29572349
  197. Zois, C.E.; Harris, A.L. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J. Mol. Med., 2016, 94(2), 137-154. doi: 10.1007/s00109-015-1377-9 PMID: 26882899
  198. Ramagiri, S.; Taliyan, R. Remote limb ischemic post conditioning during early reperfusion alleviates cerebral ischemic reperfusion injury via GSK-3β/CREB/BDNF pathway. Eur. J. Pharmacol., 2017, 803, 84-93. doi: 10.1016/j.ejphar.2017.03.028 PMID: 28341347
  199. Pederson, B.A. Structure and regulation of glycogen synthase in the brain. Adv. Neurobiol., 2019, 23, 83-123. doi: 10.1007/978-3-030-27480-1_3 PMID: 31667806
  200. Xu, L.; Sun, H. Pharmacological manipulation of brain glycogenolysis as a therapeutic approach to cerebral ischemia. Mini Rev. Med. Chem., 2010, 10(12), 1188-1193. doi: 10.2174/1389557511009011188 PMID: 20716050
  201. Guo, H.; Zhang, Z.; Gu, T.; Yu, D.; Shi, Y.; Gao, Z.; Wang, Z.; Liu, W.; Fan, Z.; Hou, W.; Wang, H.; Cai, Y. Astrocytic glycogen mobilization participates in salvianolic acid B-mediated neuroprotection against reperfusion injury after ischemic stroke. Exp. Neurol., 2022, 349, 113966. doi: 10.1016/j.expneurol.2021.113966 PMID: 34973964
  202. Lo, E.H.; Dalkara, T.; Moskowitz, M.A. Mechanisms, challenges and opportunities in stroke. Nat. Rev. Neurosci., 2003, 4(5), 399-414. doi: 10.1038/nrn1106 PMID: 12728267
  203. Takahashi, S. Treatment of acute ischemic stroke: Tissue clock and reperfusion. Masui, 2012, 61, S11-S22. PMID: 23513514
  204. Takahashi, S. Astroglial protective mechanisms against ROS under brain ischemia. Rinsho Shinkeigaku, 2011, 51(11), 1032-1035. doi: 10.5692/clinicalneurol.51.1032 PMID: 22277470
  205. Iizumi, T.; Takahashi, S.; Mashima, K.; Minami, K.; Izawa, Y.; Abe, T.; Hishiki, T.; Suematsu, M.; Kajimura, M.; Suzuki, N. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. J. Neuroinflammation, 2016, 13(1), 99. doi: 10.1186/s12974-016-0564-0 PMID: 27143001
  206. Tang, B.L. Neuroprotection by glucose‐6‐phosphate dehydrogenase and the pentose phosphate pathway. J. Cell. Biochem., 2019, 120(9), 14285-14295. doi: 10.1002/jcb.29004 PMID: 31127649
  207. Dwivedi, D.; Megha, K.; Mishra, R.; Mandal, P.K. Glutathione in brain: Overview of its conformations, functions, biochemical characteristics, quantitation and potential therapeutic role in brain disorders. Neurochem. Res., 2020, 45(7), 1461-1480. doi: 10.1007/s11064-020-03030-1 PMID: 32297027
  208. Takahashi, S.; Izawa, Y.; Suzuki, N. Astrogliopathy as a loss of astroglial protective function against glycoxidative stress under hyperglycemia. Rinsho Shinkeigaku, 2012, 52(1), 41-51. doi: 10.5692/clinicalneurol.52.41 PMID: 22260979
  209. Chen, J.; Zhang, D.M.; Feng, X.; Wang, J.; Qin, Y.Y.; Zhang, T.; Huang, Q.; Sheng, R.; Chen, Z.; Li, M.; Qin, Z.H. TIGAR inhibits ischemia/reperfusion-induced inflammatory response of astrocytes. Neuropharmacology, 2018, 131, 377-388. doi: 10.1016/j.neuropharm.2018.01.012 PMID: 29331305
  210. Owjfard, M.; Karimi, F.; Mallahzadeh, A.; Nabavizadeh, S.A.; Namavar, M.R.; Saadi, M.I.; Hooshmandi, E.; Salehi, M.S.; Zafarmand, S.S.; Bayat, M.; Karimlou, S.; Borhani-Haghighi, A. Mechanism of action and therapeutic potential of dimethyl fumarate in ischemic stroke. J. Neurosci. Res., 2023, 101(9), 1433-1446. doi: 10.1002/jnr.25202 PMID: 37183360
  211. Dodson, M.; de la Vega, M.R.; Cholanians, A.B.; Schmidlin, C.J.; Chapman, E.; Zhang, D.D. Modulating NRF2 in disease: Timing is everything. Annu. Rev. Pharmacol. Toxicol., 2019, 59(1), 555-575. doi: 10.1146/annurev-pharmtox-010818-021856 PMID: 30256716
  212. Scuderi, S.A.; Ardizzone, A.; Paterniti, I.; Esposito, E.; Campolo, M. Antioxidant and anti-inflammatory effect of Nrf2 inducer dimethyl fumarate in neurodegenerative diseases. Antioxidants, 2020, 9(7), 630. doi: 10.3390/antiox9070630 PMID: 32708926
  213. Kunze, R.; Urrutia, A.; Hoffmann, A.; Liu, H.; Helluy, X.; Pham, M.; Reischl, S.; Korff, T.; Marti, H.H. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood–brain barrier integrity. Exp. Neurol., 2015, 266, 99-111. doi: 10.1016/j.expneurol.2015.02.022 PMID: 25725349
  214. Lin-Holderer, J.; Li, L.; Gruneberg, D.; Marti, H.H.; Kunze, R. Fumaric acid esters promote neuronal survival upon ischemic stress through activation of the Nrf2 but not HIF-1 signaling pathway. Neuropharmacology, 2016, 105, 228-240. doi: 10.1016/j.neuropharm.2016.01.023 PMID: 26801077
  215. Takahashi, S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit. Neuropathology, 2020, 40(2), 121-137. doi: 10.1111/neup.12639 PMID: 32037635
  216. Sofroniew, M.V.; Vinters, H.V. Astrocytes: biology and pathology. Acta Neuropathol., 2010, 119(1), 7-35. doi: 10.1007/s00401-009-0619-8 PMID: 20012068
  217. Curtis, D.R.; Johnston, G.A. Amino acid transmitters in the mammalian central nervous system. Ergeb. Physiol., 1974, 69(0), 97-188. PMID: 4151806
  218. Lai, T.W.; Zhang, S.; Wang, Y.T. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog. Neurobiol., 2014, 115, 157-188. doi: 10.1016/j.pneurobio.2013.11.006 PMID: 24361499
  219. Anderson, C.M.; Swanson, R.A. Astrocyte glutamate transport: Review of properties, regulation, and physiological functions. Glia, 2000, 32(1), 1-14. doi: 10.1002/1098-1136(200010)32:13.0.CO;2-W PMID: 10975906
  220. Chisholm, N.C.; Henderson, M.L.; Selvamani, A.; Park, M.J.; Dindot, S.; Miranda, R.C.; Sohrabji, F. Histone methylation patterns in astrocytes are influenced by age following ischemia. Epigenetics, 2015, 10(2), 142-152. doi: 10.1080/15592294.2014.1001219 PMID: 25565250
  221. Yamada, T.; Kawahara, K.; Kosugi, T.; Tanaka, M. Nitric oxide produced during sublethal ischemia is crucial for the preconditioning-induced down-regulation of glutamate transporter GLT-1 in neuron/astrocyte co-cultures. Neurochem. Res., 2006, 31(1), 49-56. doi: 10.1007/s11064-005-9077-4 PMID: 16474996
  222. Sibson, N.R.; Dhankhar, A.; Mason, G.F.; Rothman, D.L.; Behar, K.L.; Shulman, R.G. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc. Natl. Acad. Sci., 1998, 95(1), 316-321. doi: 10.1073/pnas.95.1.316 PMID: 9419373
  223. McKenna, M.C. Glutamate pays its own way in astrocytes. Front. Endocrinol., 2013, 4, 191. doi: 10.3389/fendo.2013.00191 PMID: 24379804
  224. Rose, C.R.; Ziemens, D.; Untiet, V.; Fahlke, C. Molecular and cellular physiology of sodium-dependent glutamate transporters. Brain Res. Bull., 2018, 136, 3-16. doi: 10.1016/j.brainresbull.2016.12.013 PMID: 28040508
  225. Koyama, Y.; Kimura, Y.; Hashimoto, H.; Matsuda, T.; Baba, A. L-lactate inhibits L-cystine/L-glutamate exchange transport and decreases glutathione content in rat cultured astrocytes. J. Neurosci. Res., 2000, 59(5), 685-691. doi: 10.1002/(SICI)1097-4547(20000301)59:53.0.CO;2-Z PMID: 10686597
  226. Shashidharan, P.; Wittenberg, I.; Plaitakis, A. Molecular cloning of human brain glutamate/aspartate transporter II. Biochim. Biophys. Acta Biomembr., 1994, 1191(2), 393-396. doi: 10.1016/0005-2736(94)90192-9 PMID: 8172925
  227. Storck, T.; Schulte, S.; Hofmann, K.; Stoffel, W. Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc. Natl. Acad. Sci., 1992, 89(22), 10955-10959. doi: 10.1073/pnas.89.22.10955 PMID: 1279699
  228. Pines, G.; Danbolt, N.C.; Bjørås, M.; Zhang, Y.; Bendahan, A.; Eide, L.; Koepsell, H.; Storm-Mathisen, J.; Seeberg, E.; Kanner, B.I. Cloning and expression of a rat brain L-glutamate transporter. Nature, 1992, 360(6403), 464-467. doi: 10.1038/360464a0 PMID: 1448170
  229. Bergles, D.E.; Jahr, C.E. Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J. Neurosci., 1998, 18(19), 7709-7716. doi: 10.1523/JNEUROSCI.18-19-07709.1998 PMID: 9742141
  230. Bröer, S.; Brookes, N. Transfer of glutamine between astrocytes and neurons. J. Neurochem., 2001, 77(3), 705-719. doi: 10.1046/j.1471-4159.2001.00322.x PMID: 11331400
  231. Bröer, A.; Albers, A.; Setiawan, I.; Edwards, R.H.; Chaudhry, F.A.; Lang, F.; Wagner, C.A.; Bröer, S. Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions. J. Physiol., 2002, 539(1), 3-14. doi: 10.1113/jphysiol.2001.013303 PMID: 11850497
  232. McKenna, M.C.; Stridh, M.H.; McNair, L.F.; Sonnewald, U.; Waagepetersen, H.S.; Schousboe, A. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases. J. Neurosci. Res., 2016, 94(12), 1561-1571. doi: 10.1002/jnr.23908 PMID: 27629247
  233. McKenna, M.C.; Sonnewald, U.; Huang, X.; Stevenson, J.; Zielke, H.R. Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J. Neurochem., 1996, 66(1), 386-393. doi: 10.1046/j.1471-4159.1996.66010386.x PMID: 8522979
  234. Shen, Y.; He, P.; Fan, Y.; Zhang, J.; Yan, H.; Hu, W.; Ohtsu, H.; Chen, Z. Carnosine protects against permanent cerebral ischemia in histidine decarboxylase knockout mice by reducing glutamate excitotoxicity. Free Radic. Biol. Med., 2010, 48(5), 727-735. doi: 10.1016/j.freeradbiomed.2009.12.021 PMID: 20043985
  235. Ouyang, Y.B.; Voloboueva, L.A.; Xu, L.J.; Giffard, R.G. Selective dysfunction of hippocampal CA1 astrocytes contributes to delayed neuronal damage after transient forebrain ischemia. J. Neurosci., 2007, 27(16), 4253-4260. doi: 10.1523/JNEUROSCI.0211-07.2007 PMID: 17442809
  236. Chu, K.; Lee, S.T.; Sinn, D.I.; Ko, S.Y.; Kim, E.H.; Kim, J.M.; Kim, S.J.; Park, D.K.; Jung, K.H.; Song, E.C.; Lee, S.K.; Kim, M.; Roh, J.K. Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke, 2007, 38(1), 177-182. doi: 10.1161/01.STR.0000252091.36912.65 PMID: 17122424
  237. Rothstein, J.D.; Patel, S.; Regan, M.R.; Haenggeli, C.; Huang, Y.H.; Bergles, D.E.; Jin, L.; Dykes Hoberg, M.; Vidensky, S.; Chung, D.S.; Toan, S.V.; Bruijn, L.I.; Su, Z.; Gupta, P.; Fisher, P.B. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 2005, 433(7021), 73-77. doi: 10.1038/nature03180 PMID: 15635412
  238. Lee, E.S.Y.; Sidoryk, M.; Jiang, H.; Yin, Z.; Aschner, M. Estrogen and tamoxifen reverse manganese‐induced glutamate transporter impairment in astrocytes. J. Neurochem., 2009, 110(2), 530-544. doi: 10.1111/j.1471-4159.2009.06105.x PMID: 19453300
  239. Zhang, Y.; Jin, Y.; Behr, M.; Feustel, P.; Morrison, J.; Kimelberg, H. Behavioral and histological neuroprotection by tamoxifen after reversible focal cerebral ischemia. Exp. Neurol., 2005, 196(1), 41-46. doi: 10.1016/j.expneurol.2005.07.002 PMID: 16054626
  240. Mehta, S.H.; Dhandapani, K.M.; De Sevilla, L.M.; Webb, R.C.; Mahesh, V.B.; Brann, D.W. Tamoxifen, a selective estrogen receptor modulator, reduces ischemic damage caused by middle cerebral artery occlusion in the ovariectomized female rat. Neuroendocrinology, 2003, 77(1), 44-50. doi: 10.1159/000068332 PMID: 12624540
  241. Ebert, D.; Haller, R.G.; Walton, M.E. Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J. Neurosci., 2003, 23(13), 5928-5935. doi: 10.1523/JNEUROSCI.23-13-05928.2003 PMID: 12843297
  242. Sayre, N.L.; Sifuentes, M.; Holstein, D.; Cheng, S.; Zhu, X.; Lechleiter, J.D. Stimulation of astrocyte fatty acid oxidation by thyroid hormone is protective against ischemic stroke-induced damage. J. Cereb. Blood Flow Metab., 2017, 37(2), 514-527. doi: 10.1177/0271678X16629153 PMID: 26873887
  243. Polyzos, A.A.; Lee, D.Y.; Datta, R.; Hauser, M.; Budworth, H.; Holt, A.; Mihalik, S.; Goldschmidt, P.; Frankel, K.; Trego, K.; Bennett, M.J.; Vockley, J.; Xu, K.; Gratton, E.; McMurray, C.T. Metabolic reprogramming in astrocytes distinguishes region-specific neuronal susceptibility in huntington mice. Cell Metab., 2019, 29(6), 1258-1273.e11. doi: 10.1016/j.cmet.2019.03.004 PMID: 30930170
  244. Aizawa, F.; Nishinaka, T.; Yamashita, T.; Nakamoto, K.; Koyama, Y.; Kasuya, F.; Tokuyama, S. Astrocytes release polyunsaturated fatty acids by lipopolysaccharide stimuli. Biol. Pharm. Bull., 2016, 39(7), 1100-1106. doi: 10.1248/bpb.b15-01037 PMID: 27374285
  245. Gupta, S.; Knight, A.G.; Gupta, S.; Keller, J.N.; Bruce-Keller, A.J. Saturated long‐chain fatty acids activate inflammatory signaling in astrocytes. J. Neurochem., 2012, 120(6), 1060-1071. doi: 10.1111/j.1471-4159.2012.07660.x PMID: 22248073

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers