Hair Cortisol Research in Posttraumatic Stress Disorder - 10 Years of Insights and Open Questions. A Systematic Review


Cite item

Full Text

Abstract

Background:Cortisol is one of the most extensively studied biomarkers in the context of trauma/posttraumatic stress disorder (PTSD). For more than a decade, hair cortisol concentrations (HCC) have been measured in this context, leading to a two-staged dysregulation model. Specifically, an elevated secretion during/immediately after trauma exposure eventually reverts to hyposecretion with increasing time since trauma exposure has been postulated.

Objective:The aim of our systematic review was to re-evaluate the two-staged secretion model with regard to the accumulated diagnostic, prognostic, and intervention-related evidence of HCC in lifetime trauma exposure and PTSD. Further, we provide an overview of open questions, particularly with respect to reporting standards and quality criteria.

Method:A systematic literature search yielded 5,046 records, of which 31 studies were included.

Results:For recent/ongoing (traumatic) stress, the predictions of cortisol hypersecretion could be largely confirmed. However, for the assumed hyposecretion temporally more distal to trauma exposure, the results are more ambiguous. As most studies did not report holistic overviews of trauma history and confounding influences, this may largely be attributable to methodological limitations. Data on the prognostic and intervention-related benefits of HCC remain sparse.

Conclusion:Over the last decade, important insights could be gained about long-term cortisol secretion patterns following lifetime trauma exposure and PTSD. This systematic review integrates these insights into an updated secretion model for trauma/PTSD. We conclude with recommendations for improving HCC research in the context of trauma/PTSD in order to answer the remaining open questions.

About the authors

Lena Schindler-Gmelch

Department of Clinical Psychology and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg

Email: info@benthamscience.net

Klara Capito

Department of Clinical Psychology and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg

Email: info@benthamscience.net

Susann Steudte-Schmiedgen

Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden

Author for correspondence.
Email: info@benthamscience.net

Clemens Kirschbaum

Faculty of Psychology, Technische Universität Dresden

Email: info@benthamscience.net

Matthias Berking

Department of Clinical Psychology and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg

Email: info@benthamscience.net

References

  1. Diagnostic and statistical manual of mental disorders: DSM-5, 5th ed; American Psychiatric Publishing: Washington, DC, 2013.
  2. Schumacher, S.; Niemeyer, H.; Engel, S.; Cwik, J.C.; Laufer, S.; Klusmann, H.; Knaevelsrud, C. HPA axis regulation in posttraumatic stress disorder: A meta-analysis focusing on potential moderators. Neurosci. Biobehav. Rev., 2019, 100, 35-57. doi: 10.1016/j.neubiorev.2019.02.005 PMID: 30790632
  3. Engel, S.; Klusmann, H.; Laufer, S.; Kapp, C.; Schumacher, S.; Knaevelsrud, C. Biological markers in clinical psychological research - A systematic framework applied to HPA axis regulation in PTSD. Comprehensive Psychoneuroendocrinology, 2022, 11, 100148. doi: 10.1016/j.cpnec.2022.100148 PMID: 35967927
  4. Steudte-Schmiedgen, S.; Kirschbaum, C.; Alexander, N.; Stalder, T. An integrative model linking traumatization, cortisol dysregulation and posttraumatic stress disorder: Insight from recent hair cortisol findings. Neurosci. Biobehav. Rev., 2016, 69, 124-135. doi: 10.1016/j.neubiorev.2016.07.015 PMID: 27443960
  5. Tsigos, C.; Chrousos, G.P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res., 2002, 53(4), 865-871. doi: 10.1016/S0022-3999(02)00429-4 PMID: 12377295
  6. Gunnar, M.; Quevedo, K. The neurobiology of stress and development. Annu. Rev. Psychol., 2007, 58(1), 145-173. doi: 10.1146/annurev.psych.58.110405.085605 PMID: 16903808
  7. Kamin, H.S.; Kertes, D.A. Cortisol and DHEA in development and psychopathology. Horm. Behav., 2017, 89, 69-85. doi: 10.1016/j.yhbeh.2016.11.018 PMID: 27979632
  8. Stalder, T.; Kirschbaum, C. Cortisol.Encyclopedia of Behavioral Medicine; Gellman, M.D; Turner, J.R., Ed.; Springer: New York, NY, 2013, pp. 507-512. doi: 10.1007/978-1-4419-1005-9_171
  9. Dickerson, S.S.; Kemeny, M.E. Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychol. Bull., 2004, 130(3), 355-391. doi: 10.1037/0033-2909.130.3.355 PMID: 15122924
  10. Heim, C.; Schultebraucks, K.; Marmar, C.R.; Nemeroff, C.B. Neurobiological pathways involved in fear, stress, and PTSD.Post-traumatic stress disorder; Nemeroff, C.B; Marmar, C.R., Ed.; Oxford University Press: New York, 2018, pp. 331-352.
  11. Meewisse, M.L.; Reitsma, J.B.; De Vries, G.J.; Gersons, B.P.R.; Olff, M. Cortisol and post-traumatic stress disorder in adults. Br. J. Psychiatry, 2007, 191(5), 387-392. doi: 10.1192/bjp.bp.106.024877 PMID: 17978317
  12. Morris, M.C.; Compas, B.E.; Garber, J. Relations among posttraumatic stress disorder, comorbid major depression, and HPA function: A systematic review and meta-analysis. Clin. Psychol. Rev., 2012, 32(4), 301-315. doi: 10.1016/j.cpr.2012.02.002 PMID: 22459791
  13. Stalder, T.; Kirschbaum, C. Analysis of cortisol in hair-State of the art and future directions. Brain Behav. Immun., 2012, 26(7), 1019-1029. doi: 10.1016/j.bbi.2012.02.002 PMID: 22366690
  14. Greff, M.J.E.; Levine, J.M.; Abuzgaia, A.M.; Elzagallaai, A.A.; Rieder, M.J.; van Uum, S.H.M. Hair cortisol analysis: An update on methodological considerations and clinical applications. Clin. Biochem., 2019, 63, 1-9. doi: 10.1016/j.clinbiochem.2018.09.010 PMID: 30261181
  15. Klaassens, E.R.; Giltay, E.J.; Cuijpers, P.; van Veen, T.; Zitman, F.G. Adulthood trauma and HPA-axis functioning in healthy subjects and PTSD patients: A meta-analysis. Psychoneuroendocrinology, 2012, 37(3), 317-331. doi: 10.1016/j.psyneuen.2011.07.003 PMID: 21802212
  16. Wennig, R. Potential problems with the interpretation of hair analysis results. Forensic Sci. Int., 2000, 107(1-3), 5-12. doi: 10.1016/S0379-0738(99)00146-2 PMID: 10689559
  17. LeBeau, M.A.; Montgomery, M.A.; Brewer, J.D. The role of variations in growth rate and sample collection on interpreting results of segmental analyses of hair. Forensic Sci. Int., 2011, 210(1-3), 110-116. doi: 10.1016/j.forsciint.2011.02.015 PMID: 21382678
  18. Colding-Jørgensen, P.; Hestehave, S.; Abelson, K.S.; Kalliokoski, O. Hair glucocorticoids are not a historical marker of stress - exploring the time-scale of corticosterone incorporation into hairs in a rat model. 2020.
  19. Stalder, T.; Steudte-Schmiedgen, S.; Alexander, N.; Klucken, T.; Vater, A.; Wichmann, S.; Kirschbaum, C.; Miller, R. Stress-related and basic determinants of hair cortisol in humans: A meta-analysis. Psychoneuroendocrinology, 2017, 77, 261-274. doi: 10.1016/j.psyneuen.2016.12.017 PMID: 28135674
  20. Miller, G.E.; Chen, E.; Zhou, E.S. If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychol. Bull., 2007, 133(1), 25-45. doi: 10.1037/0033-2909.133.1.25 PMID: 17201569
  21. Koumantarou Malisiova, E.; Mourikis, I.; Darviri, C.; Nicolaides, N.C.; Zervas, I.M.; Papageorgiou, C.; Chrousos, G.P. Hair cortisol concentrations in mental disorders: A systematic review. Physiol. Behav., 2021, 229, 113244. doi: 10.1016/j.physbeh.2020.113244 PMID: 33181165
  22. Schumacher, S.; Niemeyer, H.; Engel, S.; Cwik, J.C.; Knaevelsrud, C. Psychotherapeutic treatment and HPA axis regulation in posttraumatic stress disorder: A systematic review and meta-analysis. Psychoneuroendocrinology, 2018, 98, 186-201. doi: 10.1016/j.psyneuen.2018.08.006 PMID: 30193225
  23. Schär, S.; Mürner-Lavanchy, I.; Schmidt, S.J.; Koenig, J.; Kaess, M. Child maltreatment and hypothalamic-pituitary-adrenal axis functioning: A systematic review and meta-analysis. Front. Neuroendocrinol., 2022, 66, 100987. doi: 10.1016/j.yfrne.2022.100987 PMID: 35202606
  24. Khoury, J.E.; Bosquet Enlow, M.; Plamondon, A.; Lyons-Ruth, K. The association between adversity and hair cortisol levels in humans: A meta-analysis. Psychoneuroendocrinology, 2019, 103, 104-117. doi: 10.1016/j.psyneuen.2019.01.009 PMID: 30682626
  25. Bernstein, D.P.; Fink, L.; Handelsman, L.; Foote, J.; Lovejoy, M.; Wenzel, K.; Sapareto, E.; Ruggiero, J. Initial reliability and validity of a new retrospective measure of child abuse and neglect. Am. J. Psychiatry, 1994, 151(8), 1132-1136. doi: 10.1176/ajp.151.8.1132 PMID: 8037246
  26. McLaughlin, K.A.; DeCross, S.N.; Jovanovic, T.; Tottenham, N. Mechanisms linking childhood adversity with psychopathology: Learning as an intervention target. Behav. Res. Ther., 2019, 118, 101-109. doi: 10.1016/j.brat.2019.04.008 PMID: 31030002
  27. Diagnostic and statistical manual of mental disorders: DSM-IV-TR, 4th ed; American Psychiatric Assoc: Arlington, VA, 2007.
  28. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med., 2009, 6(7), e1000097. doi: 10.1371/journal.pmed.1000097 PMID: 19621072
  29. Raul, J.S.; Cirimele, V.; Ludes, B.; Kintz, P. Detection of physiological concentrations of cortisol and cortisone in human hair. Clin. Biochem., 2004, 37(12), 1105-1111. doi: 10.1016/j.clinbiochem.2004.02.010 PMID: 15589817
  30. Marceau, K.; Wang, W.; Robertson, O.; Shirtcliff, E.A. A systematic review of hair cortisol during pregnancy: Reference ranges and methodological considerations. Psychoneuroendocrinology, 2020, 122, 104904. doi: 10.1016/j.psyneuen.2020.104904 PMID: 33080521
  31. Bluemke, M.; Crombach, A.; Hecker, T.; Schalinski, I.; Elbert, T.; Weierstall, R. Is the implicit association test for aggressive attitudes a measure for attraction to violence or traumatization? Z. Psychol. Z. Angew. Psychol., 2017, 225, 54-63.
  32. Marcil, M.J.; Cyr, S.; Marin, M.F.; Rosa, C.; Tardif, J.C.; Guay, S.; Guertin, M.C.; Genest, C.; Forest, J.; Lavoie, P.; Labrosse, M.; Vadeboncoeur, A.; Selcer, S.; Ducharme, S.; Brouillette, J. Hair cortisol change at COVID-19 pandemic onset predicts burnout among health personnel. Psychoneuroendocrinology, 2022, 138, 105645. doi: 10.1016/j.psyneuen.2021.105645 PMID: 35134663
  33. Spikman, J.M.; van der Horn, H.J.; Scheenen, M.E.; de Koning, M.E.; Savas, M.; Langerak, T.; van Rossum, E.F.C.; van der Naalt, J. Coping with stress before and after mild traumatic brain injury: a pilot hair cortisol study. Brain Inj., 2021, 35(8), 871-879. doi: 10.1080/02699052.2021.1901143 PMID: 34096416
  34. Kalliokoski, O.; Jellestad, F.K.; Murison, R. A systematic review of studies utilizing hair glucocorticoids as a measure of stress suggests the marker is more appropriate for quantifying short-term stressors. Sci. Rep., 2019, 9(1), 11997. doi: 10.1038/s41598-019-48517-2 PMID: 31427664
  35. Cuijpers, P. Meta-analysis in mental health: A practical guide; Colofon, 2016.
  36. Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev., 2016, 5(1), 210. doi: 10.1186/s13643-016-0384-4 PMID: 27919275
  37. Laufer, S.; Engel, S.; Lupien, S.; Knaevelsrud, C.; Schumacher, S. The Cortisol Assessment List (CoAL) A tool to systematically document and evaluate cortisol assessment in blood, urine and saliva. Comprehensive Psychoneuroendocrinology, 2022, 9, 100108. doi: 10.1016/j.cpnec.2021.100108 PMID: 35755928
  38. Herbers, J.; Miller, R.; Walther, A.; Schindler, L.; Schmidt, K.; Gao, W.; Kirschbaum, C.; Rupprecht, F. Non-detectable and outlying values in biomarker research: Best practices and recommendations for univariate approaches. Psychoneuroendocrinology, 2020, 119, 104967. doi: 10.1016/j.psyneuen.2020.104967
  39. Steudte, S.; Kolassa, I.T.; Stalder, T.; Pfeiffer, A.; Kirschbaum, C.; Elbert, T. Increased cortisol concentrations in hair of severely traumatized Ugandan individuals with PTSD. Psychoneuroendocrinology, 2011, 36(8), 1193-1200. doi: 10.1016/j.psyneuen.2011.02.012 PMID: 21411229
  40. van den Heuvel, L.L.; Stalder, T.; du Plessis, S.; Suliman, S.; Kirschbaum, C.; Seedat, S. Hair cortisol levels in posttraumatic stress disorder and metabolic syndrome. Stress, 2020, 23(5), 577-589. doi: 10.1080/10253890.2020.1724949 PMID: 32008379
  41. Schumacher, S.; Engel, S.; Klusmann, H.; Niemeyer, H.; Küster, A.; Burchert, S.; Skoluda, N.; Rau, H.; Nater, U.M.; Willmund, G.D.; Knaevelsrud, C. Trauma-related but not PTSD-related increases in hair cortisol concentrations in military personnel. J. Psychiatr. Res., 2022, 150, 17-20. doi: 10.1016/j.jpsychires.2022.02.031 PMID: 35344923
  42. Yirmiya, K.; Motsan, S.; Zagoory-Sharon, O.; Schonblum, A.; Koren, L.; Feldman, R. Continuity of psychopathology v. resilience across the transition to adolescence: Role of hair cortisol and sensitive caregiving. Psychol. Med., 2022, 1-12. doi: 10.1017/S0033291722001350 PMID: 35634966
  43. Gao, W.; Zhong, P.; Xie, Q.; Wang, H.; Jin, J.; Deng, H.; Lu, Z. Temporal features of elevated hair cortisol among earthquake survivors. Psychophysiology, 2014, 51(4), 319-326. doi: 10.1111/psyp.12179 PMID: 24611842
  44. Zuiden, M.; Savas, M.; Koch, S.B.J.; Nawijn, L.; Staufenbiel, S.M.; Frijling, J.L.; Veltman, D.J.; Rossum, E.F.C.; Olff, M. Associations among hair cortisol concentrations, posttraumatic stress disorder status, and amygdala reactivity to negative affective stimuli in female police officers. J. Trauma. Stress, 2019, 32(2), 238-248. doi: 10.1002/jts.22395 PMID: 30883913
  45. Steudte, S.; Kirschbaum, C.; Gao, W.; Alexander, N.; Schönfeld, S.; Hoyer, J.; Stalder, T. Hair cortisol as a biomarker of traumatization in healthy individuals and posttraumatic stress disorder patients. Biol. Psychiatry, 2013, 74(9), 639-646. doi: 10.1016/j.biopsych.2013.03.011 PMID: 23623187
  46. Steudte-Schmiedgen, S.; Stalder, T.; Schönfeld, S.; Wittchen, H.U.; Trautmann, S.; Alexander, N.; Miller, R.; Kirschbaum, C. Hair cortisol concentrations and cortisol stress reactivity predict PTSD symptom increase after trauma exposure during military deployment. Psychoneuroendocrinology, 2015, 59, 123-133. doi: 10.1016/j.psyneuen.2015.05.007 PMID: 26072152
  47. Castro-Vale, I.; van Rossum, E.F.C.; Staufenbiel, S.M.; Severo, M.; Mota-Cardoso, R.; Carvalho, D. Hair cortisol as a marker of intergenerational heritage of war? A study of veterans and their offspring. Psychiatry Investig., 2020, 17(10), 976-986. doi: 10.30773/pi.2020.0212 PMID: 33017887
  48. Boeckel, M.G.; Viola, T.W.; Daruy-Filho, L.; Martinez, M.; Grassi-Oliveira, R. Intimate partner violence is associated with increased maternal hair cortisol in mother-child dyads. Compr. Psychiatry, 2017, 72, 18-24. doi: 10.1016/j.comppsych.2016.09.006 PMID: 27693887
  49. Mewes, R.; Reich, H.; Skoluda, N.; Seele, F.; Nater, U.M. Elevated hair cortisol concentrations in recently fled asylum seekers in comparison to permanently settled immigrants and non-immigrants. Transl. Psychiatry, 2017, 7(3), e1051. doi: 10.1038/tp.2017.14 PMID: 28267148
  50. Heller, M.; Roberts, S.T.; Masese, L.; Ngina, J.; Chohan, N.; Chohan, V.; Shafi, J.; McClelland, R.S.; Brindle, E.; Graham, S.M. Gender-Based violence, physiological stress, and inflammation: A cross-sectional study. J. Womens Health (Larchmt.), 2018, 27(9), 1152-1161. doi: 10.1089/jwh.2017.6743 PMID: 29630431
  51. Lynch, R.; Aspelund, T.; Kormáksson, M.; Flores-Torres, M.H.; Hauksdóttir, A.; Arnberg, F.K.; Lajous, M.; Kirschbaum, C.; Valdimarsdóttir, U. Lifetime exposure to violence and other life stressors and hair cortisol concentration in women. Stress, 2022, 25(1), 48-56. doi: 10.1080/10253890.2021.2011204 PMID: 34962229
  52. Groër, M.W.; Kostas-Polston, E.A.; Dillahunt-Aspillaga, C.; Beckie, T.M.; Johnson-Mallard, V.; Duffy, A.; Evans, M.E. Allostatic perspectives in women veterans with a history of childhood sexual assault. Biol. Res. Nurs., 2016, 18(4), 454-464. doi: 10.1177/1099800416638442 PMID: 27067613
  53. Morris, M.C.; Abelson, J.L.; Mielock, A.S.; Rao, U. Psychobiology of cumulative trauma: Hair cortisol as a risk marker for stress exposure in women. Stress, 2017, 20(4), 350-354. doi: 10.1080/10253890.2017.1340450 PMID: 28595479
  54. Buchmüller, T.; Lembcke, H.; Busch, J.; Kumsta, R.; Wolf, O.T.; Leyendecker, B. Exploring hair steroid concentrations in asylum seekers, internally displaced refugees, and immigrants. Stress, 2020, 23(5), 538-545. doi: 10.1080/10253890.2020.1737008 PMID: 32116089
  55. Petrowski, K.; Wichmann, S.; Pyrc, J.; Steudte-Schmiedgen, S.; Kirschbaum, C. Hair cortisol predicts avoidance behavior and depressiveness after first-time and single-event trauma exposure in motor vehicle crash victims. Stress, 2020, 23(5), 567-576. doi: 10.1080/10253890.2020.1714585 PMID: 31939338
  56. Sopp, M.R.; Michael, T.; Lass-Hennemann, J.; Haim-Nachum, S.; Lommen, M.J.J. Longitudinal associations between hair cortisol, PTSD symptoms, and sleep disturbances in a sample of firefighters with duty-related trauma exposure. Psychoneuroendocrinology, 2021, 134, 105449. doi: 10.1016/j.psyneuen.2021.105449 PMID: 34687966
  57. Bob, P.; Touskova, T.P.; Pec, O.; Raboch, J.; Boutros, N.; Lysaker, P. Psychosocial stress, epileptic-like symptoms and psychotic experiences. Front. Psychol., 2022, 13, 804628. doi: 10.3389/fpsyg.2022.804628 PMID: 35496146
  58. Söder, E.; Clamor, A.; Lincoln, T.M. Hair cortisol concentrations as an indicator of potential HPA axis hyperactivation in risk for psychosis. Schizophr. Res., 2019, 212, 54-61. doi: 10.1016/j.schres.2019.08.012 PMID: 31455519
  59. Andersen, J.P.; Silver, R.C.; Stewart, B.; Koperwas, B.; Kirschbaum, C. Psychological and physiological responses following repeated peer death. PLoS One, 2013, 8(9), e75881. doi: 10.1371/journal.pone.0075881 PMID: 24086655
  60. Pacella, M.L.; Hruska, B.; Steudte-Schmiedgen, S.; George, R.L.; Delahanty, D.L. The utility of hair cortisol concentrations in the prediction of PTSD symptoms following traumatic physical injury. Soc. Sci. Med., 2017, 175(175), 228-234. doi: 10.1016/j.socscimed.2016.12.046 PMID: 28109728
  61. Schalinski, I.; Teicher, M.H.; Rockstroh, B. Early neglect is a key determinant of adult hair cortisol concentration and is associated with increased vulnerability to trauma in a transdiagnostic sample. Psychoneuroendocrinology, 2019, 108, 35-42. doi: 10.1016/j.psyneuen.2019.06.007 PMID: 31226659
  62. Behnke, A.; Karabatsiakis, A.; Krumbholz, A.; Karrasch, S.; Schelling, G.; Kolassa, I.T.; Rojas, R. Associating Emergency Medical Services personnel’s workload, trauma exposure, and health with the cortisol, endocannabinoid, and N-acylethanolamine concentrations in their hair. Sci. Rep., 2020, 10(1), 22403. doi: 10.1038/s41598-020-79859-x PMID: 33376241
  63. Hummel, K.V.; Schellong, J.; Trautmann, S.; Kummer, S.; Hürrig, S.; Klose, M.; Croy, I.; Weidner, K.; Kirschbaum, C.; Steudte-Schmiedgen, S. The predictive role of hair cortisol concentrations for treatment outcome in PTSD inpatients. Psychoneuroendocrinology, 2021, 131, 105326. doi: 10.1016/j.psyneuen.2021.105326 PMID: 34182250
  64. Basso, L.; Boecking, B.; Neff, P.; Brueggemann, P.; Peters, E.M.J.; Mazurek, B. Hair-cortisol and hair-BDNF as biomarkers of tinnitus loudness and distress in chronic tinnitus. Sci. Rep., 2022, 12(1), 1934. doi: 10.1038/s41598-022-04811-0 PMID: 35121746
  65. Fischer, S.; Duncko, R.; Hatch, S.L.; Papadopoulos, A.; Goodwin, L.; Frissa, S.; Hotopf, M.; Cleare, A.J. Sociodemographic, lifestyle, and psychosocial determinants of hair cortisol in a South London community sample. Psychoneuroendocrinology, 2017, 76, 144-153. doi: 10.1016/j.psyneuen.2016.11.011 PMID: 27923182
  66. Blake, D.D.; Weathers, F.W.; Nagy, L.M.; Kaloupek, D.G.; Gusman, F.D.; Charney, D.S.; Keane, T.M. The development of a clinician-administered PTSD scale. J. Trauma. Stress, 1995, 8(1), 75-90. doi: 10.1002/jts.2490080106 PMID: 7712061
  67. Weathers, F.W.; Blake, D.D.; Schnurr, P.P.; Kaloupek, D.G.; Marx, B.P.; Keane, T.M. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5). Available from: www.ptsd.va.gov
  68. Wittchen, H-U.; Pfister, H. DIA-X-Interviews: Manual für Screening-Verfahren und Interview; Interviewheft Längsschnittuntersuchung (DIA-X-Lifetime); Ergänzungsheft (DIA-X-Lifetime); Interviewheft Querschnittuntersuchung (DIA-X-12Monate); Ergänzungsheft (DIA-X-12Monate); PC-programm zur Durchführung des Interviews (Längs- und Querschnittuntersuchung); Auswertungsprogramm; Swets & Zeitlinger: Frankfurt/Main, 1997.
  69. Wittchen, H-U.; Schönfeld, S. CIDI-Military Version (MI).: unpublished manual and computer-assisted personal interview; Dresden, 2009.
  70. Mollica, R.F.; Caspi-Yavin, Y.; Bollini, P.; Truong, T.; Tor, S.; Lavelle, J. The Harvard Trauma questionnaire. Validating a cross-cultural instrument for measuring torture, trauma, and posttraumatic stress disorder in Indochinese refugees. J. Nerv. Ment. Dis., 1992, 180(2), 111-116. doi: 10.1097/00005053-199202000-00008 PMID: 1737972
  71. Weathers, F.W.; Blake, D.D.; Schnurr, P.P.; Kaloupek, D.G.; Marx, B.P.; Keane, T.M. The Life Events Checklist for DSM-5 (LEC-5). Available from: https://www.ptsd.va.gov/
  72. Wolfe, J.; Kimerling, R.; Brown, P.; Chrestman, K.; Levin, K. The Life Stressor Checklist-Revised (LSC-R) Measurement instrument. Available from: http://www.ptsd.va.gov
  73. Weathers, F.W.; Litz, B.T.; Keane, T.M.; Palmieri, P.A.; Marx, B.P.; Schnurr, P.P. The PTSD checklist for DSM-5 (PCL-5). 2015, 28(6), 489-98.
  74. Weathers, F.W.; Litz, B.T.; Herman, D.; Huska, J.; Keane, T.M. The PTSD checklist - civilian version (PCL-C); MA Natl. Cent. PTSD: Boston, 1994.
  75. Weathers, F.W.; Huska, J.; Keane, T.M. PCL-M for DSM-IV.
  76. Ouimette, P.; Wade, M.; Prins, A.; Schohn, M. Identifying PTSD in primary care: comparison of the Primary Care-PTSD screen (PC-PTSD) and the General Health Questionnaire-12 (GHQ). J. Anxiety Disord., 2008, 22(2), 337-343. doi: 10.1016/j.janxdis.2007.02.010 PMID: 17383853
  77. Foa, E. Posttraumatic Stress Diagnostic Scale Manual; National Computer Systems Inc., 1995.
  78. Carlier, I.V.E.; Gersons, B.P.R. Development of a scale for traumatic incidents in police officers. Psychiatr. Fenn., 1992, 59.
  79. Foa, E.B.; Riggs, D.S.; Dancu, C.V.; Rothbaum, B.O. Reliability and validity of a brief instrument for assessing post-traumatic stress disorder. J. Trauma. Stress, 1993, 6(4), 459-473. doi: 10.1002/jts.2490060405
  80. Wittchen, H-U.; Zaudig, M.; Fydrich, T. Strukturiertes Klinisches Interview für DSM-IV; Hogrefe, 1997.
  81. Hooper, L.M.; Stockton, P.; Krupnick, J.L.; Green, B.L. Development, use, and psychometric properties of the trauma history questionnaire. J. Loss Trauma, 2011, 16(3), 258-283. doi: 10.1080/15325024.2011.572035
  82. Castro-Vale, I.; Maia, A. War Exposure Questionnaire. 2012.
  83. Woud, M.L.; Blackwell, S.E.; Shkreli, L.; Würtz, F.; Cwik, J.C.; Margraf, J.; Holmes, E.A.; Steudte-Schmiedgen, S.; Herpertz, S.; Kessler, H. The effects of modifying dysfunctional appraisals in posttraumatic stress disorder using a form of cognitive bias modification: Results of a randomized controlled trial in an inpatient setting. Psychother. Psychosom., 2021, 90(6), 386-402. doi: 10.1159/000514166 PMID: 33621970
  84. Weiss, D.S.; Marmar, C.R. The Impact of Event Scale - Revised.Assessing psychological trauma and PTSD; Wilson, J.P; Keane, T.M., Ed.; Guilford Press: New York, 1996, pp. 399-411.
  85. Gray, M.J.; Litz, B.T.; Hsu, J.L.; Lombardo, T.W. Psychometric properties of the life events checklist. doi: 10.1177/1073191104269954
  86. Foa, E.B.; Ehlers, A.; Clark, D.M.; Tolin, D.F.; Orsillo, S.M. The Posttraumatic Cognitions Inventory (PTCI): Development and validation. Psychol. Assess., 1999, 11(3), 303-314. doi: 10.1037/1040-3590.11.3.303
  87. Behnke, A.; Rojas, R.; Karrasch, S.; Hitzler, M.; Kolassa, I.T. Deconstructing Traumatic Mission Experiences: Identifying critical incidents and their relevance for the mental and physical health among emergency medical service personnel. Front. Psychol., 2019, 10, 2305. doi: 10.3389/fpsyg.2019.02305 PMID: 31695639
  88. Elliott, D.M.; Briere, J. Sexual abuse trauma among professional women: Validating the Trauma Symptom Checklist-40 (TSC-40). Child Abuse Negl., 1992, 16(3), 391-398. doi: 10.1016/0145-2134(92)90048-V PMID: 1617473
  89. Maercker, A.; Augsburger, M. Developments in psychotraumatology: A conceptual, biological, and cultural update. Const. Polit. Econ., 2019, 1.
  90. Bryant, R.A. Post‐traumatic stress disorder: A state‐of‐the‐art review of evidence and challenges. World Psychiatry, 2019, 18(3), 259-269. doi: 10.1002/wps.20656 PMID: 31496089
  91. Schuler, K.; Ruggero, C.J.; Mahaffey, B.; Gonzalez, A.; L Callahan, J.; Boals, A.; Waszczuk, M.A.; Luft, B.J.; Kotov, R. When Hindsight Is Not 20/20: Ecological momentary assessment of PTSD symptoms versus retrospective report. Assessment, 2021, 28(1), 238-247. doi: 10.1177/1073191119869826 PMID: 31422682
  92. Trautmann, S.; Muehlhan, M.; Kirschbaum, C.; Wittchen, H.U.; Höfler, M.; Stalder, T.; Steudte-Schmiedgen, S. Biological stress indicators as risk markers for increased alcohol use following traumatic experiences. Addict. Biol., 2018, 23(1), 281-290. doi: 10.1111/adb.12487 PMID: 28105726
  93. Fischer, S.; King, S.; Papadopoulos, A.; Hotopf, M.; Young, A.H.; Cleare, A.J. Hair cortisol and childhood trauma predict psychological therapy response in depression and anxiety disorders. Acta Psychiatr. Scand., 2018, 138(6), 526-535. doi: 10.1111/acps.12970 PMID: 30302747
  94. Dalgleish, T.; Black, M.; Johnston, D.; Bevan, A. Transdiagnostic approaches to mental health problems: Current status and future directions. J. Consult. Clin. Psychol., 2020, 88(3), 179-195. doi: 10.1037/ccp0000482 PMID: 32068421
  95. Guzman, V.; Kenny, R.A.; Feeney, J. The impact of glucocorticoid medication use on hair cortisol and cortisone in older adults: Data from the Irish Longitudinal Study on Ageing. Psychoneuroendocrinology, 2020, 118, 104701. doi: 10.1016/j.psyneuen.2020.104701 PMID: 32474347
  96. Schelling, G.; Briegel, J.; Roozendaal, B.; Stoll, C.; Rothenhäusler, H.B.; Kapfhammer, H.P. The effect of stress doses of hydrocortisone during septic shock on posttraumatic stress disorder in survivors. Biol. Psychiatry, 2001, 50(12), 978-985. doi: 10.1016/S0006-3223(01)01270-7 PMID: 11750894
  97. Zohar, J.; Yahalom, H.; Kozlovsky, N.; Cwikel-Hamzany, S.; Matar, M.A.; Kaplan, Z.; Yehuda, R.; Cohen, H. High dose hydrocortisone immediately after trauma may alter the trajectory of PTSD: Interplay between clinical and animal studies. Eur. Neuropsychopharmacol., 2011, 21(11), 796-809. doi: 10.1016/j.euroneuro.2011.06.001 PMID: 21741804
  98. Grass, J.; Kirschbaum, C.; Miller, R.; Gao, W.; Steudte-Schmiedgen, S.; Stalder, T. Sweat-inducing physiological challenges do not result in acute changes in hair cortisol concentrations. Psychoneuroendocrinology, 2015, 53, 108-116. doi: 10.1016/j.psyneuen.2014.12.023 PMID: 25615913
  99. Russell, E.; Kirschbaum, C.; Laudenslager, M.L.; Stalder, T.; de Rijke, Y.; van Rossum, E.F.C.; Van Uum, S.; Koren, G. Toward standardization of hair cortisol measurement: Results of the first international interlaboratory round robin. Ther. Drug Monit., 2015, 37(1), 71-75. doi: 10.1097/FTD.0000000000000148 PMID: 25387254
  100. Ku, M.; Kim, J.; Won, J.E.; Kang, W.; Park, Y.G.; Park, J.; Lee, J.H.; Cheon, J.; Lee, H.H.; Park, J.U. Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv., 2020, 6(28), eabb2891. doi: 10.1126/sciadv.abb2891 PMID: 32923592
  101. Lee, H.B.; Meeseepong, M.; Trung, T.Q.; Kim, B.Y.; Lee, N.E. A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat. Biosens. Bioelectron., 2020, 156, 112133. doi: 10.1016/j.bios.2020.112133 PMID: 32174559
  102. Parlak, O.; Keene, S.T.; Marais, A.; Curto, V.F.; Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv., 2018, 4(7), eaar2904. doi: 10.1126/sciadv.aar2904 PMID: 30035216
  103. Mugo, S.M.; Alberkant, J. Flexible molecularly imprinted electrochemical sensor for cortisol monitoring in sweat. Anal. Bioanal. Chem., 2020, 412(8), 1825-1833. doi: 10.1007/s00216-020-02430-0 PMID: 32002581
  104. Kinnamon, D.; Ghanta, R.; Lin, K.C.; Muthukumar, S.; Prasad, S. Portable biosensor for monitoring cortisol in low-volume perspired human sweat. Sci. Rep., 2017, 7(1), 13312. doi: 10.1038/s41598-017-13684-7 PMID: 29042582
  105. Tseng, P.; Napier, B.; Garbarini, L.; Kaplan, D.L.; Omenetto, F.G. Functional, RF‐Trilayer sensors for tooth‐mounted, wireless monitoring of the oral cavity and food consumption. Adv. Mater., 2018, 30(18), 1703257. doi: 10.1002/adma.201703257 PMID: 29572979
  106. Sollberger, S.; Ehlert, U. How to use and interpret hormone ratios. Psychoneuroendocrinology, 2016, 63, 385-397. doi: 10.1016/j.psyneuen.2015.09.031 PMID: 26521052
  107. Schultebraucks, K.; Qian, M.; Abu-Amara, D.; Dean, K.; Laska, E.; Siegel, C.; Gautam, A.; Guffanti, G.; Hammamieh, R.; Misganaw, B.; Mellon, S.H.; Wolkowitz, O.M.; Blessing, E.M.; Etkin, A.; Ressler, K.J.; Doyle, F.J., III; Jett, M.; Marmar, C.R. Pre-deployment risk factors for PTSD in active-duty personnel deployed to Afghanistan: A machine-learning approach for analyzing multivariate predictors. Mol. Psychiatry, 2021, 26(9), 5011-5022. doi: 10.1038/s41380-020-0789-2 PMID: 32488126
  108. McLaughlin, K.A. Future directions in childhood adversity and youth psychopathology. Journal of clinical child and adolescent psychology : the official journal for the Society of Clinical Child and Adolescent Psychology, American Psychological Association, Division 53, 2016, 45, 361-382.
  109. Leeb, R.; Paulozzi, L.; Melanson, C.; Simin, T. Child maltreatment surveillance: Uniform definitions for public health and recommended data elements; Atlanta, GA, 2008.
  110. Anda, R.F.; Butchart, A.; Felitti, V.J.; Brown, D.W. Building a framework for global surveillance of the public health implications of adverse childhood experiences. Am. J. Prev. Med., 2010, 39(1), 93-98. doi: 10.1016/j.amepre.2010.03.015 PMID: 20547282
  111. Meier, M.; Lonsdorf, T.B.; Lupien, S.J.; Stalder, T.; Laufer, S.; Sicorello, M.; Linz, R.; Puhlmann, L.M.C. Open and reproducible science practices in psychoneuroendocrinology: Opportunities to foster scientific progress. Comprehensive Psychoneuroendocrinology, 2022, 11, 100144. doi: 10.1016/j.cpnec.2022.100144 PMID: 35757179

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers