Histaminergic System and Vestibular Function in Normal and Pathological Conditions


Cite item

Full Text

Abstract

:Most neurotransmitter systems are represented in the central and peripheral vestibular system and are thereby involved both in normal vestibular signal processing and the pathophysiology of vestibular disorders. However, there is a special relationship between the vestibular system and the histaminergic system. The purpose of this review is to document how the histaminergic system interferes with normal and pathological vestibular function. In particular, we will discuss neurobiological mechanisms such as neuroinflammation that involve histamine to modulate and allow restoration of balance function in the situation of a vestibular insult. These adaptive mechanisms represent targets of histaminergic pharmacological compounds capable of restoring vestibular function in pathological situations. The clinical use of drugs targeting the histaminergic system in various vestibular disorders is critically discussed.

About the authors

Brahim Tighilet

Laboratoire de Neurosciences Cognitives, Aix Marseille Université-CNRS,

Author for correspondence.
Email: info@benthamscience.net

Jessica Trico

Laboratoire de Neurosciences Cognitives, Aix Marseille Université-CNRS

Email: info@benthamscience.net

Emna Marouane

Laboratoire de Neurosciences Cognitives, Aix Marseille Université-CNRS

Email: info@benthamscience.net

Andreas Zwergal

Department of Neurology, LMU University Hospital

Email: info@benthamscience.net

Christian Chabbert

Laboratoire de Neurosciences Cognitives, Aix Marseille Université-CNRS

Email: info@benthamscience.net

References

  1. Kingma, H.; van de Berg, R. Anatomy, physiology, and physics of the peripheral vestibular system. Handb. Clin. Neurol., 2016, 137, 1-16. doi: 10.1016/B978-0-444-63437-5.00001-7 PMID: 27638059
  2. Angelaki, D.E.; Cullen, K.E. Vestibular system: The many facets of a multimodal sense. Annu. Rev. Neurosci., 2008, 31(1), 125-150. doi: 10.1146/annurev.neuro.31.060407.125555 PMID: 18338968
  3. Azzena, G.B.; Mameli, O.; Tolu, E. Distribution of visual input to the vestibular nuclei. Arch. Ital. Biol., 1980, 118(2), 196-204. PMID: 7469664
  4. Cullen, K.E. The vestibular system: Multimodal integration and encoding of self-motion for motor control. Trends Neurosci., 2012, 35(3), 185-196. doi: 10.1016/j.tins.2011.12.001 PMID: 22245372
  5. Gdowski, G.T.; McCrea, R.A. Neck proprioceptive inputs to primate vestibular nucleus neurons. Exp. Brain Res., 2000, 135(4), 511-526. doi: 10.1007/s002210000542 PMID: 11156315
  6. MacKinnon, C.D. Sensorimotor anatomy of gait, balance, and falls. Handb. Clin. Neurol., 2018, 159, 3-26. doi: 10.1016/B978-0-444-63916-5.00001-X PMID: 30482322
  7. McCall, A.A.; Miller, D.M.; DeMayo, W.M.; Bourdages, G.H.; Yates, B.J. Vestibular nucleus neurons respond to hindlimb movement in the conscious cat. J. Neurophysiol., 2016, 116(4), 1785-1794. doi: 10.1152/jn.00414.2016 PMID: 27440244
  8. Brandt, T.; Dieterich, M. Thalamocortical network: A core structure for integrative multimodal vestibular functions. Curr. Opin. Neurol., 2019, 32(1), 154-164. doi: 10.1097/WCO.0000000000000638 PMID: 30461462
  9. Waele, C.; Baudonniere, P.M.; Lepecq, J.C.; Huy, P.T.B.; Vodal, P.P. Vestibular projections in the human cortex. Exp. Brain Res., 2001, 141(4), 541-551. doi: 10.1007/s00221-001-0894-7 PMID: 11810147
  10. Dieterich, M.; Brandt, T. The parietal lobe and the vestibular system. Handb. Clin. Neurol., 2018, 151, 119-140. doi: 10.1016/B978-0-444-63622-5.00006-1 PMID: 29519455
  11. Lopez, C.; Blanke, O. The thalamocortical vestibular system in animals and humans. Brain Res. Brain Res. Rev., 2011, 67(1-2), 119-146. doi: 10.1016/j.brainresrev.2010.12.002 PMID: 21223979
  12. Lopez, C. Making sense of the body: The role of vestibular signals. Multisens. Res., 2015, 28(5-6), 525-557. doi: 10.1163/22134808-00002490 PMID: 26595955
  13. Lopez, C. The vestibular system. Curr. Opin. Neurol., 2016, 29(1), 74-83. doi: 10.1097/WCO.0000000000000286 PMID: 26679566
  14. Brandt, T.; Schautzer, F.; Hamilton, D.A.; Brüning, R.; Markowitsch, H.J.; Kalla, R.; Darlington, C.; Smith, P.; Strupp, M. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain, 2005, 128(11), 2732-2741. doi: 10.1093/brain/awh617 PMID: 16141283
  15. Brandt, T.; Dieterich, M. ‘Excess anxiety’ and ‘less anxiety’: Both depend on vestibular function. Curr. Opin. Neurol., 2020, 33(1), 136-141. doi: 10.1097/WCO.0000000000000771 PMID: 31743237
  16. Cullen, K.E. Vestibular processing during natural self-motion: implications for perception and action. Nat. Rev. Neurosci., 2019, 20(6), 346-363. doi: 10.1038/s41583-019-0153-1 PMID: 30914780
  17. Jacob, P.Y.; Poucet, B.; Liberge, M.; Save, E.; Sargolini, F. Vestibular control of entorhinal cortex activity in spatial navigation. Front. Integr. Nuerosci., 2014, 8, 38. doi: 10.3389/fnint.2014.00038 PMID: 24926239
  18. McKeown, J.; McGeoch, P.D.; Grieve, D.J. The influence of vestibular stimulation on metabolism and body composition. Diabet. Med., 2020, 37(1), 20-28. doi: 10.1111/dme.14166 PMID: 31667892
  19. Smith, P.F. Recent developments in the understanding of the interactions between the vestibular system, memory, the hippocampus, and the striatum. Front. Neurol., 2022, 13, 986302. doi: 10.3389/fneur.2022.986302 PMID: 36119673
  20. Tighilet, B.; Chabbert, C. Adult neurogenesis promotes balance recovery after vestibular loss. Prog. Neurobiol., 2019, 174, 28-35. doi: 10.1016/j.pneurobio.2019.01.001 PMID: 30658127
  21. Curthoys, I.S. Vestibular compensation and substitution. Curr. Opin. Neurol., 2000, 13(1), 27-30. doi: 10.1097/00019052-200002000-00006 PMID: 10719646
  22. Curthoys, I.S.; Halmagyi, G.M. Vestibular compensation: A review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss. J. Vestib. Res., 1995, 5(2), 67-107. doi: 10.3233/VES-1995-5201 PMID: 7743004
  23. Lacour, M.; Helmchen, C.; Vidal, P.P. Vestibular compensation: The neuro-otologist’s best friend. J. Neurol., 2016, 263(S1), 54-64. doi: 10.1007/s00415-015-7903-4 PMID: 27083885
  24. Smith, P.F.; Curthoys, I.S. Neuronal activity in the ipsilateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res., 1988, 444(2), 308-319. doi: 10.1016/0006-8993(88)90939-0 PMID: 3359298
  25. Smith, P.F.; Curthoys, I.S. Neuronal activity in the contralateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res., 1988, 444(2), 295-307. doi: 10.1016/0006-8993(88)90938-9 PMID: 3359297
  26. Zennou-Azogui, Y.; Borel, L.; Lacour, M.; Ez-Zaher, L.; Ouaknine, M. Recovery of head postural control following unilateral vestibular neurectomy in the cat. Neck muscle activity and neuronal correlates in Deiters’ nuclei. Acta Otolaryngol., 1993, 113(sup509), 5-19. doi: 10.3109/00016489309130556 PMID: 8285044
  27. Antons, M.; Lindner, M.; Eilles, E.; Günther, L.; Delker, A.; Branner, C.; Krämer, A.; Beck, R.; Oos, R.; Wuehr, M.; Ziegler, S.; Strupp, M.; Zwergal, A. Dose- and application route-dependent effects of betahistine on behavioral recovery and neuroplasticity after acute unilateral labyrinthectomy in rats. Front. Neurol., 2023, 14, 1175481. doi: 10.3389/fneur.2023.1175481 PMID: 37538257
  28. Darlington, C.L.; Smith, P.F. Molecular mechanisms of recovery from vestibular damage in mammals: Recent advances. Prog. Neurobiol., 2000, 62(3), 313-325. doi: 10.1016/S0301-0082(00)00002-2 PMID: 10840152
  29. Dieringer, N. ‘Vestibular compensation’: neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates. Prog. Neurobiol., 1995, 46(2-3), 97-129. PMID: 7568917
  30. Dutia, M.B. Mechanisms of vestibular compensation: Recent advances. Curr. Opin. Otolaryngol. Head Neck Surg., 2010, 18(5), 420-424. doi: 10.1097/MOO.0b013e32833de71f PMID: 20693901
  31. Grosch, M.; Lindner, M.; Bartenstein, P.; Brandt, T.; Dieterich, M.; Ziegler, S.; Zwergal, A. Dynamic whole-brain metabolic connectivity during vestibular compensation in the rat. Neuroimage, 2021, 226, 117588. doi: 10.1016/j.neuroimage.2020.117588 PMID: 33249212
  32. Lacour, M. Restoration of vestibular function: Basic aspects and practical advances for rehabilitation. Curr. Med. Res. Opin., 2006, 22(9), 1651-1659. doi: 10.1185/030079906X115694 PMID: 16968568
  33. Lacour, M.; Tighilet, B. Plastic events in the vestibular nuclei during vestibular compensation: The brain orchestration of a "deafferentation" code. Restor. Neurol. Neurosci., 2010, 28(1), 19-35. doi: 10.3233/RNN-2010-0509 PMID: 20086280
  34. Paterson, J.M.; Short, D.; Flatman, P.W.; Seckl, J.R.; Aitken, A.; Dutia, M.B. Changes in protein expression in the rat medial vestibular nuclei during vestibular compensation. J. Physiol., 2006, 575(3), 777-788. doi: 10.1113/jphysiol.2006.112409 PMID: 16825307
  35. Smith, P.F.; Curthoys, I.S. Mechanisms of recovery following unilateral labyrinthectomy: A review. Brain Res. Brain Res. Rev., 1989, 14(2), 155-180. doi: 10.1016/0165-0173(89)90013-1 PMID: 2665890
  36. Chen, Z.P.; Zhang, X.Y.; Peng, S.Y.; Yang, Z.Q.; Wang, Y.B.; Zhang, Y.X.; Chen, X.; Wang, J.J.; Zhu, J.N. Histamine H1 receptor contributes to vestibular compensation. J. Neurosci., 2019, 39(3), 420-433. doi: 10.1523/JNEUROSCI.1350-18.2018 PMID: 30413645
  37. Tighilet, B.; Mourre, C.; Trottier, S.; Lacour, M. Histaminergic ligands improve vestibular compensation in the cat: Behavioural, neurochemical and molecular evidence. Eur. J. Pharmacol., 2007, 568(1-3), 149-163. doi: 10.1016/j.ejphar.2007.04.052 PMID: 17573072
  38. Tighilet, B.; Léonard, J.; Watabe, I.; Bernard-Demanze, L.; Lacour, M. Betahistine treatment in a cat model of vestibular pathology: Pharmacokinetic and pharmacodynamic approaches. Front. Neurol., 2018, 9, 431. doi: 10.3389/fneur.2018.00431 PMID: 29942281
  39. Redon, C.; Lopez, C.; Bernard-Demanze, L.; Dumitrescu, M.; Magnan, J.; Lacour, M.; Borel, L. Betahistine treatment improves the recovery of static symptoms in patients with unilateral vestibular loss. J. Clin. Pharmacol., 2011, 51(4), 538-548. doi: 10.1177/0091270010369241 PMID: 20940335
  40. Brown, R.E.; Stevens, D.R.; Haas, H.L. The physiology of brain histamine. Prog. Neurobiol., 2001, 63(6), 637-672. doi: 10.1016/S0301-0082(00)00039-3 PMID: 11164999
  41. Katoh, Y.; Niimi, M.; Yamamoto, Y.; Kawamura, T.; Morimoto-Ishizuka, T.; Sawada, M.; Takemori, H.; Yamatodani, A. Histamine production by cultured microglial cells of the mouse. Neurosci. Lett., 2001, 305(3), 181-184. doi: 10.1016/S0304-3940(01)01835-3 PMID: 11403935
  42. Schwartz, J.C.; Arrang, J.M.; Garbarg, M.; Pollard, H.; Ruat, M. Histaminergic transmission in the mammalian brain. Physiol. Rev., 1991, 71(1), 1-51. doi: 10.1152/physrev.1991.71.1.1 PMID: 1846044
  43. Haas, H.; Panula, P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat. Rev. Neurosci., 2003, 4(2), 121-130. doi: 10.1038/nrn1034 PMID: 12563283
  44. Panula, P.; Yang, H.Y.; Costa, E. Histamine-containing neurons in the rat hypothalamus. Proc. Natl. Acad. Sci. USA, 1984, 81(8), 2572-2576. doi: 10.1073/pnas.81.8.2572 PMID: 6371818
  45. Panula, P.; Pirvola, U.; Auvinen, S.; Airaksinen, M.S. Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience, 1989, 28(3), 585-610. doi: 10.1016/0306-4522(89)90007-9 PMID: 2710333
  46. Tighilet, B.; Lacour, M. Distribution of histaminergic axonal fibres in the vestibular nuclei of the cat. Neuroreport, 1996, 7(4), 873-878. doi: 10.1097/00001756-199603220-00008 PMID: 8724664
  47. Hu, W.; Chen, Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol. Ther., 2017, 175, 116-132. doi: 10.1016/j.pharmthera.2017.02.039 PMID: 28223162
  48. Chang, R.S.L.; Tran, V.T.; Snyder, S.H. Heterogeneity of histamine H1-receptors: species variations in 3Hmepyramine binding of brain membranes. J. Neurochem., 1979, 32(6), 1653-1663. doi: 10.1111/j.1471-4159.1979.tb02276.x PMID: 448359
  49. Bárbara, A.; Aceves, J.; Arias-Montaño, J.A. Histamine H1 receptors in rat dorsal raphe nucleus: Pharmacological characterisation and linking to increased neuronal activity. Brain Res., 2002, 954(2), 247-255. doi: 10.1016/S0006-8993(02)03352-8 PMID: 12414108
  50. Korotkova, T.M.; Sergeeva, O.A.; Ponomarenko, A.A.; Haas, H.L. Histamine excites noradrenergic neurons in locus coeruleus in rats. Neuropharmacology, 2005, 49(1), 129-134. doi: 10.1016/j.neuropharm.2005.03.001 PMID: 15992588
  51. Bouthenet, M.L.; Ruat, M.; Sales, N.; Garbarg, M.; Schwartz, J.C. A detailed mapping of hist amine H1-receptors in guinea-pig central nervous system established by autoradiography with 125Iiodobolpyramine. Neuroscience, 1988, 26(2), 553-600. doi: 10.1016/0306-4522(88)90167-4 PMID: 3173689
  52. Jin, C.Y.; Panula, P. The laminar histamine receptor system in human prefrontal cortex suggests multiple levels of histaminergic regulation. Neuroscience, 2005, 132(1), 137-149. doi: 10.1016/j.neuroscience.2004.12.017 PMID: 15780473
  53. Yanai, K.; Tashiro, M. The physiological and pathophysiological roles of neuronal histamine: An insight from human positron emission tomography studies. Pharmacol. Ther., 2007, 113(1), 1-15. doi: 10.1016/j.pharmthera.2006.06.008 PMID: 16890992
  54. Kanba, S.; Richelson, E. Histamine H1 receptors in human brain labelled with 3HDoxepin. Brain Res., 1984, 304(1), 1-7. doi: 10.1016/0006-8993(84)90856-4 PMID: 6146381
  55. Martinez-Mir, M.I.; Pollard, H.; Moreau, J.; Arrang, J.M.; Ruat, M.; Traiffort, E.; Schwartz, J.C.; Palacios, J.M. Three histamine receptors (H1, H2 and H3) visualized in the brain of human and non-human primates. Brain Res., 1990, 526(2), 322-327. doi: 10.1016/0006-8993(90)91240-H PMID: 1979518
  56. Schneider, E.H.; Neumann, D.; Seifert, R. Modulation of behavior by the histaminergic system: Lessons from H1R-and H2R-deficient mice. Neurosci. Biobehav. Rev., 2014, 42, 252-266. doi: 10.1016/j.neubiorev.2014.03.009 PMID: 24661982
  57. Karlstedt, K.; Senkas, A.; Åhman, M.; Panula, P. Regional expression of the histamine H2 receptor in adult and developing rat brain. Neuroscience, 2001, 102(1), 201-208. doi: 10.1016/S0306-4522(00)00464-4 PMID: 11226684
  58. Vizuete, M.L.; Traiffort, E.; Bouthenet, M.L.; Ruat, M.; Souil, E.; Tardivel-Lacombe, J.; Schwartz, J.C. Detailed mapping of the histamine H2 receptor and its gene transcripts in guinea-pig brain. Neuroscience, 1997, 80(2), 321-343. doi: 10.1016/S0306-4522(97)00010-9 PMID: 9284338
  59. Traiffort, E.; Pollard, H.; Moreau, J.; Ruat, M.; Schwartz, J.C.; Martinez-Mir, M.I.; Palacios, J.M. Pharmacological characterization and autoradiographic localization of histamine H2 receptors in human brain identified with 125Iiodoaminopotentidine. J. Neurochem., 1992, 59(1), 290-299. doi: 10.1111/j.1471-4159.1992.tb08903.x PMID: 1351926
  60. Yoshikawa, T.; Nakamura, T.; Yanai, K. Histaminergic neurons in the tuberomammillary nucleus as a control center for wakefulness. Br. J. Pharmacol., 2021, 178(4), 750-769. doi: 10.1111/bph.15220 PMID: 32744724
  61. Chazot, P.L.; Hann, V.; Wilson, C.; Lees, G.; Thompson, C.L. Immunological identification of the mammalian H3 histamine receptor in the mouse brain. Neuroreport, 2001, 12(2), 259-262. doi: 10.1097/00001756-200102120-00016 PMID: 11209931
  62. Pollard, H.; Moreau, J.; Arrang, J.M.; Schwartz, J.C. A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neuroscience, 1993, 52(1), 169-189. doi: 10.1016/0306-4522(93)90191-H PMID: 8381924
  63. Pillot, C.; Heron, A.; Cochois, V.; Tardivel-Lacombe, J.; Ligneau, X.; Schwartz, J.C.; Arrang, J.M. A detailed mapping of the histamine H3 receptor and its gene transcripts in rat brain. Neuroscience, 2002, 114(1), 173-193. doi: 10.1016/S0306-4522(02)00135-5 PMID: 12207964
  64. Anichtchik, O.V.; Peitsaro, N.; Rinne, J.O.; Kalimo, H.; Panula, P. Distribution and modulation of histamine H(3) receptors in basal ganglia and frontal cortex of healthy controls and patients with Parkinson’s disease. Neurobiol. Dis., 2001, 8(4), 707-716. doi: 10.1006/nbdi.2001.0413 PMID: 11493035
  65. Strakhova, M.I.; Nikkel, A.L.; Manelli, A.M.; Hsieh, G.C.; Esbenshade, T.A.; Brioni, J.D.; Bitner, R.S. Localization of histamine H4 receptors in the central nervous system of human and rat. Brain Res., 2009, 1250, 41-48. doi: 10.1016/j.brainres.2008.11.018 PMID: 19046950
  66. Shan, L.; Bossers, K.; Luchetti, S.; Balesar, R.; Lethbridge, N.; Chazot, P.L.; Bao, A.M.; Swaab, D.F. Alterations in the histaminergic system in the substantia nigra and striatum of Parkinson’s patients: a postmortem study. Neurobiol. Aging, 2012, 33(7), 1488.e1-1488.e13. doi: 10.1016/j.neurobiolaging.2011.10.016 PMID: 22118942
  67. Schneider, E.H.; Seifert, R. The histamine H4-receptor and the central and peripheral nervous system: A critical analysis of the literature. Neuropharmacology, 2016, 106, 116-128. doi: 10.1016/j.neuropharm.2015.05.004 PMID: 25986697
  68. Tighilet, B.; Trottier, S.; Mourre, C.; Chotard, C.; Lacour, M. Betahistine dihydrochloride interaction with the histaminergic system in the cat: Neurochemical and molecular mechanisms. Eur. J. Pharmacol., 2002, 446(1-3), 63-73. doi: 10.1016/S0014-2999(02)01795-8 PMID: 12098586
  69. Tighilet, B.; Trottier, S.; Mourre, C.; Lacour, M. Changes in the histaminergic system during vestibular compensation in the cat. J. Physiol., 2006, 573(3), 723-739. doi: 10.1113/jphysiol.2006.107805 PMID: 16613878
  70. Ruat, M.; Traiffort, E.; Arrang, J.M.; Leurs, R.; Schwartz, J.C. Cloning and tissue expression of a rat histamine H2-receptor gene. Biochem. Biophys. Res. Commun., 1991, 179(3), 1470-1478. doi: 10.1016/0006-291X(91)91738-X PMID: 1930188
  71. Desmadryl, G.; Gaboyard-Niay, S.; Brugeaud, A.; Travo, C.; Broussy, A.; Saleur, A.; Dyhrfjeld-Johnsen, J.; Wersinger, E.; Chabbert, C. Histamine H 4 receptor antagonists as potent modulators of mammalian vestibular primary neuron excitability. Br. J. Pharmacol., 2012, 167(4), 905-916. doi: 10.1111/j.1476-5381.2012.02049.x PMID: 22624822
  72. Soto, E.; Vega, R. Neuropharmacology of vestibular system disorders. Curr. Neuropharmacol., 2010, 8(1), 26-40. doi: 10.2174/157015910790909511 PMID: 20808544
  73. Takumida, M.; Takumida, H.; Anniko, M. Localization of histamine (H1, H2, H3 and H4) receptors in mouse inner ear. Acta Otolaryngol., 2016, 136(6), 537-544. doi: 10.3109/00016489.2015.1136433 PMID: 26854127
  74. Wersinger, E.; Gaboyard-Niay, S.; Travo, C.; Soto, E.; Baez, A.; Vega, R.; Brugeaud, A.; Chabbert, C. Symptomatic treatment of vestibular deficits: Therapeutic potential of histamine H4 receptors. J. Vestib. Res., 2013, 23(3), 153-159. doi: 10.3233/VES-130493 PMID: 24177347
  75. Eatock, R.A.; Songer, J.E. Vestibular hair cells and afferents: Two channels for head motion signals. Annu. Rev. Neurosci., 2011, 34(1), 501-534. doi: 10.1146/annurev-neuro-061010-113710 PMID: 21469959
  76. Møller, M.N.; Kirkeby, S.; Vikeså, J.; Nielsen, F.C.; Caye-Thomasen, P. Expression of histamine receptors in the human endolymphatic sac: The molecular rationale for betahistine use in Menieres disease. Eur. Arch. Otorhinolaryngol., 2016, 273(7), 1705-1710. doi: 10.1007/s00405-015-3731-5 PMID: 26208913
  77. Housley, G.D.; Norris, C.H.; Guth, P.S. Histamine and related substances influence neurotransmission in the semicircular canal. Hear. Res., 1988, 35(1), 87-97. doi: 10.1016/0378-5955(88)90043-3 PMID: 3263349
  78. Chávez, H.; Vega, R.; Soto, E. Histamine (H3) receptors modulate the excitatory amino acid receptor response of the vestibular afferents. Brain Res., 2005, 1064(1-2), 1-9. doi: 10.1016/j.brainres.2005.10.027 PMID: 16310756
  79. Botta, L.; Mira, E.; Valli, S.; Perin, P.; Zucca, G.; Valli, P. Effects of betahistine on vestibular receptors of the frog. Acta Otolaryngol., 1998, 118(4), 519-523. doi: 10.1080/00016489850154658 PMID: 9726676
  80. Li, B.; Zhang, X-Y.; Yang, A-H.; Peng, X.C.; Chen, Z.P.; Zhou, J.Y.; Chan, Y.S.; Wang, J.J.; Zhu, J.N. Histamine increases neuronal excitability and sensitivity of the lateral vestibular nucleus and promotes motor behaviors via hcn channel coupled to H2 receptor. Front. Cell. Neurosci., 2017, 10, 300. doi: 10.3389/fnagi.2017.00300 PMID: 28119568
  81. Peng, S.Y.; Zhuang, Q.X.; He, Y.C.; Zhu, J.N.; Wang, J.J. Histamine excites neurons of the inferior vestibular nucleus in rats by activation of H1 and H2 receptors. Neurosci. Lett., 2013, 541, 87-92. doi: 10.1016/j.neulet.2013.02.040 PMID: 23466693
  82. Phelan, K.D.; Nakamura, J.; Gallagher, J.P. Histamine depolarizes rat medial vestibular nucleus neurons recorded intracellularly in vitro. Neurosci. Lett., 1990, 109(3), 287-292. doi: 10.1016/0304-3940(90)90009-X PMID: 2139500
  83. Serafin, M.; Khateb, A.; Vibert, N.; Vidal, P.P.; Mühlethaler, M. Medial vestibular nucleus in the guinea-pig: Histaminergic receptors. I. An in vitro study. Exp. Brain Res., 1993, 93(2), 242-248. doi: 10.1007/BF00228391 PMID: 8387929
  84. Wang, J.J.; Dutia, M.B. Effects of histamine and betahistine on rat medial vestibular nucleus neurones: Possible mechanism of action of anti-histaminergic drugs in vertigo and motion sickness. Exp. Brain Res., 1995, 105(1), 18-24. doi: 10.1007/BF00242178 PMID: 7589314
  85. Zhang, J.; Han, X.H.; Li, H.Z.; Zhu, J.N.; Wang, J.J. Histamine excites rat lateral vestibular nuclear neurons through activation of post-synaptic H2 receptors. Neurosci. Lett., 2008, 448(1), 15-19. doi: 10.1016/j.neulet.2008.10.027 PMID: 18938221
  86. Zhuang, Q.X.; Wu, Y.H.; Wu, G.Y.; Zhu, J.N.; Wang, J.J. Histamine excites rat superior vestibular nuclear neurons via postsynaptic H1 and H2 receptors in vitro. Neurosignals, 2013, 21(3-4), 174-183. doi: 10.1159/000341980 PMID: 23006827
  87. Takeda, N.; Morita, M.; Kubo, T.; Yamatodani, A.; Watanabe, T.; Wada, H.; Matsunaga, T. Histaminergic mechanism of motion sickness. Neurochemical and neuropharmacological studies in rats. Acta Otolaryngol., 1986, 101(5-6), 416-421. doi: 10.3109/00016488609108626 PMID: 3727976
  88. Horii, A.; Takeda, N.; Matsunaga, T.; Yamatodani, A.; Mochizuki, T.; Okakura-Mochizuki, K.; Wada, H. Effect of unilateral vestibular stimulation on histamine release from the hypothalamus of rats in vivo. J. Neurophysiol., 1993, 70(5), 1822-1826. doi: 10.1152/jn.1993.70.5.1822 PMID: 8294957
  89. Uno, A.; Takeda, N.; Horii, A.; Morita, M.; Yamamoto, Y.; Yamatodani, A.; Kubo, T. Histamine release from the hypothalamus induced by gravity change in rats and space motion sickness. Physiol. Behav., 1997, 61(6), 883-887. doi: 10.1016/S0031-9384(96)00613-0 PMID: 9177562
  90. Yabe, T.; de Waele, C.; Serafin, M.; Vibert, N.; Arrang, J.M.; Mühlethaler, M.; Vidal, P.P. Medial vestibular nucleus in the guinea-pig: Histaminergic receptors. Exp. Brain Res., 1993, 93(2), 249-258. doi: 10.1007/BF00228392 PMID: 8491265
  91. Tighilet, B.; Mourre, C.; Lacour, M. Plasticity of the histamine H3 receptors after acute vestibular lesion in the adult cat. Front. Integr. Nuerosci., 2014, 7, 87. doi: 10.3389/fnint.2013.00087 PMID: 24427120
  92. Tighilet, B.; Lacour, M. Histamine immunoreactivity changes in vestibular-lesioned and histaminergic-treated cats. Eur. J. Pharmacol., 1997, 330(1), 65-77. doi: 10.1016/S0014-2999(97)10124-8 PMID: 9228415
  93. Matsuyama, T.; Kayahara, T.; Nomura, J.; Nakano, K. Direct projections from the medial vestibular nucleus to the posterior hypothalamic area in the monkey (Macaca fuscata). Neurosci. Lett., 1996, 219(3), 199-202. doi: 10.1016/S0304-3940(96)13206-7 PMID: 8971814
  94. Kassner, S.S.; Schöttler, S.; Bonaterra, G.A.; Stern-Straeter, J.; Hormann, K.; Kinscherf, R.; Gössler, U.R. Proinflammatory activation of peripheral blood mononuclear cells in patients with vestibular neuritis. Audiol. Neurotol., 2011, 16(4), 242-247. doi: 10.1159/000320839 PMID: 20980744
  95. Strupp, M.; Bisdorff, A.; Furman, J.; Hornibrook, J.; Jahn, K.; Maire, R.; Newman-Toker, D.; Magnusson, M. Acute unilateral vestibulopathy/vestibular neuritis: Diagnostic criteria. J. Vestib. Res., 2022, 32(5), 389-406. doi: 10.3233/VES-220201 PMID: 35723133
  96. Le, T.N.; Westerberg, B.D.; Lea, J. Vestibular neuritis: Recent advances in etiology, diagnostic evaluation, and treatment. Adv. Otorhinolaryngol., 2019, 82, 87-92. doi: 10.1159/000490275 PMID: 30947184
  97. Goudakos, J.K.; Markou, K.D.; Franco-Vidal, V.; Vital, V.; Tsaligopoulos, M.; Darrouzet, V. Corticosteroids in the treatment of vestibular neuritis: A systematic review and meta-analysis. Otol. Neurotol., 2010, 31(2), 183-189. doi: 10.1097/MAO.0b013e3181ca843d PMID: 20009780
  98. Strupp, M.; Zingler, V.C.; Arbusow, V.; Niklas, D.; Maag, K.P.; Dieterich, M.; Bense, S.; Theil, D.; Jahn, K.; Brandt, T. Methylprednisolone, valacyclovir, or the combination for vestibular neuritis. N. Engl. J. Med., 2004, 351(4), 354-361. doi: 10.1056/NEJMoa033280 PMID: 15269315
  99. Fishman, J.M.; Burgess, C.; Waddell, A. Corticosteroids for the treatment of idiopathic acute vestibular dysfunction (vestibular neuritis). Cochrane Libr., 2011, (5), CD008607. doi: 10.1002/14651858.CD008607.pub2 PMID: 21563170
  100. Kim, G.; Seo, J.H.; Lee, S.J.; Lee, D.H. Therapeutic effect of steroids on vestibular neuritis: Systematic review and meta‐analysis. Clin. Otolaryngol., 2022, 47(1), 34-43. doi: 10.1111/coa.13880 PMID: 34687143
  101. Leong, K.J.; Lau, T.; Stewart, V.; Canetti, E.F.D. Systematic review and meta‐analysis: Effectiveness of corticosteroids in treating adults with acute vestibular neuritis. Otolaryngol. Head Neck Surg., 2021, 165(2), 255-266. doi: 10.1177/0194599820982910 PMID: 33525978
  102. Dutheil, S.; Brezun, J.M.; Leonard, J.; Lacour, M.; Tighilet, B. Neurogenesis and astrogenesis contribution to recovery of vestibular functions in the adult cat following unilateral vestibular neurectomy: cellular and behavioral evidence. Neuroscience, 2009, 164(4), 1444-1456. doi: 10.1016/j.neuroscience.2009.09.048 PMID: 19782724
  103. Dutheil, S.; Lacour, M.; Tighilet, B. Neurogenic potential of the vestibular nuclei and behavioural recovery time course in the adult cat are governed by the nature of the vestibular damage. PLoS One, 2011, 6(8), e22262. doi: 10.1371/journal.pone.0022262 PMID: 21853029
  104. Dutheil, S.; Watabe, I.; Sadlaoud, K.; Tonetto, A.; Tighilet, B. BDNF signaling promotes vestibular compensation by increasing neurogenesis and remodeling the expression of potassium-chloride cotransporter KCC2 and GABAA receptor in the vestibular Nuclei. J. Neurosci., 2016, 36(23), 6199-6212. doi: 10.1523/JNEUROSCI.0945-16.2016 PMID: 27277799
  105. Rastoldo, G.; El Mahmoudi, N.; Marouane, E.; Pericat, D.; Watabe, I.; Toneto, A.; López-Juárez, A.; Chabbert, C.; Tighilet, B. Adult and endemic neurogenesis in the vestibular nuclei after unilateral vestibular neurectomy. Prog. Neurobiol., 2021, 196, 101899. doi: 10.1016/j.pneurobio.2020.101899 PMID: 32858093
  106. Campos, T.A.; Vidal, P.P.; de Waele, C. Evidence for a microglial reaction within the vestibular and cochlear nuclei following inner ear lesion in the rat. Neuroscience, 1999, 92(4), 1475-1490. doi: 10.1016/S0306-4522(99)00078-0 PMID: 10426501
  107. Campos-Torres, A.; Touret, M.; Vidal, P.P.; Barnum, S.; de Waele, C. The differential response of astrocytes within the vestibular and cochlear nuclei following unilateral labyrinthectomy or vestibular afferent activity blockade by transtympanic tetrodotoxin injection in the rat. Neuroscience, 2005, 130(4), 853-865. doi: 10.1016/j.neuroscience.2004.08.052 PMID: 15652984
  108. Waele, C.; Torres, A.C.; Josset, P.; Vidal, P.P. Evidence for reactive astrocytes in rat vestibular and cochlear nuclei following unilateral inner ear lesion. Eur. J. Neurosci., 1996, 8(9), 2006-2018. doi: 10.1111/j.1460-9568.1996.tb01344.x PMID: 8921291
  109. Liberge, M.; Manrique, C.; Bernard-Demanze, L.; Lacour, M. Changes in TNFα, NFκB and MnSOD protein in the vestibular nuclei after unilateral vestibular deafferentation. J. Neuroinflammation, 2010, 7(1), 91. doi: 10.1186/1742-2094-7-91 PMID: 21143912
  110. Vignaux, G.; Chabbert, C.; Gaboyard-Niay, S.; Travo, C.; Machado, M.L.; Denise, P.; Comoz, F.; Hitier, M.; Landemore, G.; Philoxène, B.; Besnard, S. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats. Toxicol. Appl. Pharmacol., 2012, 258(1), 61-71. doi: 10.1016/j.taap.2011.10.008 PMID: 22023963
  111. Zwergal, A.; Günther, L.; Brendel, M. 2017.https://www.frontiersin.org/article/10.3389/fneur.2017.00665
  112. Flook, M.; Frejo, L.; Gallego-Martinez, A.; Martin-Sanz, E.; Rossi-Izquierdo, M.; Amor-Dorado, J.C.; Soto-Varela, A.; Santos-Perez, S.; Batuecas-Caletrio, A.; Espinosa-Sanchez, J.M.; Pérez-Carpena, P.; Martinez-Martinez, M.; Aran, I.; Lopez-Escamez, J.A. Differential proinflammatory signature in vestibular migraine and meniere disease. Front. Immunol., 2019, 10, 1229. doi: 10.3389/fimmu.2019.01229 PMID: 31214186
  113. Karve, I.P.; Taylor, J.M.; Crack, P.J. The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol., 2016, 173(4), 692-702. doi: 10.1111/bph.13125 PMID: 25752446
  114. Dong, H.; Zhang, W.; Zeng, X.; Hu, G.; Zhang, H.; He, S.; Zhang, S. Histamine induces upregulated expression of histamine receptors and increases release of inflammatory mediators from microglia. Mol. Neurobiol., 2014, 49(3), 1487-1500. doi: 10.1007/s12035-014-8697-6 PMID: 24752587
  115. Xu, J.; Zhang, X.; Qian, Q.; Wang, Y.; Dong, H.; Li, N.; Qian, Y.; Jin, W. Histamine upregulates the expression of histamine receptors and increases the neuroprotective effect of astrocytes. J. Neuroinflammation, 2018, 15(1), 41. doi: 10.1186/s12974-018-1068-x PMID: 29433511
  116. Frick, L.; Rapanelli, M.; Abbasi, E.; Ohtsu, H.; Pittenger, C. Histamine regulation of microglia: Gene-environment interaction in the regulation of central nervous system inflammation. Brain Behav. Immun., 2016, 57, 326-337. doi: 10.1016/j.bbi.2016.07.002 PMID: 27381299
  117. Barata-Antunes, S.; Cristóvão, A.C.; Pires, J.; Rocha, S.M.; Bernardino, L. Dual role of histamine on microglia-induced neurodegeneration. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(3), 764-769. doi: 10.1016/j.bbadis.2016.12.016 PMID: 28057587
  118. Ferreira, R.; Santos, T.; Gonçalves, J.; Baltazar, G.; Ferreira, L.; Agasse, F.; Bernardino, L. Histamine modulates microglia function. J. Neuroinflammation, 2012, 9(1), 90. doi: 10.1186/1742-2094-9-90 PMID: 22569158
  119. Lenz, K.M.; Pickett, L.A.; Wright, C.L.; Davis, K.T.; Joshi, A.; McCarthy, M.M. Mast cells in the developing brain determine adult sexual behavior. J. Neurosci., 2018, 38(37), 8044-8059. doi: 10.1523/JNEUROSCI.1176-18.2018 PMID: 30093566
  120. Rocha, S.M.; Saraiva, T.; Cristóvão, A.C.; Ferreira, R.; Santos, T.; Esteves, M.; Saraiva, C.; Je, G.; Cortes, L.; Valero, J.; Alves, G.; Klibanov, A.; Kim, Y.S.; Bernardino, L. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. J. Neuroinflammation, 2016, 13(1), 137. doi: 10.1186/s12974-016-0600-0 PMID: 27260166
  121. Zhang, W.; Zhang, X.; Zhang, Y.; Qu, C.; Zhou, X.; Zhang, S. Histamine induces microglia activation and the release of proinflammatory mediators in rat brain via H1R or H4R. J. Neuroimmune Pharmacol., 2020, 15(2), 280-291. doi: 10.1007/s11481-019-09887-6 PMID: 31863333
  122. Zhu, J.; Qu, C.; Lu, X.; Zhang, S. Activation of microglia by histamine and substance P. Cell. Physiol. Biochem., 2014, 34(3), 768-780. doi: 10.1159/000363041 PMID: 25170632
  123. Rocha, S.M.; Pires, J.; Esteves, M. Histamine: A new immunomodulatory player in the neuron-glia crosstalk. Front Cell Neurosci., 2014, 8, 120. Available from: https://www.frontiersin.org/article/10.3389/fncel.2014.00120 (2014, accessed 17 January 2022). doi: 10.3389/fncel.2014.00120
  124. Elenkov, I.J.; Webster, E.; Papanicolaou, D.A.; Fleisher, T.A.; Chrousos, G.P.; Wilder, R.L. Histamine potently suppresses human IL-12 and stimulates IL-10 production via H2 receptors. J. Immunol., 1998, 161(5), 2586-2593. doi: 10.4049/jimmunol.161.5.2586 PMID: 9725260
  125. Mazzoni, A.; Young, H.A.; Spitzer, J.H.; Visintin, A.; Segal, D.M. Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J. Clin. Invest., 2001, 108(12), 1865-1873. doi: 10.1172/JCI200113930 PMID: 11748270
  126. Morichika, T.; Takahashi, H.K.; Iwagaki, H.; Yoshino, T.; Tamura, R.; Yokoyama, M.; Mori, S.; Akagi, T.; Nishibori, M.; Tanaka, N. Histamine inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production in an intercellular adhesion molecule-1- and B7.1-dependent manner. J. Pharmacol. Exp. Ther., 2003, 304(2), 624-633. doi: 10.1124/jpet.102.042515 PMID: 12538815
  127. Takahashi, H.K.; Morichika, T.; Iwagaki, H.; Tamura, R.; Kubo, S.; Yoshino, T.; Mori, S.; Akagi, T.; Tanaka, N.; Nishibori, M. Histamine downregulates CD14 expression via H2 receptorson human monocytes. Clin. Immunol., 2003, 108(3), 274-281. doi: 10.1016/S1521-6616(03)00140-2 PMID: 14499251
  128. Aldinucci, A.; Bonechi, E.; Manuelli, C.; Nosi, D.; Masini, E.; Passani, M.B.; Ballerini, C. Histamine regulates actin cytoskeleton in human toll-like receptor 4-activated monocyte-derived dendritic cells tuning CD4+ T lymphocyte response. J. Biol. Chem., 2016, 291(28), 14803-14814. doi: 10.1074/jbc.M116.720680 PMID: 27226579
  129. Iida, T.; Yoshikawa, T.; Matsuzawa, T.; Naganuma, F.; Nakamura, T.; Miura, Y.; Mohsen, A.S.; Harada, R.; Iwata, R.; Yanai, K. Histamine H 3 receptor in primary mouse microglia inhibits chemotaxis, phagocytosis, and cytokine secretion. Glia, 2015, 63(7), 1213-1225. doi: 10.1002/glia.22812 PMID: 25754956
  130. Li, H.; Godfrey, D.A.; Rubin, A.M. Astrocyte reaction in the rat vestibular nuclei after unilateral removal of Scarpa’s ganglion. Ann. Otol. Rhinol. Laryngol., 1999, 108(2), 181-188. doi: 10.1177/000348949910800214 PMID: 10030238
  131. El Mahmoudi, N.; Rastoldo, G.; Marouane, E.; Péricat, D.; Watabe, I.; Tonetto, A.; Hautefort, C.; Chabbert, C.; Sargolini, F.; Tighilet, B. Breaking a dogma: acute anti-inflammatory treatment alters both post-lesional functional recovery and endogenous adaptive plasticity mechanisms in a rodent model of acute peripheral vestibulopathy. J. Neuroinflammation, 2021, 18(1), 183. doi: 10.1186/s12974-021-02222-y PMID: 34419105
  132. Marouane, E.; El Mahmoudi, N.; Rastoldo, G.; Péricat, D.; Watabe, I.; Lapôtre, A.; Tonetto, A.; Xavier, F.; Dumas, O.; Chabbert, C.; Artzner, V.; Tighilet, B. Sensorimotor rehabilitation promotes vestibular compensation in a rodent model of acute peripheral vestibulopathy by promoting microgliogenesis in the deafferented vestibular nuclei. Cells, 2021, 10(12), 3377. doi: 10.3390/cells10123377 PMID: 34943885
  133. Rastoldo, G.; Marouane, E.; El-Mahmoudi, N.; Péricat, D.; Watabe, I.; Lapotre, A.; Tonetto, A.; López-Juárez, A.; El-Ahmadi, A.; Caron, P.; Fraysse, M.J.E.; Chabbert, C.; Zwergal, A.; Tighilet, B. L-Thyroxine improves vestibular compensation in a rat model of acute peripheral vestibulopathy: Cellular and behavioral aspects. Cells, 2022, 11(4), 684. doi: 10.3390/cells11040684 PMID: 35203333
  134. El Mahmoudi, N.; Marouane, E.; Rastoldo, G.; Pericat, D.; Watabe, I.; Lapotre, A.; Tonetto, A.; Chabbert, C.; Tighilet, B. Microglial dynamics modulate vestibular compensation in a rodent model of vestibulopathy and condition the expression of plasticity mechanisms in the deafferented vestibular nuclei. Cells, 2022, 11(17), 2693. doi: 10.3390/cells11172693 PMID: 36078101
  135. Wang, J.; Liu, B.; Sun, F.; Xu, Y.; Luan, H.; Yang, M.; Wang, C.; Zhang, T.; Zhou, Z.; Yan, H. Histamine H3R antagonist counteracts the impaired hippocampal neurogenesis in Lipopolysaccharide-induced neuroinflammation. Int. Immunopharmacol., 2022, 110, 109045. doi: 10.1016/j.intimp.2022.109045 PMID: 35978505
  136. Saraiva, C.; Barata-Antunes, S.; Santos, T.; Ferreiro, E.; Cristóvão, A.C.; Serra-Almeida, C.; Ferreira, R.; Bernardino, L. Histamine modulates hippocampal inflammation and neurogenesis in adult mice. Sci. Rep., 2019, 9(1), 8384. doi: 10.1038/s41598-019-44816-w PMID: 31182747
  137. Frejo, L.; Lopez-Escamez, J.A. Cytokines and inflammation in meniere disease. Clin. Exp. Otorhinolaryngol., 2022, 15(1), 49-59. doi: 10.21053/ceo.2021.00920 PMID: 35124944
  138. Chabbert, C. Principles of vestibular pharmacotherapy. Handb. Clin. Neurol., 2016, 137, 207-218.
  139. Zwergal, A.; Strupp, M.; Brandt, T. Advances in pharmacotherapy of vestibular and ocular motor disorders. Expert Opin. Pharmacother., 2019, 20(10), 1267-1276. doi: 10.1080/14656566.2019.1610386 PMID: 31030580
  140. Lacour, M.; Sterkers, O. Histamine and betahistine in the treatment of vertigo: Elucidation of mechanisms of action. CNS Drugs, 2001, 15(11), 853-870. doi: 10.2165/00023210-200115110-00004 PMID: 11700150
  141. Lin, E.; Aligene, K. Pharmacology of balance and dizziness. NeuroRehabilitation, 2013, 32(3), 529-542. doi: 10.3233/NRE-130875 PMID: 23648607
  142. Soto, E.; Vega, R.; Seseña, E. Neuropharmacological basis of vestibular system disorder treatment. J. Vestib. Res., 2013, 23(3), 119-137. doi: 10.3233/VES-130494 PMID: 24177345
  143. Venail, F.; Attali, P.; Wersinger, E.; Gomeni, R.; Poli, S.; Schmerber, S. Safety, tolerability, pharmacokinetics and pharmacokinetic‐pharmacodynamic modelling of the novel H 4 receptor inhibitor SENS‐111 using a modified caloric test in healthy subjects. Br. J. Clin. Pharmacol., 2018, 84(12), 2836-2848. doi: 10.1111/bcp.13744 PMID: 30152527
  144. Fermin, H.; Van Deinse, J.B.; Hammelburg, E. The effect of dimenhydrinate upon the labyrinth; (an experimental study). Acta Otolaryngol., 1950, 38(6), 543-549. doi: 10.3109/00016485009118417 PMID: 14856685
  145. Halpert, A.; Olmstead, M.C.; Beninger, R.J. Mechanisms and abuse liability of the anti-histamine dimenhydrinate. Neurosci. Biobehav. Rev., 2002, 26(1), 61-67. doi: 10.1016/S0149-7634(01)00038-0 PMID: 11835984
  146. Jaju, B.P.; Wang, S.C. Effects of diphenhydramine and dimenhydrinate on vestibular neuronal activity of cat: A search for the locus of their antimotion sickness action. J. Pharmacol. Exp. Ther., 1971, 176(3), 718-724. PMID: 4329456
  147. Kirtane, M.V.; Bhandari, A.; Narang, P.; Santani, R. Cinnarizine: A contemporary review. Indian J. Otolaryngol. Head Neck Surg., 2019, 71(S2), 1060-1068. doi: 10.1007/s12070-017-1120-7 PMID: 31750127
  148. Mangabeira-Albernaz, P.L.; Ganança, M.M.; Novo, N.F.; de Paiva, E.R. Flunarizine and cinnarizine as vestibular depressants. A statistical study. ORL J. Otorhinolaryngol. Relat. Spec., 1978, 40(2), 92-100. doi: 10.1159/000275391 PMID: 311458
  149. Haasler, T.; Homann, G.; Duong, D.T.A.; Jüngling, E.; Westhofen, M.; Lückhoff, A. Pharmacological modulation of transmitter release by inhibition of pressure-dependent potassium currents in vestibular hair cells. Naunyn Schmiedebergs Arch. Pharmacol., 2009, 380(6), 531-538. doi: 10.1007/s00210-009-0463-3 PMID: 19830405
  150. Overstall, P.W.; Hazell, J.W.P.; Johnson, A.L. Vertigo in the elderly. Age Ageing, 1981, 10(2), 105-109. doi: 10.1093/ageing/10.2.105 PMID: 7246334
  151. Ehlert, F.J.; Yamamura, H.I. A comparison of the effects of cinnarizine and related compounds on 3Hnitrendipine binding in the brain, heart and ileum. Life Sci., 1984, 34(24), 2347-2355. doi: 10.1016/0024-3205(84)90421-1 PMID: 6328164
  152. Fujimoto, S.; Sasa, M.; Takaori, S.; Matsuoka, I. Selective effect of cinnarizine on the vestibular nucleus neurons. Arch. Otorhinolaryngol., 1978, 221(1), 37-45. doi: 10.1007/BF00456382 PMID: 697647
  153. Hahn, A.; Novotný, M.; Shotekov, P.M.; Cirek, Z.; Bognar-Steinberg, I.; Baumann, W. Comparison of cinnarizine/dimenhy-drinate fixed combination with the respective monotherapies for vertigo of various origins: A randomized, double-blind, active-controlled, multicentre study. Clin. Drug Investig., 2011, 31(6), 371-383. doi: 10.2165/11588920-000000000-00000 PMID: 21401214
  154. Scholtz, A.W.; Ilgner, J.; Loader, B.; Pritschow, B.W.; Weisshaar, G. Cinnarizine and dimenhydrinate in the treatment of vertigo in medical practice. Wien. Klin. Wochenschr., 2016, 128(9-10), 341-347. doi: 10.1007/s00508-015-0905-5 PMID: 26659910
  155. Plescia, F.; Salvago, P.; Dispenza, F.; Messina, G.; Cannizzaro, E.; Martines, F. Efficacy and pharmacological appropriateness of cinnarizine and dimenhydrinate in the treatment of vertigo and related symptoms. Int. J. Environ. Res. Public Health, 2021, 18(9), 4787. doi: 10.3390/ijerph18094787 PMID: 33946152
  156. Scholtz, A.W.; Hahn, A.; Stefflova, B.; Medzhidieva, D.; Ryazantsev, S.V.; Paschinin, A.; Kunelskaya, N.; Schumacher, K.; Weisshaar, G. Efficacy and safety of a fixed combination of cinnarizine 20 mg and dimenhydrinate 40 mg vs betahistine dihydrochloride 16 mg in patients with peripheral vestibular vertigo: A prospective, multinational, multicenter, double-blind, randomized, non-inferiority clinical trial. Clin. Drug Investig., 2019, 39(11), 1045-1056. doi: 10.1007/s40261-019-00858-6 PMID: 31571128
  157. Scholtz, A.W.; Waldfahrer, F.; Hampel, R.; Weisshaar, G. Efficacy and safety of a fixed-dose combination of cinnarizine 20 mg and dimenhydrinate 40 mg in the treatment of patients with vestibular vertigo: An individual patient data meta-analysis of randomised, double-blind, controlled clinical trials. Clin. Drug Investig., 2022, 42(9), 705-720. doi: 10.1007/s40261-022-01184-0 PMID: 35864302
  158. Taghdiri, F.; Togha, M.; Razeghi, J.S.; Refaeian, F. Cinnarizine for the prophylaxis of migraine associated vertigo: A retrospective study. Springerplus, 2014, 3(1), 231. doi: 10.1186/2193-1801-3-231 PMID: 24834377
  159. Teggi, R.; Colombo, B.; Gatti, O.; Comi, G.; Bussi, M. Fixed combination of cinnarizine and dimenhydrinate in the prophylactic therapy of vestibular migraine: An observational study. Neurol. Sci., 2015, 36(10), 1869-1873. doi: 10.1007/s10072-015-2270-6 PMID: 26037548
  160. Corvera, J.; Corvera-Behar, G.; Lapilover, V.; Ysunza, A. Objective evaluation of the effect of flunarizine on vestibular neuritis. Otol. Neurotol., 2002, 23(6), 933-937. doi: 10.1097/00129492-200211000-00020 PMID: 12438858
  161. Rashid, S.M.U.; Sumaria, S.; Koohi, N.; Arshad, Q.; Kaski, D. Patient experience of flunarizine for vestibular migraine: Single centre observational study. Brain Sci., 2022, 12(4), 415. doi: 10.3390/brainsci12040415 PMID: 35447947
  162. Yiannakis, C.; Hamilton, L.; Slim, M.; Kontorinis, G. A systematic review and meta-analysis of prophylactic medication of vestibular migraine. J. Laryngol. Otol., 2023, 137(9), 953-961. doi: 10.1017/S0022215122001979 PMID: 36200521
  163. Jeck-Thole, S.; Wagner, W. Betahistine. Drug Saf., 2006, 29(11), 1049-1059. doi: 10.2165/00002018-200629110-00004 PMID: 17061910
  164. Murdin, L.; Hussain, K.; Schilder, A.G. Betahistine for symptoms of vertigo. Cochrane Database Syst. Rev., 2016, 2016(6), CD010696. doi: 10.1002/14651858.CD010696 PMID: 27327415
  165. Bertlich, M.; Ihler, F.; Sharaf, K.; Weiss, B.G.; Strupp, M.; Canis, M. Betahistine metabolites, aminoethylpyridine, and hydroxyethylpyridine increase cochlear blood flow in guinea pigs in vivo. Int. J. Audiol., 2014, 53(10), 753-759. doi: 10.3109/14992027.2014.917208 PMID: 25014609
  166. Ihler, F.; Bertlich, M.; Sharaf, K.; Strieth, S.; Strupp, M.; Canis, M. Betahistine exerts a dose-dependent effect on cochlear stria vascularis blood flow in guinea pigs in vivo. PLoS One, 2012, 7(6), e39086. doi: 10.1371/journal.pone.0039086 PMID: 22745706
  167. Laurikainen, E.A.; Miller, J.M.; Quirk, W.S.; Kallinen, J.; Ren, T.; Nuttall, A.L.; Grénman, R.; Virolainen, E. Betahistine-induced vascular effects in the rat cochlea. Am. J. Otol., 1993, 14(1), 24-30. PMID: 8424471
  168. Martinez, D.M. The effect of Serc (betahistine hydrochloride) on the circulation of the inner ear in experimental animals. Acta Otolaryngol., 1972, 74(sup305), 29-47. doi: 10.3109/00016487209122697 PMID: 4353749
  169. Bertlich, M.; Ihler, F.; Freytag, S.; Weiss, B.G.; Strupp, M.; Canis, M. Histaminergic H-3-heteroreceptors as a potential mediator of betahistine-induced increase in cochlear blood flow. Audiol. Neurotol., 2015, 20(5), 283-293. doi: 10.1159/000368293 PMID: 26139562
  170. Bertlich, M.; Ihler, F.; Weiss, B.G.; Freytag, S.; Strupp, M.; Jakob, M.; Canis, M. Role of capillary pericytes and precapillary arterioles in the vascular mechanism of betahistine in a guinea pig inner ear model. Life Sci., 2017, 187, 17-21. doi: 10.1016/j.lfs.2017.08.015 PMID: 28818391
  171. Dziadziola, J.K.; Laurikainen, E.L.; Rachel, J.D.; Quirk, W.S. Betahistine increases vestibular blood flow. Otolaryngol. Head Neck Surg., 1999, 120(3), 400-405. doi: 10.1016/S0194-5998(99)70283-4 PMID: 10064646
  172. Laurikainen, E.; Miller, J.M.; Quirk, W.S.; Nuttall, A.L. The vascular mechanism of action of betahistine in the inner ear of the guinea pig. Eur. Arch. Otorhinolaryngol., 1998, 255(3), 119-123. doi: 10.1007/s004050050025 PMID: 9561856
  173. Dyhrfjeld-Johnsen, J.; Attali, P. Management of peripheral vertigo with antihistamines: New options on the horizon. Br. J. Clin. Pharmacol., 2019, 85(10), 2255-2263. doi: 10.1111/bcp.14046 PMID: 31269270
  174. Adrion, C.; Fischer, C.S.; Wagner, J.; Gürkov, R.; Mansmann, U.; Strupp, M. Efficacy and safety of betahistine treatment in patients with Meniere’s disease: Primary results of a long term, multicentre, double blind, randomised, placebo controlled, dose defining trial (BEMED trial). BMJ, 2016, 352, h6816. doi: 10.1136/bmj.h6816 PMID: 26797774
  175. Lezius, F.; Adrion, C.; Mansmann, U.; Jahn, K.; Strupp, M. High-dosage betahistine dihydrochloride between 288 and 480 mg/day in patients with severe Menière’s disease: a case series. Eur. Arch. Otorhinolaryngol., 2011, 268(8), 1237-1240. doi: 10.1007/s00405-011-1647-2 PMID: 21626121
  176. Liu, J.L.; Liu, J.G.; Chen, X.B.; Liu, Y.H. The benefits of betahistine or vestibular rehabilitation (Tetrax biofeedback) on the quality of life and fall risk in patients with Ménière’s disease. J. Laryngol. Otol., 2020, 134(12), 1073-1076. doi: 10.1017/S0022215120002509 PMID: 33280619
  177. Nauta, J.J.P. Meta-analysis of clinical studies with betahistine in Ménière’s disease and vestibular vertigo. Eur. Arch. Otorhinolaryngol., 2014, 271(5), 887-897. doi: 10.1007/s00405-013-2596-8 PMID: 23778722
  178. Ramos, A.R.; Ledezma, R.J.G.; Navas, R. A.; Cardenas Nuñez, J.L.; Rodríguez, M.V.; Deschamps, J.J.; Liviac, T.J.A. Use of betahistine in the treatment of peripheral vertigo. Acta Otolaryngol., 2015, 135(12), 1205-1211. doi: 10.3109/00016489.2015.1072873 PMID: 26245698
  179. Sanchez-Vanegas, G.; Castro-Moreno, C.; Buitrago, D. Betahistine in the treatment of peripheral vestibular vertigo: Results of a real-life study in primary care. Ear Nose Throat J., 2020, 99(6), 356-360. doi: 10.1177/0145561319849946 PMID: 31111729
  180. Van Esch, B.; van der Zaag-Loonen, H.; Bruintjes, T.; van Benthem, P.P. Betahistine in ménière’s disease or syndrome: A systematic review. Audiol. Neurotol., 2022, 27(1), 1-33. doi: 10.1159/000515821 PMID: 34233329
  181. Tighilet, B.; Leonard, J.; Lacour, M. Betahistine dihydrochloride treatment facilitates vestibular compensation in the cat. J. Vestib. Res., 1995, 5(1), 53-66. doi: 10.3233/VES-1995-5106 PMID: 7711948
  182. Fukuda, J.; Matsuda, K.; Sato, G.; Kitahara, T.; Matsuoka, M.; Azuma, T.; Kitamura, Y.; Tomita, K.; Takeda, N. Effects of betahistine on the development of vestibular compensation after unilateral labyrinthectomy in rats. Brain Sci., 2021, 11(3), 360. doi: 10.3390/brainsci11030360 PMID: 33799856
  183. Zhang, Y.X.; Wang, H.X.; Li, Q.X.; Chen, A.X.; Wang, X.X.; Zhou, S.; Xie, S.T.; Li, H.Z.; Wang, J.J.; Zhang, Q.; Zhang, X.Y.; Zhu, J.N. A comparative study of vestibular improvement and gastrointestinal effect of betahistine and gastrodin in mice. Biomed. Pharmacother., 2022, 153, 113344. doi: 10.1016/j.biopha.2022.113344 PMID: 35780620
  184. Tian, C.J.; Kim, S.W.; Kim, Y.J.; Lim, H.J.; Park, R.; So, H.S.; Choung, Y.H. Red ginseng protects against gentamicin-induced balance dysfunction and hearing loss in rats through antiapoptotic functions of ginsenoside Rb1. Food Chem. Toxicol., 2013, 60, 369-376. doi: 10.1016/j.fct.2013.07.069 PMID: 23933362
  185. Tighilet, B.; Trico, J.; Xavier, F.; Chabbert, C. What predictability for animal models of peripheral vestibular disorders? Biomedicines, 2022, 10(12), 3097. doi: 10.3390/biomedicines10123097 PMID: 36551852
  186. Eisenman, D.J.; Speers, R.; Telian, S.A. Labyrinthectomy versus vestibular neurectomy: Long-term physiologic and clinical outcomes. Otol. Neurotol., 2001, 22(4), 539-548. doi: 10.1097/00129492-200107000-00022 PMID: 11449114
  187. Hoffmann, K.K.; Silverstein, H. Inner ear perfusion: Indications and applications. Curr. Opin. Otolaryngol. Head Neck Surg., 2003, 11(5), 334-339. doi: 10.1097/00020840-200310000-00005 PMID: 14502063
  188. Sargent, E.W.; Liao, E.; Gonda, R.L., Jr Cochlear patency after transmastoid labyrinthectomy for ménière’s syndrome. Otol. Neurotol., 2016, 37(7), 937-939. doi: 10.1097/MAO.0000000000001105 PMID: 27300724
  189. Van de Heyning, P.; Betka, J.; Chovanec, M.; Devèze, A.; Giannuzzi, A.L.; Krempaská, S.; Przewoźny, T.; Scheich, M.; Strupp, M.; Van Rompaey, V.; Meyer, T. Efficacy and safety of intranasal betahistine in the treatment of surgery-induced acute vestibular syndrome: a double-blind, randomized, placebo-controlled phase 2 Study. Otol. Neurotol., 2023, 44(5), 493-501. doi: 10.1097/MAO.0000000000003856 PMID: 37026797
  190. Arrang, J.M.; Garbarg, M.; Schwartz, J.C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature, 1983, 302(5911), 832-837. doi: 10.1038/302832a0 PMID: 6188956
  191. Arrang, J.M.; Garbarg, M.; Schwartz, J.C. Autoregulation of histamine release in brain by presynaptic H3-receptors. Neuroscience, 1985, 15(2), 553-562. doi: 10.1016/0306-4522(85)90233-7 PMID: 4022339
  192. Arrang, J-M.; Garbarg, M.; Schwartz, J-C. Autoinhibition of histamine synthesis mediated by presynaptic H3-receptors. Neuroscience, 1987, 23(1), 149-157. doi: 10.1016/0306-4522(87)90279-X PMID: 2446202
  193. Schwartz, J.C.; Arrang, J.M.; Garbarg, M.; Gulat-Marnay, C.; Pollard, H. Modulation of histamine synthesis and release in brain via presynaptic autoreceptors and heteroreceptors. Ann. N. Y. Acad. Sci., 1990, 604(1), 40-54. doi: 10.1111/j.1749-6632.1990.tb31981.x PMID: 1699464
  194. Bergquist, F.; Ruthven, A.; Ludwig, M.; Dutia, M.B. Histaminergic and glycinergic modulation of GABA release in the vestibular nuclei of normal and labyrinthectomised rats. J. Physiol., 2006, 577(3), 857-868. doi: 10.1113/jphysiol.2006.120493 PMID: 17038426
  195. Bergquist, F.; Dutia, M.B. Central histaminergic modulation of vestibular function - a review. Sheng Li Xue Bao, 2006, 58(4), 293-304. PMID: 16906328
  196. Tighilet, B.; Trottier, S.; Lacour, M. Dose- and duration-dependent effects of betahistine dihydrochloride treatment on histamine turnover in the cat. Eur. J. Pharmacol., 2005, 523(1-3), 54-63. doi: 10.1016/j.ejphar.2005.09.017 PMID: 16226741
  197. Chávez, H.; Vega, R.; Valli, P.; Mira, E.; Benvenuti, C.; Guth, P.S.; Soto, E. Action mechanism of betahistine in the vestibular end organs. Acta Otorhinolaryngol. Ital., 2001, 21(3)(Suppl. 66), 8-15. PMID: 11677837
  198. Soto, E.; Chávez, H.; Valli, P.; Benvenuti, C.; Vega, R. Betahistine produces post-synaptic inhibition of the excitability of the primary afferent neurons in the vestibular endorgans. Acta Otolaryngol. Suppl., 2001, 545, 19-24. PMID: 11677735
  199. Bellot-Saez, A.; Kékesi, O.; Morley, J.W.; Buskila, Y. Astrocytic modulation of neuronal excitability through K + spatial buffering. Neurosci. Biobehav. Rev., 2017, 77, 87-97. doi: 10.1016/j.neubiorev.2017.03.002 PMID: 28279812
  200. Losi, G.; Mariotti, L.; Sessolo, M.; Carmignoto, G. New tools to study astrocyte ca2+ signal dynamics in brain networks in vivo. Front. Cell. Neurosci., 2017, 11, 134. doi: 10.3389/fncel.2017.00134 PMID: 28536505
  201. Jurič, D.M.; Kržan, M.; Lipnik-Stangelj, M. Histamine and astrocyte function. Pharmacol. Res., 2016, 111, 774-783. doi: 10.1016/j.phrs.2016.07.035 PMID: 27475882
  202. Kárpáti, A.; Yoshikawa, T.; Nakamura, T.; Iida, T.; Matsuzawa, T.; Kitano, H.; Harada, R.; Yanai, K. Histamine elicits glutamate release from cultured astrocytes. J. Pharmacol. Sci., 2018, 137(2), 122-128. doi: 10.1016/j.jphs.2018.05.002 PMID: 29858014
  203. Fang, Q.; Hu, W.W.; Wang, X.F.; Yang, Y.; Lou, G.D.; Jin, M.M.; Yan, H.J.; Zeng, W.Z.; Shen, Y.; Zhang, S.H.; Xu, T.L.; Chen, Z. Histamine up-regulates astrocytic glutamate transporter 1 and protects neurons against ischemic injury. Neuropharmacology, 2014, 77, 156-166. doi: 10.1016/j.neuropharm.2013.06.012 PMID: 23791559
  204. Ferrini, F.; De Koninck, Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast., 2013, 2013, 1-11. doi: 10.1155/2013/429815 PMID: 24089642
  205. Hagemeyer, N.; Hanft, K.M.; Akriditou, M.A.; Unger, N.; Park, E.S.; Stanley, E.R.; Staszewski, O.; Dimou, L.; Prinz, M. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol., 2017, 134(3), 441-458. doi: 10.1007/s00401-017-1747-1 PMID: 28685323
  206. Botta, L.; Mira, E.; Valli, S.; Zucca, G.; Perin, P.; Benvenuti, C.; Fossati, A.; Valli, P. Effects of betahistine metabolites on frog ampullar receptors. Acta Otolaryngol., 2000, 120(1), 25-27. doi: 10.1080/000164800760370783 PMID: 10779181
  207. Qin, D.; Zhang, H.; Wang, J.; Hong, Z. Histamine H4 receptor gene polymorphisms: a potential contributor to Meniere disease. BMC Med. Genomics, 2019, 12(1), 71. doi: 10.1186/s12920-019-0533-4 PMID: 31133025
  208. Zampeli, E.; Tiligada, E. The role of histamine H 4 receptor in immune and inflammatory disorders. Br. J. Pharmacol., 2009, 157(1), 24-33. doi: 10.1111/j.1476-5381.2009.00151.x PMID: 19309354
  209. Gazquez, I.; Soto-Varela, A.; Aran, I.; Santos, S.; Batuecas, A.; Trinidad, G.; Perez-Garrigues, H.; Gonzalez-Oller, C.; Acosta, L.; Lopez-Escamez, J.A. High prevalence of systemic autoimmune diseases in patients with Menière’s disease. PLoS One, 2011, 6(10), e26759. doi: 10.1371/journal.pone.0026759 PMID: 22053211
  210. Zhou, P.; Homberg, J.R.; Fang, Q.; Wang, J.; Li, W.; Meng, X.; Shen, J.; Luan, Y.; Liao, P.; Swaab, D.F.; Shan, L.; Liu, C. Histamine-4 receptor antagonist JNJ7777120 inhibits pro-inflammatory microglia and prevents the progression of Parkinson-like pathology and behaviour in a rat model. Brain Behav. Immun., 2019, 76, 61-73. doi: 10.1016/j.bbi.2018.11.006 PMID: 30408497

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers