PLASTAMINATION: Outcomes on the Central Nervous System and Reproduction
- Authors: Santoro A.1, Marino M.1, Vandenberg L.2, Szychlinska M.3, Lamparelli E.4, Scalia F.5, Rocca N.1, DAuria R.1, Giovanna Pastorino G.M.6, Porta G.1, Operto F.7, Viggiano A.1, Cappello F.5, Meccariello R.8
-
Affiliations:
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana",, University of Salerno
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst
- Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno
- , Euro-Mediterranean Institute of Science and Technology (IEMEST)
- Child and Adolescence Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry,, University of 84100 Salerno
- Department of Science of Health School of Medicine, University Magna Graecia
- Department of Movement and Wellness Sciences, Parthenope University of Naples
- Issue: Vol 22, No 11 (2024)
- Pages: 1870-1898
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644389
- DOI: https://doi.org/10.2174/1570159X22666240216085947
- ID: 644389
Cite item
Full Text
Abstract
Background:Environmental exposures to non-biodegradable and biodegradable plastics are unavoidable. Microplastics (MPs) and nanoplastics (NPs) from the manufacturing of plastics (primary sources) and the degradation of plastic waste (secondary sources) can enter the food chain directly or indirectly and, passing biological barriers, could target both the brain and the gonads. Hence, the worldwide diffusion of environmental plastic contamination (PLASTAMINATION) in daily life may represent a possible and potentially serious risk to human health.
Objective:This review provides an overview of the effects of non-biodegradable and the more recently introduced biodegradable MPs and NPs on the brain and brain-dependent reproductive functions, summarizing the molecular mechanisms and outcomes on nervous and reproductive organs. Data from in vitro, ex vivo, non-mammalian and mammalian animal models and epidemiological studies have been reviewed and discussed.
Results:MPs and NPs from non-biodegradable plastics affect organs, tissues and cells from sensitive systems such as the brain and reproductive organs. Both MPs and NPs induce oxidative stress, chronic inflammation, energy metabolism disorders, mitochondrial dysfunction and cytotoxicity, which in turn are responsible for neuroinflammation, dysregulation of synaptic functions, metabolic dysbiosis, poor gamete quality, and neuronal and reproductive toxicity. In spite of this mechanistic knowledge gained from studies of non-biodegradable plastics, relatively little is known about the adverse effects or molecular mechanisms of MPs and NPs from biodegradable plastics.
Conclusion:The neurological and reproductive health risks of MPs/NPs exposure warrant serious consideration, and further studies on biodegradable plastics are recommended.
Keywords
About the authors
Antonietta Santoro
Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana",, University of Salerno
Email: info@benthamscience.net
Marianna Marino
Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana",, University of Salerno
Email: info@benthamscience.net
Laura Vandenberg
Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst
Email: info@benthamscience.net
Marta Szychlinska
Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria
Email: info@benthamscience.net
Erwin Lamparelli
Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno
Email: info@benthamscience.net
Federica Scalia
, Euro-Mediterranean Institute of Science and Technology (IEMEST)
Email: info@benthamscience.net
Natalia Rocca
Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana",, University of Salerno
Email: info@benthamscience.net
Raffaella DAuria
Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana",, University of Salerno
Email: info@benthamscience.net
Grazia Maria Giovanna Pastorino
Child and Adolescence Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry,, University of 84100 Salerno
Email: info@benthamscience.net
Giovanna Porta
Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana",, University of Salerno
Email: info@benthamscience.net
Francesca Operto
Department of Science of Health School of Medicine, University Magna Graecia
Email: info@benthamscience.net
Andrea Viggiano
Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana",, University of Salerno
Email: info@benthamscience.net
Francesco Cappello
, Euro-Mediterranean Institute of Science and Technology (IEMEST)
Email: info@benthamscience.net
Rosaria Meccariello
Department of Movement and Wellness Sciences, Parthenope University of Naples
Author for correspondence.
Email: info@benthamscience.net
References
- Jiang, B.; Kauffman, A.E.; Li, L.; McFee, W.; Cai, B.; Weinstein, J.; Lead, J.R.; Chatterjee, S.; Scott, G.I.; Xiao, S. Health impacts of environmental contamination of micro- and nanoplastics: A review. Environ. Health Prev. Med., 2020, 25(1), 29. doi: 10.1186/s12199-020-00870-9 PMID: 32664857
- Schmid, C.; Cozzarini, L.; Zambello, E. Microplastics story. Mar. Pollut. Bull., 2021, 162, 111820. doi: 10.1016/j.marpolbul.2020.111820 PMID: 33203604
- Bajt, O. From plastics to microplastics and organisms. FEBS Open Bio, 2021, 11(4), 954-966. doi: 10.1002/2211-5463.13120 PMID: 33595903
- Jin, M.; Wang, X.; Ren, T.; Wang, J.; Shan, J. Microplastics contamination in food and beverages: Direct exposure to humans. J. Food Sci., 2021, 86(7), 2816-2837. doi: 10.1111/1750-3841.15802 PMID: 34146409
- Blackburn, K.; Green, D. The potential effects of microplastics on human health: What is known and what is unknown. Ambio, 2022, 51(3), 518-530. doi: 10.1007/s13280-021-01589-9 PMID: 34185251
- DAngelo, S.; Meccariello, R. Microplastics: A threat for male fertility. Int. J. Environ. Res. Public Health, 2021, 18(5), 2392. doi: 10.3390/ijerph18052392 PMID: 33804513
- Zhang, Q.; He, Y.; Cheng, R.; Li, Q.; Qian, Z.; Lin, X. Recent advances in toxicological research and potential health impact of microplastics and nanoplastics in vivo. Environ. Sci. Pollut. Res. Int., 2022, 29(27), 40415-40448. doi: 10.1007/s11356-022-19745-3 PMID: 35347608
- Maradonna, F.; Meccariello, R. EDCs: Focus on reproductive alterations in mammalian and nonmammalian models. In: Environmental Contaminants and Endocrine Health; Elsevier, 2023; pp. 89-108. doi: 10.1016/B978-0-12-824464-7.00003-9
- Ullah, S.; Ahmad, S.; Guo, X.; Ullah, S.; Ullah, S.; Nabi, G.; Wanghe, K. A review of the endocrine disrupting effects of micro and nano plastic and their associated chemicals in mammals. Front. Endocrinol., 2023, 13, 1084236. doi: 10.3389/fendo.2022.1084236 PMID: 36726457
- Virek, M.K.; Lovin, M.N.; Koren, .; Kran, A.; Peterlin, M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar. Pollut. Bull., 2017, 125(1-2), 301-309. doi: 10.1016/j.marpolbul.2017.08.024 PMID: 28889914
- Ma, C.; Chen, Q.; Li, J.; Li, B.; Liang, W.; Su, L.; Shi, H. Distribution and translocation of micro- and nanoplastics in fish. Crit. Rev. Toxicol., 2021, 51(9), 740-753. doi: 10.1080/10408444.2021.2024495 PMID: 35166176
- Wang, W.; Ge, J.; Yu, X. Bioavailability and toxicity of microplastics to fish species: A review. Ecotoxicol. Environ. Saf., 2020, 189, 109913. doi: 10.1016/j.ecoenv.2019.109913 PMID: 31735369
- Xu, S.; Ma, J.; Ji, R.; Pan, K.; Miao, A.J. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Sci. Total Environ., 2020, 703, 134699. doi: 10.1016/j.scitotenv.2019.134699 PMID: 31726297
- Deidda, I.; Russo, R.; Bonaventura, R.; Costa, C.; Zito, F.; Lampiasi, N. Neurotoxicity in marine invertebrates: An update. Biology, 2021, 10(2), 161. doi: 10.3390/biology10020161 PMID: 33670451
- Yong, C.; Valiyaveettil, S.; Tang, B. Toxicity of microplastics and nanoplastics in mammalian systems. Int. J. Environ. Res. Public Health, 2020, 17(5), 1509. doi: 10.3390/ijerph17051509 PMID: 32111046
- Bhagat, J.; Zang, L.; Nishimura, N.; Shimada, Y. Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. Sci. Total Environ., 2020, 728, 138707. doi: 10.1016/j.scitotenv.2020.138707 PMID: 32361115
- Windheim, J.; Colombo, L.; Battajni, N.C.; Russo, L.; Cagnotto, A.; Diomede, L.; Bigini, P.; Vismara, E.; Fiumara, F.; Gabbrielli, S.; Gautieri, A.; Mazzuoli-Weber, G.; Salmona, M.; Colnaghi, L. Micro- and nanoplastics effects on protein folding and amyloidosis. Int. J. Mol. Sci., 2022, 23(18), 10329. doi: 10.3390/ijms231810329 PMID: 36142234
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; DAmore, E.; Rinaldo, D.; Matta, M.; Giorgini, E. Plasticenta: First evidence of microplastics in human placenta. Environ. Int., 2021, 146, 106274. doi: 10.1016/j.envint.2020.106274 PMID: 33395930
- Zhao, Q.; Zhu, L.; Weng, J.; Jin, Z.; Cao, Y.; Jiang, H.; Zhang, Z. Detection and characterization of microplastics in the human testis and semen. Sci. Total Environ., 2023, 877, 162713. doi: 10.1016/j.scitotenv.2023.162713 PMID: 36948312
- Chianese, R.; Coccurello, R.; Viggiano, A.; Scafuro, M.; Fiore, M.; Coppola, G.; Operto, F.F.; Fasano, S.; Laye, S.; Pierantoni, R.; Meccariello, R. Impact of dietary fats on brain functions. Curr. Neuropharmacol., 2018, 16(7), 1059-1085. doi: 10.2174/1570159X15666171017102547 PMID: 29046155
- Cryan, J.F.; ORiordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; Guzzetta, K.E.; Jaggar, M.; Long-Smith, C.M.; Lyte, J.M.; Martin, J.A.; Molinero-Perez, A.; Moloney, G.; Morelli, E.; Morillas, E.; OConnor, R.; Cruz-Pereira, J.S.; Peterson, V.L.; Rea, K.; Ritz, N.L.; Sherwin, E.; Spichak, S.; Teichman, E.M.; van de Wouw, M.; Ventura-Silva, A.P.; Wallace-Fitzsimons, S.E.; Hyland, N.; Clarke, G.; Dinan, T.G. The microbiota-gut-brain axis. Physiol. Rev., 2019, 99(4), 1877-2013. doi: 10.1152/physrev.00018.2018 PMID: 31460832
- DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem., 2016, 139(S2)(Suppl. 2), 136-153. doi: 10.1111/jnc.13607 PMID: 26990767
- Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42. doi: 10.1186/s40035-020-00221-2 PMID: 33239064
- Meccariello, R.; Marino, M.; Mele, E.; Pastorino, G.M.G.; Operto, F.F.; Santoro, A.; Viggiano, A. Neuroinflammation: Molecular mechanisms and therapeutic perspectives. Cent. Nerv. Syst. Agents Med. Chem., 2022, 22(3), 160-174. doi: 10.2174/1871524922666220929153215 PMID: 36177627
- Fried, J.R. Polymer science and technology, 3rd ed; Prentice Hall: Upper Saddle River, NJ, 2014.
- Rujnić-Sokele, M.; Pilipović, A. Challenges and opportunities of biodegradable plastics: A mini review. Waste Manag. Res., 2017, 35(2), 132-140. doi: 10.1177/0734242X16683272 PMID: 28064843
- Krueger, M.C.; Harms, H.; Schlosser, D. Prospects for microbiological solutions to environmental pollution with plastics. Appl. Microbiol. Biotechnol., 2015, 99(21), 8857-8874. doi: 10.1007/s00253-015-6879-4 PMID: 26318446
- Rahman, M.H.; Bhoi, P.R. An overview of non-biodegradable bioplastics. J. Clean. Prod., 2021, 294, 126218. doi: 10.1016/j.jclepro.2021.126218
- Lee, W.T.; van Muyden, A.; Bobbink, F.D.; Mensi, M.D.; Carullo, J.R.; Dyson, P.J. Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts. Nat. Commun., 2022, 13(1), 4850. doi: 10.1038/s41467-022-32563-y PMID: 35977921
- Elgharbawy, A.S.; Ali, R.M. A comprehensive review of the polyolefin composites and their properties. Heliyon, 2022, 8(7), e09932. doi: 10.1016/j.heliyon.2022.e09932 PMID: 35859640
- Hees, T.; Zhong, F.; Stürzel, M.; Mülhaupt, R. Tailoring hydrocarbon polymers and all‐hydrocarbon composites for circular economy. Macromol. Rapid Commun., 2019, 40(1), 1800608. doi: 10.1002/marc.201800608 PMID: 30417498
- ChemicalBook , Available from: https://www.chemicalbook.com/
- Yao, Z.; Seong, H.J.; Jang, Y.S. Environmental toxicity and decomposition of polyethylene. Ecotoxicol. Environ. Saf., 2022, 242, 113933. doi: 10.1016/j.ecoenv.2022.113933 PMID: 35930840
- Paxton, N.C.; Allenby, M.C.; Lewis, P.M.; Woodruff, M.A. Biomedical applications of polyethylene. Eur. Polym. J., 2019, 118, 412-428. doi: 10.1016/j.eurpolymj.2019.05.037
- Kumar, L.; Saha, A. Khushbu, ; Warkar, S. G. Chapter 11 - Biodegradability of automotive plastics and composites. In: Biodegradability of Conventional Plastics; Sarkar, A., Sharma, B., Shekhar, S., Eds.: Elsevier, 2023; p. 221-242.
- Rani, M. Meenu; Shanker, U. The role of nanomaterials in plastics biodegradability.Biodegradability of Conventional Plastics; Elsevier, 2023, pp. 283-308. doi: 10.1016/B978-0-323-89858-4.00012-9
- Li, X.; Meng, L.; Zhang, Y.; Qin, Z.; Meng, L.; Li, C.; Liu, M. Research and application of polypropylene carbonate composite materials: A review. Polymers, 2022, 14(11), 2159. doi: 10.3390/polym14112159 PMID: 35683832
- Blackley, D.C. Plasticised polyvinyl chloride (PVC). In: Synthetic Rubbers: Their Chemistry and Technology; Springer Netherlands: Dordrecht, 1983; pp. 244-269. doi: 10.1007/978-94-009-6619-2_8
- Yu, J.; Sun, L.; Ma, C.; Qiao, Y.; Yao, H. Thermal degradation of PVC: A review. Waste Manag., 2016, 48, 300-314. doi: 10.1016/j.wasman.2015.11.041 PMID: 26687228
- Peng, B.Y.; Chen, Z.; Chen, J.; Yu, H.; Zhou, X.; Criddle, C.S.; Wu, W.M.; Zhang, Y. Biodegradation of polyvinyl chloride (PVC) in tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environ. Int., 2020, 145, 106106. doi: 10.1016/j.envint.2020.106106 PMID: 32947161
- Lewandowski, K.; Skórczewska, K. A brief review of poly(vinyl chloride) (PVC) recycling. Polymers, 2022, 14(15), 3035. doi: 10.3390/polym14153035 PMID: 35893999
- Zhang, Y.; Pedersen, J.N.; Eser, B.E.; Guo, Z. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol. Adv., 2022, 60, 107991. doi: 10.1016/j.biotechadv.2022.107991 PMID: 35654281
- Kik, K.; Bukowska, B.; Sicińska, P. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ. Pollut., 2020, 262, 114297. doi: 10.1016/j.envpol.2020.114297 PMID: 32155552
- Pulido, B.A.; Habboub, O.S.; Aristizabal, S.L.; Szekely, G.; Nunes, S.P. Recycled poly(ethylene terephthalate) for high temperature solvent resistant membranes. ACS Appl. Polym. Mater., 2019, 1(9), 2379-2387. doi: 10.1021/acsapm.9b00493
- Hiraga, K.; Taniguchi, I.; Yoshida, S.; Kimura, Y.; Oda, K. Biodegradation of waste PET. EMBO Rep., 2019, 20(11), e49365. doi: 10.15252/embr.201949365 PMID: 31646721
- Kushwaha, A.; Goswami, L.; Singhvi, M.; Kim, B.S. Biodegradation of poly(ethylene terephthalate): Mechanistic insights, advances, and future innovative strategies. Chem. Eng. J., 2023, 457, 141230. doi: 10.1016/j.cej.2022.141230
- Nisticò, R. Polyethylene terephthalate (PET) in the packaging industry. Polym. Test., 2020, 90, 106707. doi: 10.1016/j.polymertesting.2020.106707
- Siracusa, V.; Blanco, I. Bio-polyethylene (bio-pe), bio-polypropylene (bio-pp) and bio-poly(ethylene terephthalate) (bio-pet): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers, 2020, 12(8), 1641. doi: 10.3390/polym12081641 PMID: 32718011
- Wei, B.; Zhao, Y.; Wei, Y.; Yao, J.; Chen, X.; Shao, Z. Morphology and properties of a new biodegradable material prepared from zein and poly(butylene adipate-terephthalate) by reactive blending. ACS Omega, 2019, 4(3), 5609-5616. doi: 10.1021/acsomega.9b00210 PMID: 31459715
- İlhan, Z.; Gümüşderelioğlu, M. Oriented fibrous poly (butylene adipate-co-terephthalate) matrices with nanotopographic features: Production and characterization. Colloids Surf. A Physicochem. Eng. Asp., 2023, 672, 131667. doi: 10.1016/j.colsurfa.2023.131667
- Fu, Y.; Wu, G.; Bian, X.; Zeng, J.; Weng, Y. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (pbat), poly(lactic acid) (pla), and their blend in freshwater with sediment. Molecules, 2020, 25(17), 3946. doi: 10.3390/molecules25173946 PMID: 32872416
- Jia, H.; Zhang, M.; Weng, Y.; Zhao, Y.; Li, C.; Kanwal, A. Degradation of poly(butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil. J. Environ. Sci., 2021, 103, 50-58. doi: 10.1016/j.jes.2020.10.001 PMID: 33743918
- Rafiqah, S.A.; Khalina, A.; Harmaen, A.S.; Tawakkal, I.A.; Zaman, K.; Asim, M.; Nurrazi, M.N.; Lee, C.H. A review on properties and application of bio-based poly(butylene succinate). Polymers, 2021, 13(9), 1436. doi: 10.3390/polym13091436 PMID: 33946989
- Boucher, D.S. Solubility parameters and solvent affinities for polycaprolactone: A comparison of methods. J. Appl. Polym. Sci., 2020, 137(30), 48908. doi: 10.1002/app.48908
- Heimowska, A.; Morawska, M.; Bocho-Janiszewska, A. Biodegradation of poly(ε-caprolactone) in natural water environments. Pol. J. Chem. Technol., 2017, 19(1), 120-126. doi: 10.1515/pjct-2017-0017
- Atanasova, N.; Paunova-Krasteva, T.; Stoitsova, S.; Radchenkova, N.; Boyadzhieva, I.; Petrov, K.; Kambourova, M. Degradation of poly(ε-caprolactone) by a thermophilic community and brevibacillus thermoruber strain 7 isolated from bulgarian hot spring. Biomolecules, 2021, 11(10), 1488. doi: 10.3390/biom11101488 PMID: 34680121
- Malikmammadov, E.; Tanir, T.E.; Kiziltay, A.; Hasirci, V.; Hasirci, N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed., 2018, 29(7-9), 863-893. doi: 10.1080/09205063.2017.1394711 PMID: 29053081
- Aliotta, L.; Seggiani, M.; Lazzeri, A.; Gigante, V.; Cinelli, P. A brief review of poly (butylene succinate) (pbs) and its main copolymers: Synthesis, blends, composites, biodegradability, and applications. Polymers, 2022, 14(4), 844. doi: 10.3390/polym14040844 PMID: 35215757
- Cooper, C.J.; Mohanty, A.K.; Misra, M. Electrospinning process and structure relationship of biobased poly(butylene succinate) for nanoporous fibers. ACS Omega, 2018, 3(5), 5547-5557. doi: 10.1021/acsomega.8b00332 PMID: 31458758
- Kim, S.H.; Cho, J.Y.; Cho, D.H.; Jung, H.J.; Kim, B.C.; Bhatia, S.K.; Park, S.H.; Park, K.; Yang, Y.H. Acceleration of polybutylene succinate biodegradation by Terribacillus sp. JY49 isolated from a marine environment. Polymers, 2022, 14(19), 3978. doi: 10.3390/polym14193978 PMID: 36235926
- Fredi, G.; Dorigato, A. Recycling of bioplastic waste: A review. Adv. Ind. Eng. Polym. Res., 2021, 4(3), 159-177. doi: 10.1016/j.aiepr.2021.06.006
- Casalini, T.; Rossi, F.; Castrovinci, A.; Perale, G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol., 2019, 7, 259. doi: 10.3389/fbioe.2019.00259 PMID: 31681741
- da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J., 2018, 340, 9-14. doi: 10.1016/j.cej.2018.01.010 PMID: 31384170
- Bubpachat, T.; Sombatsompop, N.; Prapagdee, B. Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions. Polym. Degrad. Stabil., 2018, 152, 75-85. doi: 10.1016/j.polymdegradstab.2018.03.023
- Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly(lactic acid): A versatile biobased polymer for the future with multifunctional propertiesfrom monomer synthesis, polymerization techniques and molecular weight increase to pla applications. Polymers, 2021, 13(11), 1822. doi: 10.3390/polym13111822 PMID: 34072917
- Available from: https://www.chemsrc.com/en/cas/34346-01-5_1470921.html
- Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (plga) as biodegradable controlled drug delivery carrier. Polymers, 2011, 3(3), 1377-1397. doi: 10.3390/polym3031377 PMID: 22577513
- Kemme, M.; Prokesch, I.; Heinzel-Wieland, R. Comparative study on the enzymatic degradation of poly(lactic-co-glycolic acid) by hydrolytic enzymes based on the colorimetric quantification of glycolic acid. Polym. Test., 2011, 30(7), 743-748. doi: 10.1016/j.polymertesting.2011.06.009
- Virlan, M.J.R.; Miricescu, D.; Totan, A.; Greabu, M.; Tanase, C.; Sabliov, C.M.; Caruntu, C.; Calenic, B. Current uses of poly(lactic-co-glycolic acid) in the dental field: A comprehensive. Rev. J. Chem., 2015, 2015, 1-12. doi: 10.1155/2015/525832
- Keskin, G.; Kızıl, G.; Bechelany, M.; Pochat-Bohatier, C.; Öner, M. Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure Appl. Chem., 2017, 89(12), 1841-1848. doi: 10.1515/pac-2017-0401
- Vandi, L.J.; Chan, C.; Werker, A.; Richardson, D.; Laycock, B.; Pratt, S. Wood-PHA composites: Mapping opportunities. Polymers, 2018, 10(7), 751. doi: 10.3390/polym10070751 PMID: 30960676
- Sehgal, R.; Gupta, R. Polyhydroxyalkanoate and its efficient production: An eco-friendly approach towards development. 3 Biotech, 2020, 10(12), 549. doi: 10.1007/s13205-020-02550-5
- Volova, T.G. Biodegradation of polyhydroxyalkanoates in natural soils. J. Sib. Fed. Univ. Biol., 2015, 8(2), 152-167. doi: 10.17516/1997-1389-2015-8-2-152-167
- Volova, T.G.; Prudnikova, S.V.; Vinogradova, O.N.; Syrvacheva, D.A.; Shishatskaya, E.I. Microbial degradation of polyhydroxyalkanoates with different chemical compositions and their biodegradability. Microb. Ecol., 2017, 73(2), 353-367. doi: 10.1007/s00248-016-0852-3 PMID: 27623963
- Koller, M. Biodegradable and biocompatible polyhydroxy-alkanoates (pha): auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules, 2018, 23(2), 362. doi: 10.3390/molecules23020362 PMID: 29419813
- Koster, S.; Bani-Estivals, M.; Bonuomo, M.; Bradley, E.; Chagnon, M.; Garcia, M.L.; Godts, F.; Gude, T.; Helling, R.; Paseiro-Losada, P.; Pieper, G.; Rennen, M.; Simat, T.; Spack, L. Guidance on best practices on the risk assessment of non-intentionally added substances (NIAS) in food contact materials and articles. In: ILSI Europe Report Series; , 2016.
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater., 2018, 344, 179-199. doi: 10.1016/j.jhazmat.2017.10.014 PMID: 29035713
- Tsochatzis, E.; Lopes, J.; Gika, H.; Theodoridis, G. Polystyrene biodegradation by tenebrio molitor larvae: Identification of generated substances using a GC-MS untargeted screening method. Polymers, 2020, 13(1), 17. doi: 10.3390/polym13010017 PMID: 33374608
- Arianna, P.; Paola, S.; Luciano, D.M.; Loredana, I. Non-listed nias exposure assessment: Comparison of different tools. Chem. Eng. Trans., 2019, 74, 1399-1404. doi: 10.3303/CET1974234
- Geueke, B. Fpf Dossier: Non-Intentionally Added Substances (Nias); 2nd Edition, 2018. doi: 10.5281/ZENODO.1265331
- Guidance on best available techniques and best environmental practices for the recycling and disposal of articles containing polybrominated diphenyl ethers (pbdes) listed under the stockholm convention on persistent organic pollutants 2015.
- He, Y.J.; Qin, Y.; Zhang, T.L.; Zhu, Y.Y.; Wang, Z.J.; Zhou, Z.S.; Xie, T.Z.; Luo, X.D. Migration of (non-) intentionally added substances and microplastics from microwavable plastic food containers. J. Hazard. Mater., 2021, 417, 126074. doi: 10.1016/j.jhazmat.2021.126074 PMID: 34015709
- Muncke, J.; Andersson, A-M.; Backhaus, T.; Boucher, J.M.; Carney Almroth, B.; Castillo Castillo, A.; Chevrier, J.; Demeneix, B.A.; Emmanuel, J.A.; Fini, J-B. Impacts of food contact chemicals on human health: A consensus statement. Environ. Health, 2020, 19(1), 25. doi: 10.1186/s12940-020-0572-5
- Santoro, A.; Chianese, R.; Troisi, J.; Richards, S.; Nori, S.L.; Fasano, S.; Guida, M.; Plunk, E.; Viggiano, A.; Pierantoni, R.; Meccariello, R. Neuro-toxic and reproductive effects of BPA. Curr. Neuropharmacol., 2019, 17(12), 1109-1132. doi: 10.2174/1570159X17666190726112101 PMID: 31362658
- Di Pietro, P.; DAuria, R.; Viggiano, A.; Ciaglia, E.; Meccariello, R.; Russo, R.D.; Puca, A.A.; Vecchione, C.; Nori, S.L.; Santoro, A. Bisphenol A induces DNA damage in cells exerting immune surveillance functions at peripheral and central level. Chemosphere, 2020, 254, 126819. doi: 10.1016/j.chemosphere.2020.126819 PMID: 32334263
- Sree, C.G.; Buddolla, V.; Lakshmi, B.A.; Kim, Y-J. Phthalate toxicity mechanisms: An update. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 2023, 263, 109498. doi: 10.1016/j.cbpc.2022.109498
- Yates, M.R.; Barlow, C.Y. Life cycle assessments of biodegradable, commercial biopolymersA critical review. Resour. Conserv. Recycling, 2013, 78, 54-66. doi: 10.1016/j.resconrec.2013.06.010
- Porta, R. The plastics sunset and the bio-plastics sunrise. Coatings, 2019, 9(8), 526. doi: 10.3390/coatings9080526
- Cao, G.; Cai, Z. Getting health hazards of inhaled nano/ microplastics into focus: Expectations and challenges. Environ. Sci. Technol., 2023, 57(9), 3461-3463. doi: 10.1021/acs.est.3c00029 PMID: 36812144
- Nor, N.H.M.; Kooi, M.; Diepens, N.J.; Koelmans, A.A. Lifetime accumulation of microplastic in children and adults. Environ. Sci. Technol., 2021, 55(8), 5084-5096. doi: 10.1021/acs.est.0c07384 PMID: 33724830
- Kole, P.J.; Löhr, A.J.; Van Belleghem, F.; Ragas, A. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health, 2017, 14(10), 1265. doi: 10.3390/ijerph14101265 PMID: 29053641
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ., 2020, 702, 134455. doi: 10.1016/j.scitotenv.2019.134455 PMID: 31733547
- Grote, K.; Brüstle, F.; Vlacil, A.K. Cellular and systemic effects of micro- and nanoplastics in mammalswhat we know so far. Materials, 2023, 16(8), 3123. doi: 10.3390/ma16083123 PMID: 37109957
- Karlsson, H.; Lindbom, J.; Ghafouri, B.; Lindahl, M.; Tagesson, C.; Gustafsson, M.; Ljungman, A.G. Wear particles from studded tires and granite pavement induce pro-inflammatory alterations in human monocyte-derived macrophages: A proteomic study. Chem. Res. Toxicol., 2011, 24(1), 45-53. doi: 10.1021/tx100281f PMID: 21117676
- Li, Y.; Shi, T.; Li, X.; Sun, H.; Xia, X.; Ji, X.; Zhang, J.; Liu, M.; Lin, Y.; Zhang, R.; Zheng, Y.; Tang, J. Inhaled tire-wear microplastic particles induced pulmonary fibrotic injury via epithelial cytoskeleton rearrangement. Environ. Int., 2022, 164, 107257. doi: 10.1016/j.envint.2022.107257 PMID: 35486965
- Mantecca, P.; Sancini, G.; Moschini, E.; Farina, F.; Gualtieri, M.; Rohr, A.; Miserocchi, G.; Palestini, P.; Camatini, M. Lung toxicity induced by intratracheal instillation of size-fractionated tire particles. Toxicol. Lett., 2009, 189(3), 206-214. doi: 10.1016/j.toxlet.2009.05.023 PMID: 19501637
- Islam, S.U.; Shehzad, A.; Ahmed, M.B.; Lee, Y.S. Intranasal delivery of nanoformulations: A potential way of treatment for neurological disorders. Molecules, 2020, 25(8), 1929. doi: 10.3390/molecules25081929 PMID: 32326318
- Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol., 2004, 16(6-7), 437-445. doi: 10.1080/08958370490439597 PMID: 15204759
- Elder, A.; Gelein, R.; Silva, V.; Feikert, T.; Opanashuk, L.; Carter, J.; Potter, R.; Maynard, A.; Ito, Y.; Finkelstein, J.; Oberdörster, G. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect., 2006, 114(8), 1172-1178. doi: 10.1289/ehp.9030 PMID: 16882521
- Qi, Y.; Wei, S.; Xin, T.; Huang, C.; Pu, Y.; Ma, J.; Zhang, C.; Liu, Y.; Lynch, I.; Liu, S. Passage of exogeneous fine particles from the lung into the brain in humans and animals. Proc. Natl. Acad. Sci. USA, 2022, 119(26), e2117083119. doi: 10.1073/pnas.2117083119 PMID: 35737841
- Chen, G.; Feng, Q.; Wang, J. Mini-review of microplastics in the atmosphere and their risks to humans. Sci. Total Environ., 2020, 703, 135504. doi: 10.1016/j.scitotenv.2019.135504 PMID: 31753503
- Karami, A.; Golieskardi, A.; Ho, Y.B.; Larat, V.; Salamatinia, B. Microplastics in eviscerated flesh and excised organs of dried fish. Sci. Rep., 2017, 7(1), 5473. doi: 10.1038/s41598-017-05828-6 PMID: 28710445
- Sangkham, S.; Faikhaw, O.; Munkong, N.; Sakunkoo, P.; Arunlertaree, C.; Chavali, M.; Mousazadeh, M.; Tiwari, A. A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. Mar. Pollut. Bull., 2022, 181, 113832. doi: 10.1016/j.marpolbul.2022.113832 PMID: 35716489
- Güven, O.; Gökdağ, K.; Jovanović, B.; Kıdeyş, A.E. Microplastic litter composition of the Turkish territorial waters of the mediterranean sea, and its occurrence in the gastrointestinal tract of fish. Environ. Pollut., 2017, 223, 286-294. doi: 10.1016/j.envpol.2017.01.025 PMID: 28117186
- Han, J.; Yan, J.; Li, K.; Lin, B.; Lai, W.; Bian, L.; Jia, R.; Liu, X.; Xi, Z. Distribution of micro-nano PS, DEHP, and/or MEHP in mice and nerve cell models in vitro after exposure to micro-nano PS and DEHP. Toxics, 2023, 11(5), 441. doi: 10.3390/toxics11050441 PMID: 37235255
- Yang, Z.S.; Bai, Y.L.; Jin, C.H.; Na, J.; Zhang, R.; Gao, Y.; Pan, G.W.; Yan, L.J.; Sun, W. Evidence on invasion of blood, adipose tissues, nervous system and reproductive system of mice after a single oral exposure: Nanoplastics versus microplastics. Biomed. Environ. Sci., 2022, 35(11), 1025-1037. doi: 10.3967/bes2022.131 PMID: 36443255
- Lamparelli, E.P.; Marino, M.; Szychlinska, M.A.; Rocca, N.D.; Ciardulli, M.C.; Scala, P.; DAuria, R.; Testa, A.; Viggiano, A.; Cappello, F.; Meccariello, R.; Porta, G.D.; Santoro, A. The other side of plastics: Bioplastic-based nanoparticles for drug delivery systems in the brain. Pharmaceutics, 2023, 15(11), 2549. doi: 10.3390/pharmaceutics15112549 PMID: 38004530
- Lee, J.A.; Kim, M.K.; Paek, H.J.; Kim, Y.R.; Kim, M.K.; Lee, J.K.; Jeong, J.; Choi, S.J.; Choi, S-J. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats. Int. J. Nanomedicine, 2014, 9(Suppl. 2), 251-260. doi: 10.2147/IJN.S57939 PMID: 25565843
- Khan, A.W.; Farooq, M.; Hwang, M.J.; Haseeb, M.; Choi, S. Autoimmune neuroinflammatory diseases: Role of interleukins. Int. J. Mol. Sci., 2023, 24(9), 7960. doi: 10.3390/ijms24097960 PMID: 37175665
- Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci., 2009, 32(12), 638-647. doi: 10.1016/j.tins.2009.08.002 PMID: 19782411
- Takata, F.; Nakagawa, S.; Matsumoto, J.; Dohgu, S. Blood-brain barrier dysfunction amplifies the development of neuroinflammation: Understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB dysfunction. Front. Cell. Neurosci., 2021, 15, 661838. doi: 10.3389/fncel.2021.661838 PMID: 34588955
- Takeshita, Y.; Obermeier, B.; Cotleur, A.C.; Spampinato, S.F.; Shimizu, F.; Yamamoto, E.; Sano, Y.; Kryzer, T.J.; Lennon, V.A.; Kanda, T.; Ransohoff, R.M. Effects of neuromyelitis opticaIgG at the blood-brain barrier in vitro. Neurol. Neuroimmunol. Neuroinflamm., 2017, 4(1), e311. doi: 10.1212/NXI.0000000000000311 PMID: 28018943
- Linnerbauer, M.; Rothhammer, V. Protective functions of reactive astrocytes following central nervous system insult. Front. Immunol., 2020, 11, 573256. doi: 10.3389/fimmu.2020.573256 PMID: 33117368
- Rostami, J.; Fotaki, G.; Sirois, J.; Mzezewa, R.; Bergström, J.; Essand, M.; Healy, L.; Erlandsson, A. Astrocytes have the capacity to act as antigen-presenting cells in the Parkinsons disease brain. J. Neuroinflammation, 2020, 17(1), 119. doi: 10.1186/s12974-020-01776-7 PMID: 32299492
- Ranaivo, H.R.; Hodge, J.N.; Choi, N.; Wainwright, M.S. Albumin induces upregulation of matrix metalloproteinase-9 in astrocytes via MAPK and reactive oxygen species-dependent pathways. J. Neuroinflammation, 2012, 9(1), 645. doi: 10.1186/1742-2094-9-68 PMID: 22507553
- Corrigan, F.; Mander, K.A.; Leonard, A.V.; Vink, R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J. Neuroinflammation, 2016, 13(1), 264. doi: 10.1186/s12974-016-0738-9 PMID: 27724914
- Sulimai, N.; Lominadze, D. Fibrinogen and neuroinflammation during traumatic brain injury. Mol. Neurobiol., 2020, 57(11), 4692-4703. doi: 10.1007/s12035-020-02012-2 PMID: 32776201
- Katsouri, L.; Birch, A.M.; Renziehausen, A.W.J.; Zach, C.; Aman, Y.; Steeds, H.; Bonsu, A.; Palmer, E.O.C.; Mirzaei, N.; Ries, M.; Sastre, M. Ablation of reactive astrocytes exacerbates disease pathology in a model of Alzheimers disease. Glia, 2020, 68(5), 1017-1030. doi: 10.1002/glia.23759 PMID: 31799735
- Colombo, E.; Farina, C. Astrocytes: Key regulators of neuroinflammation. Trends Immunol., 2016, 37(9), 608-620. doi: 10.1016/j.it.2016.06.006 PMID: 27443914
- Salman, M.M.; Kitchen, P.; Halsey, A.; Wang, M.X.; Törnroth-Horsefield, S.; Conner, A.C.; Badaut, J.; Iliff, J.J.; Bill, R.M. Emerging roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis. Brain, 2022, 145(1), 64-75. doi: 10.1093/brain/awab311 PMID: 34499128
- Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; Nagelhus, E.A.; Nedergaard, M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med., 2012, 4(147), 147ra111. doi: 10.1126/scitranslmed.3003748 PMID: 22896675
- Aspelund, A.; Antila, S.; Proulx, S.T.; Karlsen, T.V.; Karaman, S.; Detmar, M.; Wiig, H.; Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med., 2015, 212(7), 991-999. doi: 10.1084/jem.20142290 PMID: 26077718
- Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; Harris, T.H.; Kipnis, J. Structural and functional features of central nervous system lymphatic vessels. Nature, 2015, 523(7560), 337-341. doi: 10.1038/nature14432 PMID: 26030524
- Mogensen, F.L.H.; Delle, C.; Nedergaard, M. The glymphatic system (En)during inflammation. Int. J. Mol. Sci., 2021, 22(14), 7491. doi: 10.3390/ijms22147491 PMID: 34299111
- Louveau, A.; Herz, J.; Alme, M.N.; Salvador, A.F.; Dong, M.Q.; Viar, K.E.; Herod, S.G.; Knopp, J.; Setliff, J.C.; Lupi, A.L.; Da Mesquita, S.; Frost, E.L.; Gaultier, A.; Harris, T.H.; Cao, R.; Hu, S.; Lukens, J.R.; Smirnov, I.; Overall, C.C.; Oliver, G.; Kipnis, J. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci., 2018, 21(10), 1380-1391. doi: 10.1038/s41593-018-0227-9 PMID: 30224810
- Hsu, S.J.; Zhang, C.; Jeong, J.; Lee, S.; McConnell, M.; Utsumi, T.; Iwakiri, Y. Enhanced meningeal lymphatic drainage ameliorates neuroinflammation and hepatic encephalopathy in cirrhotic rats. Gastroenterology, 2021, 160(4), 1315-1329.e13. doi: 10.1053/j.gastro.2020.11.036 PMID: 33227282
- Da Mesquita, S.; Papadopoulos, Z.; Dykstra, T.; Brase, L.; Farias, F.G.; Wall, M.; Jiang, H.; Kodira, C.D.; de Lima, K.A.; Herz, J.; Louveau, A.; Goldman, D.H.; Salvador, A.F.; Onengut-Gumuscu, S.; Farber, E.; Dabhi, N.; Kennedy, T.; Milam, M.G.; Baker, W.; Smirnov, I.; Rich, S.S.; Benitez, B.A.; Karch, C.M.; Perrin, R.J.; Farlow, M.; Chhatwal, J.P.; Holtzman, D.M.; Cruchaga, C.; Harari, O.; Kipnis, J. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature, 2021, 593(7858), 255-260. doi: 10.1038/s41586-021-03489-0 PMID: 33911285
- Hamby, M.E.; Coppola, G.; Ao, Y.; Geschwind, D.H.; Khakh, B.S.; Sofroniew, M.V. Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. J. Neurosci., 2012, 32(42), 14489-14510. doi: 10.1523/JNEUROSCI.1256-12.2012 PMID: 23077035
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487. doi: 10.1038/nature21029 PMID: 28099414
- Baxter, P.S.; Dando, O.; Emelianova, K.; He, X.; McKay, S.; Hardingham, G.E.; Qiu, J. Microglial identity and inflammatory responses are controlled by the combined effects of neurons and astrocytes. Cell Rep., 2021, 34(12), 108882. doi: 10.1016/j.celrep.2021.108882 PMID: 33761343
- Santoro, A.; Spinelli, C.C.; Martucciello, S.; Nori, S.L.; Capunzo, M.; Puca, A.A.; Ciaglia, E. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. J. Leukoc. Biol., 2018, 103(3), 509-524. doi: 10.1002/JLB.3MR0118-003R PMID: 29389023
- Lima, M.N.; Barbosa-Silva, M.C.; Maron-Gutierrez, T. Microglial priming in infections and its risk to neurodegenerative diseases. Front. Cell. Neurosci., 2022, 16, 878987. doi: 10.3389/fncel.2022.878987 PMID: 35783096
- Borst, K.; Dumas, A.A.; Prinz, M. Microglia: Immune and non-immune functions. Immunity, 2021, 54(10), 2194-2208. doi: 10.1016/j.immuni.2021.09.014 PMID: 34644556
- Rutsch, A.; Kantsjö, J.B.; Ronchi, F. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol., 2020, 11, 604179. doi: 10.3389/fimmu.2020.604179 PMID: 33362788
- Pokusaeva, K.; Johnson, C.; Luk, B.; Uribe, G.; Fu, Y.; Oezguen, N.; Matsunami, R.K.; Lugo, M.; Major, A.; Mori-Akiyama, Y.; Hollister, E.B.; Dann, S.M.; Shi, X.Z.; Engler, D.A.; Savidge, T.; Versalovic, J. GABA ‐producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol. Motil., 2017, 29(1), e12904. doi: 10.1111/nmo.12904 PMID: 27458085
- Roth, W.; Zadeh, K.; Vekariya, R.; Ge, Y.; Mohamadzadeh, M. Tryptophan metabolism and gut-brain homeostasis. Int. J. Mol. Sci., 2021, 22(6), 2973. doi: 10.3390/ijms22062973 PMID: 33804088
- Glebov, K.; Löchner, M.; Jabs, R.; Lau, T.; Merkel, O.; Schloss, P.; Steinhäuser, C.; Walter, J. Serotonin stimulates secretion of exosomes from microglia cells. Glia, 2015, 63(4), 626-634. doi: 10.1002/glia.22772 PMID: 25451814
- Rothhammer, V.; Borucki, D.M.; Tjon, E.C.; Takenaka, M.C.; Chao, C.C.; Ardura-Fabregat, A.; de Lima, K.A.; Gutiérrez-Vázquez, C.; Hewson, P.; Staszewski, O.; Blain, M.; Healy, L.; Neziraj, T.; Borio, M.; Wheeler, M.; Dragin, L.L.; Laplaud, D.A.; Antel, J.; Alvarez, J.I.; Prinz, M.; Quintana, F.J. Microglial control of astrocytes in response to microbial metabolites. Nature, 2018, 557(7707), 724-728. doi: 10.1038/s41586-018-0119-x PMID: 29769726
- Smith, S.E.P.; Li, J.; Garbett, K.; Mirnics, K.; Patterson, P.H. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci., 2007, 27(40), 10695-10702. doi: 10.1523/JNEUROSCI.2178-07.2007 PMID: 17913903
- Choi, G.B.; Yim, Y.S.; Wong, H.; Kim, S.; Kim, H.; Kim, S.V.; Hoeffer, C.A.; Littman, D.R.; Huh, J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 2016, 351(6276), 933-939. doi: 10.1126/science.aad0314 PMID: 26822608
- Qu, X.; Yu, X.; Liu, J.; Wang, J.; Liu, J. Pro-inflammatory cytokines are elevated in pregnant women with systemic lupus erythematosus in association with the activation of TLR4. Clin. Lab., 2016, 62. doi: 10.7754/Clin.Lab.2015.150709
- Vijay, K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol., 2018, 59, 391-412. doi: 10.1016/j.intimp.2018.03.002 PMID: 29730580
- Mattei, D.; Ivanov, A.; Ferrai, C.; Jordan, P.; Guneykaya, D.; Buonfiglioli, A.; Schaafsma, W.; Przanowski, P.; Deuther-Conrad, W.; Brust, P.; Hesse, S.; Patt, M.; Sabri, O.; Ross, T.L.; Eggen, B.J.L.; Boddeke, E.W.G.M.; Kaminska, B.; Beule, D.; Pombo, A.; Kettenmann, H.; Wolf, S.A. Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment. Transl. Psychiatry, 2017, 7(5), e1120-e1120. doi: 10.1038/tp.2017.80 PMID: 28485733
- Matcovitch-Natan, O.; Winter, D.R.; Giladi, A.; Vargas Aguilar, S.; Spinrad, A.; Sarrazin, S.; Ben-Yehuda, H.; David, E.; Zelada González, F.; Perrin, P.; Keren-Shaul, H.; Gury, M.; Lara-Astaiso, D.; Thaiss, C.A.; Cohen, M.; Bahar Halpern, K.; Baruch, K.; Deczkowska, A.; Lorenzo-Vivas, E.; Itzkovitz, S.; Elinav, E.; Sieweke, M.H.; Schwartz, M.; Amit, I. Microglia development follows a stepwise program to regulate brain homeostasis. Science, 2016, 353(6301), aad8670. doi: 10.1126/science.aad8670 PMID: 27338705
- de Souza, D.F.; Wartchow, K.M.; Lunardi, P.S.; Brolese, G.; Tortorelli, L.S.; Batassini, C.; Biasibetti, R.; Gonçalves, C.A. Changes in astroglial markers in a maternal immune activation model of schizophrenia in wistar rats are dependent on sex. Front. Cell. Neurosci., 2015, 9, 489. doi: 10.3389/fncel.2015.00489 PMID: 26733814
- McCarthy, M.M.; Wright, C.L. Convergence of sex differences and the neuroimmune system in autism spectrum disorder. Biol. Psychiatry, 2017, 81(5), 402-410. doi: 10.1016/j.biopsych.2016.10.004 PMID: 27871670
- Vilella, A.J.; Severin, J.; Ureta-Vidal, A.; Heng, L.; Durbin, R.; Birney, E. Ensemblcompara genetrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res., 2009, 19(2), 327-335. doi: 10.1101/gr.073585.107 PMID: 19029536
- Golzio, C.; Willer, J.; Talkowski, M.E.; Oh, E.C.; Taniguchi, Y.; Jacquemont, S.; Reymond, A.; Sun, M.; Sawa, A.; Gusella, J.F.; Kamiya, A.; Beckmann, J.S.; Katsanis, N. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature, 2012, 485(7398), 363-367. doi: 10.1038/nature11091 PMID: 22596160
- Guo, S. Linking genes to brain, behavior and neurological diseases: What can we learn from zebrafish? Genes Brain Behav., 2004, 3(2), 63-74. doi: 10.1046/j.1601-183X.2003.00053.x PMID: 15005714
- Schmidt, R.; Strähle, U.; Scholpp, S. Neurogenesis in zebrafish from embryo to adult. Neural Dev., 2013, 8(1), 3. doi: 10.1186/1749-8104-8-3 PMID: 23433260
- Wullimann, M.F.; Mueller, T. Teleostean and mammalian forebrains contrasted: Evidence from genes to behavior. J. Comp. Neurol., 2004, 475(2), 143-162. doi: 10.1002/cne.20183 PMID: 15211457
- Mhalhel, K.; Sicari, M.; Pansera, L.; Chen, J.; Levanti, M.; Diotel, N.; Rastegar, S.; Germanà, A.; Montalbano, G. Zebrafish: A model deciphering the impact of flavonoids on neurodegenerative disorders. Cells, 2023, 12(2), 252. doi: 10.3390/cells12020252 PMID: 36672187
- Cosacak, M.I.; Bhattarai, P.; De Jager, P.L.; Menon, V.; Tosto, G.; Kizil, C. Single cell/nucleus transcriptomics comparison in zebrafish and humans reveals common and distinct molecular responses to alzheimers disease. Cells, 2022, 11(11), 1807. doi: 10.3390/cells11111807 PMID: 35681503
- Bhattarai, P.; Thomas, A.K.; Cosacak, M.I.; Papadimitriou, C.; Mashkaryan, V.; Froc, C.; Reinhardt, S.; Kurth, T.; Dahl, A.; Zhang, Y.; Kizil, C. IL4/STAT6 signaling activates neural stem cell proliferation and neurogenesis upon Amyloid-β42 aggregation in adult zebrafish brain. Cell Rep., 2016, 17(4), 941-948. doi: 10.1016/j.celrep.2016.09.075 PMID: 27760324
- Botterell, Z.L.R.; Beaumont, N.; Dorrington, T.; Steinke, M.; Thompson, R.C.; Lindeque, P.K. Bioavailability and effects of microplastics on marine zooplankton: A review. Environ. Pollut., 2019, 245, 98-110. doi: 10.1016/j.envpol.2018.10.065 PMID: 30415037
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Effects of microplastics on microalgae populations: A critical review. Sci. Total Environ., 2019, 665, 400-405. doi: 10.1016/j.scitotenv.2019.02.132 PMID: 30772570
- Vo, H.C.; Pham, M.H. Ecotoxicological effects of microplastics on aquatic organisms: A review. Environ. Sci. Pollut. Res. Int., 2021, 28(33), 44716-44725. doi: 10.1007/s11356-021-14982-4 PMID: 34226995
- Prüst, M.; Meijer, J.; Westerink, R.H.S. The plastic brain: Neurotoxicity of micro- and nanoplastics. Part. Fibre Toxicol., 2020, 17(1), 24. doi: 10.1186/s12989-020-00358-y PMID: 32513186
- Sarasamma, S.; Audira, G.; Siregar, P.; Malhotra, N.; Lai, Y.H.; Liang, S.T.; Chen, J.R.; Chen, K.H.C.; Hsiao, C.D. Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: Throwing up alarms of wide spread health risk of exposure. Int. J. Mol. Sci., 2020, 21(4), 1410. doi: 10.3390/ijms21041410 PMID: 32093039
- Xiang, C.; Chen, H.; Liu, X.; Dang, Y.; Li, X.; Yu, Y.; Li, B.; Li, X.; Sun, Y.; Ding, P.; Hu, G. UV-aged microplastics induces neurotoxicity by affecting the neurotransmission in larval zebrafish. Chemosphere, 2023, 324, 138252. doi: 10.1016/j.chemosphere.2023.138252 PMID: 36849020
- Yu, H.; Chen, Q.; Qiu, W.; Ma, C.; Gao, Z.; Chu, W.; Shi, H. Concurrent water- and foodborne exposure to microplastics leads to differential microplastic ingestion and neurotoxic effects in zebrafish. Water Res., 2022, 219, 118582. doi: 10.1016/j.watres.2022.118582 PMID: 35580390
- Lee, H.; Tran, C.M.; Jeong, S.; Kim, S.S.; Bae, M.A.; Kim, K-T. Seizurogenic effect of perfluorooctane sulfonate in zebrafish larvae. Neurotoxicology, 2022, 93, 257-264. doi: 10.1016/j.neuro.2022.10.007 PMID: 36243200
- Ding, P.; Xiang, C.; Li, X.; Chen, H.; Shi, X.; Li, X.; Huang, C.; Yu, Y.; Qi, J.; Li, A.J.; Zhang, L.; Hu, G. Photoaged microplastics induce neurotoxicity via oxidative stress and abnormal neurotransmission in zebrafish larvae (Danio rerio). Sci. Total Environ., 2023, 881, 163480. doi: 10.1016/j.scitotenv.2023.163480 PMID: 37068667
- Umamaheswari, S.; Priyadarshinee, S.; Bhattacharjee, M.; Kadirvelu, K.; Ramesh, M. Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio). Chemosphere, 2021, 281, 128592. doi: 10.1016/j.chemosphere.2020.128592 PMID: 33077188
- Teng, M.; Zhao, X.; Wu, F.; Wang, C.; Wang, C.; White, J.C.; Zhao, W.; Zhou, L.; Yan, S.; Tian, S. Charge-specific adverse effects of polystyrene nanoplastics on zebrafish (Danio rerio) development and behavior. Environ. Int., 2022, 163, 107154. doi: 10.1016/j.envint.2022.107154 PMID: 35334375
- Mattsson, K.; Johnson, E.V.; Malmendal, A.; Linse, S.; Hansson, L.A.; Cedervall, T. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci. Rep., 2017, 7(1), 11452. doi: 10.1038/s41598-017-10813-0 PMID: 28904346
- Barboza, L.G.A.; Otero, X.L.; Fernández, E.V.; Vieira, L.R.; Fernandes, J.O.; Cunha, S.C.; Guilhermino, L. Are microplastics contributing to pollution-induced neurotoxicity? A pilot study with wild fish in a real scenario. Heliyon, 2023, 9(1), e13070. doi: 10.1016/j.heliyon.2023.e13070 PMID: 36711285
- Ding, J.; Zhang, S.; Razanajatovo, R.M.; Zou, H.; Zhu, W. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environ. Pollut., 2018, 238, 1-9. doi: 10.1016/j.envpol.2018.03.001 PMID: 29529477
- Xiong, F.; Liu, J.; Xu, K.; Huang, J.; Wang, D.; Li, F.; Wang, S.; Zhang, J.; Pu, Y.; Sun, R. Microplastics induce neurotoxicity in aquatic animals at environmentally realistic concentrations: A meta-analysis. Environ. Pollut., 2023, 318, 120939. doi: 10.1016/j.envpol.2022.120939 PMID: 36581239
- Lionetto, M.G.; Caricato, R.; Calisi, A.; Giordano, M.E.; Schettino, T. Acetylcholinesterase as a biomarker in environmental and occupational medicine: New insights and future perspectives. BioMed Res. Int., 2013, 2013, 1-8. doi: 10.1155/2013/321213 PMID: 23936791
- Morais, L.H.; Schreiber, H.L., IV; Mazmanian, S.K. The gut microbiotabrain axis in behaviour and brain disorders. Nat. Rev. Microbiol., 2021, 19(4), 241-255. doi: 10.1038/s41579-020-00460-0 PMID: 33093662
- Qiao, R.; Sheng, C.; Lu, Y.; Zhang, Y.; Ren, H.; Lemos, B. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci. Total Environ., 2019, 662, 246-253. doi: 10.1016/j.scitotenv.2019.01.245 PMID: 30690359
- Zhao, Y.; Qin, Z.; Huang, Z.; Bao, Z.; Luo, T.; Jin, Y. Effects of polyethylene microplastics on the microbiome and metabolism in larval zebrafish. Environ. Pollut., 2021, 282, 117039. doi: 10.1016/j.envpol.2021.117039 PMID: 33838439
- Teng, M.; Zhao, X.; Wang, C.; Wang, C.; White, J.C.; Zhao, W.; Zhou, L.; Duan, M.; Wu, F. Polystyrene nanoplastics toxicity to zebrafish: Dysregulation of the brainintestinemicrobiota axis. ACS Nano, 2022, 16(5), 8190-8204. doi: 10.1021/acsnano.2c01872 PMID: 35507640
- Luan, J.; Zhang, S.; Xu, Y.; Wen, L.; Feng, X. Effects of microplastic exposure on the early developmental period and circadian rhythm of zebrafish (Danio rerio): A comparative study of polylactic acid and polyglycolic acid. Ecotoxicol. Environ. Saf., 2023, 258, 114994. doi: 10.1016/j.ecoenv.2023.114994 PMID: 37167737
- Chagas, T.Q.; Freitas, Í.N.; Montalvão, M.F.; Nobrega, R.H.; Machado, M.R.F.; Charlie-Silva, I.; Araújo, A.P.C.; Guimarães, A.T.B.; Alvarez, T.G.S.; Malafaia, G. Multiple endpoints of polylactic acid biomicroplastic toxicity in adult zebrafish (Danio rerio). Chemosphere, 2021, 277, 130279. doi: 10.1016/j.chemosphere.2021.130279 PMID: 34384178
- de Oliveira, J.P.J.; Estrela, F.N.; Rodrigues, A.S.L.; Guimarães, A.T.B.; Rocha, T.L.; Malafaia, G. Behavioral and biochemical consequences of Danio rerio larvae exposure to polylactic acid bioplastic. J. Hazard. Mater., 2021, 404(Pt A), 124152. doi: 10.1016/j.jhazmat.2020.124152 PMID: 33068943
- Duan, Z.; Cheng, H.; Duan, X.; Zhang, H.; Wang, Y.; Gong, Z.; Zhang, H.; Sun, H.; Wang, L. Diet preference of zebrafish (Danio rerio) for bio-based polylactic acid microplastics and induced intestinal damage and microbiota dysbiosis. J. Hazard. Mater., 2022, 429, 128332. doi: 10.1016/j.jhazmat.2022.128332 PMID: 35114456
- Zhang, X.; Xia, M.; Su, X.; Yuan, P.; Li, X.; Zhou, C.; Wan, Z.; Zou, W. Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis. J. Hazard. Mater., 2021, 413, 125321. doi: 10.1016/j.jhazmat.2021.125321 PMID: 33582471
- Chen, Q.; Gundlach, M.; Yang, S.; Jiang, J.; Velki, M.; Yin, D.; Hollert, H. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Sci. Total Environ., 2017, 584-585, 1022-1031. doi: 10.1016/j.scitotenv.2017.01.156 PMID: 28185727
- Wan, Z.; Wang, C.; Zhou, J.; Shen, M.; Wang, X.; Fu, Z.; Jin, Y. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere, 2019, 217, 646-658. doi: 10.1016/j.chemosphere.2018.11.070 PMID: 30448747
- Mak, C.W.; Ching-Fong Yeung, K.; Chan, K.M. Acute toxic effects of polyethylene microplastic on adult zebrafish. Ecotoxicol. Environ. Saf., 2019, 182, 109442. doi: 10.1016/j.ecoenv.2019.109442 PMID: 31352214
- Santos, D.; Félix, L.; Luzio, A.; Parra, S.; Cabecinha, E.; Bellas, J.; Monteiro, S.M. Toxicological effects induced on early life stages of zebrafish (Danio rerio) after an acute exposure to microplastics alone or co-exposed with copper. Chemosphere, 2020, 261, 127748. doi: 10.1016/j.chemosphere.2020.127748 PMID: 32738713
- Santos, D.; Félix, L.; Luzio, A.; Parra, S.; Bellas, J.; Monteiro, S.M. Single and combined acute and subchronic toxic effects of microplastics and copper in zebrafish (Danio rerio) early life stages. Chemosphere, 2021, 277, 130262. doi: 10.1016/j.chemosphere.2021.130262 PMID: 33773317
- Xue, Y.H.; Feng, L.S.; Xu, Z.Y.; Zhao, F.Y.; Wen, X.L.; Jin, T.; Sun, Z.X. The time-dependent variations of zebrafish intestine and gill after polyethylene microplastics exposure. Ecotoxicology, 2021, 30(10), 1997-2010. doi: 10.1007/s10646-021-02469-4 PMID: 34529203
- Limonta, G.; Mancia, A.; Abelli, L.; Fossi, M.C.; Caliani, I.; Panti, C. Effects of microplastics on head kidney gene expression and enzymatic biomarkers in adult zebrafish. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2021, 245, 109037. doi: 10.1016/j.cbpc.2021.109037 PMID: 33753304
- Guimarães, A.T.B.; Charlie-Silva, I.; Malafaia, G. Toxic effects of naturally-aged microplastics on zebrafish juveniles: A more realistic approach to plastic pollution in freshwater ecosystems. J. Hazard. Mater., 2021, 407, 124833. doi: 10.1016/j.jhazmat.2020.124833 PMID: 33352420
- Sheng, C.; Zhang, S.; Zhang, Y. The influence of different polymer types of microplastics on adsorption, accumulation, and toxicity of triclosan in zebrafish. J. Hazard. Mater., 2021, 402, 123733. doi: 10.1016/j.jhazmat.2020.123733 PMID: 33254764
- Bhagat, J.; Zang, L.; Nakayama, H.; Nishimura, N.; Shimada, Y. Effects of nanoplastic on toxicity of azole fungicides (ketoconazole and fluconazole) in zebrafish embryos. Sci. Total Environ., 2021, 800, 149463. doi: 10.1016/j.scitotenv.2021.149463 PMID: 34399343
- Zhu, J.; Zhang, Y.; Xu, Y.; Wang, L.; Wu, Q.; Zhang, Z.; Li, L. Effects of microplastics on the accumulation and neurotoxicity of methylmercury in zebrafish larvae. Mar. Environ. Res., 2022, 176, 105615. doi: 10.1016/j.marenvres.2022.105615 PMID: 35364423
- Liu, Y.; Wang, Y.; Li, N.; Jiang, S. Avobenzone and nanoplastics affect the development of zebrafish nervous system and retinal system and inhibit their locomotor behavior. Sci. Total Environ., 2022, 806(Pt 2), 150681. doi: 10.1016/j.scitotenv.2021.150681 PMID: 34599957
- Santos, D.; Luzio, A.; Bellas, J.; Monteiro, S.M. Microplastics- and copper-induced changes in neurogenesis and DNA methyltransferases in the early life stages of zebrafish. Chem. Biol. Interact., 2022, 363, 110021. doi: 10.1016/j.cbi.2022.110021 PMID: 35728670
- Santos, D.; Luzio, A.; Félix, L.; Bellas, J.; Monteiro, S.M. Oxidative stress, apoptosis and serotonergic system changes in zebrafish (Danio rerio) gills after long-term exposure to microplastics and copper. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2022, 258, 109363. doi: 10.1016/j.cbpc.2022.109363 PMID: 35525464
- Jeong, S.; Jang, S.; Kim, S.S.; Bae, M.A.; Shin, J.; Lee, K.B.; Kim, K.T. Size-dependent seizurogenic effect of polystyrene microplastics in zebrafish embryos. J. Hazard. Mater., 2022, 439, 129616. doi: 10.1016/j.jhazmat.2022.129616 PMID: 36104895
- Hanslik, L.; Huppertsberg, S.; Kämmer, N.; Knepper, T.P.; Braunbeck, T. Rethinking the relevance of microplastics as vector for anthropogenic contaminants: Adsorption of toxicants to microplastics during exposure in a highly polluted stream - Analytical quantification and assessment of toxic effects in zebrafish (Danio rerio). Sci. Total Environ., 2022, 816, 151640. doi: 10.1016/j.scitotenv.2021.151640 PMID: 34774627
- Aliakbarzadeh, F.; Rafiee, M.; Khodagholi, F.; Khorramizadeh, M.R.; Manouchehri, H.; Eslami, A.; Sayehmiri, F.; Mohseni-Bandpei, A. Adverse effects of polystyrene nanoplastic and its binary mixtures with nonylphenol on zebrafish nervous system: From oxidative stress to impaired neurotransmitter system. Environ. Pollut., 2023, 317, 120587. doi: 10.1016/j.envpol.2022.120587 PMID: 36336178
- Zhang, C.; Li, Y.; Yu, H.; Ye, L.; Li, T.; Zhang, X.; Wang, C.; Li, P.; Ji, H.; Gao, Q.; Dong, S. Nanoplastics promote arsenic-induced ROS accumulation, mitochondrial damage and disturbances in neurotransmitter metabolism of zebrafish (Danio rerio). Sci. Total Environ., 2023, 863, 161005. doi: 10.1016/j.scitotenv.2022.161005 PMID: 36539083
- Martin-Folgar, R.; Torres-Ruiz, M.; de Alba, M.; Cañas-Portilla, A.I.; González, M.C.; Morales, M. Molecular effects of polystyrene nanoplastics toxicity in zebrafish embryos (Danio rerio). Chemosphere, 2023, 312(Pt 1), 137077. doi: 10.1016/j.chemosphere.2022.137077 PMID: 36334746
- Zhou, R.; Zhou, D.; Yang, S.; Shi, Z.; Pan, H.; Jin, Q.; Ding, Z. Neurotoxicity of polystyrene nanoplastics with different particle sizes at environment-related concentrations on early zebrafish embryos. Sci. Total Environ., 2023, 872, 162096. doi: 10.1016/j.scitotenv.2023.162096 PMID: 36791853
- Torres-Ruiz, M.; de Alba González, M.; Morales, M.; Martin-Folgar, R.; González, M.C.; Cañas-Portilla, A.I.; De la Vieja, A. Neurotoxicity and endocrine disruption caused by polystyrene nanoparticles in zebrafish embryo. Sci. Total Environ., 2023, 874, 162406. doi: 10.1016/j.scitotenv.2023.162406 PMID: 36841402
- Wang, Q.; Chen, G.; Tian, L.; Kong, C.; Gao, D.; Chen, Y.; Junaid, M.; Wang, J. Neuro- and hepato-toxicity of polystyrene nanoplastics and polybrominated diphenyl ethers on early life stages of zebrafish. Sci. Total Environ., 2023, 857(Pt 2), 159567. doi: 10.1016/j.scitotenv.2022.159567 PMID: 36272476
- Murali, K.; Kenesei, K.; Li, Y.; Demeter, K.; Környei, Z.; Madarász, E. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: In vitro studies on neural tissue cells. Nanoscale, 2015, 7(9), 4199-4210. doi: 10.1039/C4NR06849A PMID: 25673096
- Schirinzi, G.F.; Pérez-Pomeda, I.; Sanchís, J.; Rossini, C.; Farré, M.; Barceló, D. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ. Res., 2017, 159, 579-587. doi: 10.1016/j.envres.2017.08.043 PMID: 28898803
- Hoelting, L.; Scheinhardt, B.; Bondarenko, O.; Schildknecht, S.; Kapitza, M.; Tanavde, V.; Tan, B.; Lee, Q.Y.; Mecking, S.; Leist, M.; Kadereit, S. A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles. Arch. Toxicol., 2013, 87(4), 721-733. doi: 10.1007/s00204-012-0984-2 PMID: 23203475
- Shan, S.; Zhang, Y.; Zhao, H.; Zeng, T.; Zhao, X. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere, 2022, 298, 134261. doi: 10.1016/j.chemosphere.2022.134261 PMID: 35302003
- Sun, J.; Wang, Y.; Du, Y.; Zhang, W.; Liu, Z.; Bai, J.; Cui, G.; Du, Z. Involvement of the JNK/HO 1/FTH1 signaling pathway in nanoplastic induced inflammation and ferroptosis of BV2 microglia cells. Int. J. Mol. Med., 2023, 52(1), 61. doi: 10.3892/ijmm.2023.5264 PMID: 37264973
- Kwon, W.; Kim, D.; Kim, H.Y.; Jeong, S.W.; Lee, S.G.; Kim, H.C.; Lee, Y.J.; Kwon, M.K.; Hwang, J.S.; Han, J.E.; Park, J.K.; Lee, S.J.; Choi, S.K. Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo. Sci. Total Environ., 2022, 807(Pt 2), 150817. doi: 10.1016/j.scitotenv.2021.150817 PMID: 34627918
- Ban, M.; Shimoda, R.; Chen, J. Investigation of nanoplastic cytotoxicity using SH-SY5Y human neuroblastoma cells and polystyrene nanoparticles. Toxicol. In Vitro, 2021, 76, 105225. doi: 10.1016/j.tiv.2021.105225 PMID: 34293433
- Nie, J.; Shen, Y.; Roshdy, M.; Cheng, X.; Wang, G.; Yang, X. Polystyrene nanoplastics exposure caused defective neural tube morphogenesis through caveolae-mediated endocytosis and faulty apoptosis. Nanotoxicology, 2021, 15(7), 1-20. doi: 10.1080/17435390.2021.1930228 PMID: 34087085
- Tang, Q.; Li, T.; Chen, K.; Deng, X.; Zhang, Q.; Tang, H.; Shi, Z.; Zhu, T.; Zhu, J. PS-NPs induced neurotoxic effects in shsy-5y cells via autophagy activation and mitochondrial dysfunction. Brain Sci., 2022, 12(7), 952. doi: 10.3390/brainsci12070952 PMID: 35884757
- Hua, T.; Kiran, S.; Li, Y.; Sang, Q.X.A. Microplastics exposure affects neural development of human pluripotent stem cell-derived cortical spheroids. J. Hazard. Mater., 2022, 435, 128884. doi: 10.1016/j.jhazmat.2022.128884 PMID: 35483261
- Jeong, J.H.; Kang, S.H.; Kim, J.H.; Yu, K.S.; Lee, I.H.; Lee, Y.J.; Lee, J.H.; Lee, N.S.; Jeong, Y.G.; Kim, D.K.; Kim, G.H.; Lee, S.H.; Hong, S.K.; Han, S.Y.; Kang, B.S. Protective effects of poly(lactic-co-glycolic acid) nanoparticles loaded with erythropoietin stabilized by sodium cholate against glutamate-induced neurotoxicity. J. Nanosci. Nanotechnol., 2014, 14(11), 8365-8371. doi: 10.1166/jnn.2014.9927 PMID: 25958529
- Jin, H.; Yang, C.; Jiang, C.; Li, L.; Pan, M.; Li, D.; Han, X.; Ding, J. Evaluation of neurotoxicity in BALB/c mice following chronic exposure to polystyrene microplastics. Environ. Health Perspect., 2022, 130(10), 107002. doi: 10.1289/EHP10255 PMID: 36251724
- Lee, C.W.; Hsu, L.F.; Wu, I.L.; Wang, Y.L.; Chen, W.C.; Liu, Y.J.; Yang, L.T.; Tan, C.L.; Luo, Y.H.; Wang, C.C.; Chiu, H.W.; Yang, T.C.K.; Lin, Y.Y.; Chang, H.A.; Chiang, Y.C.; Chen, C.H.; Lee, M.H.; Peng, K.T.; Huang, C.C.Y. Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. J. Hazard. Mater., 2022, 430, 128431. doi: 10.1016/j.jhazmat.2022.128431 PMID: 35150991
- Zaheer, J.; Kim, H.; Ko, I.O.; Jo, E.K.; Choi, E.J.; Lee, H.J.; Shim, I.; Woo, H.; Choi, J.; Kim, G.H.; Kim, J.S. Pre/post-natal exposure to microplastic as a potential risk factor for autism spectrum disorder. Environ. Int., 2022, 161, 107121. doi: 10.1016/j.envint.2022.107121 PMID: 35134716
- Sincihu, Y.; Lusno, M.F.D.; Mulyasari, T.M.; Elias, S.M.; Sudiana, I.K.; Kusumastuti, K.; Sulistyorini, L.; Keman, S. Wistar rats hippocampal neurons response to blood low-density polyethylene microplastics: A pathway analysis of SOD, CAT, MDA, 8-OHdG expression in hippocampal neurons and blood serum Aβ42 levels. Neuropsychiatr. Dis. Treat., 2023, 19, 73-83. doi: 10.2147/NDT.S396556 PMID: 36636141
- Supraja, P.; Tripathy, S.; Singh, R.; Singh, V.; Chaudhury, G.; Singh, S.G. Towards point-of-care diagnosis of alzheimers disease: Multi-analyte based portable chemiresistive platform for simultaneous detection of β-amyloid (1-40) and (1-42) in plasma. Biosens. Bioelectron., 2021, 186, 113294. doi: 10.1016/j.bios.2021.113294 PMID: 33971525
- Yang, D.; Zhu, J.; Zhou, X.; Pan, D.; Nan, S.; Yin, R.; Lei, Q.; Ma, N.; Zhu, H.; Chen, J.; Han, L.; Ding, M.; Ding, Y. Polystyrene micro- and nano-particle coexposure injures fetal thalamus by inducing ROS-mediated cell apoptosis. Environ. Int., 2022, 166, 107362. doi: 10.1016/j.envint.2022.107362 PMID: 35749991
- McConnell, E.R.; McClain, M.A.; Ross, J.; LeFew, W.R.; Shafer, T.J. Evaluation of multi-well microelectrode arrays for neurotoxicity screening using a chemical training set. Neurotoxicology, 2012, 33(5), 1048-1057. doi: 10.1016/j.neuro.2012.05.001 PMID: 22652317
- Hu, M.; Palić, D. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biol., 2020, 37, 101620. doi: 10.1016/j.redox.2020.101620 PMID: 32863185
- Prokić, M.D.; Radovanović, T.B.; Gavrić, J.P.; Faggio, C. Ecotoxicological effects of microplastics: Examination of biomarkers, current state and future perspectives. Trends Analyt. Chem., 2019, 111, 37-46. doi: 10.1016/j.trac.2018.12.001
- Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang., 2019, 9(5), 374-378. doi: 10.1038/s41558-019-0459-z
- Landrigan, P.J.; Stegeman, J.J.; Fleming, L.E.; Allemand, D.; Anderson, D.M.; Backer, L.C.; Brucker-Davis, F.; Chevalier, N.; Corra, L.; Czerucka, D.; Bottein, M.Y.D.; Demeneix, B.; Depledge, M.; Deheyn, D.D.; Dorman, C.J.; Fénichel, P.; Fisher, S.; Gaill, F.; Galgani, F.; Gaze, W.H.; Giuliano, L.; Grandjean, P.; Hahn, M.E.; Hamdoun, A.; Hess, P.; Judson, B.; Laborde, A.; McGlade, J.; Mu, J.; Mustapha, A.; Neira, M.; Noble, R.T.; Pedrotti, M.L.; Reddy, C.; Rocklöv, J.; Scharler, U.M.; Shanmugam, H.; Taghian, G.; Van de Water, J.A.J.M.; Vezzulli, L.; Weihe, P.; Zeka, A.; Raps, H.; Rampal, P. Human health and ocean pollution. Ann. Glob. Health, 2020, 86(1), 151. doi: 10.5334/aogh.2831 PMID: 33354517
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The endocrine societys second scientific statement on endocrine-disrupting chemicals. Endocr. Rev., 2015, 36(6), E1-E150. doi: 10.1210/er.2015-1010 PMID: 26544531
- Woskie, S.R.; Bello, A.; Rennix, C.; Jiang, L.; Trivedi, A.N.; Savitz, D.A. Burn pit exposure assessment to support a cohort study of US veterans of the wars in Iraq and Afghanistan. J. Occup. Environ. Med., 2023, 65(6), 449-457. doi: 10.1097/JOM.0000000000002788 PMID: 36728333
- Re, D.B.; Yan, B.; Calderón-Garcidueñas, L.; Andrew, A.S.; Tischbein, M.; Stommel, E.W. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: Identifying exposures determining higher ALS risk. J. Neurol., 2022, 269(5), 2359-2377. doi: 10.1007/s00415-021-10928-5 PMID: 34973105
- Du Preez, M.; Van der Merwe, D.; Wyma, L.; Ellis, S.M. Assessing knowledge and use practices of plastic food packaging among young adults in South Africa: Concerns about chemicals and health. Int. J. Environ. Res. Public Health, 2021, 18(20), 10576. doi: 10.3390/ijerph182010576 PMID: 34682322
- Landrigan, P.J.; Raps, H.; Cropper, M.; Bald, C.; Brunner, M.; Canonizado, E.M.; Charles, D.; Chiles, T.C.; Donohue, M.J.; Enck, J.; Fenichel, P.; Fleming, L.E.; Ferrier-Pages, C.; Fordham, R.; Gozt, A.; Griffin, C.; Hahn, M.E.; Haryanto, B.; Hixson, R.; Ianelli, H.; James, B.D.; Kumar, P.; Laborde, A.; Law, K.L.; Martin, K.; Mu, J.; Mulders, Y.; Mustapha, A.; Niu, J.; Pahl, S.; Park, Y.; Pedrotti, M.L.; Pitt, J.A.; Ruchirawat, M.; Seewoo, B.J.; Spring, M.; Stegeman, J.J.; Suk, W.; Symeonides, C.; Takada, H.; Thompson, R.C.; Vicini, A.; Wang, Z.; Whitman, E.; Wirth, D.; Wolff, M.; Yousuf, A.K.; Dunlop, S. The minderoo-monaco commission on plastics and human health. Ann. Glob. Health, 2023, 89(1), 23. doi: 10.5334/aogh.4056 PMID: 36969097
- Pinilla, L.; Aguilar, E.; Dieguez, C.; Millar, R.P.; Tena-Sempere, M. Kisspeptins and reproduction: Physiological roles and regulatory mechanisms. Physiol. Rev., 2012, 92(3), 1235-1316. doi: 10.1152/physrev.00037.2010 PMID: 22811428
- Pierantoni, R.; Cobellis, G.; Meccariello, R.; Fasano, S. Evolutionary aspects of cellular communication in the vertebrate hypothalamohypophysiogonadal axis. In: International Review of Cytology; Elsevier, 2002; Vol. 218, pp. 69-143e.
- Wang, J.; Li, Y.; Lu, L.; Zheng, M.; Zhang, X.; Tian, H.; Wang, W.; Ru, S. Polystyrene microplastics cause tissue damages, sexspecific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). Environ. Pollut., 2019, 254(Pt B), 113024. doi: 10.1016/j.envpol.2019.113024 PMID: 31454586
- Zhu, M.; Chernick, M.; Rittschof, D.; Hinton, D.E. Chronic dietary exposure to polystyrene microplastics in maturing Japanese medaka (Oryzias latipes). Aquat. Toxicol., 2020, 220, 105396. doi: 10.1016/j.aquatox.2019.105396 PMID: 31927063
- Sussarellu, R.; Suquet, M.; Thomas, Y.; Lambert, C.; Fabioux, C.; Pernet, M.E.J.; Le Goïc, N.; Quillien, V.; Mingant, C.; Epelboin, Y.; Corporeau, C.; Guyomarch, J.; Robbens, J.; Paul-Pont, I.; Soudant, P.; Huvet, A. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. USA, 2016, 113(9), 2430-2435. doi: 10.1073/pnas.1519019113 PMID: 26831072
- Qiang, L.; Cheng, J. Exposure to polystyrene microplastics impairs gonads of zebrafish (Danio rerio). Chemosphere, 2021, 263, 128161. doi: 10.1016/j.chemosphere.2020.128161 PMID: 33297137
- Chatterjee, A.; Maity, S.; Banerjee, S.; Dutta, S.; Adhikari, M.; Guchhait, R.; Biswas, C.; De, S.; Pramanick, K. Toxicological impacts of nanopolystyrene on zebrafish oocyte with insight into the mechanism of action: An expression-based analysis. Sci. Total Environ., 2022, 830, 154796. doi: 10.1016/j.scitotenv.2022.154796 PMID: 35341844
- Pitt, J.A.; Trevisan, R.; Massarsky, A.; Kozal, J.S.; Levin, E.D.; Di Giulio, R.T. Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): A case study with nanopolystyrene. Sci. Total Environ., 2018, 643, 324-334. doi: 10.1016/j.scitotenv.2018.06.186 PMID: 29940444
- Duan, Z.; Duan, X.; Zhao, S.; Wang, X.; Wang, J.; Liu, Y.; Peng, Y.; Gong, Z.; Wang, L. Barrier function of zebrafish embryonic chorions against microplastics and nanoplastics and its impact on embryo development. J. Hazard. Mater., 2020, 395, 122621. doi: 10.1016/j.jhazmat.2020.122621 PMID: 32289630
- Feng, M.; Luo, J.; Wan, Y.; Zhang, J.; Lu, C.; Wang, M.; Dai, L.; Cao, X.; Yang, X.; Wang, Y. Polystyrene nanoplastic exposure induces developmental toxicity by activating the oxidative stress response and base excision repair pathway in zebrafish (Danio rerio). ACS Omega, 2022, 7(36), 32153-32163. doi: 10.1021/acsomega.2c03378 PMID: 36119974
- Lin, W.; Luo, H.; Wu, J.; Liu, X.; Cao, B.; Liu, Y.; Yang, P.; Yang, J. Polystyrene microplastics enhance the microcystin-LR-induced gonadal damage and reproductive endocrine disruption in zebrafish. Sci. Total Environ., 2023, 876, 162664. doi: 10.1016/j.scitotenv.2023.162664 PMID: 36894083
- Tarasco, M.; Gavaia, P.J.; Bensimon-Brito, A.; Cordelières, F.P.; Santos, T.; Martins, G.; de Castro, D.T.; Silva, N.; Cabrita, E.; Bebianno, M.J.; Stainier, D.Y.R.; Cancela, M.L.; Laizé, V. Effects of pristine or contaminated polyethylene microplastics on zebrafish development. Chemosphere, 2022, 303(Pt 3), 135198. doi: 10.1016/j.chemosphere.2022.135198 PMID: 35660050
- Gao, Y.; Li, A.; Zhang, W.; Pang, S.; Liang, Y.; Song, M. Assessing the toxicity of bisphenol A and its six alternatives on zebrafish embryo/larvae. Aquat. Toxicol., 2022, 246, 106154. doi: 10.1016/j.aquatox.2022.106154 PMID: 35390582
- Zhao, F.; Jiang, G.; Wei, P.; Wang, H.; Ru, S. Bisphenol S exposure impairs glucose homeostasis in male zebrafish (Danio rerio). Ecotoxicol. Environ. Saf., 2018, 147, 794-802. doi: 10.1016/j.ecoenv.2017.09.048 PMID: 28946120
- Yuan, M.; Chen, S.; Zeng, C.; Fan, Y.; Ge, W.; Chen, W. Estrogenic and non-estrogenic effects of bisphenol A and its action mechanism in the zebrafish model: An overview of the past two decades of work. Environ. Int., 2023, 176, 107976. doi: 10.1016/j.envint.2023.107976 PMID: 37236126
- Wang, L.; Zhu, Y.; Gu, J.; Yin, X.; Guo, L.; Qian, L.; Shi, L.; Guo, M.; Ji, G. The toxic effect of bisphenol AF and nanoplastic coexposure in parental and offspring generation zebrafish. Ecotoxicol. Environ. Saf., 2023, 251, 114565. doi: 10.1016/j.ecoenv.2023.114565 PMID: 36682183
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int., 2022, 163, 107199. doi: 10.1016/j.envint.2022.107199 PMID: 35367073
- Wen, S.; Chen, Y.; Tang, Y.; Zhao, Y.; Liu, S.; You, T.; Xu, H. Male reproductive toxicity of polystyrene microplastics: Study on the endoplasmic reticulum stress signaling pathway. Food Chem. Toxicol., 2023, 172, 113577. doi: 10.1016/j.fct.2022.113577 PMID: 36563925
- Zhao, T.; Shen, L.; Ye, X.; Bai, G.; Liao, C.; Chen, Z.; Peng, T.; Li, X.; Kang, X.; An, G. Prenatal and postnatal exposure to polystyrene microplastics induces testis developmental disorder and affects male fertility in mice. J. Hazard. Mater., 2023, 445, 130544. doi: 10.1016/j.jhazmat.2022.130544 PMID: 36493639
- An, R.; Wang, X.; Yang, L.; Zhang, J.; Wang, N.; Xu, F.; Hou, Y.; Zhang, H.; Zhang, L. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology, 2021, 449, 152665. doi: 10.1016/j.tox.2020.152665 PMID: 33359712
- Deng, Y.; Yan, Z.; Shen, R.; Huang, Y.; Ren, H.; Zhang, Y. Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus). J. Hazard. Mater., 2021, 406, 124644. doi: 10.1016/j.jhazmat.2020.124644 PMID: 33321324
- Wei, Z.; Wang, Y.; Wang, S.; Xie, J.; Han, Q.; Chen, M. Comparing the effects of polystyrene microplastics exposure on reproduction and fertility in male and female mice. Toxicology, 2022, 465, 153059. doi: 10.1016/j.tox.2021.153059 PMID: 34864092
- Marcelino, R.C.; Cardoso, R.M.; Domingues, E.L.B.C.; Gonçalves, R.V.; Lima, G.D.A.; Novaes, R.D. The emerging risk of microplastics and nanoplastics on the microstructure and function of reproductive organs in mammals: A systematic review of preclinical evidence. Life Sci., 2022, 295, 120404. doi: 10.1016/j.lfs.2022.120404 PMID: 35176278
- Yuan, Y.; Qin, Y.; Wang, M.; Xu, W.; Chen, Y.; Zheng, L.; Chen, W.; Luo, T. Microplastics from agricultural plastic mulch films: A mini-review of their impacts on the animal reproductive system. Ecotoxicol. Environ. Saf., 2022, 244, 114030. doi: 10.1016/j.ecoenv.2022.114030 PMID: 36058163
- Maradonna, F.; Vandenberg, L.N.; Meccariello, R. Editorial: Endocrine-disrupting compounds in plastics and their effects on reproduction, fertility, and development. Front. Toxicol., 2022, 4, 886628. doi: 10.3389/ftox.2022.886628 PMID: 35399294
- Wu, H.; Liu, Q.; Yang, N.; Xu, S. Polystyrene-microplastics and DEHP co-exposure induced DNA damage, cell cycle arrest and necroptosis of ovarian granulosa cells in mice by promoting ROS production. Sci. Total Environ., 2023, 871, 161962. doi: 10.1016/j.scitotenv.2023.161962 PMID: 36775173
- Liu, Z.; Zhuan, Q.; Zhang, L.; Meng, L.; Fu, X.; Hou, Y. Polystyrene microplastics induced female reproductive toxicity in mice. J. Hazard. Mater., 2022, 424(Pt C), 127629. doi: 10.1016/j.jhazmat.2021.127629 PMID: 34740508
- Zeng, L.; Zhou, C.; Xu, W.; Huang, Y.; Wang, W.; Ma, Z.; Huang, J.; Li, J.; Hu, L.; Xue, Y.; Luo, T.; Zheng, L. The ovarian-related effects of polystyrene nanoplastics on human ovarian granulosa cells and female mice. Ecotoxicol. Environ. Saf., 2023, 257, 114941. doi: 10.1016/j.ecoenv.2023.114941 PMID: 37087970
- Park, E.J.; Han, J.S.; Park, E.J.; Seong, E.; Lee, G.H.; Kim, D.W.; Son, H.Y.; Han, H.Y.; Lee, B.S. Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation. Toxicol. Lett., 2020, 324, 75-85. doi: 10.1016/j.toxlet.2020.01.008 PMID: 31954868
- Wei, Y.; Zhou, Y.; Long, C.; Wu, H.; Hong, Y.; Fu, Y.; Wang, J.; Wu, Y.; Shen, L.; Wei, G. Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-Mediated imbalance of mTORC1 and mTORC2. Environ. Pollut., 2021, 289, 117904. doi: 10.1016/j.envpol.2021.117904 PMID: 34371264
- Jin, H.; Yan, M.; Pan, C.; Liu, Z.; Sha, X.; Jiang, C.; Li, L.; Pan, M.; Li, D.; Han, X.; Ding, J. Chronic exposure to polystyrene microplastics induced male reproductive toxicity and decreased testosterone levels via the LH-mediated LHR/cAMP/PKA/StAR pathway. Part. Fibre Toxicol., 2022, 19(1), 13. doi: 10.1186/s12989-022-00453-2 PMID: 35177090
- Hou, L.; Wang, D.; Yin, K.; Zhang, Y.; Lu, H.; Guo, T.; Li, J.; Zhao, H.; Xing, M. Polystyrene microplastics induce apoptosis in chicken testis via crosstalk between NF-κB and Nrf2 pathways. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2022, 262, 109444. doi: 10.1016/j.cbpc.2022.109444 PMID: 36007826
- Hou, B.; Wang, F.; Liu, T.; Wang, Z. Reproductive toxicity of polystyrene microplastics: In vivo experimental study on testicular toxicity in mice. J. Hazard. Mater., 2021, 405, 124028. doi: 10.1016/j.jhazmat.2020.124028 PMID: 33087287
- Xie, X.; Deng, T.; Duan, J.; Xie, J.; Yuan, J.; Chen, M. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. Ecotoxicol. Environ. Saf., 2020, 190, 110133. doi: 10.1016/j.ecoenv.2019.110133 PMID: 31896473
- Zhou, Y.; Xu, W.; Yuan, Y.; Luo, T. What is the Impact of Bisphenol A on sperm function and related signaling pathways: A Mini-review? Curr. Pharm. Des., 2020, 26(37), 4822-4828. doi: 10.2174/1381612826666200821113126 PMID: 32954995
- Sui, A.; Yao, C.; Chen, Y.; Li, Y.; Yu, S.; Qu, J.; Wei, H.; Tang, J.; Chen, G. Polystyrene nanoplastics inhibit StAR expression by activating HIF-1α via ERK1/2 MAPK and AKT pathways in TM3 Leydig cells and testicular tissues of mice. Food Chem. Toxicol., 2023, 173, 113634. doi: 10.1016/j.fct.2023.113634 PMID: 36709824
- Jin, H.; Ma, T.; Sha, X.; Liu, Z.; Zhou, Y.; Meng, X.; Chen, Y.; Han, X.; Ding, J. Polystyrene microplastics induced male reproductive toxicity in mice. J. Hazard. Mater., 2021, 401, 123430. doi: 10.1016/j.jhazmat.2020.123430 PMID: 32659591
- Sun, Z.; Wen, Y.; Zhang, F.; Fu, Z.; Yuan, Y.; Kuang, H.; Kuang, X.; Huang, J.; Zheng, L.; Zhang, D. Exposure to nanoplastics induces mitochondrial impairment and cytomembrane destruction in leydig cells. Ecotoxicol. Environ. Saf., 2023, 255, 114796. doi: 10.1016/j.ecoenv.2023.114796 PMID: 36948006
- Mruk, D.D.; Cheng, C.Y. The mammalian blood-testis barrier: Its biology and regulation. Endocr. Rev., 2015, 36(5), 564-591. doi: 10.1210/er.2014-1101 PMID: 26357922
- Xu, W.; Yuan, Y.; Tian, Y.; Cheng, C.; Chen, Y.; Zeng, L.; Yuan, Y.; Li, D.; Zheng, L.; Luo, T. Oral exposure to polystyrene nanoplastics reduced male fertility and even caused male infertility by inducing testicular and sperm toxicities in mice. J. Hazard. Mater., 2023, 454, 131470. doi: 10.1016/j.jhazmat.2023.131470 PMID: 37116333
- Hu, R.; Yao, C.; Li, Y.; Qu, J.; Yu, S.; Han, Y.; Chen, G.; Tang, J.; Wei, H. Polystyrene nanoplastics promote CHIP-mediated degradation of tight junction proteins by activating IRE1α/XBP1s pathway in mouse Sertoli cells. Ecotoxicol. Environ. Saf., 2022, 248, 114332. doi: 10.1016/j.ecoenv.2022.114332 PMID: 36446169
- Hassine, M.B.H.; Venditti, M.; Rhouma, M.B.; Minucci, S.; Messaoudi, I. Combined effect of polystyrene microplastics and cadmium on rat blood-testis barrier integrity and sperm quality. Environ. Sci. Pollut. Res. Int., 2023, 30(19), 56700-56712. doi: 10.1007/s11356-023-26429-z PMID: 36928700
- Venditti, M.; Ben Hadj Hassine, M.; Messaoudi, I.; Minucci, S. The simultaneous administration of microplastics and cadmium alters rat testicular activity and changes the expression of PTMA, DAAM1 and PREP. Front. Cell Dev. Biol., 2023, 11, 1145702. doi: 10.3389/fcell.2023.1145702 PMID: 36968197
- Liu, J.; Ma, M.; Zhu, D.; Xia, T.; Qi, Y.; Yao, Y.; Guo, X.; Ji, R.; Chen, W. Polystyrene nanoplastics-enhanced contaminant transport: Role of irreversible adsorption in glassy polymeric domain. Environ. Sci. Technol., 2018, 52(5), 2677-2685. doi: 10.1021/acs.est.7b05211 PMID: 29420017
- Li, D.; Sun, W.; Jiang, X.; Yu, Z.; Xia, Y.; Cheng, S.; Mao, L.; Luo, S.; Tang, S.; Xu, S.; Zou, Z.; Chen, C.; Qiu, J.; Zhou, L. Polystyrene nanoparticles enhance the adverse effects of di-(2-ethylhexyl) phthalate on male reproductive system in mice. Ecotoxicol. Environ. Saf., 2022, 245, 114104. doi: 10.1016/j.ecoenv.2022.114104 PMID: 36174316
- Cui, H.; Yang, W.; Cui, Y.; Qi, L.; Jiang, X.; Li, M. Adverse effects of pristine and aged polystyrene microplastics in mice and their Nrf2-mediated defense mechanisms with tissue specificity. Environ. Sci. Pollut. Res. Int., 2023, 30(14), 39894-39906. doi: 10.1007/s11356-022-24918-1 PMID: 36602732
- Liu, T.; Hou, B.; Zhang, Y.; Wang, Z. Determination of biological and molecular attributes related to polystyrene microplastic-induced reproductive toxicity and its reversibility in male mice. Int. J. Environ. Res. Public Health, 2022, 19(21), 14093. doi: 10.3390/ijerph192114093 PMID: 36360968
- Rizwan, A.; Ijaz, M.U.; Hamza, A.; Anwar, H. Attenuative effect of astilbin on polystyrene microplastics induced testicular damage: Biochemical, spermatological and histopathological-based evidences. Toxicol. Appl. Pharmacol., 2023, 471, 116559. doi: 10.1016/j.taap.2023.116559 PMID: 37217007
- Ijaz, M.U.; Najam, S.; Hamza, A.; Azmat, R.; Ashraf, A.; Unuofin, J.O.; Lebelo, S.L.; Simal-Gandara, J. Pinostrobin alleviates testicular and spermatological damage induced by polystyrene microplastics in adult albino rats. Biomed. Pharmacother., 2023, 162, 114686. doi: 10.1016/j.biopha.2023.114686 PMID: 37044025
- Hamza, A.; Ijaz, M.U.; Anwar, H. Rhamnetin alleviates polystyrene microplastics-induced testicular damage by restoring biochemical, steroidogenic, hormonal, apoptotic, inflammatory, spermatogenic and histological profile in male albino rats. Hum. Exp. Toxicol., 2023, 42. doi: 10.1177/09603271231173378 PMID: 37122069
- DAngelo, S.; Scafuro, M.; Meccariello, R. BPA and nutraceuticals, simultaneous effects on endocrine functions. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(5), 594-604. doi: 10.2174/1871530319666190101120119 PMID: 30621569
- Kim, S.; Kim, H.; Yim, Y.S.; Ha, S.; Atarashi, K.; Tan, T.G.; Longman, R.S.; Honda, K.; Littman, D.R.; Choi, G.B.; Huh, J.R. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature, 2017, 549(7673), 528-532. doi: 10.1038/nature23910 PMID: 28902840
- Han, V.X.; Patel, S.; Jones, H.F.; Dale, R.C. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat. Rev. Neurol., 2021, 17(9), 564-579. doi: 10.1038/s41582-021-00530-8 PMID: 34341569
- Schwabl, P.; Köppel, S.; Königshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of various microplastics in human stool. Ann. Intern. Med., 2019, 171(7), 453-457. doi: 10.7326/M19-0618 PMID: 31476765
- Xu, J.L.; Lin, X.; Wang, J.J.; Gowen, A.A. A review of potential human health impacts of micro- and nanoplastics exposure. Sci. Total Environ., 2022, 851(Pt 1), 158111. doi: 10.1016/j.scitotenv.2022.158111 PMID: 35987230
- Wu, P.; Lin, S.; Cao, G.; Wu, J.; Jin, H.; Wang, C.; Wong, M.H.; Yang, Z.; Cai, Z. Absorption, distribution, metabolism, excretion and toxicity of microplastics in the human body and health implications. J. Hazard. Mater., 2022, 437, 129361. doi: 10.1016/j.jhazmat.2022.129361 PMID: 35749897
- La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; Rieswijk, L.; Sone, H.; Korach, K.S.; Gore, A.C.; Zeise, L.; Zoeller, R.T. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol., 2020, 16(1), 45-57. doi: 10.1038/s41574-019-0273-8 PMID: 31719706
Supplementary files
