Role of Cav2.3 (R-type) Calcium Channel in Pain and Analgesia: A Scoping Review


Cite item

Full Text

Abstract

Background:Voltage-gated calcium channels (VGCCs) play an important role in pain development and maintenance. As Cav2.2 and Cav3.2 channels have been identified as potential drug targets for analgesics, the participation of Cav2.3 (that gives rise to R-type calcium currents) in pain and analgesia remains incompletely understood.

Objective:Identify the participation of Cav2.3 in pain and analgesia.

Methods:To map research in this area as well as to identify any existing gaps in knowledge on the potential role of Cav2.3 in pain signalling, we conducted this scoping review. We searched PubMed and SCOPUS databases, and 40 articles were included in this study. Besides, we organized the studies into 5 types of categories within the broader context of the role of Cav2.3 in pain and analgesia.

Results:Some studies revealed the expression of Cav2.3 in pain pathways, especially in nociceptive neurons at the sensory ganglia. Other studies demonstrated that Cav2.3-mediated currents could be inhibited by analgesic/antinociceptive drugs either indirectly or directly. Some articles indicated that Cav2.3 modulates nociceptive transmission, especially at the pre-synaptic level at spinal sites. There are studies using different rodent pain models and approaches to reduce Cav2.3 activity or expression and mostly demonstrated a pro-nociceptive role of Cav2.3, despite some contradictory findings and deficiencies in the description of study design quality. There are three studies that reported the association of single-nucleotide polymorphisms in the Cav2.3 gene (CACNA1E) with postoperative pain and opioid consumption as well as with the prevalence of migraine in patients.

Conclusion:Cav2.3 is a target for some analgesic drugs and has a pro-nociceptive role in pain.

About the authors

Marcella de Amorim Ferreira

Graduate Program of Pharmacology, Universidade Federal de Santa Catarina

Email: info@benthamscience.net

Juliano Ferreira

Graduate Program of Pharmacology,, Universidade Federal de Santa Catarina

Author for correspondence.
Email: info@benthamscience.net

References

  1. Basbaum, A.I.; Bautista, D.M.; Scherrer, G.; Julius, D. Cellular and molecular mechanisms of pain. Cell, 2009, 139(2), 267-284. doi: 10.1016/j.cell.2009.09.028 PMID: 19837031
  2. Wang, H.; Woolf, C.J. Pain TRPs. Neuron, 2005, 46(1), 9-12. doi: 10.1016/j.neuron.2005.03.011 PMID: 15820689
  3. Latremoliere, A.; Woolf, C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain, 2009, 10(9), 895-926. doi: 10.1016/j.jpain.2009.06.012 PMID: 19712899
  4. Dieleman, J.L.; Baral, R.; Birger, M.; Bui, A.L.; Bulchis, A.; Chapin, A.; Hamavid, H.; Horst, C.; Johnson, E.K.; Joseph, J.; Lavado, R.; Lomsadze, L.; Reynolds, A.; Squires, E.; Campbell, M.; DeCenso, B.; Dicker, D.; Flaxman, A.D.; Gabert, R.; Highfill, T.; Naghavi, M.; Nightingale, N.; Templin, T.; Tobias, M.I.; Vos, T. Murray, C.J.L. m.fl. US spending on personal health care and public health, 1996-2013. JAMA -. JAMA, 2016, 316(24), 2627-2646. doi: 10.1001/jama.2016.16885 PMID: 28027366
  5. Raja, S.N.; Carr, D.B.; Cohen, M.; Finnerup, N.B.; Flor, H.; Gibson, S.; Keefe, F.J.; Mogil, J.S.; Ringkamp, M.; Sluka, K.A.; Song, X.J.; Stevens, B.; Sullivan, M.D.; Tutelman, P.R.; Ushida, T.; Vader, K. The revised International Association for the Study of Pain definition of pain: Concepts, challenges, and compromises. Pain, 2020, 161(9), 1976-1982. doi: 10.1097/j.pain.0000000000001939 PMID: 32694387
  6. Loeser, J.D.; Treede, R.D. The Kyoto protocol of IASP Basic Pain Terminology. Pain, 2008, 137(3), 473-477. doi: 10.1016/j.pain.2008.04.025 PMID: 18583048
  7. Freynhagen, R.; Parada, H.A.; Calderon-Ospina, C.A.; Chen, J.; Rakhmawati, E.D.; Fernández-Villacorta, F.J. Current understanding of the mixed pain concept: A brief narrative review. Curr. Med. Res. Opin., 2019, 35(1011), 1018-1117.
  8. Cruccu, G.; Sommer, C.; Anand, P.; Attal, N.; Baron, R.; Garcia-Larrea, L.; Haanpaa, M.; Jensen, T.S.; Serra, J.; Treede, R.D. EFNS guidelines on neuropathic pain assessment: revised 2009. Eur. J. Neurol., 2010, 17(8), 1010-1018. doi: 10.1111/j.1468-1331.2010.02969.x PMID: 20298428
  9. Boezaart, A.P.; Smith, C.R.; Chembrovich, S.; Zasimovich, Y.; Server, A.; Morgan, G. Visceral versus somatic pain: An educational review of anatomy and clinical implications. Reg. Anesth. Pain Med., 2021, 46, 629-636.
  10. Armitage, P.; Berry, G. The planning os statistical investigations: Statistical methods in medical research, 2nd ed; Blackwell: Oxford, 1987, pp. 179-185.
  11. Khademi, H.; Kamangar, F.; Brennan, P.; Malekzadeh, R. Opioid therapy and its side effects: A review. Arch. Iran Med., 2016, 19, 870-876.
  12. Greenwood-Van Meerveld, B.; Johnson, A.C.; Grundy, D. Gastrointestinal physiology and function. Handb. Exp. Pharmacol., 2017, 239, 1-16. doi: 10.1007/164_2016_118
  13. Abboud, C.; Duveau, A.; Bouali-Benazzouz, R.; Massé, K.; Mattar, J.; Brochoire, L. Animal models of pain: Diversity and benefits. J. Neurosci. Methods, 2021, 348, 108997.
  14. Muley, M.M.; Krustev, E.; McDougall, J.J. Preclinical assessment of inflammatory pain. CNS Neurosci. Ther., 2016, 22(2), 88-101. doi: 10.1111/cns.12486 PMID: 26663896
  15. Klinck, M.P.; Mogil, J.S.; Moreau, M.; Lascelles, B.D.X.; Flecknell, P.A.; Poitte, T.; Troncy, E. Translational pain assessment: Could natural animal models be the missing link? Pain, 2017, 158(9), 1633-1646. doi: 10.1097/j.pain.0000000000000978 PMID: 28614187
  16. Simms, B.A.; Zamponi, G.W. Neuronal voltage-gated calcium channels: Structure, function, and dysfunction. Neuron, 2014, 82(1), 24-45. doi: 10.1016/j.neuron.2014.03.016 PMID: 24698266
  17. Zamponi, G.W.; Striessnig, J.; Koschak, A.; Dolphin, A.C. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev., 2015, 67(4), 821-870. doi: 10.1124/pr.114.009654 PMID: 26362469
  18. Catterall, W.A. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol., 2011, 3(8), a003947. doi: 10.1101/cshperspect.a003947 PMID: 21746798
  19. Dolphin, A.C. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J. Physiol., 2016, 594(19), 5369-5390. doi: 10.1113/JP272262 PMID: 27273705
  20. Eldabe, S.; Batterham, A. Ziconotide monotherapy: A systematic review of randomised controlled trials. Curr. Neuropharmacol., 2016, 15, 217-231.
  21. Wallace, M.S.; Rauck, R.; Fisher, R.; Charapata, S.G.; Ellis, D.; Dissanayake, S. Intrathecal ziconotide for severe chronic pain: Safety and tolerability results of an open-label, long-term trial. Anesth. Analg., 2008, 106(2), 628-637. doi: 10.1213/ane.0b013e3181606fad PMID: 18227325
  22. Mogil, J.S.; Davis, K.D.; Derbyshire, S.W. The necessity of animal models in pain research. Pain, 2010, 151(1), 12-17. doi: 10.1016/j.pain.2010.07.015 PMID: 20696526
  23. Weiss, N.; Zamponi, G.W. Opioid receptor regulation of neuronal voltage-gated calcium channels. Cell. Mol. Neurobiol., 2021, 41(5), 839-847. doi: 10.1007/s10571-020-00894-3 PMID: 32514826
  24. Fang, Z.; Park, C.K.; Li, H.Y.; Kim, H.Y.; Park, S.H.; Jung, S.J.; Kim, J.S.; Monteil, A.; Oh, S.B.; Miller, R.J. Molecular basis of Ca(v)2.3 calcium channels in rat nociceptive neurons. J. Biol. Chem., 2007, 282(7), 4757-4764. doi: 10.1074/jbc.M605248200 PMID: 17145762
  25. Fang, Z.; Hwang, J.H.; Kim, J.S.; Jung, S.J.; Oh, S.B. R-type calcium channel isoform in rat dorsal root ganglion neurons. Korean J. Physiol. Pharmacol., 2010, 14(1), 45-49. doi: 10.4196/kjpp.2010.14.1.45 PMID: 20221279
  26. Schneider, T.; Dibué, M.; Hescheler, J. How "pharmacoresistant" is cav2.3, the major component of voltage-gated R-type Ca2+ channels? Pharmaceuticals, 2013, 6(6), 759-776. doi: 10.3390/ph6060759 PMID: 24276260
  27. Wormuth, C.; Lundt, A.; Henseler, C.; Müller, R.; Broich, K.; Papazoglou, A. Weiergräber, M. m.fl. Review: Cav2.3 R-type voltage-gated Ca2+ channels - Functional implications in convulsive and non-convulsive seizure activity. Open Neurol. J., 2016, 10(1), 99-126. doi: 10.2174/1874205X01610010099 PMID: 27843503
  28. Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med., 2018, 169, 467-473.
  29. Pham, M.T.; Rajić, A.; Greig, J.D.; Sargeant, J.M.; Papadopoulos, A.; McEwen, S.A. A scoping review of scoping reviews: Advancing the approach and enhancing the consistency. Res. Synth. Methods, 2014, 5(4), 371-385. doi: 10.1002/jrsm.1123 PMID: 26052958
  30. Sena, E.; van der Worp, H.B.; Howells, D.; Macleod, M. How can we improve the pre-clinical development of drugs for stroke? Trends Neurosci., 2007, 30(9), 433-439. doi: 10.1016/j.tins.2007.06.009 PMID: 17765332
  31. Le Pichon, C.E.; Chesler, A.T. The functional and anatomical dissection of somatosensory subpopulations using mouse genetics. Front. Neuroanat., 2014, 8, 21. doi: 10.3389/fnana.2014.00021 PMID: 24795573
  32. Martella, G.; Costa, C.; Pisani, A.; Cupini, L.M.; Bernardi, G.; Calabresi, P. Antiepileptic drugs on calcium currents recorded from cortical and PAG neurons: Therapeutic implications for migraine. Cephalalgia, 2008, 28(12), 1315-1326. doi: 10.1111/j.1468-2982.2008.01682.x PMID: 18771493
  33. Kortus, S.; Srinivasan, C.; Forostyak, O.; Zapotocky, M.; Ueta, Y.; Sykova, E. Sodium-calcium exchanger and R-type Ca2+ channels mediate spontaneous Ca2+i oscillations in magnocellular neurones of the rat supraoptic nucleus. Cell Calcium, 2016, 59, 289-298.
  34. Siwek, M.E.; Müller, R.; Henseler, C.; Broich, K.; Papazoglou, A.; Weiergräber, M. The CaV2.3 R-type voltage-gated Ca2+ channel in mouse sleep architecture. Sleep, 2014, 37(5), 881-892. doi: 10.5665/sleep.3652 PMID: 24790266
  35. Lee, S.C.; Choi, S.; Lee, T.; Kim, H.L.; Chin, H.; Shin, H.S. Molecular basis of R-type calcium channels in central amygdala neurons of the mouse. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 3276-3281. doi: 10.1073/pnas.052697799 PMID: 11854466
  36. Castro, J.; Harrington, A.M.; Garcia-Caraballo, S.; Maddern, J.; Grundy, L.; Zhang, J.; Page, G.; Miller, P.E.; Craik, D.J.; Adams, D.J.; Brierley, S.M. α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABAB receptors. Gut, 2017, 66(6), 1083-1094. doi: 10.1136/gutjnl-2015-310971 PMID: 26887818
  37. Gandla, J.; Lomada, S.K.; Lu, J.; Kuner, R.; Bali, K.K. miR-34c-5p functions as pronociceptive microRNA in cancer pain by targeting Cav2.3 containing calcium channels. Pain, 2017, 158(9), 1765-1779. doi: 10.1097/j.pain.0000000000000971 PMID: 28614186
  38. Martin, L.; Ibrahim, M.; Gomez, K.; Yu, J.; Cai, S.; Chew, L.A. Conotoxin contulakin-G engages a neurotensin receptor 2/R-type calcium channel (Cav2.3) pathway to mediate spinal antinociception. Pain, 2021, 163(9), 1751-1762.
  39. Murakami, M.; Suzuki, T.; Nakagawasai, O.; Murakami, H.; Murakami, S.; Esashi, A.; Taniguchi, R.; Yanagisawa, T.; Tan-No, K.; Miyoshi, I.; Sasano, H.; Tadano, T. Distribution of various calcium channel α1 subunits in murine DRG neurons and antinociceptive effect of ω-conotoxin SVIB in mice. Brain Res., 2001, 903(1-2), 231-236. doi: 10.1016/S0006-8993(01)02427-1 PMID: 11382408
  40. Murakami, M.; Nakagawasai, O.; Suzuki, T.; Mobarakeh, I.I.; Sakurada, Y.; Murata, A.; Yamadera, F.; Miyoshi, I.; Yanai, K.; Tan-No, K.; Sasano, H.; Tadano, T.; Iijima, T. Antinociceptive effect of different types of calcium channel inhibitors and the distribution of various calcium channel α1 subunits in the dorsal horn of spinal cord in mice. Brain Res., 2004, 1024(1-2), 122-129. doi: 10.1016/j.brainres.2004.07.066 PMID: 15451373
  41. Saegusa, H.; Kurihara, T.; Zong, S.; Minowa, O.; Kazuno, A.; Han, W.; Matsuda, Y.; Yamanaka, H.; Osanai, M.; Noda, T.; Tanabe, T. Altered pain responses in mice lacking α1E subunit of the voltage-dependent Ca2+ channel. Proc. Natl. Acad. Sci. USA, 2000, 97(11), 6132-6137. doi: 10.1073/pnas.100124197 PMID: 10801976
  42. Qian, A.; Song, D.; Li, Y.; Liu, X.; Tang, D.; Yao, W.; Yuan, Y. Role of voltage gated Ca2+ channels in rat visceral hypersensitivity change induced by 2,4,6-trinitrobenzene sulfonic acid. Mol. Pain, 2013, 9, 1744-8069-9-15. doi: 10.1186/1744-8069-9-15 PMID: 23537331
  43. Westenbroek, R.E.; Hoskins, L.; Catterall, W.A. Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J. Neurosci., 1998, 18(16), 6319-6330. doi: 10.1523/JNEUROSCI.18-16-06319.1998 PMID: 9698323
  44. Yang, L.; Zhang, F-X.; Huang, F.; Lu, Y-J.; Li, G-D.; Bao, L. Peripheral nerve injury induces trans-synaptic modification of channels, receptors and signal pathways in rat dorsal spinal cord. Eur. J. Neurosci., 2004, 19, 871-883.
  45. Yokoyama, T.; Westenbroek, I.R.E.; Hell, W.; Snutch, P. Biochemical properties and subcellular distribution neuronal class E E calcium channel alpha 1 subunit. J. Neurosci., 1995, 15(10), 6419-6432.
  46. Needham, K.; Bron, R.; Hunne, B.; Nguyen, T.V.; Turner, K.; Nash, M. Identification of subunits of voltage-gated calcium channels and actions of pregabalin on intrinsic primary afferent neurons in the guinea-pig ileum. Neurogastroenterol. Motil., 2010, 22, e301-e308.
  47. Nkambeu, B.; Ben Salem, J.; Beaudry, F. Eugenol and other vanilloids hamper Caenorhabditis elegans response to noxious heat. Neurochem. Res., 2021, 46(2), 252-264. doi: 10.1007/s11064-020-03159-z PMID: 33123873
  48. He, A.; Song, D.; Zhang, L.; Li, C. Unveiling the relative efficacy, safety and tolerability of prophylactic medications for migraine: Pairwise and network-meta analysis. J. Headache Pain, 2017, 18, 26.
  49. Ling, H-Q.; Chen, Z-H.; He, L.; Feng, F.; Weng, C-G.; Cheng, S-J. Comparative efficacy and safety of 11 drugs as therapies for adults with neuropathic pain after spinal cord injury: a bayesian network analysis based on 20 randomized controlled trials. Front. Neurol., 2022, 13, 818522.
  50. Hainsworth, A.H.; McNaughton, N.C.L.; Pereverzev, A.; Schneider, T.; Randall, A.D. Actions of sipatrigine, 202W92 and lamotrigine on R-type and T-type Ca2+ channel currents. Eur. J. Pharmacol., 2003, 467, 77-80.
  51. Kuzmiski, J.B.; Barr, W.; Zamponi, G.W.; MacVicar, B.A. Topiramate inhibits the initiation of plateau potentials in CA1 neurons by depressing R-type calcium channels. Epilepsia, 2005, 46(4), 481-489. doi: 10.1111/j.0013-9580.2005.35304.x PMID: 15816941
  52. Wormuth, C.; Lundt, A.; Henseler, C.; Müller, R.; Broich, K.; Papazoglou, A. Weiergräber, M. m.fl. Review: Cav2.3 R-type voltage-gated Ca2+ channels - Functional implications in convulsive and non-convulsive seizure activity. Open Neurol. J., 2016, 10(1), 99-126. doi: 10.2174/1874205X01610010099 PMID: 27843503
  53. Sng, B.L.; Sia, A.T.H.; Quek, K.; Woo, D.; Lim, Y. Incidence and risk factors for chronic pain after caesarean section under spinal anaesthesia. Anaesth. Intensive Care, 2009, 37(5), 748-752. doi: 10.1177/0310057X0903700513 PMID: 19775038
  54. Marathe, A.; Allahabadi, S.; Abd-Elsayed, A.; Saulino, M.; Hagedorn, J.M.; Orhurhu, V.; Karri, J. Intrathecal baclofen monotherapy and polyanalgesia for treating chronic pain in patients with severe spasticity. Curr. Pain Headache Rep., 2021, 25(12), 79. doi: 10.1007/s11916-021-00994-9 PMID: 34894303
  55. Kakuta, N.; Tsutsumi, Y.M.; Horikawa, Y.T.; Kawano, H.; Kinoshita, M.; Tanaka, K. Neurokinin-1 receptor antagonism, aprepitant, effectively diminishes post-operative nausea and vomiting while increasing analgesic tolerance in laparoscopic gynecological procedures. J. Med. Invest., 2011, 58, 246-251.
  56. Gaskell, H.; Derry, S.; Moore, R.A. Treating chronic non-cancer pain in older people - more questions than answers? Maturitas, 2014, 79(1), 34-40. doi: 10.1016/j.maturitas.2014.06.013 PMID: 25048719
  57. Ferrari, M.D.; Goadsby, P.J.; Roon, K.I.; Lipton, R.B. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: Detailed results and methods of a meta-analysis of 53 trials. Cephalalgia, 2002, 22(8), 633-658. doi: 10.1046/j.1468-2982.2002.00404.x PMID: 12383060
  58. Mollenholt, P.; Rawal, N.; Gordh, T., Jr; Olsson, Y. Intrathecal and epidural somatostatin for patients with cancer. Analgesic effects and postmortem neuropathologic investigations of spinal cord and nerve roots. Anesthesiology, 1994, 81(3), 534-542. doi: 10.1097/00000542-199409000-00004 PMID: 7916546
  59. Sang, C.N.; Barnabe, K.J.; Kern, S.E. Phase IA clinical trial evaluating the tolerability, pharmacokinetics, and analgesic efficacy of an intrathecally administered neurotensin a analogue in central neuropathic pain following spinal cord injury. Clin. Pharmacol. Drug Dev., 2016, 5, 250-258.
  60. Chung, G.; Rhee, J.N.; Jung, S.J.; Kim, J.S.; Oh, S.B. Modulation of CaV2.3 calcium channel currents by eugenol. J. Dent. Res., 2008, 87(2), 137-141. doi: 10.1177/154405910808700201 PMID: 18218839
  61. Mohammadreza, S.; Mackenzie, G.; Toni, W.; Slobodan, S. L- cysteine modulates visceral nociception mediated by the CaV2.3 R-type calcium channels. Pflugers Arch., 2022, 474(4), 435-445.
  62. Leão, R.M.; Cruz, J.S.; Diniz, C.R.; Cordeiro, M.N.; Beirão, P.S.L. Inhibition of neuronal high-voltage activated calcium channels by the ω-Phoneutria nigriventer Tx3-3 peptide toxin. Neuropharmacology, 2000, 39(10), 1756-1767. doi: 10.1016/S0028-3908(99)00267-1 PMID: 10884557
  63. Piekarz, A.D.; Due, M.R.; Khanna, M.; Wang, B.; Ripsch, M.S.; Wang, R.; Meroueh, S.O.; Vasko, M.R.; White, F.A.; Khanna, R. CRMP-2 peptide mediated decrease of high and low voltageactivated calcium channels, attenuation of nociceptor excitability, and anti-nociception in a model of AIDS therapy-induced painful peripheral neuropathy. Mol. Pain, 2012, 8, 1744-8069-8-54. doi: 10.1186/1744-8069-8-54 PMID: 22828369
  64. Shan, Z.; Cai, S.; Yu, J.; Zhang, Z.; Vallecillo, T.G.; Serafini, M.J.; Thomas, A.M.; Pham, N.Y.N.; Bellampalli, S.S.; Moutal, A.; Zhou, Y.; Xu, G.B.; Xu, Y.M.; Luo, S.; Patek, M.; Streicher, J.M.; Gunatilaka, A.A.L.; Khanna, R. Reversal of peripheral neuropathic pain by the small-molecule natural product physalin F via block of CaV2.3 (R-type) and CaV2.2 (N-type) voltage-gated calcium channels. ACS Chem. Neurosci., 2019, 10(6), 2939-2955. doi: 10.1021/acschemneuro.9b00166 PMID: 30946560
  65. Bourinet, E.; Soong, T.W.; Stea, A.; Snutch, T.P. Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc. Natl. Acad. Sci. USA, 1996, 93(4), 1486-1491. doi: 10.1073/pnas.93.4.1486 PMID: 8643659
  66. Ottolia, M.; Platano, D.; Qin, N.; Noceti, F.; Birnbaumer, M.; Toro, L.; Birnbaumer, L.; Stefani, E.; Olcese, R. Functional coupling between human E-type Ca2+ channels and µ opioid receptors expressed in Xenopus oocytes. FEBS Lett., 1998, 427(1), 96-102. doi: 10.1016/S0014-5793(98)00401-3 PMID: 9613607
  67. Berecki, G.; Motin, L.; Adams, D.J. Voltage-Gated R-Type Calcium Channel Inhibition via Human µ -, δ -, and κ -opioid Receptors Is Voltage-Independently Mediated by G βγ Protein Subunits. Mol. Pharmacol., 2016, 89(1), 187-196. doi: 10.1124/mol.115.101154 PMID: 26490245
  68. Berecki, G.; McArthur, J.R.; Cuny, H.; Clark, R.J.; Adams, D.J. Differential Cav2.1 and Cav2.3 channel inhibition by baclofen and alpha-conotoxin Vc1.1 via GABAB receptor activation. J. Gen. Physiol., 2014, 143, 465-479.
  69. Meza, U.; Thapliyal, A.; Bannister, R.A.; Adams, B.A. Neurokinin 1 receptors trigger overlapping stimulation and inhibition of CaV2.3 (R-type) calcium channels. Mol. Pharmacol., 2007, 71(1), 284-293. doi: 10.1124/mol.106.028530 PMID: 17050807
  70. Morikawa, T.; Matsuzawa, Y.; Makita, K.; Katayama, Y. Antimigraine drug, zolmitriptan, inhibits high-voltage activated calcium currents in a population of acutely dissociated rat trigeminal sensory neurons. Mol. Pain, 2006, 2, 10.
  71. Mehrke, G.; Pereverzev, A.; Grabsch, H.; Hescheler, J.; Schneider, T. Receptor-mediated modulation of recombinant neuronal class E calcium channels. FEBS Lett., 1997, 408(3), 261-270. doi: 10.1016/S0014-5793(97)00437-7 PMID: 9188773
  72. Rozanski, G.M.; Nath, A.R.; Adams, M.E.; Stanley, E.F. Low voltage-activated calcium channels gate transmitter release at the dorsal root ganglion sandwich synapse. J. Physiol., 2013, 591(22), 5575-5583. doi: 10.1113/jphysiol.2013.260281 PMID: 24000176
  73. Yang, L.; Topia, I.; Schneider, T.; Stephens, G.J. Phorbol ester modulation of Ca2+ channels mediates nociceptive transmission in dorsal horn neurones. Pharmaceuticals, 2013, 6, 777-787.
  74. Dalmolin, G.D.; Bannister, K.; Gonçalves, L.; Sikandar, S.; Patel, R.; Cordeiro, M. Effect of the spider toxin Tx3-3 on spinal processing of sensory information in naive and neuropathic rats. Pain Rep., 2017, 2, e610. doi: 10.1097/PR9.0000000000000610 PMID: 29392225
  75. Lirk, P. Modulators of calcium influx regulate membrane excitability in rat dorsal root ganglion neurons. Anesth. Analg., 2008, 107, 673-685.
  76. Fuchs, A.; Rigaud, M.; Sarantopoulos, C.D.; Filip, P.; Hogan, Q.H. Contribution of calcium channel subtypes to the intracellular calcium signal in sensory neurons: The effect of injury. Anesthesiology, 2007, 107(1), 117-127. doi: 10.1097/01.anes.0000267511.21864.93 PMID: 17585223
  77. McCallum, J.B. Subtype-specific reduction of voltage-gated calcium current in medium-sized dorsal root ganglion neurons after painful peripheral nerve injury. Neuroscience, 2011, 179(1), 244-255. doi: 10.1016/j.neuroscience.2011.01.049
  78. Matthews, E.A.; Bee, L.A.; Stephens, G.J.; Dickenson, A.H. The Cav2.3 calcium channel antagonist SNX-482 reduces dorsal horn neuronal responses in a rat model of chronic neuropathic pain. Eur. J. Neurosci., 2007, 25, 3561-3569.
  79. Weiergräber, M.; Henry, M.; Südkamp, M.; de Vivie, E.R.; Hescheler, J.; Schneider, T. Ablation of Ca(v)2.3/E-type voltage-gated calcium channel results in cardiac arrhythmia and altered autonomic control within the murine cardiovascular system. Basic Res. Cardiol., 2005, 100(1), 1-13. doi: 10.1007/s00395-004-0488-1 PMID: 15490203
  80. Yokoyama, K.; Kurihara, T.; Saegusa, H.; Zong, S.; Makita, K.; Tanabe, T. Blocking the R-type (Cav2.3) Ca2+ channel enhanced morphine analgesia and reduced morphine tolerance. Eur. J. Neurosci., 2004, 20, 3516-3519.
  81. Ferreira, M.A.; Lückemeyer, D.D.; Macedo-Júnior, S.J.; Schran, R.G.; Silva, A.M.; Prudente, A.S.; Tonello, R.; Ferreira, J. Sex-dependent Cav2.3 channel contribution to the secondary hyperalgesia in a mice model of central sensitization. Brain Res., 2021, 1764, 147438. doi: 10.1016/j.brainres.2021.147438 PMID: 33753067
  82. Newcomb, R.; Szoke, B.; Palma, A.; Wang, G.; Chen, X.; Hopkins, W.; Cong, R.; Miller, J.; Urge, L.; Tarczy-Hornoch, K.; Loo, J.A.; Dooley, D.J.; Nadasdi, L.; Tsien, R.W.; Lemos, J.; Miljanich, G. Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochemistry, 1998, 37(44), 15353-15362. doi: 10.1021/bi981255g PMID: 9799496
  83. Newcomb, R.; Chen, X.; Dean, R.; Dayanithi, G. SNX-482: A novel class E calcium channel antagonist from tarantula venom. Biochemistry, 2000, 37, 15353-15362.
  84. Bourinet, E.; Stotz, S.C.; Spaetgens, R.L.; Dayanithi, G.; Lemos, J.; Nargeot, J.; Zamponi, G.W. Interaction of SNX482 with domains III and IV inhibits activation gating of alpha(1E) (Ca(V)2.3) calcium channels. Biophys. J., 2001, 81(1), 79-88. doi: 10.1016/S0006-3495(01)75681-0 PMID: 11423396
  85. Bishop, K.M. Progress and promise of antisense oligonucleotide therapeutics for central nervous system diseases. Neuropharmacology, 2017, 120, 56-62. doi: 10.1016/j.neuropharm.2016.12.015 PMID: 27998711
  86. Schoch, K.M.; Miller, T.M. Antisense oligonucleotides: Translation from mouse models to human neurodegenerative diseases. Neuron, 2017, 94(6), 1056-1070. doi: 10.1016/j.neuron.2017.04.010 PMID: 28641106
  87. Terashima, T.; Xu, Q.; Yamaguchi, S.; Yaksh, T.L. Intrathecal P/Q- and R-type calcium channel blockade of spinal substance P release and c-Fos expression. Neuropharmacology, 2013, 75, 1-8. doi: 10.1016/j.neuropharm.2013.06.018 PMID: 23810829
  88. Yang, L.; Stephens, G.J. Effects of neuropathy on high-voltage-activated Ca2+ current in sensory neurones. Cell Calcium, 2009, 46(4), 248-256. doi: 10.1016/j.ceca.2009.08.001 PMID: 19726083
  89. Dalmolin, G.D.; Silva, C.R.; Rigo, F.K.; Gomes, G.M.; do Nascimento Cordeiro, M.; Richardson, M.; Silva, M.A.R.; Prado, M.A.M.; Gomez, M.V.; Ferreira, J. Antinociceptive effect of Brazilian armed spider venom toxin Tx3-3 in animal models of neuropathic pain. Pain, 2011, 152(10), 2224-2232. doi: 10.1016/j.pain.2011.04.015 PMID: 21570770
  90. Percie du Sert, N.; Rice, A.S.C. Improving the translation of analgesic drugs to the clinic: Animal models of neuropathic pain. Br. J. Pharmacol., 2014, 171(12), 2951-2963. doi: 10.1111/bph.12645 PMID: 24527763
  91. Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.M.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol., 2014, 14(1), 43. doi: 10.1186/1471-2288-14-43 PMID: 24667063
  92. Ide, S.; Nishizawa, D.; Fukuda, K.; Kasai, S.; Hasegawa, J.; Hayashida, M.; Minami, M.; Ikeda, K. Association between genetic polymorphisms in Cav2.3 (R-type) Ca2+ channels and fentanyl sensitivity in patients undergoing painful cosmetic surgery. PLoS One, 2013, 8(8), e70694. doi: 10.1371/journal.pone.0070694 PMID: 23940630
  93. Amano, K.; Nishizawa, D.; Mieda, T.; Tsujita, M.; Kitamura, A.; Hasegawa, J.; Inada, E.; Hayashida, M.; Ikeda, K. Opposite associations between the rs3845446 single-nucleotide polymorphism of the CACNA1E gene and postoperative pain-related phenotypes in gastrointestinal surgery versus previously reported orthognathic surgery. J. Pain, 2016, 17(10), 1126-1134. doi: 10.1016/j.jpain.2016.07.001 PMID: 27480382
  94. Ambrosini, A.; D’Onofrio, M.; Buzzi, M.G.; Arisi, I.; Grieco, G.S.; Pierelli, F.; Santorelli, F.M.; Schoenen, J. Possible involvement of the CACNA1E gene in migraine: A search for single nucleotide polymorphism in different clinical phenotypes. Headache, 2017, 57(7), 1136-1144. doi: 10.1111/head.13107 PMID: 28573794
  95. Helbig, K.L.; Lauerer, R.J.; Bahr, J.C.; Souza, I.A.; Myers, C.T.; Schwarz, N. De novo pathogenic variants in CACNA1E cause developmental and epileptic encephalopathy with contractures, macrocephaly, and dyskinesias. Am. J. Hum. Genet., 2018, 103(5), 666-678.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers