Metabotropic Glutamate Receptors Type 3 and 5 Feature the "NeuroTransmitter-type" of Glioblastoma: A Bioinformatic Approach
- Authors: Caridi M.1, Alborghetti M.2, Pellicelli V.3, Orlando R.4, Pontieri F.2, Battaglia G.4, Arcella A.5
-
Affiliations:
- Division of Hematology and Clinical Immunology, Department of Medicin, University of Perugia
- Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome
- Internal Medicine, Sapienza University of Rome
- Department of Physiology and Pharmacology, University Sapienza of Roma
- , IRCCS Neuromed
- Issue: Vol 22, No 11 (2024)
- Pages: 1923-1939
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644414
- DOI: https://doi.org/10.2174/1570159X22666240320112926
- ID: 644414
Cite item
Full Text
Abstract
Background:Glioblastoma (GBM) represents an aggressive and common tumor of the central nervous system. The prognosis of GBM is poor, and despite a refined genetic and molecular characterization, pharmacological treatment is largely suboptimal.
Objective:Contribute to defining a therapeutic line in GBM targeting the mGlu3 receptor in line with the principles of precision medicine.
Methods:Here, we performed a computational analysis focused on the expression of type 3 and 5 metabotropic glutamate receptor subtypes (mGlu3 and mGlu5, respectively) in high- and low-grade gliomas.
Results:The analysis allowed the identification of a particular high-grade glioma type, characterized by a high expression level of both receptor subtypes and by other markers of excitatory and inhibitory neurotransmission. This so-called neurotransmitter-GBM (NT-GBM) also shows a distinct immunological, metabolic, and vascularization gene signature.
Conclusion:Our findings might lay the groundwork for a targeted therapy to be specifically applied to this putative novel type of GBM.
About the authors
Matteo Caridi
Division of Hematology and Clinical Immunology, Department of Medicin, University of Perugia
Email: info@benthamscience.net
Marika Alborghetti
Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome
Email: info@benthamscience.net
Valeria Pellicelli
Internal Medicine, Sapienza University of Rome
Email: info@benthamscience.net
Rosamaria Orlando
Department of Physiology and Pharmacology, University Sapienza of Roma
Email: info@benthamscience.net
Francesco Pontieri
Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome
Email: info@benthamscience.net
Giuseppe Battaglia
Department of Physiology and Pharmacology, University Sapienza of Roma
Author for correspondence.
Email: info@benthamscience.net
Antonietta Arcella
, IRCCS Neuromed
Email: info@benthamscience.net
References
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820. doi: 10.1007/s00401-016-1545-1 PMID: 27157931
- de Almeida Sassi, F.; Lunardi Brunetto, A.; Schwartsmann, G.; Roesler, R.; Abujamra, A.L. Glioma revisited: From neu-rogenesis and cancer stem cells to the epigenetic regulation of the niche. J. Oncol., 2012, 2012, 537861. doi: 10.1155/2012/537861 PMID: 22973309
- Prager, B.C.; Bhargava, S.; Mahadev, V.; Hubert, C.G.; Rich, J.N. Glioblastoma stem cells: Driving resilience through cha-os. Trend Cancer, 2020, 6(3), 223-235. doi: 10.1016/j.trecan.2020.01.009 PMID: 32101725
- van den Bent, M.J.; Smits, M.; Kros, J.M.; Chang, S.M. Diffuse infiltrating oligodendroglioma and astrocytoma. J. Clin. Oncol., 2017, 35(21), 2394-2401. doi: 10.1200/JCO.2017.72.6737 PMID: 28640702
- Caccese, M.; Padovan, M.; DAvella, D.; Chioffi, F.; Gardiman, M.P.; Berti, F.; Busato, F.; Bellu, L.; Bergo, E.; Zoccarato, M.; Fassan, M.; Zagonel, V.; Lombardi, G. Anaplastic Astrocytoma: State of the art and future directions. Crit. Rev. Oncol. Hematol., 2020, 153, 103062. doi: 10.1016/j.critrevonc.2020.103062 PMID: 32717623
- Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tri-bolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; Bromberg, J.E.C.; Hau, P.; Mirimanoff, R.O.; Cairncross, J.G.; Janzer, R.C.; Stupp, R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med., 2005, 352(10), 997-1003. doi: 10.1056/NEJMoa043331 PMID: 15758010
- Yang, K.; Wu, Z.; Zhang, H.; Zhang, N.; Wu, W.; Wang, Z.; Dai, Z.; Zhang, X.; Zhang, L.; Peng, Y.; Ye, W.; Zeng, W.; Liu, Z.; Cheng, Q. Glioma targeted therapy: Insight into future of molecular approaches. Mol. Cancer, 2022, 21(1), 39. doi: 10.1186/s12943-022-01513-z PMID: 35135556
- Khasraw, M.; Fujita, Y.; Lee-Chang, C.; Balyasnikova, I.V.; Najem, H.; Heimberger, A.B. New approaches to glioblastoma. Annu. Rev. Med., 2022, 73(1), 279-292. doi: 10.1146/annurev-med-042420-102102 PMID: 34665646
- Julio-Pieper, M.; Flor, P.J.; Dinan, T.G.; Cryan, J.F. Exciting times beyond the brain: Metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol. Rev., 2011, 63(1), 35-58. doi: 10.1124/pr.110.004036 PMID: 21228260
- Nicoletti, F.; Battaglia, G.; Storto, M.; Ngomba, R.T.; Iacovelli, L.; Arcella, A.; Gradini, R.; Sale, P.; Rampello, L.; De Vita, T.; Di Marco, R.; Melchiorri, D.; Bruno, V. Metabotropic glutamate receptors: Beyond the regulation of synaptic transmission. Psychoneuroendocrinology, 2007, 32(1), S40-S45. doi: 10.1016/j.psyneuen.2007.04.015 PMID: 17651904
- Nicoletti, F.; Bockaert, J.; Collingridge, G.L.; Conn, P.J.; Ferraguti, F.; Schoepp, D.D.; Wroblewski, J.T.; Pin, J.P. Metabo-tropic glutamate receptors: From the workbench to the bed-side. Neuropharmacology, 2011, 60(7-8), 1017-1041. doi: 10.1016/j.neuropharm.2010.10.022 PMID: 21036182
- Ali, S.; Shourideh, M.; Koochekpour, S. Identification of novel GRM1 mutations and single nucleotide polymorphisms in prostate cancer cell lines and tissues. PLoS One, 2014, 9(7), e103204. doi: 10.1371/journal.pone.0103204 PMID: 25062106
- Banda, M.; Speyer, C.L.; Semma, S.N.; Osuala, K.O.; Koun-alakis, N.; Torres Torres, K.E.; Barnard, N.J.; Kim, H.J.; Sloane, B.F.; Miller, F.R.; Goydos, J.S.; Gorski, D.H. Metabo-tropic glutamate receptor-1 contributes to progression in triple negative breast cancer. PLoS One, 2014, 9(1), e81126. doi: 10.1371/journal.pone.0081126 PMID: 24404125
- Namkoong, J.; Shin, S.S.; Lee, H.J.; Marín, Y.E.; Wall, B.A.; Goydos, J.S.; Chen, S. Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma. Cancer Res., 2007, 67(5), 2298-2305. doi: 10.1158/0008-5472.CAN-06-3665 PMID: 17332361
- Nicoletti, F.; Arcella, A.; Iacovelli, L.; Battaglia, G.; Giangas-pero, F.; Melchiorri, D. Metabotropic glutamate receptors: New targets for the control of tumor growth? Trends Pharmacol. Sci., 2007, 28(5), 206-213. doi: 10.1016/j.tips.2007.03.008 PMID: 17433452
- Stepulak, A.; Luksch, H.; Gebhardt, C.; Uckermann, O.; Mar-zahn, J.; Sifringer, M.; Rzeski, W.; Staufner, C.; Brocke, K.S.; Turski, L.; Ikonomidou, C. Expression of glutamate receptor subunits in human cancers. Histochem. Cell Biol., 2009, 132(4), 435-445. doi: 10.1007/s00418-009-0613-1 PMID: 19526364
- Iacovelli, L.; Orlando, R.; Rossi, A.; Spinsanti, P.; Melchiorri, D.; Nicoletti, F. Targeting metabotropic glutamate receptors in the treatment of primary brain tumors. Curr. Opin. Pharmacol., 2018, 38, 59-64. doi: 10.1016/j.coph.2018.02.005 PMID: 29525720
- Albasanz, J.L.; Ros, M.; Martín, M. Characterization of metabotropic glutamate receptors in rat C6 glioma cells. Eur. J. Pharmacol., 1997, 326(1), 85-91. doi: 10.1016/S0014-2999(97)00154-4 PMID: 9178659
- Condorelli, D.F.; DellAlbani, P.; Corsaro, M.; Giuffrida, R.; Caruso, A. A, T.S.; Spinella, F.; Nicoletti, F.; Albanese, V.; Stella, A.M.G. Metabotropic glutamate receptor expression in cultured rat astrocytes and human gliomas. Neurochem. Res., 1997, 22(9), 1127-1133. doi: 10.1023/A:1027317319166 PMID: 9251103
- Corti, C.; Clarkson, R.W.E.; Crepaldi, L.; Sala, C.F.; Xuereb, J.H.; Ferraguti, F. Gene structure of the human metabotropic glutamate receptor 5 and functional analysis of its multiple promoters in neuroblastoma and astroglioma cells. J. Biol. Chem., 2003, 278(35), 33105-33119. doi: 10.1074/jbc.M212380200 PMID: 12783878
- Aronica, E.; Gorter, J.A.; Ijlst-Keizers, H.; Rozemuller, A.J.; Yankaya, B.; Leenstra, S.; Troost, D. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: Opposite regulation of glutamate transporter proteins. Eur. J. Neurosci., 2003, 17(10), 2106-2118. doi: 10.1046/j.1460-9568.2003.02657.x PMID: 12786977
- Arcella, A.; Carpinelli, G.; Battaglia, G.; DOnofrio, M.; Santo-ro, F.; Ngomba, R.T.; Bruno, V.; Casolini, P.; Giangaspero, F.; Nicoletti, F. Pharmacological blockade of group II metabotropic glutamate receptors reduces the growth of glioma cells in vivo. Neurooncol., 2005, 7(3), 236-245. doi: 10.1215/S1152851704000961 PMID: 16053698
- Zhang, C.; Yuan, X.; Li, H.; Zhao, Z.; Liao, Y.; Wang, X.; Su, J.; Sang, S.; Liu, Q. Anti-cancer effect of metabotropic glutamate receptor 1 inhibition in human glioma U87 cells: Involvement of PI3K/Akt/mTOR pathway. Cell. Physiol. Biochem., 2015, 35(2), 419-432. doi: 10.1159/000369707 PMID: 25613036
- Dalley, C.B.; Wroblewska, B.; Wolfe, B.B.; Wroblewski, J.T. The role of metabotropic glutamate receptor 1 dependent signaling in glioma viability. J. Pharmacol. Exp. Ther., 2018, 367(1), 59-70. doi: 10.1124/jpet.118.250159 PMID: 30054311
- Pollock, P.M.; Cohen-Solal, K.; Sood, R.; Namkoong, J.; Mar-tino, J.J.; Koganti, A.; Zhu, H.; Robbins, C.; Makalowska, I.; Shin, S.S.; Marin, Y.; Roberts, K.G.; Yudt, L.M.; Chen, A.; Cheng, J.; Incao, A.; Pinkett, H.W.; Graham, C.L.; Dunn, K.; Crespo-Carbone, S.M.; Mackason, K.R.; Ryan, K.B.; Sinsimer, D.; Goydos, J.; Reuhl, K.R.; Eckhaus, M.; Meltzer, P.S.; Pavan, W.J.; Trent, J.M.; Chen, S. Melanoma mouse model implicates metabotropic glutamate signaling in melano-cytic neoplasia. Nat. Genet., 2003, 34(1), 108-112. doi: 10.1038/ng1148 PMID: 12704387
- Liu, B.; Zhao, S.; Qi, C.; Zhao, X.; Liu, B.; Hao, F.; Zhao, Z. Inhibition of metabotropic glutamate receptor 5 facilitates hy-poxia-induced glioma cell death. Brain Res., 2019, 1704, 241-248. doi: 10.1016/j.brainres.2018.10.021 PMID: 30347216
- Reiner, A.; Levitz, J. Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron, 2018, 98(6), 1080-1098. doi: 10.1016/j.neuron.2018.05.018 PMID: 29953871
- Ciceroni, C.; Arcella, A.; Mosillo, P.; Battaglia, G.; Mastrantoni, E.; Oliva, M.A.; Carpinelli, G.; Santoro, F.; Sale, P.; Ricci-Vitiani, L.; De Maria, R.; Pallini, R.; Giangaspero, F.; Nicoletti, F.; Melchiorri, D. Type-3 metabotropic glutamate receptors negatively modulate bone morphogenetic protein receptor sig-naling and support the tumourigenic potential of glioma-initiating cells. Neuropharmacology, 2008, 55(4), 568-576. doi: 10.1016/j.neuropharm.2008.06.064 PMID: 18621067
- Ciceroni, C.; Bonelli, M.; Mastrantoni, E.; Niccolini, C.; Lau-renza, M.; Larocca, L.M.; Pallini, R.; Traficante, A.; Spinsanti, P.; Ricci-Vitiani, L.; Arcella, A.; De Maria, R.; Nicoletti, F.; Battaglia, G.; Melchiorri, D. Type-3 metabotropic glutamate receptors regulate chemoresistance in glioma stem cells, and their levels are inversely related to survival in patients with malignant gliomas. Cell Death Differ., 2013, 20(3), 396-407. doi: 10.1038/cdd.2012.150 PMID: 23175182
- Zhou, K.; Song, Y.; Zhou, W.; Zhang, C.; Shu, H.; Yang, H.; Wang, B. mGlu3 receptor blockade inhibits proliferation and promotes astrocytic phenotype in glioma stem cells. Cell Biol. Int., 2014, 38(4), 426-434. doi: 10.1002/cbin.10207 PMID: 24482010
- Wirsching, H.G.; Silginer, M.; Ventura, E.; Macnair, W.; Burghardt, I.; Claassen, M.; Gatti, S.; Wichmann, J.; Riemer, C.; Schneider, H.; Weller, M. Negative allosteric modulators of metabotropic glutamate receptor 3 target the stem-like phenotype of glioblastoma. Mol. Ther. Oncolytics, 2021, 20, 166-174. doi: 10.1016/j.omto.2020.12.009 PMID: 33575479
- Maier, J.P.; Ravi, V.M.; Kueckelhaus, J.; Behringer, S.P.; Garrelfs, N.; Will, P.; Sun, N.; von Ehr, J.; Goeldner, J.M.; Pfeifer, D.; Follo, M.; Hannibal, L.; Walch, A.K.; Hofmann, U.G.; Beck, J.; Heiland, D.H.; Schnell, O.; Joseph, K. Inhibition of metabotropic glutamate receptor III facilitates sensitization to alkylating chemotherapeutics in glioblastoma. Cell Death Dis., 2021, 12(8), 723. doi: 10.1038/s41419-021-03937-9 PMID: 34290229
- Jantas, D.; Grygier, B.; Gołda, S.; Chwastek, J.; Zatorska, J.; Tertil, M. An endogenous and ectopic expression of metabotropic glutamate receptor 8 (mGluR8) inhibits proliferation and increases chemosensitivity of human neuroblastoma and glioma cells. Cancer Lett., 2018, 432, 1-16. doi: 10.1016/j.canlet.2018.06.004 PMID: 29885518
- Di Menna, L.; Joffe, M.E.; Iacovelli, L.; Orlando, R.; Lindsley, C.W.; Mairesse, J.; Gressèns, P.; Cannella, M.; Caraci, F.; Copani, A.; Bruno, V.; Battaglia, G.; Conn, P.J.; Nicoletti, F. Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system. Neuropharmacology, 2018, 128, 301-313. doi: 10.1016/j.neuropharm.2017.10.026 PMID: 29079293
- Grzmil, M.; Morin, P., Jr; Lino, M.M.; Merlo, A.; Frank, S.; Wang, Y.; Moncayo, G.; Hemmings, B.A. MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-β signaling pathway in human glioblastoma. Cancer Res., 2011, 71(6), 2392-2402. doi: 10.1158/0008-5472.CAN-10-3112 PMID: 21406405
- Schulte, A.; Günther, H.S.; Phillips, H.S.; Kemming, D.; Mar-tens, T.; Kharbanda, S.; Soriano, R.H.; Modrusan, Z.; Zapf, S.; Westphal, M.; Lamszus, K. A distinct subset of glioma cell lines with stem cell-like properties reflects the transcriptional phenotype of glioblastomas and overexpresses CXCR4 as therapeutic target. Glia, 2011, 59(4), 590-602. doi: 10.1002/glia.21127 PMID: 21294158
- Günther, H.S.; Schmidt, N.O.; Phillips, H.S.; Kemming, D.; Kharbanda, S.; Soriano, R.; Modrusan, Z.; Meissner, H.; Westphal, M.; Lamszus, K. Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to mo-lecular and phenotypic criteria. Oncogene, 2008, 27(20), 2897-2909. doi: 10.1038/sj.onc.1210949 PMID: 18037961
- Zamykal, M.; Martens, T.; Matschke, J.; Günther, H.S.; Ka-thagen, A.; Schulte, A.; Peters, R.; Westphal, M.; Lamszus, K. Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms. Neuro-oncol., 2015, 17(8), 1076-1085. doi: 10.1093/neuonc/nou344 PMID: 25543125
- Sturm, D.; Witt, H.; Hovestadt, V.; Khuong-Quang, D.A.; Jones, D.T.W.; Konermann, C.; Pfaff, E.; Tönjes, M.; Sill, M.; Bender, S.; Kool, M.; Zapatka, M.; Becker, N.; Zucknick, M.; Hielscher, T.; Liu, X.Y.; Fontebasso, A.M.; Ryzhova, M.; Al-brecht, S.; Jacob, K.; Wolter, M.; Ebinger, M.; Schuhmann, M.U.; van Meter, T.; Frühwald, M.C.; Hauch, H.; Pekrun, A.; Radlwimmer, B.; Niehues, T.; von Komorowski, G.; Dürken, M.; Kulozik, A.E.; Madden, J.; Donson, A.; Foreman, N.K.; Drissi, R.; Fouladi, M.; Scheurlen, W.; von Deimling, A.; Monoranu, C.; Roggendorf, W.; Herold-Mende, C.; Unterberg, A.; Kramm, C.M.; Felsberg, J.; Hartmann, C.; Wiestler, B.; Wick, W.; Milde, T.; Witt, O.; Lindroth, A.M.; Schwartzentruber, J.; Faury, D.; Fleming, A.; Zakrzewska, M.; Liberski, P.P.; Zakrzewski, K.; Hauser, P.; Garami, M.; Klekner, A.; Bognar, L.; Morrissy, S.; Cavalli, F.; Taylor, M.D.; van Sluis, P.; Koster, J.; Versteeg, R.; Volckmann, R.; Mikkelsen, T.; Aldape, K.; Reifenberger, G.; Collins, V.P.; Majewski, J.; Korshunov, A.; Lichter, P.; Plass, C.; Jabado, N.; Pfister, S.M. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 2012, 22(4), 425-437. doi: 10.1016/j.ccr.2012.08.024 PMID: 23079654
- Reifenberger, G.; Weber, R.G.; Riehmer, V.; Kaulich, K.; Willscher, E.; Wirth, H.; Gietzelt, J.; Hentschel, B.; Westphal, M.; Simon, M.; Schackert, G.; Schramm, J.; Matschke, J.; Sabel, M.C.; Gramatzki, D.; Felsberg, J.; Hartmann, C.; Steinbach, J.P.; Schlegel, U.; Wick, W.; Radlwimmer, B.; Pietsch, T.; Tonn, J.C.; von Deimling, A.; Binder, H.; Weller, M.; Loeffler, M. Molecular characterization of long-term survivors of glioblastoma using genome- and transcriptomewide profiling. Int. J. Cancer, 2014, 135(8), 1822-1831. doi: 10.1002/ijc.28836 PMID: 24615357
- Gautier, L.; Cope, L.; Bolstad, B.M.; Irizarry, R.A. affyanalysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 2004, 20(3), 307-315. doi: 10.1093/bioinformatics/btg405
- Wu, J; Irizarry, R. Gcrma: Background Adjustment Using Sequence Information. R package version 2.60.0. 2020. Available from: https://rdrr.io/bioc/gcrma/
- Hastie, T; Tibshirani, R; Narasimhan, B; Chu, G Impute: impute: Imputation for microarray data. R package version 1.62.0. 2020. Available from: https://www.researchgate.net/publication/288009004_Impute_Imputation_for_microarray_data
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; Kuhn, M.; Pedersen, T.; Miller, E.; Bache, S.; Müller, K.; Ooms, J.; Robinson, D.; Seidel, D.; Spinu, V.; Takahashi, K.; Vaughan, D.; Wilke, C.; Woo, K.; Yutani, H. Welcome to the Tidyverse. J. Open Source Softw., 2019, 4(43), 1686. doi: 10.21105/joss.01686
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions. R package version 2.1.4. 2022. Available from: https://CRAN.R-project.org/package=cluster
- Kassambara, A.; Mundt, F. Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. 2020. Available from: https://CRAN.R-project.org/package=factoextra
- Chouleur, T.; Tremblay, M.L.; Bikfalvi, A. Mechanisms of invasion in glioblastoma. Curr. Opin. Oncol., 2020, 32(6), 631-639. doi: 10.1097/CCO.0000000000000679 PMID: 32852310
- Ceccarelli, M.; Barthel, F.P.; Malta, T.M.; Sabedot, T.S.; Sala-ma, S.R.; Murray, B.A.; Morozova, O.; Newton, Y.; Radenbaugh, A.; Pagnotta, S.M.; Anjum, S.; Wang, J.; Manyam, G.; Zoppoli, P.; Ling, S.; Rao, A.A.; Grifford, M.; Cherniack, A.D.; Zhang, H.; Poisson, L.; Carlotti, C.G., Jr; Tirapelli, D.P.C.; Rao, A.; Mikkelsen, T.; Lau, C.C.; Yung, W.K.A.; Rabadan, R.; Huse, J.; Brat, D.J.; Lehman, N.L.; Barnholtz-Sloan, J.S.; Zheng, S.; Hess, K.; Rao, G.; Meyerson, M.; Beroukhim, R.; Cooper, L.; Akbani, R.; Wrensch, M.; Haussler, D.; Aldape, K.D.; Laird, P.W.; Gutmann, D.H.; Noushmehr, H.; Iavarone, A.; Verhaak, R.G.W.; Anjum, S.; Arachchi, H.; Auman, J.T.; Balasundaram, M.; Balu, S.; Barnett, G.; Baylin, S.; Bell, S.; Benz, C.; Bir, N.; Black, K.L.; Bodenheimer, T.; Boice, L.; Bootwalla, M.S.; Bowen, J.; Bristow, C.A.; Butterfield, Y.S.N.; Chen, Q-R.; Chin, L.; Cho, J.; Chuah, E.; Chudamani, S.; Coetzee, S.G.; Cohen, M.L.; Colman, H.; Couce, M.; DAngelo, F.; Davidsen, T.; Davis, A.; Demchok, J.A.; Devine, K.; Ding, L.; Duell, R.; Elder, J.B.; Eschbacher, J.M.; Fehrenbach, A.; Ferguson, M.; Frazer, S.; Fuller, G.; Fulop, J.; Gabriel, S.B.; Garofano, L.; Gastier-Foster, J.M.; Gehlenborg, N.; Gerken, M.; Getz, G.; Giannini, C.; Gibson, W.J.; Hadjipanayis, A.; Hayes, D.N.; Heiman, D.I.; Hermes, B.; Hilty, J.; Hoadley, K.A.; Hoyle, A.P.; Huang, M.; Jefferys, S.R.; Jones, C.D.; Jones, S.J.M.; Ju, Z.; Kastl, A.; Kendler, A.; Kim, J.; Kucherlapati, R.; Lai, P.H.; Lawrence, M.S.; Lee, S.; Leraas, K.M.; Lichtenberg, T.M.; Lin, P.; Liu, Y.; Liu, J.; Ljubimova, J.Y.; Lu, Y.; Ma, Y.; Maglinte, D.T.; Mahadeshwar, H.S.; Marra, M.A.; McGraw, M.; McPherson, C.; Meng, S.; Mieczkowski, P.A.; Miller, C.R.; Mills, G.B.; Moore, R.A.; Mose, L.E.; Mungall, A.J.; Naresh, R.; Naska, T.; Neder, L.; Noble, M.S.; Noss, A.; ONeill, B.P.; Ostrom, Q.T.; Palmer, C.; Pantazi, A.; Parfenov, M.; Park, P.J.; Parker, J.S.; Perou, C.M.; Pierson, C.R.; Pihl, T.; Protopopov, A.; Radenbaugh, A.; Ramirez, N.C.; Rathmell, W.K.; Ren, X.; Roach, J.; Robertson, A.G.; Saksena, G.; Schein, J.E.; Schumacher, S.E.; Seidman, J.; Senecal, K.; Seth, S.; Shen, H.; Shi, Y.; Shih, J.; Shimmel, K.; Sicotte, H.; Sifri, S.; Silva, T.; Simons, J.V.; Singh, R.; Skelly, T.; Sloan, A.E.; Sofia, H.J.; Soloway, M.G.; Song, X.; Sougnez, C.; Souza, C.; Staugaitis, S.M.; Sun, H.; Sun, C.; Tan, D.; Tang, J.; Tang, Y.; Thorne, L.; Trevisan, F.A.; Triche, T.; Van Den Berg, D.J.; Veluvolu, U.; Voet, D.; Wan, Y.; Wang, Z.; Warnick, R.; Weinstein, J.N.; Weisenberger, D.J.; Wilkerson, M.D.; Williams, F.; Wise, L.; Wolinsky, Y.; Wu, J.; Xu, A.W.; Yang, L.; Yang, L.; Zack, T.I.; Zenklusen, J.C.; Zhang, J.; Zhang, W.; Zhang, J.; Zmuda, E. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell, 2016, 164(3), 550-563. doi: 10.1016/j.cell.2015.12.028 PMID: 26824661
- Madhavan, S.; Zenklusen, J.C.; Kotliarov, Y.; Sahni, H.; Fine, H.A.; Buetow, K. Rembrandt: Helping personalized medicine become a reality through integrative translational research. Mol. Cancer Res., 2009, 7(2), 157-167. doi: 10.1158/1541-7786.MCR-08-0435 PMID: 19208739
- Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455(7216), 1061-1068. doi: 10.1038/nature07385 PMID: 18772890
- Bowman, R.L.; Wang, Q.; Carro, A.; Verhaak, R.G.W.; Squatrito, M. GlioVis data portal for visualization and analy-sis of brain tumor expression datasets. Neuro-oncol., 2017, 19(1), 139-141. doi: 10.1093/neuonc/now247 PMID: 28031383
- Vollmann-Zwerenz, A.; Leidgens, V.; Feliciello, G.; Klein, C.A.; Hau, P. Tumor cell invasion in glioblastoma. Int. J. Mol. Sci., 2020, 21(6), 1932. doi: 10.3390/ijms21061932 PMID: 32178267
- Onken, J.; Moeckel, S.; Leukel, P.; Leidgens, V.; Baumann, F.; Bogdahn, U.; Vollmann-Zwerenz, A.; Hau, P. Versican isoform V1 regulates proliferation and migration in high-grade gliomas. J. Neurooncol., 2014, 120(1), 73-83. doi: 10.1007/s11060-014-1545-8 PMID: 25064688
- Tracz-Gaszewska, Z.; Dobrzyn, P. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers, 2019, 11(7), 948. doi: 10.3390/cancers11070948 PMID: 31284458
- Duman, C.; Yaqubi, K.; Hoffmann, A.; Acikgöz, A.A.; Korshunov, A.; Bendszus, M.; Herold-Mende, C.; Liu, H.K.; Alfonso, J. Acyl-CoA-binding protein drives glioblastoma tumorigenesis by sustaining fatty acid oxidation. Cell Metab., 2019, 30(2), 274-289.e5. doi: 10.1016/j.cmet.2019.04.004 PMID: 31056285
- Kant, S.; Kesarwani, P.; Prabhu, A.; Graham, S.F.; Buelow, K.L.; Nakano, I.; Chinnaiyan, P. Enhanced fatty acid oxidation provides glioblastoma cells metabolic plasticity to accommodate to its dynamic nutrient microenvironment. Cell Death Dis., 2020, 11(4), 253. doi: 10.1038/s41419-020-2449-5 PMID: 32312953
- Lee, H.; Kim, D.; Youn, B. Targeting oncogenic rewiring of lipid metabolism for glioblastoma treatment. Int. J. Mol. Sci., 2022, 23(22), 13818. doi: 10.3390/ijms232213818 PMID: 36430293
- Kou, Y.; Geng, F.; Guo, D. Lipid metabolism in glioblastoma: From De Novo synthesis to storage. Biomedicines, 2022, 10(8), 1943. doi: 10.3390/biomedicines10081943 PMID: 36009491
Supplementary files
