Metabotropic Glutamate Receptors Type 3 and 5 Feature the "NeuroTransmitter-type" of Glioblastoma: A Bioinformatic Approach


Cite item

Full Text

Abstract

Background:Glioblastoma (GBM) represents an aggressive and common tumor of the central nervous system. The prognosis of GBM is poor, and despite a refined genetic and molecular characterization, pharmacological treatment is largely suboptimal.

Objective:Contribute to defining a therapeutic line in GBM targeting the mGlu3 receptor in line with the principles of precision medicine.

Methods:Here, we performed a computational analysis focused on the expression of type 3 and 5 metabotropic glutamate receptor subtypes (mGlu3 and mGlu5, respectively) in high- and low-grade gliomas.

Results:The analysis allowed the identification of a particular high-grade glioma type, characterized by a high expression level of both receptor subtypes and by other markers of excitatory and inhibitory neurotransmission. This so-called neurotransmitter-GBM (NT-GBM) also shows a distinct immunological, metabolic, and vascularization gene signature.

Conclusion:Our findings might lay the groundwork for a targeted therapy to be specifically applied to this putative novel type of GBM.

About the authors

Matteo Caridi

Division of Hematology and Clinical Immunology, Department of Medicin, University of Perugia

Email: info@benthamscience.net

Marika Alborghetti

Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome

Email: info@benthamscience.net

Valeria Pellicelli

Internal Medicine, Sapienza University of Rome

Email: info@benthamscience.net

Rosamaria Orlando

Department of Physiology and Pharmacology, University Sapienza of Roma

Email: info@benthamscience.net

Francesco Pontieri

Department of Neuroscience, Mental Health and Sensory Organs, Sapienza University of Rome

Email: info@benthamscience.net

Giuseppe Battaglia

Department of Physiology and Pharmacology, University Sapienza of Roma

Author for correspondence.
Email: info@benthamscience.net

Antonietta Arcella

, IRCCS Neuromed

Email: info@benthamscience.net

References

  1. Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol., 2016, 131(6), 803-820. doi: 10.1007/s00401-016-1545-1 PMID: 27157931
  2. de Almeida Sassi, F.; Lunardi Brunetto, A.; Schwartsmann, G.; Roesler, R.; Abujamra, A.L. Glioma revisited: From neu-rogenesis and cancer stem cells to the epigenetic regulation of the niche. J. Oncol., 2012, 2012, 537861. doi: 10.1155/2012/537861 PMID: 22973309
  3. Prager, B.C.; Bhargava, S.; Mahadev, V.; Hubert, C.G.; Rich, J.N. Glioblastoma stem cells: Driving resilience through cha-os. Trend Cancer, 2020, 6(3), 223-235. doi: 10.1016/j.trecan.2020.01.009 PMID: 32101725
  4. van den Bent, M.J.; Smits, M.; Kros, J.M.; Chang, S.M. Diffuse infiltrating oligodendroglioma and astrocytoma. J. Clin. Oncol., 2017, 35(21), 2394-2401. doi: 10.1200/JCO.2017.72.6737 PMID: 28640702
  5. Caccese, M.; Padovan, M.; D’Avella, D.; Chioffi, F.; Gardiman, M.P.; Berti, F.; Busato, F.; Bellu, L.; Bergo, E.; Zoccarato, M.; Fassan, M.; Zagonel, V.; Lombardi, G. Anaplastic Astrocytoma: State of the art and future directions. Crit. Rev. Oncol. Hematol., 2020, 153, 103062. doi: 10.1016/j.critrevonc.2020.103062 PMID: 32717623
  6. Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tri-bolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; Bromberg, J.E.C.; Hau, P.; Mirimanoff, R.O.; Cairncross, J.G.; Janzer, R.C.; Stupp, R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med., 2005, 352(10), 997-1003. doi: 10.1056/NEJMoa043331 PMID: 15758010
  7. Yang, K.; Wu, Z.; Zhang, H.; Zhang, N.; Wu, W.; Wang, Z.; Dai, Z.; Zhang, X.; Zhang, L.; Peng, Y.; Ye, W.; Zeng, W.; Liu, Z.; Cheng, Q. Glioma targeted therapy: Insight into future of molecular approaches. Mol. Cancer, 2022, 21(1), 39. doi: 10.1186/s12943-022-01513-z PMID: 35135556
  8. Khasraw, M.; Fujita, Y.; Lee-Chang, C.; Balyasnikova, I.V.; Najem, H.; Heimberger, A.B. New approaches to glioblastoma. Annu. Rev. Med., 2022, 73(1), 279-292. doi: 10.1146/annurev-med-042420-102102 PMID: 34665646
  9. Julio-Pieper, M.; Flor, P.J.; Dinan, T.G.; Cryan, J.F. Exciting times beyond the brain: Metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol. Rev., 2011, 63(1), 35-58. doi: 10.1124/pr.110.004036 PMID: 21228260
  10. Nicoletti, F.; Battaglia, G.; Storto, M.; Ngomba, R.T.; Iacovelli, L.; Arcella, A.; Gradini, R.; Sale, P.; Rampello, L.; De Vita, T.; Di Marco, R.; Melchiorri, D.; Bruno, V. Metabotropic glutamate receptors: Beyond the regulation of synaptic transmission. Psychoneuroendocrinology, 2007, 32(1), S40-S45. doi: 10.1016/j.psyneuen.2007.04.015 PMID: 17651904
  11. Nicoletti, F.; Bockaert, J.; Collingridge, G.L.; Conn, P.J.; Ferraguti, F.; Schoepp, D.D.; Wroblewski, J.T.; Pin, J.P. Metabo-tropic glutamate receptors: From the workbench to the bed-side. Neuropharmacology, 2011, 60(7-8), 1017-1041. doi: 10.1016/j.neuropharm.2010.10.022 PMID: 21036182
  12. Ali, S.; Shourideh, M.; Koochekpour, S. Identification of novel GRM1 mutations and single nucleotide polymorphisms in prostate cancer cell lines and tissues. PLoS One, 2014, 9(7), e103204. doi: 10.1371/journal.pone.0103204 PMID: 25062106
  13. Banda, M.; Speyer, C.L.; Semma, S.N.; Osuala, K.O.; Koun-alakis, N.; Torres Torres, K.E.; Barnard, N.J.; Kim, H.J.; Sloane, B.F.; Miller, F.R.; Goydos, J.S.; Gorski, D.H. Metabo-tropic glutamate receptor-1 contributes to progression in triple negative breast cancer. PLoS One, 2014, 9(1), e81126. doi: 10.1371/journal.pone.0081126 PMID: 24404125
  14. Namkoong, J.; Shin, S.S.; Lee, H.J.; Marín, Y.E.; Wall, B.A.; Goydos, J.S.; Chen, S. Metabotropic glutamate receptor 1 and glutamate signaling in human melanoma. Cancer Res., 2007, 67(5), 2298-2305. doi: 10.1158/0008-5472.CAN-06-3665 PMID: 17332361
  15. Nicoletti, F.; Arcella, A.; Iacovelli, L.; Battaglia, G.; Giangas-pero, F.; Melchiorri, D. Metabotropic glutamate receptors: New targets for the control of tumor growth? Trends Pharmacol. Sci., 2007, 28(5), 206-213. doi: 10.1016/j.tips.2007.03.008 PMID: 17433452
  16. Stepulak, A.; Luksch, H.; Gebhardt, C.; Uckermann, O.; Mar-zahn, J.; Sifringer, M.; Rzeski, W.; Staufner, C.; Brocke, K.S.; Turski, L.; Ikonomidou, C. Expression of glutamate receptor subunits in human cancers. Histochem. Cell Biol., 2009, 132(4), 435-445. doi: 10.1007/s00418-009-0613-1 PMID: 19526364
  17. Iacovelli, L.; Orlando, R.; Rossi, A.; Spinsanti, P.; Melchiorri, D.; Nicoletti, F. Targeting metabotropic glutamate receptors in the treatment of primary brain tumors. Curr. Opin. Pharmacol., 2018, 38, 59-64. doi: 10.1016/j.coph.2018.02.005 PMID: 29525720
  18. Albasanz, J.L.; Ros, M.; Martín, M. Characterization of metabotropic glutamate receptors in rat C6 glioma cells. Eur. J. Pharmacol., 1997, 326(1), 85-91. doi: 10.1016/S0014-2999(97)00154-4 PMID: 9178659
  19. Condorelli, D.F.; Dell’Albani, P.; Corsaro, M.; Giuffrida, R.; Caruso, A. A, T.S.; Spinella, F.; Nicoletti, F.; Albanese, V.; Stella, A.M.G. Metabotropic glutamate receptor expression in cultured rat astrocytes and human gliomas. Neurochem. Res., 1997, 22(9), 1127-1133. doi: 10.1023/A:1027317319166 PMID: 9251103
  20. Corti, C.; Clarkson, R.W.E.; Crepaldi, L.; Sala, C.F.; Xuereb, J.H.; Ferraguti, F. Gene structure of the human metabotropic glutamate receptor 5 and functional analysis of its multiple promoters in neuroblastoma and astroglioma cells. J. Biol. Chem., 2003, 278(35), 33105-33119. doi: 10.1074/jbc.M212380200 PMID: 12783878
  21. Aronica, E.; Gorter, J.A.; Ijlst-Keizers, H.; Rozemuller, A.J.; Yankaya, B.; Leenstra, S.; Troost, D. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: Opposite regulation of glutamate transporter proteins. Eur. J. Neurosci., 2003, 17(10), 2106-2118. doi: 10.1046/j.1460-9568.2003.02657.x PMID: 12786977
  22. Arcella, A.; Carpinelli, G.; Battaglia, G.; D’Onofrio, M.; Santo-ro, F.; Ngomba, R.T.; Bruno, V.; Casolini, P.; Giangaspero, F.; Nicoletti, F. Pharmacological blockade of group II metabotropic glutamate receptors reduces the growth of glioma cells in vivo. Neurooncol., 2005, 7(3), 236-245. doi: 10.1215/S1152851704000961 PMID: 16053698
  23. Zhang, C.; Yuan, X.; Li, H.; Zhao, Z.; Liao, Y.; Wang, X.; Su, J.; Sang, S.; Liu, Q. Anti-cancer effect of metabotropic glutamate receptor 1 inhibition in human glioma U87 cells: Involvement of PI3K/Akt/mTOR pathway. Cell. Physiol. Biochem., 2015, 35(2), 419-432. doi: 10.1159/000369707 PMID: 25613036
  24. Dalley, C.B.; Wroblewska, B.; Wolfe, B.B.; Wroblewski, J.T. The role of metabotropic glutamate receptor 1 dependent signaling in glioma viability. J. Pharmacol. Exp. Ther., 2018, 367(1), 59-70. doi: 10.1124/jpet.118.250159 PMID: 30054311
  25. Pollock, P.M.; Cohen-Solal, K.; Sood, R.; Namkoong, J.; Mar-tino, J.J.; Koganti, A.; Zhu, H.; Robbins, C.; Makalowska, I.; Shin, S.S.; Marin, Y.; Roberts, K.G.; Yudt, L.M.; Chen, A.; Cheng, J.; Incao, A.; Pinkett, H.W.; Graham, C.L.; Dunn, K.; Crespo-Carbone, S.M.; Mackason, K.R.; Ryan, K.B.; Sinsimer, D.; Goydos, J.; Reuhl, K.R.; Eckhaus, M.; Meltzer, P.S.; Pavan, W.J.; Trent, J.M.; Chen, S. Melanoma mouse model implicates metabotropic glutamate signaling in melano-cytic neoplasia. Nat. Genet., 2003, 34(1), 108-112. doi: 10.1038/ng1148 PMID: 12704387
  26. Liu, B.; Zhao, S.; Qi, C.; Zhao, X.; Liu, B.; Hao, F.; Zhao, Z. Inhibition of metabotropic glutamate receptor 5 facilitates hy-poxia-induced glioma cell death. Brain Res., 2019, 1704, 241-248. doi: 10.1016/j.brainres.2018.10.021 PMID: 30347216
  27. Reiner, A.; Levitz, J. Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron, 2018, 98(6), 1080-1098. doi: 10.1016/j.neuron.2018.05.018 PMID: 29953871
  28. Ciceroni, C.; Arcella, A.; Mosillo, P.; Battaglia, G.; Mastrantoni, E.; Oliva, M.A.; Carpinelli, G.; Santoro, F.; Sale, P.; Ricci-Vitiani, L.; De Maria, R.; Pallini, R.; Giangaspero, F.; Nicoletti, F.; Melchiorri, D. Type-3 metabotropic glutamate receptors negatively modulate bone morphogenetic protein receptor sig-naling and support the tumourigenic potential of glioma-initiating cells. Neuropharmacology, 2008, 55(4), 568-576. doi: 10.1016/j.neuropharm.2008.06.064 PMID: 18621067
  29. Ciceroni, C.; Bonelli, M.; Mastrantoni, E.; Niccolini, C.; Lau-renza, M.; Larocca, L.M.; Pallini, R.; Traficante, A.; Spinsanti, P.; Ricci-Vitiani, L.; Arcella, A.; De Maria, R.; Nicoletti, F.; Battaglia, G.; Melchiorri, D. Type-3 metabotropic glutamate receptors regulate chemoresistance in glioma stem cells, and their levels are inversely related to survival in patients with malignant gliomas. Cell Death Differ., 2013, 20(3), 396-407. doi: 10.1038/cdd.2012.150 PMID: 23175182
  30. Zhou, K.; Song, Y.; Zhou, W.; Zhang, C.; Shu, H.; Yang, H.; Wang, B. mGlu3 receptor blockade inhibits proliferation and promotes astrocytic phenotype in glioma stem cells. Cell Biol. Int., 2014, 38(4), 426-434. doi: 10.1002/cbin.10207 PMID: 24482010
  31. Wirsching, H.G.; Silginer, M.; Ventura, E.; Macnair, W.; Burghardt, I.; Claassen, M.; Gatti, S.; Wichmann, J.; Riemer, C.; Schneider, H.; Weller, M. Negative allosteric modulators of metabotropic glutamate receptor 3 target the stem-like phenotype of glioblastoma. Mol. Ther. Oncolytics, 2021, 20, 166-174. doi: 10.1016/j.omto.2020.12.009 PMID: 33575479
  32. Maier, J.P.; Ravi, V.M.; Kueckelhaus, J.; Behringer, S.P.; Garrelfs, N.; Will, P.; Sun, N.; von Ehr, J.; Goeldner, J.M.; Pfeifer, D.; Follo, M.; Hannibal, L.; Walch, A.K.; Hofmann, U.G.; Beck, J.; Heiland, D.H.; Schnell, O.; Joseph, K. Inhibition of metabotropic glutamate receptor III facilitates sensitization to alkylating chemotherapeutics in glioblastoma. Cell Death Dis., 2021, 12(8), 723. doi: 10.1038/s41419-021-03937-9 PMID: 34290229
  33. Jantas, D.; Grygier, B.; Gołda, S.; Chwastek, J.; Zatorska, J.; Tertil, M. An endogenous and ectopic expression of metabotropic glutamate receptor 8 (mGluR8) inhibits proliferation and increases chemosensitivity of human neuroblastoma and glioma cells. Cancer Lett., 2018, 432, 1-16. doi: 10.1016/j.canlet.2018.06.004 PMID: 29885518
  34. Di Menna, L.; Joffe, M.E.; Iacovelli, L.; Orlando, R.; Lindsley, C.W.; Mairesse, J.; Gressèns, P.; Cannella, M.; Caraci, F.; Copani, A.; Bruno, V.; Battaglia, G.; Conn, P.J.; Nicoletti, F. Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system. Neuropharmacology, 2018, 128, 301-313. doi: 10.1016/j.neuropharm.2017.10.026 PMID: 29079293
  35. Grzmil, M.; Morin, P., Jr; Lino, M.M.; Merlo, A.; Frank, S.; Wang, Y.; Moncayo, G.; Hemmings, B.A. MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-β signaling pathway in human glioblastoma. Cancer Res., 2011, 71(6), 2392-2402. doi: 10.1158/0008-5472.CAN-10-3112 PMID: 21406405
  36. Schulte, A.; Günther, H.S.; Phillips, H.S.; Kemming, D.; Mar-tens, T.; Kharbanda, S.; Soriano, R.H.; Modrusan, Z.; Zapf, S.; Westphal, M.; Lamszus, K. A distinct subset of glioma cell lines with stem cell-like properties reflects the transcriptional phenotype of glioblastomas and overexpresses CXCR4 as therapeutic target. Glia, 2011, 59(4), 590-602. doi: 10.1002/glia.21127 PMID: 21294158
  37. Günther, H.S.; Schmidt, N.O.; Phillips, H.S.; Kemming, D.; Kharbanda, S.; Soriano, R.; Modrusan, Z.; Meissner, H.; Westphal, M.; Lamszus, K. Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to mo-lecular and phenotypic criteria. Oncogene, 2008, 27(20), 2897-2909. doi: 10.1038/sj.onc.1210949 PMID: 18037961
  38. Zamykal, M.; Martens, T.; Matschke, J.; Günther, H.S.; Ka-thagen, A.; Schulte, A.; Peters, R.; Westphal, M.; Lamszus, K. Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms. Neuro-oncol., 2015, 17(8), 1076-1085. doi: 10.1093/neuonc/nou344 PMID: 25543125
  39. Sturm, D.; Witt, H.; Hovestadt, V.; Khuong-Quang, D.A.; Jones, D.T.W.; Konermann, C.; Pfaff, E.; Tönjes, M.; Sill, M.; Bender, S.; Kool, M.; Zapatka, M.; Becker, N.; Zucknick, M.; Hielscher, T.; Liu, X.Y.; Fontebasso, A.M.; Ryzhova, M.; Al-brecht, S.; Jacob, K.; Wolter, M.; Ebinger, M.; Schuhmann, M.U.; van Meter, T.; Frühwald, M.C.; Hauch, H.; Pekrun, A.; Radlwimmer, B.; Niehues, T.; von Komorowski, G.; Dürken, M.; Kulozik, A.E.; Madden, J.; Donson, A.; Foreman, N.K.; Drissi, R.; Fouladi, M.; Scheurlen, W.; von Deimling, A.; Monoranu, C.; Roggendorf, W.; Herold-Mende, C.; Unterberg, A.; Kramm, C.M.; Felsberg, J.; Hartmann, C.; Wiestler, B.; Wick, W.; Milde, T.; Witt, O.; Lindroth, A.M.; Schwartzentruber, J.; Faury, D.; Fleming, A.; Zakrzewska, M.; Liberski, P.P.; Zakrzewski, K.; Hauser, P.; Garami, M.; Klekner, A.; Bognar, L.; Morrissy, S.; Cavalli, F.; Taylor, M.D.; van Sluis, P.; Koster, J.; Versteeg, R.; Volckmann, R.; Mikkelsen, T.; Aldape, K.; Reifenberger, G.; Collins, V.P.; Majewski, J.; Korshunov, A.; Lichter, P.; Plass, C.; Jabado, N.; Pfister, S.M. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 2012, 22(4), 425-437. doi: 10.1016/j.ccr.2012.08.024 PMID: 23079654
  40. Reifenberger, G.; Weber, R.G.; Riehmer, V.; Kaulich, K.; Willscher, E.; Wirth, H.; Gietzelt, J.; Hentschel, B.; Westphal, M.; Simon, M.; Schackert, G.; Schramm, J.; Matschke, J.; Sabel, M.C.; Gramatzki, D.; Felsberg, J.; Hartmann, C.; Steinbach, J.P.; Schlegel, U.; Wick, W.; Radlwimmer, B.; Pietsch, T.; Tonn, J.C.; von Deimling, A.; Binder, H.; Weller, M.; Loeffler, M. Molecular characterization of long-term survivors of glioblastoma using genome- and transcriptomewide profiling. Int. J. Cancer, 2014, 135(8), 1822-1831. doi: 10.1002/ijc.28836 PMID: 24615357
  41. Gautier, L.; Cope, L.; Bolstad, B.M.; Irizarry, R.A. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 2004, 20(3), 307-315. doi: 10.1093/bioinformatics/btg405
  42. Wu, J; Irizarry, R. Gcrma: Background Adjustment Using Sequence Information. R package version 2.60.0. 2020. Available from: https://rdrr.io/bioc/gcrma/
  43. Hastie, T; Tibshirani, R; Narasimhan, B; Chu, G Impute: impute: Imputation for microarray data. R package version 1.62.0. 2020. Available from: https://www.researchgate.net/publication/288009004_Impute_Imputation_for_microarray_data
  44. Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; Kuhn, M.; Pedersen, T.; Miller, E.; Bache, S.; Müller, K.; Ooms, J.; Robinson, D.; Seidel, D.; Spinu, V.; Takahashi, K.; Vaughan, D.; Wilke, C.; Woo, K.; Yutani, H. Welcome to the Tidyverse. J. Open Source Softw., 2019, 4(43), 1686. doi: 10.21105/joss.01686
  45. Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions. R package version 2.1.4. 2022. Available from: https://CRAN.R-project.org/package=cluster
  46. Kassambara, A.; Mundt, F. Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. 2020. Available from: https://CRAN.R-project.org/package=factoextra
  47. Chouleur, T.; Tremblay, M.L.; Bikfalvi, A. Mechanisms of invasion in glioblastoma. Curr. Opin. Oncol., 2020, 32(6), 631-639. doi: 10.1097/CCO.0000000000000679 PMID: 32852310
  48. Ceccarelli, M.; Barthel, F.P.; Malta, T.M.; Sabedot, T.S.; Sala-ma, S.R.; Murray, B.A.; Morozova, O.; Newton, Y.; Radenbaugh, A.; Pagnotta, S.M.; Anjum, S.; Wang, J.; Manyam, G.; Zoppoli, P.; Ling, S.; Rao, A.A.; Grifford, M.; Cherniack, A.D.; Zhang, H.; Poisson, L.; Carlotti, C.G., Jr; Tirapelli, D.P.C.; Rao, A.; Mikkelsen, T.; Lau, C.C.; Yung, W.K.A.; Rabadan, R.; Huse, J.; Brat, D.J.; Lehman, N.L.; Barnholtz-Sloan, J.S.; Zheng, S.; Hess, K.; Rao, G.; Meyerson, M.; Beroukhim, R.; Cooper, L.; Akbani, R.; Wrensch, M.; Haussler, D.; Aldape, K.D.; Laird, P.W.; Gutmann, D.H.; Noushmehr, H.; Iavarone, A.; Verhaak, R.G.W.; Anjum, S.; Arachchi, H.; Auman, J.T.; Balasundaram, M.; Balu, S.; Barnett, G.; Baylin, S.; Bell, S.; Benz, C.; Bir, N.; Black, K.L.; Bodenheimer, T.; Boice, L.; Bootwalla, M.S.; Bowen, J.; Bristow, C.A.; Butterfield, Y.S.N.; Chen, Q-R.; Chin, L.; Cho, J.; Chuah, E.; Chudamani, S.; Coetzee, S.G.; Cohen, M.L.; Colman, H.; Couce, M.; D’Angelo, F.; Davidsen, T.; Davis, A.; Demchok, J.A.; Devine, K.; Ding, L.; Duell, R.; Elder, J.B.; Eschbacher, J.M.; Fehrenbach, A.; Ferguson, M.; Frazer, S.; Fuller, G.; Fulop, J.; Gabriel, S.B.; Garofano, L.; Gastier-Foster, J.M.; Gehlenborg, N.; Gerken, M.; Getz, G.; Giannini, C.; Gibson, W.J.; Hadjipanayis, A.; Hayes, D.N.; Heiman, D.I.; Hermes, B.; Hilty, J.; Hoadley, K.A.; Hoyle, A.P.; Huang, M.; Jefferys, S.R.; Jones, C.D.; Jones, S.J.M.; Ju, Z.; Kastl, A.; Kendler, A.; Kim, J.; Kucherlapati, R.; Lai, P.H.; Lawrence, M.S.; Lee, S.; Leraas, K.M.; Lichtenberg, T.M.; Lin, P.; Liu, Y.; Liu, J.; Ljubimova, J.Y.; Lu, Y.; Ma, Y.; Maglinte, D.T.; Mahadeshwar, H.S.; Marra, M.A.; McGraw, M.; McPherson, C.; Meng, S.; Mieczkowski, P.A.; Miller, C.R.; Mills, G.B.; Moore, R.A.; Mose, L.E.; Mungall, A.J.; Naresh, R.; Naska, T.; Neder, L.; Noble, M.S.; Noss, A.; O’Neill, B.P.; Ostrom, Q.T.; Palmer, C.; Pantazi, A.; Parfenov, M.; Park, P.J.; Parker, J.S.; Perou, C.M.; Pierson, C.R.; Pihl, T.; Protopopov, A.; Radenbaugh, A.; Ramirez, N.C.; Rathmell, W.K.; Ren, X.; Roach, J.; Robertson, A.G.; Saksena, G.; Schein, J.E.; Schumacher, S.E.; Seidman, J.; Senecal, K.; Seth, S.; Shen, H.; Shi, Y.; Shih, J.; Shimmel, K.; Sicotte, H.; Sifri, S.; Silva, T.; Simons, J.V.; Singh, R.; Skelly, T.; Sloan, A.E.; Sofia, H.J.; Soloway, M.G.; Song, X.; Sougnez, C.; Souza, C.; Staugaitis, S.M.; Sun, H.; Sun, C.; Tan, D.; Tang, J.; Tang, Y.; Thorne, L.; Trevisan, F.A.; Triche, T.; Van Den Berg, D.J.; Veluvolu, U.; Voet, D.; Wan, Y.; Wang, Z.; Warnick, R.; Weinstein, J.N.; Weisenberger, D.J.; Wilkerson, M.D.; Williams, F.; Wise, L.; Wolinsky, Y.; Wu, J.; Xu, A.W.; Yang, L.; Yang, L.; Zack, T.I.; Zenklusen, J.C.; Zhang, J.; Zhang, W.; Zhang, J.; Zmuda, E. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell, 2016, 164(3), 550-563. doi: 10.1016/j.cell.2015.12.028 PMID: 26824661
  49. Madhavan, S.; Zenklusen, J.C.; Kotliarov, Y.; Sahni, H.; Fine, H.A.; Buetow, K. Rembrandt: Helping personalized medicine become a reality through integrative translational research. Mol. Cancer Res., 2009, 7(2), 157-167. doi: 10.1158/1541-7786.MCR-08-0435 PMID: 19208739
  50. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455(7216), 1061-1068. doi: 10.1038/nature07385 PMID: 18772890
  51. Bowman, R.L.; Wang, Q.; Carro, A.; Verhaak, R.G.W.; Squatrito, M. GlioVis data portal for visualization and analy-sis of brain tumor expression datasets. Neuro-oncol., 2017, 19(1), 139-141. doi: 10.1093/neuonc/now247 PMID: 28031383
  52. Vollmann-Zwerenz, A.; Leidgens, V.; Feliciello, G.; Klein, C.A.; Hau, P. Tumor cell invasion in glioblastoma. Int. J. Mol. Sci., 2020, 21(6), 1932. doi: 10.3390/ijms21061932 PMID: 32178267
  53. Onken, J.; Moeckel, S.; Leukel, P.; Leidgens, V.; Baumann, F.; Bogdahn, U.; Vollmann-Zwerenz, A.; Hau, P. Versican isoform V1 regulates proliferation and migration in high-grade gliomas. J. Neurooncol., 2014, 120(1), 73-83. doi: 10.1007/s11060-014-1545-8 PMID: 25064688
  54. Tracz-Gaszewska, Z.; Dobrzyn, P. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers, 2019, 11(7), 948. doi: 10.3390/cancers11070948 PMID: 31284458
  55. Duman, C.; Yaqubi, K.; Hoffmann, A.; Acikgöz, A.A.; Korshunov, A.; Bendszus, M.; Herold-Mende, C.; Liu, H.K.; Alfonso, J. Acyl-CoA-binding protein drives glioblastoma tumorigenesis by sustaining fatty acid oxidation. Cell Metab., 2019, 30(2), 274-289.e5. doi: 10.1016/j.cmet.2019.04.004 PMID: 31056285
  56. Kant, S.; Kesarwani, P.; Prabhu, A.; Graham, S.F.; Buelow, K.L.; Nakano, I.; Chinnaiyan, P. Enhanced fatty acid oxidation provides glioblastoma cells metabolic plasticity to accommodate to its dynamic nutrient microenvironment. Cell Death Dis., 2020, 11(4), 253. doi: 10.1038/s41419-020-2449-5 PMID: 32312953
  57. Lee, H.; Kim, D.; Youn, B. Targeting oncogenic rewiring of lipid metabolism for glioblastoma treatment. Int. J. Mol. Sci., 2022, 23(22), 13818. doi: 10.3390/ijms232213818 PMID: 36430293
  58. Kou, Y.; Geng, F.; Guo, D. Lipid metabolism in glioblastoma: From De Novo synthesis to storage. Biomedicines, 2022, 10(8), 1943. doi: 10.3390/biomedicines10081943 PMID: 36009491

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers