Drug Target to Alleviate Mitochondrial Dysfunctions in Alzheimers Disease: Recent Advances and Therapeutic Implications
- Authors: Rahman M.1, Rahman M.1, Rhim H.2, Kim B.1
-
Affiliations:
- Department of Pathology, College of Korean Medicine, Kyung Hee University
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST)
- Issue: Vol 22, No 12 (2024)
- Pages: 1942-1959
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644424
- DOI: https://doi.org/10.2174/1570159X22666240426091311
- ID: 644424
Cite item
Full Text
Abstract
:Alzheimer's disease (AD) is a severe progressive neurodegenerative condition associated with neuronal damage and reduced cognitive function that primarily affects the aged worldwide. While there is increasing evidence suggesting that mitochondrial dysfunction is one of the most significant factors contributing to AD, its accurate pathobiology remains unclear. Mitochondrial bioenergetics and homeostasis are impaired and defected during AD pathogenesis. However, the potential of mutations in nuclear or mitochondrial DNA encoding mitochondrial constituents to cause mitochondrial dysfunction has been considered since it is one of the intracellular processes commonly compromised in early AD stages. Additionally, electron transport chain dysfunction and mitochondrial pathological protein interactions are related to mitochondrial dysfunction in AD. Many mitochondrial parameters decline during aging, causing an imbalance in reactive oxygen species (ROS) production, leading to oxidative stress in age-related AD. Moreover, neuroinflammation is another potential causative factor in AD-associated mitochondrial dysfunction. While several treatments targeting mitochondrial dysfunction have undergone preclinical studies, few have been successful in clinical trials. Therefore, this review discusses the molecular mechanisms and different therapeutic approaches for correcting mitochondrial dysfunction in AD, which have the potential to advance the future development of novel drug-based AD interventions.
About the authors
Md. Rahman
Department of Pathology, College of Korean Medicine, Kyung Hee University
Author for correspondence.
Email: info@benthamscience.net
MD. Rahman
Department of Pathology, College of Korean Medicine, Kyung Hee University
Email: info@benthamscience.net
Hyewhon Rhim
Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST)
Author for correspondence.
Email: info@benthamscience.net
Bonglee Kim
Department of Pathology, College of Korean Medicine, Kyung Hee University
Author for correspondence.
Email: info@benthamscience.net
References
- Cenini, G.; Voos, W. Mitochondria as potential targets in alzheimer disease therapy: An update. Front Pharmacol., 2019, 10, ARTN 902. doi: 10.3389/fphar.2019.00902
- Carvalho, C.; Correia, S.C.; Cardoso, S.; Plácido, A.I.; Candeias, E.; Duarte, A.I.; Moreira, P.I. The role of mitochondrial disturbances in Alzheimer, Parkinson and Huntington diseases. Expert Rev. Neurother., 2015, 15(8), 867-884. doi: 10.1586/14737175.2015.1058160 PMID: 26092668
- Correia, S.C.; Santos, R.X.; Cardoso, S.; Carvalho, C.; Candeias, E.; Duarte, A.I.; Plácido, A.I.; Santos, M.S.; Moreira, P.I. Alzheimer disease as a vascular disorder: Where do mitochondria fit? Exp. Gerontol., 2012, 47(11), 878-886. doi: 10.1016/j.exger.2012.07.006 PMID: 22824543
- Bhatia, S.; Rawal, R.; Sharma, P.; Singh, T.; Singh, M.; Singh, V. Mitochondrial dysfunction in Alzheimers disease: Opportunities for drug development. Curr. Neuropharmacol., 2022, 20(4), 675-692. doi: 10.2174/1570159X19666210517114016 PMID: 33998995
- Ke, J.; Tian, Q.; Xu, Q.; Fu, Z.; Fu, Q. Mitochondrial dysfunction: A potential target for Alzheimers disease intervention and treatment. Drug Discov. Today, 2021, 26(8), 1991-2002. doi: 10.1016/j.drudis.2021.04.025 PMID: 33962036
- Zhang, Y.; Yang, H.; Wei, D.; Zhang, X.; Wang, J.; Wu, X.; Chang, J. Mitochondria‐targeted nanoparticles in treatment of neurodegenerative diseases. In: Exploration; Wiley Online Library, 2021; p. 20210115.
- Bai, R.; Guo, J.; Ye, X.Y.; Xie, Y.; Xie, T. Oxidative stress: The core pathogenesis and mechanism of Alzheimers disease. Ageing Res. Rev., 2022, 77, 101619. doi: 10.1016/j.arr.2022.101619 PMID: 35395415
- Gowda, P.; Reddy, P.H.; Kumar, S. Deregulated mitochondrial microRNAs in Alzheimers disease: Focus on synapse and mitochondria. Ageing Res. Rev., 2022, 73, 101529. doi: 10.1016/j.arr.2021.101529 PMID: 34813976
- Sun, Q.; Li, Y.; Shi, L.; Hussain, R.; Mehmood, K.; Tang, Z.; Zhang, H. Heavy metals induced mitochondrial dysfunction in animals: Molecular mechanism of toxicity. Toxicology, 2022, 469, 153136. doi: 10.1016/j.tox.2022.153136 PMID: 35202761
- Pelucchi, S.; Gardoni, F.; Di Luca, M.; Marcello, E. Synaptic dysfunction in early phases of Alzheimers disease. Handb. Clin. Neurol., 2022, 184, 417-438. doi: 10.1016/B978-0-12-819410-2.00022-9 PMID: 35034752
- Sorgdrager, F.J.H.; Vermeiren, Y.; Faassen, M.; Ley, C.; Nollen, E.A.A.; Kema, I.P.; De Deyn, P.P. Age‐ and disease‐specific changes of the kynurenine pathway in Parkinsons and Alzheimers disease. J. Neurochem., 2019, 151(5), 656-668. doi: 10.1111/jnc.14843 PMID: 31376341
- Castro-Chavira, S.A.; Fernandez, T.; Nicolini, H.; Diaz-Cintra, S.; Prado-Alcala, R.A. Genetic markers in biological fluids for aging-related major neurocognitive disorder. Curr. Alzheimer Res., 2015, 12(3), 200-209. doi: 10.2174/1567205012666150302155138 PMID: 25731625
- Rahman, M.A.; Rhim, H. Therapeutic implication of autophagy in neurodegenerative diseases. BMB Rep., 2017, 50(7), 345-354. doi: 10.5483/BMBRep.2017.50.7.069 PMID: 28454606
- Moya-Alvarado, G.; Gershoni-Emek, N.; Perlson, E.; Bronfman, F.C. Neurodegeneration and Alzheimers disease (AD). What can proteomics tell us about the Alzheimers brain? Mol. Cell. Proteomics, 2016, 15(2), 409-425. doi: 10.1074/mcp.R115.053330 PMID: 26657538
- Rahman, M.A.; Rahman, M.S.; Uddin, M.J.; Mamum-Or-Rashid, A.N.M.; Pang, M.G.; Rhim, H. Emerging risk of environmental factors: Insight mechanisms of Alzheimers diseases. Environ. Sci. Pollut. Res. Int., 2020, 27(36), 44659-44672. doi: 10.1007/s11356-020-08243-z PMID: 32201908
- Rahman, M.A.; Rahman, M.S.; Rahman, M.H.; Rasheduzzaman, M.; Mamun-Or-Rashid, A.N.M.; Uddin, M.J.; Rahman, M.R.; Hwang, H.; Pang, M.G.; Rhim, H. Modulatory effects of autophagy on APP processing as a potential treatment target for Alzheimer's disease. Biomedicines, 2020, 9, 5. doi: 10.3390/biomedicines9010005
- Liang, S.Y.; Wang, Z.T.; Tan, L.; Yu, J.T. Tau toxicity in neurodegeneration. Mol. Neurobiol., 2022, 59(6), 3617-3634. doi: 10.1007/s12035-022-02809-3 PMID: 35359226
- González, A.; Singh, S.K.; Churruca, M.; Maccioni, R.B. Alzheimers disease and tau self-assembly: In the search of the missing link. Int. J. Mol. Sci., 2022, 23(8), 4192. doi: 10.3390/ijms23084192 PMID: 35457009
- Ye, H.; Han, Y.; Li, P.; Su, Z.; Huang, Y. The role of post-translational modifications on the structure and function of tau protein. J. Mol. Neurosci., 2022, 72(8), 1557-1571. doi: 10.1007/s12031-022-02002-0 PMID: 35325356
- Dhapola, R.; Sarma, P.; Medhi, B.; Prakash, A.; Reddy, D.H. Recent advances in molecular pathways and therapeutic implications targeting mitochondrial dysfunction for Alzheimers disease. Mol. Neurobiol., 2022, 59(2022), 535-555. doi: 10.1007/s12035-021-02612-6
- Zhao, Y.; Jia, M.; Chen, W.; Liu, Z. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function. Free Radic. Biol. Med., 2022, 182, 206-218. doi: 10.1016/j.freeradbiomed.2022.02.021
- Du, F.; Yu, Q.; Kanaan, N.M.; Yan, S.S. Mitochondrial oxidative stress contributes to the pathological aggregation and accumulation of tau oligomers in Alzheimers disease. Hum. Mol. Genet., 2022, 31(15), 2498-2507. doi: 10.1093/hmg/ddab363 PMID: 35165721
- Gong, W.; Xu, J.; Wang, Y.; Min, Q.; Chen, X.; Zhang, W.; Chen, J.; Zhan, Q. Nuclear genome-derived circular RNA circPUM1 localizes in mitochondria and regulates oxidative phosphorylation in esophageal squamous cell carcinoma. Signal. Transduct. Target. Ther., 2022, 7(1), 40. doi: 10.1038/s41392-021-00865-0 PMID: 35153295
- Zinovkin, R.A.; Zamyatnin, A.A., Jr Mitochondria-targeted drugs. Curr. Mol. Pharmacol., 2019, 12(3), 202-214. doi: 10.2174/1874467212666181127151059 PMID: 30479224
- Almendro-Vedia, V.; Natale, P.; Valdivieso González, D.; Lillo, M.P.; Aragones, J.L.; López-Montero, I. How rotating ATP synthases can modulate membrane structure. Arch. Biochem. Biophys., 2021, 708, 108939. doi: 10.1016/j.abb.2021.108939 PMID: 34052190
- Garbincius, J.F.; Elrod, J.W. Mitochondrial calcium exchange in physiology and disease. Physiol. Rev., 2022, 102(2), 893-992. doi: 10.1152/physrev.00041.2020 PMID: 34698550
- Schapira, A.H.V. Mitochondrial disease. Lancet, 2006, 368(9529), 70-82. doi: 10.1016/S0140-6736(06)68970-8 PMID: 16815381
- Cheung, G.; Bataveljic, D.; Visser, J.; Kumar, N.; Moulard, J.; Dallérac, G.; Mozheiko, D.; Rollenhagen, A.; Ezan, P.; Mongin, C.; Chever, O.; Bemelmans, A.P.; Lübke, J.; Leray, I.; Rouach, N. Physiological synaptic activity and recognition memory require astroglial glutamine. Nat. Commun., 2022, 13(1), 753. doi: 10.1038/s41467-022-28331-7 PMID: 35136061
- Birsoy, K.; Wang, T.; Chen, W.W.; Freinkman, E.; Abu-Remaileh, M.; Sabatini, D.M. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell, 2015, 162(3), 540-551. doi: 10.1016/j.cell.2015.07.016 PMID: 26232224
- Tabassum, N.; Kheya, I.S.; Asaduzzaman, S.; Maniha, S.; Fayz, A.H.; Zakaria, A.; Noor, R. A review on the possible leakage of electrons through the electron transport chain within mitochondria. Life Sci., 2020, 6, 105-113.
- Mani, S.; Swargiary, G.; Tyagi, S.; Singh, M.; Jha, N.K.; Singh, K.K. Nanotherapeutic approaches to target mitochondria in cancer. Life Sci., 2021, 281, 119773. doi: 10.1016/j.lfs.2021.119773 PMID: 34192595
- Horie, M.; Tabei, Y. Role of oxidative stress in nanoparticles toxicity. Free Radic. Res., 2021, 55(4), 331-342. doi: 10.1080/10715762.2020.1859108 PMID: 33336617
- Aruoma, O. Alzheimers disease and Parkinsons disease: A nutritional toxicology perspective of the impact of oxidative Str.
- Rahman, M.A.; Rahman, M.D.H.; Biswas, P.; Hossain, M.S.; Islam, R.; Hannan, M.A.; Uddin, M.J.; Rhim, H. Potential therapeutic role of phytochemicals to mitigate mitochondrial dysfunctions in Alzheimers disease. Antioxidants, 2020, 10(1), 23. doi: 10.3390/antiox10010023 PMID: 33379372
- Sharma, C.; Kim, S.; Nam, Y.; Jung, U.J.; Kim, S.R. Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimers disease. Int. J. Mol. Sci., 2021, 22(9), 4850. doi: 10.3390/ijms22094850 PMID: 34063708
- Brillo, V.; Chieregato, L.; Leanza, L.; Muccioli, S.; Costa, R. Mitochondrial dynamics, ROS, and cell signaling: A blended overview. Life (Basel), 2021, 11(4), 332. doi: 10.3390/life11040332 PMID: 33920160
- Rahman, M.; Hannan, M.; Uddin, M.; Rahman, M.; Rashid, M.; Kim, B. Exposure to environmental arsenic and emerging risk of Alzheimers disease: Perspective mechanisms, management strategy, and future directions. Toxics, 2021, 9(8), 188. doi: 10.3390/toxics9080188 PMID: 34437506
- Rahman, M.A.; Rahman, M.H.; Mamun-Or-Rashid, A.N.M.; Hwang, H.; Chung, S.; Kim, B.; Rhim, H. Autophagy modulation in aggresome formation: Emerging implications and treatments of Alzheimers disease. Biomedicines., 2022, 10(5), 1027. doi: 10.3390/biomedicines10051027 PMID: 35625764
- Bera, A.; Lavanya, G.; Reshmi, R.; Dev, K.; Kumar, R. Mechanistic and therapeutic role of Drp1 in the pathogenesis of Alzheimers disease. Eur. J. Neurosci., 2022, 56, 5516-5531.
- Mondala, T.; Samantaa, S.; Kumara, A.; Govindarajua, T. Multifunctional inhibitors of multifaceted Aβ toxicity of Alzheimer's disease. In: Alzheimers Disease: Recent Findings in Pathophysiology, Diagnostic and Therapeutic Modalities; Royal Society of Chemistry, 2022.
- Taliyan, R.; Kakoty, V.; Sarathlal, K.C.; Kharavtekar, S.S.; Karennanavar, C.R.; Choudhary, Y.K.; Singhvi, G.; Riadi, Y.; Dubey, S.K.; Kesharwani, P. Nanocarrier mediated drug delivery as an impeccable therapeutic approach against Alzheimers disease. J. Control. Release, 2022, 343, 528-550. doi: 10.1016/j.jconrel.2022.01.044 PMID: 35114208
- Bomba-Warczak, E.; Savas, J.N. Long-lived mitochondrial proteins and why they exist. Trends Cell Biol., 2022, 32(8), 646-654. doi: 10.1016/j.tcb.2022.02.001 PMID: 35221146
- Xie, L.; Shi, F.; Tan, Z.; Li, Y.; Bode, A.M.; Cao, Y. Mitochondrial network structure homeostasis and cell death. Cancer Sci., 2018, 109(12), 3686-3694. doi: 10.1111/cas.13830 PMID: 30312515
- Wang, X.; Su, B.; Lee, H.; Li, X.; Perry, G.; Smith, M.A.; Zhu, X. Impaired balance of mitochondrial fission and fusion in Alzheimers disease. J. Neurosci., 2009, 29(28), 9090-9103. doi: 10.1523/JNEUROSCI.1357-09.2009 PMID: 19605646
- Boguszewska, K.; Szewczuk, M.; Kaźmierczak-Barańska, J.; Karwowski, B.T. The similarities between human mitochondria and bacteria in the context of structure, genome, and base excision repair system. Molecules, 2020, 25(12), 2857. doi: 10.3390/molecules25122857 PMID: 32575813
- Kim, D.K.; Mook-Jung, I. The role of cell type-specific mitochondrial dysfunction in the pathogenesis of Alzheimers disease. BMB Rep., 2019, 52(12), 679-688. doi: 10.5483/BMBRep.2019.52.12.282 PMID: 31722781
- Liu, X.; Zhang, Y.; Ni, M.; Cao, H.; Signer, R.A.J.; Li, D.; Li, M.; Gu, Z.; Hu, Z.; Dickerson, K.E.; Weinberg, S.E.; Chandel, N.S.; DeBerardinis, R.J.; Zhou, F.; Shao, Z.; Xu, J. Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated protein translation. Nat. Cell Biol., 2017, 19(6), 626-638. doi: 10.1038/ncb3527 PMID: 28504707
- Ding, X.W.; Robinson, M.; Li, R.; Aldhowayan, H.; Geetha, T.; Babu, J.R. Mitochondrial dysfunction and beneficial effects of mitochondria-targeted small peptide SS-31 in diabetes mellitus and Alzheimers disease. Pharmacol. Res., 2021, 171, 105783. doi: 10.1016/j.phrs.2021.105783 PMID: 34302976
- Bilbao-Malavé, V.; González-Zamora, J.; de la Puente, M.; Recalde, S.; Fernandez-Robredo, P.; Hernandez, M.; Layana, A.G.; Saenz de Viteri, M. Mitochondrial dysfunction and endoplasmic reticulum stress in age related macular degeneration, role in pathophysiology, and possible new therapeutic strategies. Antioxidants, 2021, 10(8), 1170. doi: 10.3390/antiox10081170 PMID: 34439418
- Machrina, Y.; Lindarto, D.; Pane, Y.S.; Harahap, N.S. The pattern of peroxisome proliferator-activated receptor gamma coactivator 1-alpha gene expression in type-2 diabetes mellitus rat model liver: Focus on exercise. Open Access Maced. J. Med. Sci., 2021, 9(T3), 124-128. doi: 10.3889/oamjms.2021.6362
- Wang, C.F.; Song, C.Y.; Wang, X.; Huang, L.Y.; Ding, M.; Yang, H.; Wang, P.; Xu, L.L.; Xie, Z.H.; Bi, J.Z. Protective effects of melatonin on mitochondrial biogenesis and mitochondrial structure and function in the HEK293-APPswe cell model of Alzheimers disease. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(8), 3542-3550. PMID: 31081111
- Singulani, M.P.; Pereira, C.P.M.; Ferreira, A.F.F.; Garcia, P.C.; Ferrari, G.D.; Alberici, L.C.; Britto, L.R. Impairment of PGC-1α-mediated mitochondrial biogenesis precedes mitochondrial dysfunction and Alzheimers pathology in the 3xTg mouse model of Alzheimers disease. Exp. Gerontol., 2020, 133, 110882. doi: 10.1016/j.exger.2020.110882 PMID: 32084533
- Tiwari, S.; Dewry, R.K.; Srivastava, R.; Nath, S.; Mohanty, T.K. Targeted antioxidant delivery modulates mitochondrial functions, ameliorates oxidative stress and preserve sperm quality during cryopreservation. Theriogenology, 2022, 179, 22-31. doi: 10.1016/j.theriogenology.2021.11.013 PMID: 34823058
- Durairajanayagam, D.; Singh, D.; Agarwal, A.; Henkel, R. Causes and consequences of sperm mitochondrial dysfunction. Andrologia, 2021, 53(1), e13666. doi: 10.1111/and.13666 PMID: 32510691
- Wang, W.; Zhao, F.; Ma, X.; Perry, G.; Zhu, X. Mitochondria dysfunction in the pathogenesis of Alzheimers disease: Recent advances. Mol. Neurodegener., 2020, 15(1), 30. doi: 10.1186/s13024-020-00376-6 PMID: 32471464
- Stojakovic, A.; Trushin, S.; Sheu, A.; Khalili, L.; Chang, S.Y.; Li, X.; Christensen, T.; Salisbury, J.L.; Geroux, R.E.; Gateno, B.; Flannery, P.J.; Dehankar, M.; Funk, C.C.; Wilkins, J.; Stepanova, A.; OHagan, T.; Galkin, A.; Nesbitt, J.; Zhu, X.; Tripathi, U.; Macura, S.; Tchkonia, T.; Pirtskhalava, T.; Kirkland, J.L.; Kudgus, R.A.; Schoon, R.A.; Reid, J.M.; Yamazaki, Y.; Kanekiyo, T.; Zhang, S.; Nemutlu, E.; Dzeja, P.; Jaspersen, A.; Kwon, Y.I.C.; Lee, M.K.; Trushina, E. Partial inhibition of mitochondrial complex I ameliorates Alzheimers disease pathology and cognition in APP/PS1 female mice. Commun. Biol., 2021, 4(1), 61. doi: 10.1038/s42003-020-01584-y PMID: 33420340
- Belosludtsev, K.N.; Sharipov, R.R.; Boyarkin, D.P.; Belosludtseva, N.V.; Dubinin, M.V.; Krasilnikova, I.A.; Bakaeva, Z.V.; Zgodova, A.E.; Pinelis, V.G.; Surin, A.M. The effect of DS16570511, a new inhibitor of mitochondrial calcium uniporter, on calcium homeostasis, metabolism, and functional state of cultured cortical neurons and isolated brain mitochondria. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(5), 129847. doi: 10.1016/j.bbagen.2021.129847 PMID: 33453305
- Carafoli, E. Historical review: Mitochondria and calcium: Ups and downs of an unusual relationship. Trends Biochem. Sci., 2003, 28(4), 175-181. doi: 10.1016/S0968-0004(03)00053-7 PMID: 12713900
- Zeb, A.; Kim, D.; Alam, S.; Son, M.; Kumar, R.; Rampogu, S.; Parameswaran, S.; Shelake, R.; Rana, R.; Parate, S.; Kim, J.Y.; Lee, K. Computational simulations identify pyrrolidine-2, 3-dione derivatives as novel inhibitors of Cdk5/p25 complex to attenuate Alzheimers pathology. J. Clin. Med., 2019, 8(5), 746. doi: 10.3390/jcm8050746 PMID: 31137734
- Bonora, M.; Giorgi, C.; Pinton, P. Molecular mechanisms and consequences of mitochondrial permeability transition. Nat. Rev. Mol. Cell Biol., 2022, 23, 266-285.
- Quintana, D.D.; Garcia, J.A.; Anantula, Y.; Rellick, S.L.; Engler-Chiurazzi, E.B.; Sarkar, S.N.; Brown, C.M.; Simpkins, J.W. Amyloid-β causes mitochondrial dysfunction via a Ca 2+-driven upregulation of oxidative phosphorylation and superoxide production in cerebrovascular endothelial cells. J. Alzheimers Dis., 2020, 75(1), 119-138. doi: 10.3233/JAD-190964 PMID: 32250296
- Filippone, A.; Esposito, E.; Mannino, D.; Lyssenko, N.; Praticò, D. The contribution of altered neuronal autophagy to neurodegeneration. Pharmacol. Ther., 2022, 238, 108178. doi: 10.1016/j.pharmthera.2022.108178 PMID: 35351465
- Sorrentino, V.; Romani, M.; Mouchiroud, L.; Beck, J.S.; Zhang, H.; DAmico, D.; Moullan, N.; Potenza, F.; Schmid, A.W.; Rietsch, S.; Counts, S.E.; Auwerx, J. Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature, 2017, 552(7684), 187-193. doi: 10.1038/nature25143 PMID: 29211722
- Van Skike, C.E.; Lin, A.L.; Roberts Burbank, R.; Halloran, J.J.; Hernandez, S.F.; Cuvillier, J.; Soto, V.Y.; Hussong, S.A.; Jahrling, J.B.; Javors, M.A.; Hart, M.J.; Fischer, K.E.; Austad, S.N.; Galvan, V. mTOR drives cerebrovascular, synaptic, and cognitive dysfunction in normative aging. Aging Cell, 2020, 19(1), e13057. doi: 10.1111/acel.13057 PMID: 31693798
- Zhang, W.; Xu, C.; Sun, J.; Shen, H.M.; Wang, J.; Yang, C. Impairment of the autophagy-lysosomal pathway in Alzheimers diseases: Pathogenic mechanisms and therapeutic potential. Acta Pharm. Sin. B, 2022, 12(3), 1019-1040. doi: 10.1016/j.apsb.2022.01.008 PMID: 35530153
- Pradeepkiran, J.A.; Hindle, A.; Kshirsagar, S.; Reddy, P.H. Are mitophagy enhancers therapeutic targets for Alzheimers disease? Biomed. Pharmacother., 2022, 149, 112918. doi: 10.1016/j.biopha.2022.112918 PMID: 35585708
- Nazam, N.; Farhana, A.; Shaikh, S. Recent advances in Alzheimers disease in relation to cholinesterase inhibitors and NMDA receptor antagonists, autism spectrum disorder and Alzheimer's disease., 2021, 135-151.
- Chiang, T.I.; Yu, Y.H.; Lin, C.H.; Lane, H.Y. Novel biomarkers of Alzheimers disease: Based upon N-methyl-d-aspartate receptor hypoactivation and oxidative stress. Clin. Psychopharmacol. Neurosci., 2021, 19(3), 423-433. doi: 10.9758/cpn.2021.19.3.423 PMID: 34294612
- Cheng, Y.J.; Lin, C.H.; Lane, H.Y. Involvement of cholinergic, adrenergic, and glutamatergic network modulation with cognitive dysfunction in Alzheimers disease. Int. J. Mol. Sci., 2021, 22(5), 2283. doi: 10.3390/ijms22052283 PMID: 33668976
- Nguyen, V.T.T.; Sallbach, J.; dos Santos Guilherme, M.; Endres, K. Influence of acetylcholine esterase inhibitors and memantine, clinically approved for Alzheimers dementia treatment, on intestinal properties of the mouse. Int. J. Mol. Sci., 2021, 22(3), 1015. doi: 10.3390/ijms22031015 PMID: 33498392
- Grundman, M.; Delaney, P.; Delaney, P. Antioxidant strategies for Alzheimers disease. Proc. Nutr. Soc., 2002, 61(2), 191-202. doi: 10.1079/PNS2002146 PMID: 12133201
- Malty, R.H.; Jessulat, M.; Jin, K.; Musso, G.; Vlasblom, J.; Phanse, S.; Zhang, Z.; Babu, M. Mitochondrial targets for pharmacological intervention in human disease. J. Proteome Res., 2015, 14(1), 5-21. doi: 10.1021/pr500813f PMID: 25367773
- Wang, X.; Su, B.; Zheng, L.; Perry, G.; Smith, M.A.; Zhu, X. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimers disease. J. Neurochem., 2009, 109(Suppl. 1), 153-159. doi: 10.1111/j.1471-4159.2009.05867.x PMID: 19393022
- Rahman, M.A.; Bishayee, K.; Huh, S.O. Angelica polymorpha maxim induces apoptosis of human SH-SY5Y neuroblastoma cells by regulating an intrinsic caspase pathway. Mol. Cells, 2016, 39(2), 119-128. doi: 10.14348/molcells.2016.2232 PMID: 26674967
- Kwon, Y.H.; Bishayee, K.; Rahman, A.; Hong, J.S.; Lim, S.S.; Huh, S.O. Morus alba accumulates reactive oxygen species to initiate apoptosis via FOXO-caspase 3-dependent pathway in neuroblastoma cells. Mol. Cells, 2015, 38(7), 630-637. doi: 10.14348/molcells.2015.0030 PMID: 25921607
- Rahman, M.A.; Hong, J.S.; Huh, S.O. Antiproliferative properties of Saussurea lappa Clarke root extract in SH-SY5Y neuroblastoma cells via intrinsic apoptotic pathway. Anim. Cells Syst., 2015, 19(2), 119-126. doi: 10.1080/19768354.2015.1008041
- Rahman, M.A.; Yang, H.; Kim, N.H.; Huh, S.O. Induction of apoptosis by Dioscorea nipponica Makino extracts in human SH-SY5Y neuroblastoma cells via mitochondria-mediated pathway. Anim. Cells Syst., 2014, 18(1), 41-51. doi: 10.1080/19768354.2014.880372
- Rahman, M.A.; Yang, H.; Lim, S.S.; Huh, S.O. Apoptotic effects of melandryum firmum root extracts in human SH-SY5Y neuroblastoma cells. Exp. Neurobiol., 2013, 22(3), 208-213. doi: 10.5607/en.2013.22.3.208 PMID: 24167415
- Rahman, M.A.; Kim, N.H.; Huh, S.O. Cytotoxic effect of gambogic acid on SH-SY5Y neuroblastoma cells is mediated by intrinsic caspase-dependent signaling pathway. Mol. Cell. Biochem., 2013, 377(1-2), 187-196. doi: 10.1007/s11010-013-1584-z PMID: 23404459
- Rahman, M.A.; Kim, N.H.; Kim, S.H.; Oh, S.M.; Huh, S.O. Antiproliferative and cytotoxic effects of resveratrol in mitochondria-mediated apoptosis in rat b103 neuroblastoma cells. Korean J. Physiol. Pharmacol., 2012, 16(5), 321-326. doi: 10.4196/kjpp.2012.16.5.321 PMID: 23118555
- Ataur Rahman, M.; Kim, N.H.; Yang, H.; Huh, S.O. Angelicin induces apoptosis through intrinsic caspase-dependent pathway in human SH-SY5Y neuroblastoma cells. Mol. Cell. Biochem., 2012, 369(1-2), 95-104. doi: 10.1007/s11010-012-1372-1 PMID: 22766766
- Hannan, M.A.; Dash, R.; Haque, M.N.; Mohibbullah, M.; Sohag, A.A.; Rahman, M.A.; Uddin, M.J.; Alam, M.; Moon, I. Neuroprotective potentials of marine algae and their bioactive metabolites: Pharmacological insights and therapeutic advances. Mar. Drugs, 2020, 18, 347. doi: 10.3390/md18070347
- Rahman, M.A.; Rahman, M.R.; Zaman, T.; Uddin, M.S.; Islam, R.; Abdel-Daim, M.M.; Rhim, H. Emerging potential of naturally occurring autophagy modulators against neurodegeneration. Curr. Pharm. Des., 2020, 26(7), 772-779. doi: 10.2174/1381612826666200107142541 PMID: 31914904
- Rahman, M.A.; Saha, S.K.; Rahman, M.S.; Uddin, M.J.; Uddin, M.S.; Pang, M.G.; Rhim, H.; Cho, S.G. Molecular insights into therapeutic potential of autophagy modulation by natural products for cancer stem cells. Front. Cell Dev. Biol., 2020, 8, 283. doi: 10.3389/fcell.2020.00283
- Rahman, M.A.; Hwang, H.; Nah, S.Y.; Rhim, H. Gintonin stimulates autophagic flux in primary cortical astrocytes. J. Ginseng Res., 2020, 44(1), 67-78. doi: 10.1016/j.jgr.2018.08.004 PMID: 32148391
- Rahman, M.A.; Bishayee, K.; Sadra, A.; Huh, S.O. Oxyresveratrol activates parallel apoptotic and autophagic cell death pathways in neuroblastoma cells. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(2), 23-36. doi: 10.1016/j.bbagen.2016.10.025 PMID: 27815218
- Rahman, M.A.; Bishayee, K.; Habib, K.; Sadra, A.; Huh, S.O. 18α-Glycyrrhetinic acid lethality for neuroblastoma cells via de-regulating the Beclin-1/Bcl-2 complex and inducing apoptosis. Biochem. Pharmacol., 2016, 117, 97-112. doi: 10.1016/j.bcp.2016.08.006 PMID: 27520483
- Jangra, A.; Arora, M.K.; Kisku, A.; Sharma, S. The multifaceted role of mangiferin in health and diseases: A review. Advn Tradi Med., 2021, 21(4), 619-643. doi: 10.1007/s13596-020-00471-5
- Sarikurkcu, C.; Sahinler, S.S.; Ceylan, O.; Tepe, B. Onosma pulchra: Phytochemical composition, antioxidant, skin-whitening and anti-diabetic activity. Ind. Crop. Prod, 2020, 154.
- Franco, R.; Navarro, G.; Martinez-Pinilla, E. Hormetic and mitochondria-related mechanisms of antioxidant action of phytochemicals. Antioxidants-Basel, 2019, 8, 373. doi: 10.3390/antiox8090373
- Zhu, F.; Du, B.; Xu, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(8), 1260-1270. doi: 10.1080/10408398.2016.1251390 PMID: 28605204
- Vaiserman, A.; Koliada, A.; Lushchak, O. Neuroinflammation in pathogenesis of Alzheimers disease: Phytochemicals as potential therapeutics. Mech. Ageing Dev., 2020, 189, 111259. doi: 10.1016/j.mad.2020.111259 PMID: 32450086
- Li, Y.; Zhang, J.; Wan, J.; Liu, A.; Sun, J. Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimers disease. Biomed. Pharmacother., 2020, 132, 110887. doi: 10.1016/j.biopha.2020.110887 PMID: 33254429
- Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Kandimalla, R.; Kuruva, C.S. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimers disease. J. Investig. Med., 2016, 64(8), 1220-1234. doi: 10.1136/jim-2016-000240 PMID: 27521081
- Wang, D.M.; Li, S.Q.; Wu, W.L.; Zhu, X.Y.; Wang, Y.; Yuan, H.Y. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimers disease. Neurochem. Res., 2014, 39(8), 1533-1543. doi: 10.1007/s11064-014-1343-x PMID: 24893798
- Paula, P.C.; Angelica, M.S.G.; Luis, C.H.; Gloria, P.C.G. Preventive effect of quercetin in a triple transgenic Alzheimer's disease mice model. Molecules, 2019, 24. doi: 10.3390/molecules24122287
- Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimers disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimers disease model mice. Neuropharmacology, 2015, 93, 134-145. doi: 10.1016/j.neuropharm.2015.01.027 PMID: 25666032
- Román, G.C.; Jackson, R.E.; Gadhia, R.; Román, A.N.; Reis, J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev. Neurol. (Paris), 2019, 175(10), 724-741. doi: 10.1016/j.neurol.2019.08.005 PMID: 31521398
- Sohel, M.; Biswas, P.; Al Amin, M.; Hossain, M.A.; Sultana, H.; Dey, D.; Aktar, S.; Setu, A.; Khan, M.S.; Paul, P.; Islam, M.N.; Rahman, M.A.; Kim, B.; Al Mamun, A. Genistein, a potential phytochemical against breast cancer treatment-Insight into the molecular mechanisms. Processes (Basel), 2022, 10(2), 415. doi: 10.3390/pr10020415
- Uddin, M.S.; Kabir, M.T. Emerging signal regulating potential of genistein against Alzheimers disease: A promising molecule of interest. Front. Cell Dev. Biol., 2019, 7, 197. doi: 10.3389/fcell.2019.00197 PMID: 31620438
- Pierzynowska, K.; Podlacha, M.; Gaffke, L.; Majkutewicz, I.; Mantej, J.; Węgrzyn, A.; Osiadły, M.; Myślińska, D.; Węgrzyn, G. Autophagy-dependent mechanism of genistein-mediated elimination of behavioral and biochemical defects in the rat model of sporadic Alzheimers disease. Neuropharmacology, 2019, 148, 332-346. doi: 10.1016/j.neuropharm.2019.01.030 PMID: 30710571
- Rassu, G.; Porcu, E.; Fancello, S.; Obinu, A.; Senes, N.; Galleri, G.; Migheli, R.; Gavini, E.; Giunchedi, P. Intranasal delivery of genistein-loaded nanoparticles as a potential preventive system against neurodegenerative disorders. Pharmaceutics, 2018, 11(1), 8. doi: 10.3390/pharmaceutics11010008 PMID: 30597930
- Jo, D.S.; Shin, D.W.; Park, S.J.; Bae, J.E.; Kim, J.B.; Park, N.Y.; Kim, J.S.; Oh, J.S.; Shin, J.W.; Cho, D.H. Attenuation of Aβ toxicity by promotion of mitochondrial fusion in neuroblastoma cells by liquiritigenin. Arch. Pharm. Res., 2016, 39(8), 1137-1143. doi: 10.1007/s12272-016-0780-2 PMID: 27515055
- Valles, S.L.; Dolz-Gaiton, P.; Gambini, J.; Borras, C.; LLoret, A.; Pallardo, F.V.; Viña, J. Estradiol or genistein prevent Alzheimers disease-associated inflammation correlating with an increase PPARγ expression in cultured astrocytes. Brain Res., 2010, 1312, 138-144. doi: 10.1016/j.brainres.2009.11.044 PMID: 19948157
- Parrado-Fernández, C.; Sandebring-Matton, A.; Rodriguez-Rodriguez, P.; Aarsland, D.; Cedazo-Mínguez, A. Anthocyanins protect from complex I inhibition and APPswe mutation through modulation of the mitochondrial fission/fusion pathways. Biochim. Biophys. Acta Mol. Basis Dis., 2016, 1862(11), 2110-2118. doi: 10.1016/j.bbadis.2016.08.002 PMID: 27498295
- Godoy, J.A.; Lindsay, C.B.; Quintanilla, R.A.; Carvajal, F.J.; Cerpa, W.; Inestrosa, N.C. Quercetin exerts differential neuroprotective effects against H2O2 and Aβ aggregates in hippocampal neurons: The role of mitochondria. Mol. Neurobiol., 2017, 54(9), 7116-7128. doi: 10.1007/s12035-016-0203-x PMID: 27796749
- Kwon, S.H.; Ma, S.X.; Hwang, J.Y.; Lee, S.Y.; Jang, C.G. Involvement of the Nrf2/HO-1 signaling pathway in sulfuretin-induced protection against amyloid beta2535 neurotoxicity. Neuroscience, 2015, 304, 14-28. doi: 10.1016/j.neuroscience.2015.07.030 PMID: 26192096
- Chesser, A.S.; Ganeshan, V.; Yang, J.; Johnson, G.V.W. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr. Neurosci., 2016, 19(1), 21-31. doi: 10.1179/1476830515Y.0000000038 PMID: 26207957
- Huang, L.; Chen, C.; Zhang, X.; Li, X.; Chen, Z.; Yang, C.; Liang, X.; Zhu, G.; Xu, Z. Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation. J. Mol. Neurosci., 2018, 64(1), 129-139. doi: 10.1007/s12031-017-1006-x PMID: 29243061
- Sousa, J.C.; Santana, A.C.F.; Magalhães, G.J.P. Resveratrol in Alzheimers disease: A review of pathophysiology and therapeutic potential. Arq. Neuropsiquiatr., 2020, 78(8), 501-511. doi: 10.1590/0004-282x20200010 PMID: 32520230
- Qi, G.; Mi, Y.; Wang, Y.; Li, R.; Huang, S.; Li, X.; Liu, X. Neuroprotective action of tea polyphenols on oxidative stress-induced apoptosis through the activation of the TrkB/CREB/BDNF pathway and Keap1/Nrf2 signaling pathway in SH-SY5Y cells and mice brain. Food Funct., 2017, 8(12), 4421-4432. doi: 10.1039/C7FO00991G PMID: 29090295
- Yao, X.; Jiang, H.; NanXu, Y.; Piao, X.; Gao, Q.; Kim, N.H. Kaempferol attenuates mitochondrial dysfunction and oxidative stress induced by H2O2 during porcine embryonic development. Theriogenology, 2019, 135, 174-180. doi: 10.1016/j.theriogenology.2019.06.013 PMID: 31226607
- Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in cell senescence: Is mitophagy the weakest link? EBioMedicine, 2017, 21, 7-13. doi: 10.1016/j.ebiom.2017.03.020 PMID: 28330601
- Ashrafi, G.; Schwarz, T.L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ., 2013, 20(1), 31-42. doi: 10.1038/cdd.2012.81 PMID: 22743996
- Li, X.; Alafuzoff, I.; Soininen, H.; Winblad, B.; Pei, J.J. Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimers disease brain. FEBS J., 2005, 272(16), 4211-4220. doi: 10.1111/j.1742-4658.2005.04833.x PMID: 16098202
- Perluigi, M.; Di Domenico, F.; Butterfield, D.A. mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol. Dis., 2015, 84, 39-49. doi: 10.1016/j.nbd.2015.03.014 PMID: 25796566
- Pan, T.; Rawal, P.; Wu, Y.; Xie, W.; Jankovic, J.; Le, W. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience, 2009, 164(2), 541-551. doi: 10.1016/j.neuroscience.2009.08.014 PMID: 19682553
- Morton, H.; Kshirsagar, S.; Orlov, E.; Bunquin, L.E.; Sawant, N.; Boleng, L.; George, M.; Basu, T.; Ramasubramanian, B.; Pradeepkiran, J.A.; Kumar, S.; Vijayan, M.; Reddy, A.P.; Reddy, P.H. Defective mitophagy and synaptic degeneration in Alzheimers disease: Focus on aging, mitochondria and synapse. Free Radic. Biol. Med., 2021, 172, 652-667. doi: 10.1016/j.freeradbiomed.2021.07.013 PMID: 34246776
- Wang, W.W.; Han, R.; He, H.J.; Wang, Z.; Luan, X.Q.; Li, J.; Feng, L.; Chen, S.Y.; Aman, Y.; Xie, C.L. Delineating the role of mitophagy inducers for Alzheimer disease patients. Aging Dis., 2021, 12(3), 852-867. doi: 10.14336/AD.2020.0913 PMID: 34094647
- Jurcau, A. Insights into the pathogenesis of neurodegenerative diseases: Focus on mitochondrial dysfunction and oxidative stress. Int. J. Mol. Sci., 2021, 22(21), 11847. doi: 10.3390/ijms222111847 PMID: 34769277
- Friedland-Leuner, K.; Stockburger, C.; Denzer, I.; Eckert, G.P.; Müller, W.E. Mitochondrial dysfunction. Prog. Mol. Biol. Transl. Sci., 2014, 127, 183-210. doi: 10.1016/B978-0-12-394625-6.00007-6 PMID: 25149218
- von Gunten, A.; Schlaefke, S.; Überla, K. Efficacy of Ginkgo biloba extract EGb 761 ® in dementia with behavioural and psychological symptoms: A systematic review. World J. Biol. Psychiatry, 2016, 17(8), 622-633. doi: 10.3109/15622975.2015.1066513 PMID: 26223956
- Heckmann, B.L.; Teubner, B.J.; Tummers, B.; Boada-Romero, E.; Harris, L.; Yang, M.; Guy, C.S.; Zakharenko, S.S.; Green, D.R. LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimers disease. Cell, 2019, 178, 536-551.
- Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; Rocktäschel, P.; Croteau, D.L.; Akbari, M.; Greig, N.H.; Fladby, T.; Nilsen, H.; Cader, M.Z.; Mattson, M.P.; Tavernarakis, N.; Bohr, V.A. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimers disease. Nat. Neurosci., 2019, 22(3), 401-412. doi: 10.1038/s41593-018-0332-9 PMID: 30742114
- Yeong, K.Y.; Berdigaliyev, N.; Chang, Y. Sirtuins and their implications in neurodegenerative diseases from a drug discovery perspective. ACS Chem. Neurosci., 2020, 11(24), 4073-4091. doi: 10.1021/acschemneuro.0c00696 PMID: 33280374
- Zhang, Z.; Shen, Q.; Wu, X.; Zhang, D.; Xing, D. Activation of PKA/SIRT1 signaling pathway by photobiomodulation therapy reduces Aβ levels in Alzheimers disease models. Aging Cell, 2020, 19(1), e13054. doi: 10.1111/acel.13054 PMID: 31663252
- Chu, C.Q.; Yu, L.; Qi, G.; Mi, Y.S.; Wu, W.Q.; Lee, Y.; Zhai, Q.X.; Tian, F.W.; Chen, W. Can dietary patterns prevent cognitive impairment and reduce Alzheimers disease risk: Exploring the underlying mechanisms of effects. Neurosci. Biobehav. Rev., 2022, 135, 104556. doi: 10.1016/j.neubiorev.2022.104556 PMID: 35122783
- Alemany-Cosme, E.; Sáez-González, E.; Moret, I.; Mateos, B.; Iborra, M.; Nos, P.; Sandoval, J.; Beltrán, B. Oxidative stress in the pathogenesis of crohns disease and the interconnection with immunological response, microbiota, external environmental factors, and epigenetics. Antioxidants, 2021, 10(1), 64. doi: 10.3390/antiox10010064 PMID: 33430227
- Hadrich, F.; Chamkha, M.; Sayadi, S. Protective effect of olive leaves phenolic compounds against neurodegenerative disorders: Promising alternative for Alzheimer and Parkinson diseases modulation. Food Chem. Toxicol., 2022, 159, 112752. doi: 10.1016/j.fct.2021.112752 PMID: 34871668
- Abdallah, I.M.; Al-Shami, K.M.; Yang, E.; Wang, J.; Guillaume, C.; Kaddoumi, A. Oleuropein-rich olive leaf extract attenuates neuroinflammation in the Alzheimers disease mouse model. ACS Chem. Neurosci., 2022, 13, 1002-1013.
- Sridharan, B.; Lee, M.J. Ketogenic diet: A promising neuroprotective composition for managing Alzheimers diseases and its pathological mechanisms. Curr. Mol. Med., 2022, 22(7), 640-656. doi: 10.2174/1566524021666211004104703 PMID: 34607541
- Napoleão, A.; Fernandes, L.; Miranda, C.; Marum, A.P. Effects of calorie restriction on health span and insulin resistance: Classic calorie restriction diet vs. ketosis-inducing diet. Nutrients, 2021, 13(4), 1302. doi: 10.3390/nu13041302 PMID: 33920973
- Misrani, A.; Tabassum, S.; Yang, L. Mitochondrial dysfunction and oxidative stress in Alzheimers disease. Front. Aging Neurosci., 2021, 13, 617588. doi: 10.3389/fnagi.2021.617588 PMID: 33679375
- Nisoli, E.; Tonello, C.; Cardile, A.; Cozzi, V.; Bracale, R.; Tedesco, L.; Falcone, S.; Valerio, A.; Cantoni, O.; Clementi, E.; Moncada, S.; Carruba, M.O. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science, 2005, 310(5746), 314-317. doi: 10.1126/science.1117728 PMID: 16224023
- Bo, H.; Kang, W.; Jiang, N.; Wang, X.; Zhang, Y.; Ji, L.L. Exercise-induced neuroprotection of hippocampus in APP/PS1 transgenic mice via upregulation of mitochondrial 8-oxoguanine DNA glycosylase. Oxid. Med. Cell. Longev., 2014, 2014, 1-14. doi: 10.1155/2014/834502 PMID: 25538817
- Klein, C.P.; Hoppe, J.B.; Saccomori, A.B.; dos Santos, B.G.; Sagini, J.P.; Crestani, M.S.; August, P.M.; Hözer, R.M.; Grings, M.; Parmeggiani, B.; Leipnitz, G.; Navas, P.; Salbego, C.G.; Matté, C. Physical exercise during pregnancy prevents cognitive impairment induced by amyloid-β in adult offspring rats. Mol. Neurobiol., 2019, 56(3), 2022-2038. doi: 10.1007/s12035-018-1210-x PMID: 29982984
- Longobardi, A.; Nicsanu, R.; Bellini, S.; Squitti, R.; Catania, M.; Tiraboschi, P.; Saraceno, C.; Ferrari, C.; Zanardini, R.; Binetti, G.; Di Fede, G.; Benussi, L.; Ghidoni, R. Cerebrospinal fluid EV concentration and size are altered in Alzheimers disease and dementia with lewy bodies. Cells, 2022, 11(3), 462. doi: 10.3390/cells11030462 PMID: 35159272
- Yokoyama, H.; Okazaki, K.; Imai, D.; Yamashina, Y.; Takeda, R.; Naghavi, N.; Ota, A.; Hirasawa, Y.; Miyagawa, T. The effect of cognitive-motor dual-task training on cognitive function and plasma amyloid β peptide 42/40 ratio in healthy elderly persons: A randomized controlled trial. BMC Geriatr., 2015, 15(1), 60. doi: 10.1186/s12877-015-0058-4 PMID: 26018225
- Zhang, S.; Lachance, B.B.; Mattson, M.P.; Jia, X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog. Neurobiol., 2021, 204, 102089. doi: 10.1016/j.pneurobio.2021.102089 PMID: 34118354
- Terzo, S.; Amato, A.; Mulè, F. From obesity to Alzheimers disease through insulin resistance. J. Diabetes Complications, 2021, 35(11), 108026. doi: 10.1016/j.jdiacomp.2021.108026 PMID: 34454830
- De Felice, F.G.; Gonçalves, R.A.; Ferreira, S.T. Impaired insulin signalling and allostatic load in Alzheimer disease. Nat. Rev. Neurosci., 2022, 23(4), 215-230. doi: 10.1038/s41583-022-00558-9 PMID: 35228741
- Hallschmid, M. Intranasal insulin for Alzheimers disease. CNS Drugs, 2021, 35(1), 21-37. doi: 10.1007/s40263-020-00781-x PMID: 33515428
- Chadha, S.; Behl, T.; Sehgal, A.; Kumar, A.; Bungau, S. Exploring the role of mitochondrial proteins as molecular target in Alzheimers disease. Mitochondrion, 2021, 56, 62-72. doi: 10.1016/j.mito.2020.11.008 PMID: 33221353
- Athar, T.; Al Balushi, K.; Khan, S.A. Recent advances on drug development and emerging therapeutic agents for Alzheimers disease. Mol. Biol. Rep., 2021, 48(7), 5629-5645. doi: 10.1007/s11033-021-06512-9 PMID: 34181171
- Austad, S.N.; Ballinger, S.; Buford, T.W.; Carter, C.S.; Smith, D.L., Jr; Darley-Usmar, V.; Zhang, J. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimers disease. Acta Pharm. Sin. B, 2022, 12(2), 511-310. PMID: 35256932
- Nguyen, T.T.; Nguyen, T.T.D.; Nguyen, T.K.O.; Vo, T.K.; Vo, V.G. Advances in developing therapeutic strategies for Alzheimers disease. Biomed. Pharmacother., 2021, 139, 111623. doi: 10.1016/j.biopha.2021.111623 PMID: 33915504
- Han, Y.; Chu, X.; Cui, L.; Fu, S.; Gao, C.; Li, Y.; Sun, B. Neuronal mitochondria-targeted therapy for Alzheimers disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv., 2020, 27(1), 502-518. doi: 10.1080/10717544.2020.1745328 PMID: 32228100
- Ordóñez-Gutiérrez, L.; Re, F.; Bereczki, E.; Ioja, E.; Gregori, M.; Andersen, A.J.; Antón, M.; Moghimi, S.M.; Pei, J.J.; Masserini, M.; Wandosell, F. Repeated intraperitoneal injections of liposomes containing phosphatidic acid and cardiolipin reduce amyloid-β levels in APP/PS1 transgenic mice. Nanomedicine, 2015, 11(2), 421-430. doi: 10.1016/j.nano.2014.09.015 PMID: 25461285
- Kryscio, R.J.; Abner, E.L.; Caban-Holt, A.; Lovell, M.; Goodman, P.; Darke, A.K.; Yee, M.; Crowley, J.; Schmitt, F.A. Association of antioxidant supplement use and dementia in the prevention of Alzheimers disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol., 2017, 74(5), 567-573. doi: 10.1001/jamaneurol.2016.5778 PMID: 28319243
- Rahman, M.A.; Cho, Y.; Nam, G.; Rhim, H. Antioxidant compound, oxyresveratrol, inhibits APP production through the AMPK/ULK1/mTOR-mediated autophagy pathway in mouse cortical astrocytes. Antioxidants, 2021, 10(3), 408. doi: 10.3390/antiox10030408 PMID: 33800526
- Luo, Q.; Lin, Y.X.; Yang, P.P.; Wang, Y.; Qi, G.B.; Qiao, Z.Y.; Li, B.N.; Zhang, K.; Zhang, J.P.; Wang, L.; Wang, H. A self-destructive nanosweeper that captures and clears amyloid β-peptides. Nat. Commun., 2018, 9(1), 1802. doi: 10.1038/s41467-018-04255-z PMID: 29728565
- Wang, S.; Zheng, J.; Ma, L.; Petersen, R.B.; Xu, L.; Huang, K. Inhibiting protein aggregation with nanomaterials: The underlying mechanisms and impact factors. Biochim. Biophys. Acta, Gen. Subj., 2022, 1866(2), 130061. doi: 10.1016/j.bbagen.2021.130061 PMID: 34822925
- Nguyen, T.T.; Vo, T.K.; Vo, G.V. Therapeutic strategies and nano-drug delivery applications in management of aging Alzheimers disease. Rev. New Drug Targets in Age-Related Disorders, 2021, 183-198.
- Gobbi, M.; Re, F.; Canovi, M.; Beeg, M.; Gregori, M.; Sesana, S.; Sonnino, S.; Brogioli, D.; Musicanti, C.; Gasco, P.; Salmona, M.; Masserini, M.E. Lipid-based nanoparticles with high binding affinity for amyloid-β1-42 peptide. Biomaterials, 2010, 31(25), 6519-6529. doi: 10.1016/j.biomaterials.2010.04.044 PMID: 20553982
- Poudel, P.; Park, S. Recent advances in the treatment of Alzheimers disease using nanoparticle-based drug delivery systems. Pharmaceutics, 2022, 14, 835.
- Ali, T.; Kim, M.J.; Rehman, S.U.; Ahmad, A.; Kim, M.O. Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ1-42 mouse model of Alzheimers disease. Mol. Neurobiol., 2017, 54(8), 6490-6506. doi: 10.1007/s12035-016-0136-4 PMID: 27730512
- Liu, X.; An, C.; Jin, P.; Liu, X.; Wang, L. Protective effects of cationic bovine serum albumin-conjugated PEGylated tanshinone IIA nanoparticles on cerebral ischemia. Biomaterials, 2013, 34(3), 817-830. doi: 10.1016/j.biomaterials.2012.10.017 PMID: 23111336
- Lohan, S.; Raza, K.; Mehta, S.K.; Bhatti, G.K.; Saini, S.; Singh, B. Anti-Alzheimers potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int. J. Pharm., 2017, 530(1-2), 263-278. doi: 10.1016/j.ijpharm.2017.07.080 PMID: 28774853
- Mirsadeghi, S.; Shanehsazzadeh, S.; Atyabi, F.; Dinarvand, R. Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process. Mater. Sci. Eng. C, 2016, 59, 390-397. doi: 10.1016/j.msec.2015.10.026 PMID: 26652388
- Conti, E.; Gregori, M.; Radice, I.; Da Re, F.; Grana, D.; Re, F.; Salvati, E.; Masserini, M.; Ferrarese, C.; Zoia, C.P.; Tremolizzo, L. Multifunctional liposomes interact with Abeta in human biological fluids: Therapeutic implications for Alzheimers disease. Neurochem. Int., 2017, 108, 60-65. doi: 10.1016/j.neuint.2017.02.012 PMID: 28238790
- Karimzadeh, M.; Rashidi, L.; Ganji, F. Mesoporous silica nanoparticles for efficient rivastigmine hydrogen tartrate delivery into SY5Y cells. Drug Dev. Ind. Pharm., 2017, 43(4), 628-636. doi: 10.1080/03639045.2016.1275668 PMID: 28043167
- Misra, S.; Chopra, K.; Sinha, V.R.; Medhi, B. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: Preparation, characterization, in vitro and in vivo evaluations. Drug Deliv., 2016, 23(4), 1434-1443. doi: 10.3109/10717544.2015.1089956 PMID: 26405825
- Li, H.; Luo, Y.; Derreumaux, P.; Wei, G. Carbon nanotube inhibits the formation of β-sheet-rich oligomers of the Alzheimers amyloid-β(16-22) peptide. Biophys. J., 2011, 101(9), 2267-2276. doi: 10.1016/j.bpj.2011.09.046 PMID: 22067167
- Liu, Z.; Gao, X.; Kang, T.; Jiang, M.; Miao, D.; Gu, G.; Hu, Q.; Song, Q.; Yao, L.; Tu, Y.; Chen, H.; Jiang, X.; Chen, J. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug. Chem., 2013, 24(6), 997-1007. doi: 10.1021/bc400055h PMID: 23718945
- Karatas, H.; Aktas, Y.; Gursoy-Ozdemir, Y.; Bodur, E.; Yemisci, M.; Caban, S.; Vural, A.; Pinarbasli, O.; Capan, Y.; Fernandez-Megia, E.; Novoa-Carballal, R.; Riguera, R.; Andrieux, K.; Couvreur, P.; Dalkara, T. A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J. Neurosci., 2009, 29(44), 13761-13769. doi: 10.1523/JNEUROSCI.4246-09.2009 PMID: 19889988
- Villemagne, V.L.; Burnham, S.; Bourgeat, P.; Brown, B.; Ellis, K.A.; Salvado, O.; Szoeke, C.; Macaulay, S.L.; Martins, R.; Maruff, P.; Ames, D.; Rowe, C.C.; Masters, C.L. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimers disease: A prospective cohort study. Lancet Neurol., 2013, 12(4), 357-367. doi: 10.1016/S1474-4422(13)70044-9 PMID: 23477989
- Schaffhauser, H.; Mathiasen, J.R.; DiCamillo, A.; Huffman, M.J.; Lu, L.D.; McKenna, B.A.; Qian, J.; Marino, M.J. Dimebolin is a 5-HT6 antagonist with acute cognition enhancing activities. Biochem. Pharmacol., 2009, 78(8), 1035-1042. doi: 10.1016/j.bcp.2009.06.021 PMID: 19549510
- Burns, D.K.; Chiang, C.; Welsh-Bohmer, K.A.; Brannan, S.K.; Culp, M.; ONeil, J.; Runyan, G.; Harrigan, P.; Plassman, B.L.; Lutz, M.; Lai, E.; Haneline, S.; Yarnall, D.; Yarbrough, D.; Metz, C.; Ponduru, S.; Sundseth, S.; Saunders, A.M. The TOMMORROW study: Design of an Alzheimers disease delay‐of‐onset clinical trial. Alzheimers Dement. (N. Y.), 2019, 5(1), 661-670. doi: 10.1016/j.trci.2019.09.010 PMID: 31720367
- Swerdlow, R.H.; Bothwell, R.; Hutfles, L.; Burns, J.M.; Reed, G.A. Tolerability and pharmacokinetics of oxaloacetate 100mg capsules in Alzheimers subjects. BBA Clin., 2016, 5, 120-123. doi: 10.1016/j.bbacli.2016.03.005 PMID: 27051598
- Mani, S.; Swargiary, G.; Singh, M.; Agarwal, S.; Dey, A.; Ojha, S.; Jha, N.K. Mitochondrial defects: An emerging theranostic avenue towards Alzheimers associated dysregulations. Life Sci., 2021, 285, 119985. doi: 10.1016/j.lfs.2021.119985 PMID: 34592237
Supplementary files
