Targeting the Main Sources of Reactive Oxygen Species Production: Possible Therapeutic Implications in Chronic Pain

  • Authors: Cheng P.1, Yuan-He 1, Ge M.2, Ye D.3, Chen J.4, Wang J.1
  • Affiliations:
    1. Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital
    2. Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
    3. Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
    4. Department of Pain Management, Shanxi Bethune Hospital, Shanxi Academy of Medical Sci- ences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
  • Issue: Vol 22, No 12 (2024)
  • Pages: 1960-1985
  • Section: Neurology
  • URL: https://hum-ecol.ru/1570-159X/article/view/644428
  • DOI: https://doi.org/10.2174/1570159X22999231024140544
  • ID: 644428

Cite item

Full Text

Abstract

:Humans have long been combating chronic pain. In clinical practice, opioids are first- choice analgesics, but long-term use of these drugs can lead to serious adverse reactions. Finding new, safe and effective pain relievers that are useful treatments for chronic pain is an urgent medical need. Based on accumulating evidence from numerous studies, excess reactive oxygen species (ROS) contribute to the development and maintenance of chronic pain. Some antioxidants are potentially beneficial analgesics in the clinic, but ROS-dependent pathways are completely inhibited only by scavenging ROS directly targeting cellular or subcellular sites. Unfortunately, current antioxidant treatments donot achieve this effect. Furthermore, some antioxidants interfere with physiological redox signaling pathways and fail to reverse oxidative damage. Therefore, the key upstream processes and mechanisms of ROS production that lead to chronic pain in vivo must be identified to discover potential therapeutic targets related to the pathways that control ROS production in vivo. In this review, we summarize the sites and pathways involved in analgesia based on the three main mechanisms by which ROS are generated in vivo, discuss the preclinical evidence for the therapeutic potential of targeting these pathways in chronic pain, note the shortcomings of current research and highlight possible future research directions to provide new targets and evidence for the development of clinical analgesics.

About the authors

Peng-Fei Cheng

Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital

Email: info@benthamscience.net

Yuan-He

Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital

Email: info@benthamscience.net

Meng-Meng Ge

Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Da-Wei Ye

Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

Jian-Ping Chen

Department of Pain Management, Shanxi Bethune Hospital, Shanxi Academy of Medical Sci- ences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University

Author for correspondence.
Email: info@benthamscience.net

Jin-Xi Wang

Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Mills, S.E.E.; Nicolson, K.P.; Smith, B.H. Chronic pain: A review of its epidemiology and associated factors in population-based studies. Br. J. Anaesth., 2019, 123(2), e273-e283. doi: 10.1016/j.bja.2019.03.023 PMID: 31079836
  2. Gaskin, D.J.; Richard, P. The economic costs of pain in the United States. J. Pain, 2012, 13(8), 715-724. doi: 10.1016/j.jpain.2012.03.009 PMID: 22607834
  3. Kela, I.; Kakarala, C.L.; Hassan, M.; Belavadi, R.; Gudigopuram, S.V.R.; Raguthu, C.C.; Gajjela, H.; Sange, I. Chronic pain: A complex condition with a multi-tangential approach. Cureus, 2021, 13(11), e19850. doi: 10.7759/cureus.19850 PMID: 34963858
  4. Zhou, Y.Q.; Tian, X.B.; Tian, Y.K.; Mei, W.; Liu, D.Q.; Ye, D.W. Wnt signaling: A prospective therapeutic target for chronic pain. Pharmacol. Ther., 2022, 231, 107984. doi: 10.1016/j.pharmthera.2021.107984 PMID: 34480969
  5. Chen, S.P.; Zhou, Y.Q.; Liu, D.Q.; Zhang, W.; Manyande, A.; Guan, X.H.; Tian, Y.; Ye, D.W.; Omar, D.M. PI3K/Akt pathway: A potential therapeutic target for chronic pain. Curr. Pharm. Des., 2017, 23(12), 1860-1868. doi: 10.2174/1381612823666170210150147 PMID: 28190392
  6. Sørensen, A.T.; Rombach, J.; Gether, U.; Madsen, K.L. The scaffold protein PICK1 as a target in chronic pain. Cells, 2022, 11(8), 1255. doi: 10.3390/cells11081255 PMID: 35455935
  7. Vandenberg, R.J.; Ryan, R.M.; Carland, J.E.; Imlach, W.L.; Christie, M.J. Glycine transport inhibitors for the treatment of pain. Trends Pharmacol. Sci., 2014, 35(8), 423-430. doi: 10.1016/j.tips.2014.05.006 PMID: 24962068
  8. Tian, Y-K.; Ye, D-W.; Ge, M-M.; Chen, N.; Zhou, Y-Q.; Yang, H. Galectin-3 in microglia-mediated neuroinflammation: Implications for central nervous system diseases. Curr. Neuropharmacol., 2022, 20(11), 2066-2080. doi: 10.2174/1570159X20666220201094547 PMID: 35105290
  9. Zhou, Y.Q.; Liu, D.Q.; Chen, S.P.; Sun, J.; Zhou, X.R.; Luo, F.; Tian, Y.K.; Ye, D.W. Cellular and molecular mechanisms of calcium/calmodulin-dependent protein kinase II in chronic pain. J. Pharmacol. Exp. Ther., 2017, 363(2), 176-183. doi: 10.1124/jpet.117.243048 PMID: 28855373
  10. Chhatwal, J.; Mueller, P.P.; Chen, Q.; Kulkarni, N.; Adee, M.; Zarkin, G.; LaRochelle, M.R.; Knudsen, A.B.; Barbosa, C. Estimated reductions in opioid overdose deaths with sustainment of public health interventions in 4 US States. JAMA Netw. Open, 2023, 6(6), e2314925. doi: 10.1001/jamanetworkopen.2023.14925 PMID: 37294571
  11. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84. doi: 10.1016/j.biocel.2006.07.001 PMID: 16978905
  12. Veal, E.A.; Day, A.M.; Morgan, B.A. Hydrogen peroxide sensing and signaling. Mol. Cell, 2007, 26(1), 1-14. doi: 10.1016/j.molcel.2007.03.016 PMID: 17434122
  13. Lancaster, J.R., Jr. Nitroxidative, nitrosative, and nitrative stress: Kinetic predictions of reactive nitrogen species chemistry under biological conditions. Chem. Res. Toxicol., 2006, 19(9), 1160-1174. doi: 10.1021/tx060061w PMID: 16978020
  14. D’Autréaux, B.; Toledano, M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol., 2007, 8(10), 813-824. doi: 10.1038/nrm2256 PMID: 17848967
  15. Shnayder, N.A.; Petrova, M.M.; Popova, T.E.; Davidova, T.K.; Bobrova, O.P.; Trefilova, V.V.; Goncharova, P.S.; Balberova, O.V.; Petrov, K.V.; Gavrilyuk, O.A.; Soloveva, I.A.; Medvedev, G.V.; Nasyrova, R.F. Prospects for the personalized multimodal therapy approach to pain management via action on NO and NOS. Molecules, 2021, 26(9), 2431. doi: 10.3390/molecules26092431 PMID: 33921984
  16. Xu, B.Y.; Sun, J.; Chen, S.P.; Wang, X.M.; Chen, N.; Li, D.Y.; Chen, G.; Mei, W.; Tian, Y.K.; Zhou, Y.Q.; Ye, D.W. Nox2 contributes to reactive oxygen species-induced redox imbalance in cancer-induced bone pain. Am. J. Transl. Res., 2021, 13(3), 1269-1279. PMID: 33841655
  17. Kashiwagi, Y.; Yi, H.; Liu, S.; Takahashi, K.; Hayashi, K.; Ikegami, D.; Zhu, X.; Gu, J.; Hao, S. Mitochondrial biogenesis factor PGC-1α suppresses spinal morphine tolerance by reducing mitochondrial superoxide. Exp. Neurol., 2021, 339, 113622. doi: 10.1016/j.expneurol.2021.113622 PMID: 33516729
  18. Miao, F.; Wang, R.; Cui, G.; Li, X.; Wang, T.; Li, X. Engagement of MicroRNA-155 in exaggerated oxidative stress signal and TRPA1 in the dorsal horn of the spinal cord and neuropathic pain during chemotherapeutic oxaliplatin. Neurotox. Res., 2019, 36(4), 712-723. doi: 10.1007/s12640-019-00039-5 PMID: 31016687
  19. Yan, B.; Liu, Q.; Ding, X.; Lin, Y.; Jiao, X.; Wu, Y.; Miao, H.; Zhou, C. SIRT3-mediated CypD-K166 deacetylation alleviates neuropathic pain by improving mitochondrial dysfunction and inhibiting oxidative stress. Oxid. Med. Cell. Longev., 2022, 2022, 1-17. doi: 10.1155/2022/4722647 PMID: 36092157
  20. Kallenborn-Gerhardt, W.; Schröder, K.; Del Turco, D.; Lu, R.; Kynast, K.; Kosowski, J.; Niederberger, E.; Shah, A.M.; Brandes, R.P.; Geisslinger, G.; Schmidtko, A. NADPH oxidase-4 maintains neuropathic pain after peripheral nerve injury. J. Neurosci., 2012, 32(30), 10136-10145. doi: 10.1523/JNEUROSCI.6227-11.2012 PMID: 22836249
  21. Iqbal, R.; Mughal, M.S.; Arshad, N.; Arshad, M. Pathophysiology and antioxidant status of patients with fibromyalgia. Rheumatol. Int., 2011, 31(2), 149-152. doi: 10.1007/s00296-010-1470-x PMID: 20376669
  22. Xu, J.; Wei, X.; Gao, F.; Zhong, X.; Guo, R.; Ji, Y.; Zhou, X.; Chen, J.; Yao, P.; Liu, X.; Wei, X. Nicotinamide adenine dinucleotide phosphate oxidase 2–derived reactive oxygen species contribute to long-term potentiation of C-fiber-evoked field potentials in spinal dorsal horn and persistent mirror-image pain following high-frequency stimulus of the sciatic nerve. Pain, 2020, 161(4), 758-772. doi: 10.1097/j.pain.0000000000001761 PMID: 32195784
  23. Long, H.; Zheng, H.; Ai, L.; Osman, K.; Liu, Z. Down-regulation of NOX4 expression in dorsal horn of spinal cord could alleviate cancer-induced bone pain in rats by reducing oxidative stress response. Cancer Manag. Res., 2020, 12, 10929-10938. doi: 10.2147/CMAR.S263177 PMID: 33154672
  24. Ji, G.; Li, Z.; Neugebauer, V. Reactive oxygen species mediate visceral pain-related amygdala plasticity and behaviors. Pain, 2015, 156(5), 825-836. doi: 10.1097/j.pain.0000000000000120 PMID: 25734993
  25. Liu, Y.; Jiang, P.; Du, M.; Chen, K.; Chen, A.; Wang, Y.; Cao, F.; Deng, S.; Xu, Y. Hyperoxia-induced immature brain injury through the TLR4 signaling pathway in newborn mice. Brain Res., 2015, 1610, 51-60. doi: 10.1016/j.brainres.2015.03.021 PMID: 25801121
  26. Diaz, F.; Garcia, S.; Padgett, K.R.; Moraes, C.T. A defect in the mitochondrial complex III, but not complex IV, triggers early ROS-dependent damage in defined brain regions. Hum. Mol. Genet., 2012, 21(23), 5066-5077. doi: 10.1093/hmg/dds350 PMID: 22914734
  27. Zhou, Y.Q.; Liu, D.Q.; Chen, S.P.; Sun, J.; Zhou, X.R.; Rittner, H.; Mei, W.; Tian, Y.K.; Zhang, H.X.; Chen, F.; Ye, D.W. Reactive oxygen species scavengers ameliorate mechanical allodynia in a rat model of cancer-induced bone pain. Redox Biol., 2018, 14, 391-397. doi: 10.1016/j.redox.2017.10.011 PMID: 29055283
  28. Yowtak, J.; Lee, K.Y.; Kim, H.Y.; Wang, J.; Kim, H.K.; Chung, K.; Chung, J.M. Reactive oxygen species contribute to neuropathic pain by reducing spinal GABA release. Pain, 2011, 152(4), 844-852. doi: 10.1016/j.pain.2010.12.034 PMID: 21296500
  29. Yowtak, J.; Wang, J.; Kim, H.Y.; Lu, Y.; Chung, K.; Chung, J.M. Effect of antioxidant treatment on spinal GABA neurons in a neuropathic pain model in the mouse. Pain, 2013, 154(11), 2469-2476. doi: 10.1016/j.pain.2013.07.024 PMID: 23880056
  30. Bittar, A.; Jun, J.; La, J.H.; Wang, J.; Leem, J.W.; Chung, J.M. Reactive oxygen species affect spinal cell type-specific synaptic plasticity in a model of neuropathic pain. Pain, 2017, 158(11), 2137-2146. doi: 10.1097/j.pain.0000000000001014 PMID: 28708760
  31. Gao, X.; Kim, H.K.; Mo Chung, J.; Chung, K. Reactive oxygen species (ROS) are involved in enhancement of NMDA-receptor phosphorylation in animal models of pain. Pain, 2007, 131(3), 262-271. doi: 10.1016/j.pain.2007.01.011 PMID: 17317010
  32. Fu, Q.; Shi, D.; Zhou, Y.; Zheng, H.; Xiang, H.; Tian, X.; Gao, F.; Manyande, A.; Cao, F.; Tian, Y.; Ye, D. MHC-I promotes apoptosis of GABAergic interneurons in the spinal dorsal horn and contributes to cancer induced bone pain. Exp. Neurol., 2016, 286, 12-20. doi: 10.1016/j.expneurol.2016.09.002 PMID: 27619625
  33. Carrasco, C.; Naziroǧlu, M.; Rodríguez, A.B.; Pariente, J.A. Neuropathic pain: Delving into the oxidative origin and the possible implication of transient receptor potential channels. Front. Physiol., 2018, 9, 95. doi: 10.3389/fphys.2018.00095 PMID: 29491840
  34. Ogawa, N.; Kurokawa, T.; Mori, Y. Sensing of redox status by TRP channels. Cell Calcium, 2016, 60(2), 115-122. doi: 10.1016/j.ceca.2016.02.009 PMID: 26969190
  35. Zhou, Y.Q.; Liu, Z.; Liu, H.Q.; Liu, D.Q.; Chen, S.P.; Ye, D.W.; Tian, Y.K. Targeting glia for bone cancer pain. Expert Opin. Ther. Targets, 2016, 20(11), 1365-1374. doi: 10.1080/14728222.2016.1214716 PMID: 27428617
  36. Zhou, Y.Q.; Liu, Z.; Liu, Z.H.; Chen, S.P.; Li, M.; Shahveranov, A.; Ye, D.W.; Tian, Y.K. Interleukin-6: An emerging regulator of pathological pain. J. Neuroinflammation, 2016, 13(1), 141. doi: 10.1186/s12974-016-0607-6 PMID: 27267059
  37. Kim, D.; You, B.; Jo, E.K.; Han, S.K.; Simon, M.I.; Lee, S.J. NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc. Natl. Acad. Sci. USA, 2010, 107(33), 14851-14856. doi: 10.1073/pnas.1009926107 PMID: 20679217
  38. Miao, H.; Xu, J.; Xu, D.; Ma, X.; Zhao, X.; Liu, L. Nociceptive behavior induced by chemotherapeutic paclitaxel and beneficial role of antioxidative pathways. Physiol. Res., 2019, 68(3), 491-500. doi: 10.33549/physiolres.933939 PMID: 30433798
  39. Chen, Y.; Qin, C.; Huang, J.; Tang, X.; Liu, C.; Huang, K.; Xu, J.; Guo, G.; Tong, A.; Zhou, L. The role of astrocytes in oxidative stress of central nervous system: A mixed blessing. Cell Prolif., 2020, 53(3), e12781. doi: 10.1111/cpr.12781 PMID: 32035016
  40. Zhou, Y.Q.; Liu, D.Q.; Chen, S.P.; Sun, J.; Wang, X.M.; Tian, Y.K.; Wu, W.; Ye, D.W. Minocycline as a promising therapeutic strategy for chronic pain. Pharmacol. Res., 2018, 134, 305-310. doi: 10.1016/j.phrs.2018.07.002 PMID: 30042091
  41. Abais, J.M.; Xia, M.; Zhang, Y.; Boini, K.M.; Li, P.L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid. Redox Signal., 2015, 22(13), 1111-1129. doi: 10.1089/ars.2014.5994 PMID: 25330206
  42. Schloss, J.M.; Colosimo, M.; Airey, C.; Masci, P.P.; Linnane, A.W.; Vitetta, L. Nutraceuticals and chemotherapy induced peripheral neuropathy (CIPN): A systematic review. Clin. Nutr., 2013, 32(6), 888-893. doi: 10.1016/j.clnu.2013.04.007 PMID: 23647723
  43. Marchesi, N.; Govoni, S.; Allegri, M. Non‐drug pain relievers active on non‐opioid pain mechanisms. Pain Pract., 2022, 22(2), 255-275. doi: 10.1111/papr.13073 PMID: 34498362
  44. Zorov, D.B.; Filburn, C.R.; Klotz, L.O.; Zweier, J.L.; Sollott, S.J. Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J. Exp. Med., 2000, 192(7), 1001-1014. doi: 10.1084/jem.192.7.1001 PMID: 11015441
  45. Fukai, T.; Ushio-Fukai, M. Cross-Talk between NADPH oxidase and mitochondria: Role in ROS signaling and angiogenesis. Cells, 2020, 9(8), 1849. doi: 10.3390/cells9081849 PMID: 32781794
  46. Sassetti, E.; Clausen, M.H.; Laraia, L. Small-molecule inhibitors of reactive oxygen species production. J. Med. Chem., 2021, 64(9), 5252-5275. doi: 10.1021/acs.jmedchem.0c01914 PMID: 33856791
  47. Nunnari, J.; Suomalainen, A. Mitochondria: In sickness and in health. Cell, 2012, 148(6), 1145-1159. doi: 10.1016/j.cell.2012.02.035 PMID: 22424226
  48. Zhang, B.; Pan, C.; Feng, C.; Yan, C.; Yu, Y.; Chen, Z.; Guo, C.; Wang, X. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep., 2022, 27(1), 45-52. doi: 10.1080/13510002.2022.2046423 PMID: 35213291
  49. Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13. doi: 10.1042/BJ20081386 PMID: 19061483
  50. Thirupathi, A.; Pinho, R.A. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J. Physiol. Biochem., 2018, 74(3), 359-367. doi: 10.1007/s13105-018-0633-1 PMID: 29713940
  51. Michel, H.; Behr, J.; Harrenga, A.; Kannt, A. Cytochrome C oxidase: Structure and spectroscopy. Annu. Rev. Biophys. Biomol. Struct., 1998, 27(1), 329-356. doi: 10.1146/annurev.biophys.27.1.329 PMID: 9646871
  52. Miki, T. Mitochondrial complex V(ATP synthase). Jpn. J. Clin. Med., 2002, 60(Suppl. 4), 154-158. PMID: 12013840
  53. Vercellino, I.; Sazanov, L.A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell Biol., 2022, 23(2), 141-161. doi: 10.1038/s41580-021-00415-0 PMID: 34621061
  54. Sun, Q.; Zhong, W.; Zhang, W.; Zhou, Z. Defect of mitochondrial respiratory chain is a mechanism of ROS overproduction in a rat model of alcoholic liver disease: role of zinc deficiency. Am. J. Physiol. Gastrointest. Liver Physiol., 2016, 310(3), G205-G214. doi: 10.1152/ajpgi.00270.2015 PMID: 26585415
  55. Paradies, G.; Paradies, V.; Ruggiero, F.M.; Petrosillo, G. Mitochondrial bioenergetics decay in aging: Beneficial effect of melatonin. Cell. Mol. Life Sci., 2017, 74(21), 3897-3911. doi: 10.1007/s00018-017-2619-5 PMID: 28785806
  56. Joseph, E.K.; Levine, J.D. Mitochondrial electron transport in models of neuropathic and inflammatory pain. Pain, 2006, 121(1), 105-114. doi: 10.1016/j.pain.2005.12.010 PMID: 16472913
  57. Trecarichi, A.; Flatters, S.J.L. Mitochondrial dysfunction in the pathogenesis of chemotherapy-induced peripheral neuropathy. Int. Rev. Neurobiol., 2019, 145, 83-126. doi: 10.1016/bs.irn.2019.05.001 PMID: 31208528
  58. Griffiths, L.A.; Flatters, S.J.L. Pharmacological modulation of the mitochondrial electron transport chain in paclitaxel-induced painful peripheral neuropathy. J. Pain, 2015, 16(10), 981-994. doi: 10.1016/j.jpain.2015.06.008 PMID: 26142652
  59. Xiao, W.H.; Bennett, G.J. Effects of mitochondrial poisons on the neuropathic pain produced by the chemotherapeutic agents, paclitaxel and oxaliplatin. Pain, 2012, 153(3), 704-709. doi: 10.1016/j.pain.2011.12.011 PMID: 22244441
  60. Karu, T.I. Multiple roles of cytochrome C oxidase in mammalian cells under action of red and IR-A radiation. IUBMB Life, 2010, 62(8), 607-610. doi: 10.1002/iub.359 PMID: 20681024
  61. Hamblin, R.M. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys., 2017, 4(3), 337-361. doi: 10.3934/biophy.2017.3.337 PMID: 28748217
  62. Martins, D.F.; Turnes, B.L.; Cidral-Filho, F.J.; Bobinski, F.; Rosas, R.F.; Danielski, L.G.; Petronilho, F.; Santos, A.R.S. Light-emitting diode therapy reduces persistent inflammatory pain: Role of interleukin 10 and antioxidant enzymes. Neuroscience, 2016, 324, 485-495. doi: 10.1016/j.neuroscience.2016.03.035 PMID: 27001179
  63. Morris, C.R.; Brown, L.A.S.; Reynolds, M.; Dampier, C.D.; Lane, P.A.; Watt, A.; Kumari, P.; Harris, F.; Manoranjithan, S.; Mendis, R.D.; Figueroa, J.; Shiva, S. Impact of arginine therapy on mitochondrial function in children with sickle cell disease during vaso-occlusive pain. Blood, 2020, 136(12), 1402-1406. doi: 10.1182/blood.2019003672 PMID: 32384147
  64. Qu, H.; Guo, M.; Chai, H.; Wang, W.; Gao, Z.; Shi, D. Effects of coenzyme Q10 on statin‐induced myopathy: An updated meta‐analysis of randomized controlled trials. J. Am. Heart Assoc., 2018, 7(19), e009835. doi: 10.1161/JAHA.118.009835 PMID: 30371340
  65. Sawaddiruk, P.; Apaijai, N.; Paiboonworachat, S.; Kaewchur, T.; Kasitanon, N.; Jaiwongkam, T.; Kerdphoo, S.; Chattipakorn, N.; Chattipakorn, S.C. Coenzyme Q10 supplementation alleviates pain in pregabalin-treated fibromyalgia patients via reducing brain activity and mitochondrial dysfunction. Free Radic. Res., 2019, 53(8), 901-909. doi: 10.1080/10715762.2019.1645955 PMID: 31387429
  66. Khuankaew, C.; Apaijai, N.; Sawaddiruk, P.; Jaiwongkam, T.; Kerdphoo, S.; Pongsiriwet, S.; Tassaneeyakul, W.; Chattipakorn, N.; Chattipakorn, S.C. Effect of coenzyme Q10 on mitochondrial respiratory proteins in trigeminal neuralgia. Free Radic. Res., 2018, 52(4), 415-425. doi: 10.1080/10715762.2018.1438608 PMID: 29424256
  67. Lauro, F.; Ilari, S.; Giancotti, L.A.; Ventura, C.A.; Morabito, C.; Gliozzi, M.; Malafoglia, V.; Palma, E.; Paolino, D.; Mollace, V.; Muscoli, C. Pharmacological effect of a new idebenone formulation in a model of carrageenan-induced inflammatory pain. Pharmacol. Res., 2016, 111, 767-773. doi: 10.1016/j.phrs.2016.07.043 PMID: 27480201
  68. Montenegro, L.; Turnaturi, R.; Parenti, C.; Pasquinucci, L. Idebenone: Novel strategies to improve its systemic and local efficacy. Nanomaterials, 2018, 8(2), 87. doi: 10.3390/nano8020087 PMID: 29401722
  69. Cordero, M.D.; Moreno-Fernández, A.M.; deMiguel, M.; Bonal, P.; Campa, F.; Jiménez-Jiménez, L.M.; Ruiz-Losada, A.; Sánchez-Domínguez, B.; Sánchez Alcázar, J.A.; Salviati, L.; Navas, P. Coenzyme Q10 distribution in blood is altered in patients with Fibromyalgia. Clin. Biochem., 2009, 42(7-8), 732-735. doi: 10.1016/j.clinbiochem.2008.12.010 PMID: 19133251
  70. Duncan, A.J.; Heales, S.J.R.; Mills, K.; Eaton, S.; Land, J.M.; Hargreaves, I.P. Determination of coenzyme Q10 status in blood mononuclear cells, skeletal muscle, and plasma by HPLC with di-propoxy-coenzyme Q10 as an internal standard. Clin. Chem., 2005, 51(12), 2380-2382. doi: 10.1373/clinchem.2005.054643 PMID: 16306103
  71. Wang, Y.; Hekimi, S. Understanding ubiquinone. Trends Cell Biol., 2016, 26(5), 367-378. doi: 10.1016/j.tcb.2015.12.007 PMID: 26827090
  72. Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med., 2019, 44(1), 3-15. doi: 10.3892/ijmm.2019.4188 PMID: 31115493
  73. Wu, D.; Liu, J. Occlusal interference induces oxidative stress and increases the expression of UCP3 in the masseter muscle: A rat model. Arch. Oral Biol., 2019, 102, 249-255. doi: 10.1016/j.archoralbio.2019.04.022 PMID: 31096116
  74. Simonić-Kocijan, S.; Uhac, I.; Braut, V.; Kovac, Z.; Pavicić, D.K.; Fugosić, V.; Urek, M.M. Influence of chronic stress and oclusal interference on masseter muscle pain in rat. Coll. Antropol., 2009, 33(3), 863-866. PMID: 19860116
  75. Micheli, L.; Testai, L.; Angeli, A.; Carrino, D.; Pacini, A.; Margiotta, F.; Flori, L.; Supuran, C.T.; Calderone, V.; Ghelardini, C.; Di Cesare Mannelli, L. Inhibitors of mitochondrial human carbonic anhydrases VA and VB as a therapeutic strategy against paclitaxel-induced neuropathic pain in mice. Int. J. Mol. Sci., 2022, 23(11), 6229. doi: 10.3390/ijms23116229 PMID: 35682907
  76. Price, T.O.; Sheibani, N.; Shah, G.N. Regulation of high glucose-induced apoptosis of brain pericytes by mitochondrial CA VA: A specific target for prevention of diabetic cerebrovascular pathology. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(4), 929-935. doi: 10.1016/j.bbadis.2017.01.025 PMID: 28131914
  77. Willemen, H.L.D.M.; Kavelaars, A.; Prado, J.; Maas, M.; Versteeg, S.; Nellissen, L.J.J.; Tromp, J.; Gonzalez Cano, R.; Zhou, W.; Jakobsson, M.E.; Małecki, J.; Posthuma, G.; Habib, A.M.; Heijnen, C.J.; Falnes, P.Ø.; Eijkelkamp, N. Identification of FAM173B as a protein methyltransferase promoting chronic pain. PLoS Biol., 2018, 16(2), e2003452. doi: 10.1371/journal.pbio.2003452 PMID: 29444090
  78. Małecki, J.M.; Willemen, H.L.D.M.; Pinto, R.; Ho, A.Y.Y.; Moen, A.; Kjønstad, I.F.; Burgering, B.M.T.; Zwartkruis, F.; Eijkelkamp, N.; Falnes, P.Ø. Lysine methylation by the mitochondrial methyltransferase FAM173B optimizes the function of mitochondrial ATP synthase. J. Biol. Chem., 2019, 294(4), 1128-1141. doi: 10.1074/jbc.RA118.005473 PMID: 30530489
  79. Sulem, P.; Helgason, H.; Oddson, A.; Stefansson, H.; Gudjonsson, S.A.; Zink, F.; Hjartarson, E.; Sigurdsson, G.T.; Jonasdottir, A.; Jonasdottir, A.; Sigurdsson, A.; Magnusson, O.T.; Kong, A.; Helgason, A.; Holm, H.; Thorsteinsdottir, U.; Masson, G.; Gudbjartsson, D.F.; Stefansson, K. Identification of a large set of rare complete human knockouts. Nat. Genet., 2015, 47(5), 448-452. doi: 10.1038/ng.3243 PMID: 25807282
  80. Flatters, S.J.L.; Dougherty, P.M.; Colvin, L.A. Clinical and preclinical perspectives on chemotherapy-induced peripheral neuropathy (CIPN): A narrative review. Br. J. Anaesth., 2017, 119(4), 737-749. doi: 10.1093/bja/aex229 PMID: 29121279
  81. Kong, H.; Jiang, C.Y.; Hu, L.; Teng, P.; Zhang, Y.; Pan, X.X.; Sun, X.D.; Liu, W.T. Morphine induces dysfunction of PINK1/Parkin-mediated mitophagy in spinal cord neurons implying involvement in antinociceptive tolerance. J. Mol. Cell Biol., 2019, 11(12), 1056-1068. doi: 10.1093/jmcb/mjz002 PMID: 30698724
  82. Fischer, F.; Hamann, A.; Osiewacz, H.D. Mitochondrial quality control: An integrated network of pathways. Trends Biochem. Sci., 2012, 37(7), 284-292. doi: 10.1016/j.tibs.2012.02.004 PMID: 22410198
  83. Li, W.; Cheng, H.; Li, G.; Zhang, L. Mitochondrial damage and the road to exhaustion. Cell Metab., 2020, 32(6), 905-907. doi: 10.1016/j.cmet.2020.11.004 PMID: 33264601
  84. Ul Fatima, N.; Ananthanarayanan, V. Mitochondrial movers and shapers: Recent insights into regulators of fission, fusion and transport. Curr. Opin. Cell Biol., 2023, 80, 102150. doi: 10.1016/j.ceb.2022.102150 PMID: 36580830
  85. Luo, T.T.; Dai, C.Q.; Wang, J.Q.; Wang, Z.M.; Yang, Y.; Zhang, K.L.; Wu, F.F.; Yang, Y.L.; Wang, Y.Y. Drp1 is widely, yet heterogeneously, distributed in the mouse central nervous system. Mol. Brain, 2020, 13(1), 90. doi: 10.1186/s13041-020-00628-y PMID: 32522292
  86. Yu, T.; Sheu, S.S.; Robotham, J.L.; Yoon, Y. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc. Res., 2008, 79(2), 341-351. doi: 10.1093/cvr/cvn104 PMID: 18440987
  87. Sun, H.; Li, X.; Chen, X.; Xiong, Y.; Cao, Y.; Wang, Z. Drp1 activates ROS/HIF-1α/EZH2 and triggers mitochondrial fragmentation to deteriorate hypercalcemia-associated neuronal injury in mouse model of chronic kidney disease. J. Neuroinflammation, 2022, 19(1), 213. doi: 10.1186/s12974-022-02542-7 PMID: 36050772
  88. Zhou, S.; Pan, Y.; Zhang, Y.; Gu, L.; Ma, L.; Xu, Q.; Wang, W.; Sun, J. Antisense oligodeoxynucleotides against dynamin-related protein 1 reduce remifentanil-induced hyperalgesia by modulating spinal N-methyl-D-aspartate receptor expression in rats. Korean J. Pain, 2023, 36(3), 316-327. doi: 10.3344/kjp.22398 PMID: 37183652
  89. Sheffer, R.; Douiev, L.; Edvardson, S.; Shaag, A.; Tamimi, K.; Soiferman, D.; Meiner, V.; Saada, A. Postnatal microcephaly and pain insensitivity due to a de novo heterozygous DNM1L mutation causing impaired mitochondrial fission and function. Am. J. Med. Genet. A., 2016, 170(6), 1603-1607. doi: 10.1002/ajmg.a.37624 PMID: 26992161
  90. Kanda, H.; Liu, S.; Iida, T.; Yi, H.; Huang, W.; Levitt, R.C.; Lubarsky, D.A.; Candiotti, K.A.; Hao, S. Inhibition of mitochondrial fission protein reduced mechanical allodynia and suppressed spinal mitochondrial superoxide induced by perineural human immunodeficiency virus gp120 in rats. Anesth. Analg., 2016, 122(1), 264-272. doi: 10.1213/ANE.0000000000000962 PMID: 26418124
  91. Zhan, L.; Li, R.; Sun, Y.; Dou, M.; Yang, W.; He, S.; Zhang, Y. Effect of mito-TEMPO, a mitochondria-targeted antioxidant, in rats with neuropathic pain. Neuroreport, 2018, 29(15), 1275-1281. doi: 10.1097/WNR.0000000000001105 PMID: 30052549
  92. Flippo, K.H.; Strack, S. Mitochondrial dynamics in neuronal injury, development and plasticity. J. Cell Sci., 2017, 130(4), jcs.171017. doi: 10.1242/jcs.171017 PMID: 28154157
  93. Xie, M.; Cheng, M.; Wang, B.; Jiao, M.; Yu, L.; Zhu, H. 2-Bromopalmitate attenuates inflammatory pain by maintaining mitochondrial fission/fusion balance and function. Acta Biochim. Biophys. Sin., 2020, 53(1), 72-84. doi: 10.1093/abbs/gmaa150 PMID: 33253369
  94. Dong, Z.B.; Wang, Y.J.; Cheng, M.L.; Wang, B.J.; Lu, H.; Zhu, H.L.; Liu, L.; Xie, M. 2-Bromopalmitate decreases spinal inflammation and attenuates oxaliplatin-induced neuropathic pain via reducing Drp1-mediated mitochondrial dysfunction. PLoS One, 2022, 17(10), e0275428. doi: 10.1371/journal.pone.0275428 PMID: 36315519
  95. Zhang, K.L.; Li, S.J.; Pu, X.Y.; Wu, F.F.; Liu, H.; Wang, R.Q.; Liu, B.Z.; Li, Z.; Li, K.F.; Qian, N.S.; Yang, Y.L.; Yuan, H.; Wang, Y.Y. Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission. Redox Biol., 2022, 49, 102216. doi: 10.1016/j.redox.2021.102216 PMID: 34954498
  96. Li, P.A.; Hou, X.; Hao, S. Mitochondrial biogenesis in neurodegeneration. J. Neurosci. Res., 2017, 95(10), 2025-2029. doi: 10.1002/jnr.24042 PMID: 28301064
  97. Witte, M.E.; Nijland, P.G.; Drexhage, J.A.R.; Gerritsen, W.; Geerts, D.; van het Hof, B.; Reijerkerk, A.; de Vries, H.E.; van der Valk, P.; van Horssen, J. Reduced expression of PGC-1α partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathol., 2013, 125(2), 231-243. doi: 10.1007/s00401-012-1052-y PMID: 23073717
  98. Sun, J.; Li, J.Y.; Zhang, L.Q.; Li, D.Y.; Wu, J.Y.; Gao, S.J.; Liu, D.Q.; Zhou, Y.Q.; Mei, W. Nrf2 activation attenuates chronic constriction injury-induced neuropathic pain via induction of pgc-1α-mediated mitochondrial biogenesis in the spinal cord. Oxid. Med. Cell. Longev., 2021, 2021, 1-17. doi: 10.1155/2021/9577874 PMID: 34721761
  99. Chen, N.; Ge, M.M.; Li, D.Y.; Wang, X.M.; Liu, D.Q.; Ye, D.W.; Tian, Y.K.; Zhou, Y.Q.; Chen, J.P. β2-adrenoreceptor agonist ameliorates mechanical allodynia in paclitaxel-induced neuropathic pain via induction of mitochondrial biogenesis. Biomed. Pharmacother., 2021, 144, 112331. doi: 10.1016/j.biopha.2021.112331 PMID: 34673421
  100. Zhang, L.Q.; Zhou, Y.Q.; Li, J.Y.; Sun, J.; Zhang, S.; Wu, J.Y.; Gao, S.J.; Tian, X.B.; Mei, W. 5-HT1F receptor agonist ameliorates mechanical allodynia in neuropathic pain via induction of mitochondrial biogenesis and suppression of neuroinflammation. Front. Pharmacol., 2022, 13, 834570. doi: 10.3389/fphar.2022.834570 PMID: 35308244
  101. Zhou, Y.; Liu, D.; Chen, S.; Chen, N.; Sun, J.; Wang, X.; Cao, F.; Tian, Y.; Ye, D. Nrf2 activation ameliorates mechanical allodynia in paclitaxel-induced neuropathic pain. Acta Pharmacol. Sin., 2020, 41(8), 1041-1048. doi: 10.1038/s41401-020-0394-6 PMID: 32203087
  102. Zhou, Y.Q.; Mei, W.; Tian, X.B.; Tian, Y.K.; Liu, D.Q.; Ye, D.W. The therapeutic potential of Nrf2 inducers in chronic pain: Evidence from preclinical studies. Pharmacol. Ther., 2021, 225, 107846. doi: 10.1016/j.pharmthera.2021.107846 PMID: 33819559
  103. Gureev, A.P.; Shaforostova, E.A.; Popov, V.N. Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α signaling pathways. Front. Genet., 2019, 10, 435. doi: 10.3389/fgene.2019.00435 PMID: 31139208
  104. Santin, Y.; Resta, J.; Parini, A.; Mialet-Perez, J. Monoamine oxidases in age-associated diseases: New perspectives for old enzymes. Ageing Res. Rev., 2021, 66, 101256. doi: 10.1016/j.arr.2021.101256 PMID: 33434685
  105. Park, S.E.; Neupane, C.; Noh, C.; Sharma, R.; Shin, H.J.; Pham, T.L.; Lee, G.S.; Park, K.D.; Lee, C.J.; Kang, D.W.; Lee, S.Y.; Kim, H.W.; Park, J.B. Antiallodynic effects of KDS2010, a novel MAO-B inhibitor, via ROS-GABA inhibitory transmission in a paclitaxel-induced tactile hypersensitivity model. Mol. Brain, 2022, 15(1), 41. doi: 10.1186/s13041-022-00924-9 PMID: 35526002
  106. Yao, X.; Li, L.; Kandhare, A.D.; Mukherjee-Kandhare, A.A.; Bodhankar, S.L. Attenuation of reserpine-induced fibromyalgia via ROS and serotonergic pathway modulation by fisetin, a plant flavonoid polyphenol. Exp. Ther. Med., 2020, 19(2), 1343-1355. PMID: 32010308
  107. Jóźwiak-Bębenista, M.; Wiktorowska-Owczarek, A.; Kowalczyk, E. Beta-adrenoceptor-mediated cyclic AMP signal in different types of cultured nerve cells in normoxic and hypoxic conditions. Mol. Biol., 2016, 50(5), 838-846. PMID: 27830686
  108. Zhang, H.; Kong, Q.; Wang, J.; Jiang, Y.; Hua, H. Complex roles of cAMP–PKA–CREB signaling in cancer. Exp. Hematol. Oncol., 2020, 9(1), 32. doi: 10.1186/s40164-020-00191-1 PMID: 33292604
  109. Chen, S.P.; Sun, J.; Zhou, Y.Q.; Cao, F.; Braun, C.; Luo, F.; Ye, D.W.; Tian, Y.K. Sinomenine attenuates cancer-induced bone pain via suppressing microglial JAK2/STAT3 and neuronal CAMKII/CREB cascades in rat models. Mol. Pain, 2018, 14. doi: 10.1177/1744806918793232 PMID: 30027795
  110. Iida, T.; Yi, H.; Liu, S.; Huang, W.; Kanda, H.; Lubarsky, D.A.; Hao, S. Spinal CPEB-mtROS-CBP signaling pathway contributes to perineural HIV gp120 with ddC-related neuropathic pain in rats. Exp. Neurol., 2016, 281, 17-27. doi: 10.1016/j.expneurol.2016.04.012 PMID: 27090160
  111. Vanfleteren, L.; Fabbri, L.M.; Papi, A.; Petruzzelli, S.; Celli, B. Triple therapy (ICS/LABA/LAMA) in COPD: Time for a reappraisal. Int. J. Chron. Obstruct. Pulmon. Dis., 2018, 13, 3971-3981. doi: 10.2147/COPD.S185975 PMID: 30587953
  112. Lamb, Y.N. Lasmiditan: First Approval. Drugs, 2019, 79(18), 1989-1996. doi: 10.1007/s40265-019-01225-7 PMID: 31749059
  113. Gottlieb, R.A.; Carreira, R.S. Autophagy in health and disease. 5. Mitophagy as a way of life. Am. J. Physiol. Cell Physiol., 2010, 299(2), C203-C210. doi: 10.1152/ajpcell.00097.2010 PMID: 20357180
  114. Wang, D.B.; Garden, G.A.; Kinoshita, C.; Wyles, C.; Babazadeh, N.; Sopher, B.; Kinoshita, Y.; Morrison, R.S. Declines in Drp1 and parkin expression underlie DNA damage-induced changes in mitochondrial length and neuronal death. J. Neurosci., 2013, 33(4), 1357-1365. doi: 10.1523/JNEUROSCI.3365-12.2013 PMID: 23345212
  115. Yamashita, A.; Matsuoka, Y.; Matsuda, M.; Kawai, K.; Sawa, T.; Amaya, F. Dysregulation of p53 and parkin induce mitochondrial dysfunction and leads to the diabetic neuropathic pain. Neuroscience, 2019, 416, 9-19. doi: 10.1016/j.neuroscience.2019.07.045 PMID: 31377450
  116. Krukowski, K.; Nijboer, C.H.; Huo, X.; Kavelaars, A.; Heijnen, C.J. Prevention of chemotherapy-induced peripheral neuropathy by the small-molecule inhibitor pifithrin-µ. Pain, 2015, 156(11), 2184-2192. doi: 10.1097/j.pain.0000000000000290 PMID: 26473292
  117. Maj, M.A.; Ma, J.; Krukowski, K.N.; Kavelaars, A.; Heijnen, C.J. Inhibition of mitochondrial p53 accumulation by PFT-µ prevents cisplatin-induced peripheral neuropathy. Front. Mol. Neurosci., 2017, 10, 108. doi: 10.3389/fnmol.2017.00108 PMID: 28458631
  118. Leu, J.I.J.; Pimkina, J.; Frank, A.; Murphy, M.E.; George, D.L. A small molecule inhibitor of inducible heat shock protein 70. Mol. Cell, 2009, 36(1), 15-27. doi: 10.1016/j.molcel.2009.09.023 PMID: 19818706
  119. Shang, X.; Lin, K.; Zhang, Y.; Li, M.; Xu, J.; Chen, K.; Zhu, P.; Yu, R. Mst1 deletion reduces septic cardiomyopathy via activating Parkin‐related mitophagy. J. Cell. Physiol., 2020, 235(1), 317-327. doi: 10.1002/jcp.28971 PMID: 31215035
  120. Huang, Z.; Xiao, P.Y.; Chen, J.Y.; Zeng, Q.; Huang, B.X.; Yu, J.; Liao, S.J. Mammalian sterile 20-like kinase 1 mediates neuropathic pain associated with its effects on regulating mitophagy in schwann cells. Oxid. Med. Cell. Longev., 2022, 2022, 1-17. doi: 10.1155/2022/3458283 PMID: 35656021
  121. Ilari, S.; Giancotti, L.A.; Lauro, F.; Dagostino, C.; Gliozzi, M.; Malafoglia, V.; Sansone, L.; Palma, E.; Tafani, M.; Russo, M.A.; Tomino, C.; Fini, M.; Salvemini, D.; Mollace, V.; Muscoli, C. Antioxidant modulation of sirtuin 3 during acute inflammatory pain: The ROS control. Pharmacol. Res., 2020, 157, 104851. doi: 10.1016/j.phrs.2020.104851 PMID: 32423865
  122. Jeninga, E.H.; Schoonjans, K.; Auwerx, J. Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene, 2010, 29(33), 4617-4624. doi: 10.1038/onc.2010.206 PMID: 20531298
  123. Zahedi, E.; Sadr, S.S.; Sanaeierad, A.; Roghani, M. Valproate-induced murine autism spectrum disorder is associated with dysfunction of amygdala parvalbumin interneurons and downregulation of AMPK/SIRT1/PGC1α signaling. Metab. Brain Dis., 2023, 38(6), 2093-2103. doi: 10.1007/s11011-023-01227-1 PMID: 37184727
  124. Li, X.; Yang, S.; Wang, L.; Liu, P.; Zhao, S.; Li, H.; Jiang, Y.; Guo, Y.; Wang, X. Resveratrol inhibits paclitaxel-induced neuropathic pain by the activation of PI3K/Akt and SIRT1/PGC1α pathway. J. Pain Res., 2019, 12, 879-890. doi: 10.2147/JPR.S185873 PMID: 30881098
  125. Hao, C.; Ma, B.; Gao, N.; Jin, T.; Liu, X. Translocator protein (TSPO) alleviates neuropathic pain by activating spinal autophagy and nuclear SIRT1/PGC-1α signaling in a rat L5 SNL model. J. Pain Res., 2022, 15, 767-778. doi: 10.2147/JPR.S359397 PMID: 35356265
  126. Cheng, Y.Y.; Kao, C.L.; Ma, H.I.; Hung, C.H.; Wang, C.T.; Liu, D.H.; Chen, P.Y.; Tsai, K.L. SIRT1-related inhibition of pro-inflammatory responses and oxidative stress are involved in the mechanism of nonspecific low back pain relief after exercise through modulation of Toll-like receptor 4. J. Biochem., 2015, 158(4), 299-308. doi: 10.1093/jb/mvv041 PMID: 25922201
  127. Tseng, A.H.H.; Shieh, S.S.; Wang, D.L. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic. Biol. Med., 2013, 63, 222-234. doi: 10.1016/j.freeradbiomed.2013.05.002 PMID: 23665396
  128. Cheng, A.; Yang, Y.; Zhou, Y.; Maharana, C.; Lu, D.; Peng, W.; Liu, Y.; Wan, R.; Marosi, K.; Misiak, M.; Bohr, V.A.; Mattson, M.P. Mitochondrial SIRT3 mediates adaptive responses of neurons to exercise and metabolic and excitatory challenges. Cell Metab., 2016, 23(1), 128-142. doi: 10.1016/j.cmet.2015.10.013 PMID: 26698917
  129. Zhou, C.; Zhang, Y.; Jiao, X.; Wang, G.; Wang, R.; Wu, Y. SIRT3 alleviates neuropathic pain by deacetylating FoxO3a in the spinal dorsal horn of diabetic model rats. Reg. Anesth. Pain Med., 2021, 46(1), 49-56. doi: 10.1136/rapm-2020-101918 PMID: 33127810
  130. Fritz, K.S.; Galligan, J.J.; Smathers, R.L.; Roede, J.R.; Shearn, C.T.; Reigan, P.; Petersen, D.R. 4-Hydroxynonenal inhibits SIRT3 via thiol-specific modification. Chem. Res. Toxicol., 2011, 24(5), 651-662. doi: 10.1021/tx100355a PMID: 21449565
  131. Turnley, A.M.; Stapleton, D.; Mann, R.J.; Witters, L.A.; Kemp, B.E.; Bartlett, P.F. Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. J. Neurochem., 1999, 72(4), 1707-1716. doi: 10.1046/j.1471-4159.1999.721707.x PMID: 10098881
  132. Herzig, S.; Shaw, R.J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol., 2018, 19(2), 121-135. doi: 10.1038/nrm.2017.95 PMID: 28974774
  133. Ge, M.M.; Li, D.Y.; Wang, L.; Zhang, L.Q.; Liu, D.Q.; Tian, Y.K.; Ye, D.W.; Liu, Z.H.; Zhou, Y.Q.; Yang, H. Naringenin promoted spinal microglia M2 polarization in rat model of cancer-induced bone pain via regulating AMPK/PGC-1α signaling axis. Biomed. Pharmacother., 2022, 149, 112912. doi: 10.1016/j.biopha.2022.112912 PMID: 35856853
  134. Xu, W.; Mo, J.; Ocak, U.; Travis, Z.D.; Enkhjargal, B.; Zhang, T.; Wu, P.; Peng, J.; Li, T.; Zuo, Y.; Shao, A.; Tang, J.; Zhang, J.; Zhang, J.H. Activation of melanocortin 1 receptor attenuates early brain injury in a rat model of subarachnoid hemorrhage viathe suppression of neuroinflammation through AMPK/TBK1/NF-κB pathway in rats. Neurotherapeutics, 2020, 17(1), 294-308. doi: 10.1007/s13311-019-00772-x PMID: 31486022
  135. Han, C.; Zheng, J.; Sun, L.; Yang, H.; Cao, Z.; Zhang, X.; Zheng, L.; Zhen, X. The oncometabolite 2-hydroxyglutarate inhibits microglial activation via the AMPK/mTOR/NF-κB pathway. Acta Pharmacol. Sin., 2019, 40(10), 1292-1302. doi: 10.1038/s41401-019-0225-9 PMID: 31015738
  136. Song, J.; Zhang, W.; Wang, J.; Yang, H.; Zhao, X.; Zhou, Q.; Wang, H.; Li, L.; Du, G. Activation of Nrf2 signaling by salvianolic acid C attenuates NF κB mediated inflammatory response both in vivo and in vitro. Int. Immunopharmacol., 2018, 63, 299-310. doi: 10.1016/j.intimp.2018.08.004 PMID: 30142530
  137. Morgan, M.J.; Liu, Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res., 2011, 21(1), 103-115. doi: 10.1038/cr.2010.178 PMID: 21187859
  138. Sun, J.; Zhou, Y.; Xu, B.; Li, J.; Zhang, L.; Li, D.; Zhang, S.; Wu, J.; Gao, S.; Ye, D.; Mei, W. STING/NF-κB/IL-6-mediated inflammation in microglia contributes to spared nerve injury (SNI)-induced pain initiation. J. Neuroimmune Pharmacol., 2022, 17(3-4), 453-469. doi: 10.1007/s11481-021-10031-6 PMID: 34727296
  139. Maixner, D.W.; Yan, X.; Gao, M.; Yadav, R.; Weng, H.R. Adenosine monophosphate–activated protein kinase regulates interleukin-1β expression and glial glutamate transporter function in rodents with neuropathic pain. Anesthesiology, 2015, 122(6), 1401-1413. doi: 10.1097/ALN.0000000000000619 PMID: 25710409
  140. Maixner, D.W.; Yan, X.; Hooks, S.B.; Weng, H.R. AMPKα1 knockout enhances nociceptive behaviors and spinal glutamatergic synaptic activities via production of reactive oxygen species in the spinal dorsal horn. Neuroscience, 2016, 326, 158-169. doi: 10.1016/j.neuroscience.2016.03.061 PMID: 27058143
  141. Yang, H.; Wang, Y.; Zhen, S.; Wang, B.; Jiao, M.; Liu, L.; Li, D.; Zhu, H.; Xie, M. AMPK activation attenuates cancer-induced bone pain by reducing mitochondrial dysfunction-mediated neuroinflammation. Acta Biochim. Biophys. Sin., 2023, 55(3), 460-471. doi: 10.3724/abbs.2023039 PMID: 36971458
  142. Chen, S.P.; Zhou, Y.Q.; Wang, X.M.; Sun, J.; Cao, F. HaiSam, S.; Ye, D.W.; Tian, Y.K. Pharmacological inhibition of the NLRP3 inflammasome as a potential target for cancer-induced bone pain. Pharmacol. Res., 2019, 147, 104339. doi: 10.1016/j.phrs.2019.104339 PMID: 31276771
  143. Haddad, M.; Eid, S.; Harb, F.; Massry, M.E.L.; Azar, S.; Sauleau, E.A.; Eid, A.A. Activation of 20-HETE synthase triggers oxidative injury and peripheral nerve damage in type 2 diabetic mice. J. Pain, 2022, 23(8), 1371-1388. doi: 10.1016/j.jpain.2022.02.011 PMID: 35339661
  144. Wu, C.; Chen, H.; Zhuang, R.; Zhang, H.; Wang, Y.; Hu, X.; Xu, Y.; Li, J.; Li, Y.; Wang, X.; Xu, H.; Ni, W.; Zhou, K. Betulinic acid inhibits pyroptosis in spinal cord injury by augmenting autophagy via the AMPK-mTOR-TFEB signaling pathway. Int. J. Biol. Sci., 2021, 17(4), 1138-1152. doi: 10.7150/ijbs.57825 PMID: 33867836
  145. Holmström, K.M.; Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol., 2014, 15(6), 411-421. doi: 10.1038/nrm3801 PMID: 24854789
  146. Cross, A.R.; Segal, A.W. The NADPH oxidase of professional phagocytes-prototype of the NOX electron transport chain systems. Biochim. Biophys. Acta Bioenerg., 2004, 1657(1), 1-22. doi: 10.1016/j.bbabio.2004.03.008 PMID: 15238208
  147. Kim, J.S.; Yeo, S.; Shin, D.G.; Bae, Y.S.; Lee, J.J.; Chin, B.R.; Lee, C.H.; Baek, S.H. Glycogen synthase kinase 3β and β-catenin pathway is involved in toll-like receptor 4-mediated NADPH oxidase 1 expression in macrophages. FEBS J., 2010, 277(13), 2830-2837. doi: 10.1111/j.1742-4658.2010.07700.x PMID: 20528914
  148. Ibi, M.; Matsuno, K.; Matsumoto, M.; Sasaki, M.; Nakagawa, T.; Katsuyama, M.; Iwata, K.; Zhang, J.; Kaneko, S.; Yabe-Nishimura, C. Involvement of NOX1/NADPH oxidase in morphine-induced analgesia and tolerance. J. Neurosci., 2011, 31(49), 18094-18103. doi: 10.1523/JNEUROSCI.4136-11.2011 PMID: 22159121
  149. Ibi, M.; Matsuno, K.; Shiba, D.; Katsuyama, M.; Iwata, K.; Kakehi, T.; Nakagawa, T.; Sango, K.; Shirai, Y.; Yokoyama, T.; Kaneko, S.; Saito, N.; Yabe-Nishimura, C. Reactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain. J. Neurosci., 2008, 28(38), 9486-9494. doi: 10.1523/JNEUROSCI.1857-08.2008 PMID: 18799680
  150. Kumar, S.; Vinayak, M. NADPH oxidase1 inhibition leads to regression of central sensitization during formalin induced acute nociception via attenuation of ERK1/2-NFκB signaling and glial activation. Neurochem. Int., 2020, 134, 104652. doi: 10.1016/j.neuint.2019.104652 PMID: 31891736
  151. Song, Z.; Xiong, B.; Zheng, H.; Manyande, A.; Guan, X.; Cao, F.; Ren, L.; Zhou, Y.; Ye, D.; Tian, Y. STAT1 as a downstream mediator of ERK signaling contributes to bone cancer pain by regulating MHC II expression in spinal microglia. Brain Behav. Immun., 2017, 60, 161-173. doi: 10.1016/j.bbi.2016.10.009 PMID: 27742579
  152. Ibi, M.; Liu, J.; Arakawa, N.; Kitaoka, S.; Kawaji, A.; Matsuda, K.; Iwata, K.; Matsumoto, M.; Katsuyama, M.; Zhu, K.; Teramukai, S.; Furuyashiki, T.; Yabe-Nishimura, C. Depressive-Like Behaviors Are Regulated by NOX1/NADPH Oxidase by Redox Modification of NMDA Receptor 1. J. Neurosci., 2017, 37(15), 4200-4212. doi: 10.1523/JNEUROSCI.2988-16.2017 PMID: 28314819
  153. Finnerup, N.B.; Kuner, R.; Jensen, T.S. Neuropathic Pain: From mechanisms to treatment. Physiol. Rev., 2021, 101(1), 259-301. doi: 10.1152/physrev.00045.2019 PMID: 32584191
  154. Kallenborn-Gerhardt, W.; Hohmann, S.W.; Syhr, K.M.J.; Schröder, K.; Sisignano, M.; Weigert, A.; Lorenz, J.E.; Lu, R.; Brüne, B.; Brandes, R.P.; Geisslinger, G.; Schmidtko, A. Nox2-dependent signaling between macrophages and sensory neurons contributes to neuropathic pain hypersensitivity. Pain, 2014, 155(10), 2161-2170. doi: 10.1016/j.pain.2014.08.013 PMID: 25139590
  155. Sabirzhanov, B.; Li, Y.; Coll-Miro, M.; Matyas, J.J.; He, J.; Kumar, A.; Ward, N.; Yu, J.; Faden, A.I.; Wu, J. Inhibition of NOX2 signaling limits pain-related behavior and improves motor function in male mice after spinal cord injury: Participation of IL-10/miR-155 pathways. Brain Behav. Immun., 2019, 80, 73-87. doi: 10.1016/j.bbi.2019.02.024 PMID: 30807841
  156. De Logu, F.; Nassini, R.; Materazzi, S.; Carvalho Gonçalves, M.; Nosi, D. Rossi Degl’Innocenti, D.; Marone, I.M.; Ferreira, J.; Li Puma, S.; Benemei, S.; Trevisan, G.; Souza Monteiro de Araújo, D.; Patacchini, R.; Bunnett, N.W.; Geppetti, P. Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat. Commun., 2017, 8(1), 1887. doi: 10.1038/s41467-017-01739-2 PMID: 29192190
  157. Hackel, D.; Pflücke, D.; Neumann, A.; Viebahn, J.; Mousa, S.; Wischmeyer, E.; Roewer, N.; Brack, A.; Rittner, H.L. The connection of monocytes and reactive oxygen species in pain. PLoS One, 2013, 8(5), e63564. doi: 10.1371/journal.pone.0063564 PMID: 23658840
  158. Doyle, T.; Esposito, E.; Bryant, L.; Cuzzocrea, S.; Salvemini, D. NADPH-oxidase 2 activation promotes opioid-induced antinociceptive tolerance in mice. Neuroscience, 2013, 241, 1-9. doi: 10.1016/j.neuroscience.2013.02.042 PMID: 23454539
  159. Roos, D. Chronic granulomatous disease. Methods Mol. Biol., 2019, 1982, 531-542. doi: 10.1007/978-1-4939-9424-3_32 PMID: 31172494
  160. Geis, C.; Geuss, E.; Sommer, C.; Schmidt, H.H.H.W.; Kleinschnitz, C. NOX4 is an early initiator of neuropathic pain. Exp. Neurol., 2017, 288, 94-103. doi: 10.1016/j.expneurol.2016.11.008 PMID: 27856286
  161. Wack, G.; Metzner, K.; Kuth, M.S.; Wang, E.; Bresnick, A.; Brandes, R.P.; Schröder, K.; Wittig, I.; Schmidtko, A.; Kallenborn-Gerhardt, W. Nox4-dependent upregulation of S100A4 after peripheral nerve injury modulates neuropathic pain processing. Free Radic. Biol. Med., 2021, 168, 155-167. doi: 10.1016/j.freeradbiomed.2021.03.021 PMID: 33789124
  162. Vendrov, A.E.; Madamanchi, N.R.; Niu, X.L.; Molnar, K.C.; Runge, M.; Szyndralewiez, C.; Page, P.; Runge, M.S. NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis. J. Biol. Chem., 2010, 285(34), 26545-26557. doi: 10.1074/jbc.M110.143917 PMID: 20558727
  163. Eid, S.A.; El Massry, M.; Hichor, M.; Haddad, M.; Grenier, J.; Dia, B.; Barakat, R.; Boutary, S.; Chanal, J.; Aractingi, S.; Wiesel, P.; Szyndralewiez, C.; Azar, S.T.; Boitard, C.; Zaatari, G.; Eid, A.A.; Massaad, C. Targeting the NADPH oxidase-4 and liver X receptor pathway preserves schwann cell integrity in diabetic mice. Diabetes, 2020, 69(3), 448-464. doi: 10.2337/db19-0517 PMID: 31882567
  164. Zhou, Y.Q.; Chen, S.P.; Liu, D.Q.; Manyande, A.; Zhang, W.; Yang, S.B.; Xiong, B.R.; Fu, Q.C.; Song, Z.; Rittner, H.; Ye, D.W.; Tian, Y.K. The role of spinal GABAB receptors in cancer-induced bone pain in rats. J. Pain, 2017, 18(8), 933-946. doi: 10.1016/j.jpain.2017.02.438 PMID: 28323246
  165. Takeya, R.; Ueno, N.; Kami, K.; Taura, M.; Kohjima, M.; Izaki, T.; Nunoi, H.; Sumimoto, H. Novel human homologues of p47 and p67 participate in activation of superoxide-producing NADPH oxidases. J. Biol. Chem., 2015, 290(10), 6003. doi: 10.1074/jbc.A114.212856 PMID: 25750260
  166. Brandes, R.P.; Weissmann, N.; Schröder, K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic. Biol. Med., 2014, 76, 208-226. doi: 10.1016/j.freeradbiomed.2014.07.046 PMID: 25157786
  167. Chocry, M.; Leloup, L. The NADPH oxidase family and its inhibitors. Antioxid. Redox Signal., 2020, 33(5), 332-353. doi: 10.1089/ars.2019.7915 PMID: 31826639
  168. Takeya, R.; Ueno, N.; Kami, K.; Taura, M.; Kohjima, M.; Izaki, T.; Nunoi, H.; Sumimoto, H. Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J. Biol. Chem., 2003, 278(27), 25234-25246. doi: 10.1074/jbc.M212856200 PMID: 12716910
  169. Cheng, G.; Ritsick, D.; Lambeth, J.D. Nox3 Regulation by NOXO1, p47, and p67. J. Biol. Chem., 2004, 279(33), 34250-34255. doi: 10.1074/jbc.M400660200 PMID: 15181005
  170. Ambruso, D.R.; Knall, C.; Abell, A.N.; Panepinto, J.; Kurkchubasche, A.; Thurman, G.; Gonzalez-Aller, C.; Hiester, A.; deBoer, M.; Harbeck, R.J.; Oyer, R.; Johnson, G.L.; Roos, D. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc. Natl. Acad. Sci. USA, 2000, 97(9), 4654-4659. doi: 10.1073/pnas.080074897 PMID: 10758162
  171. Roos, D.; de Boer, M.; Kuribayashi, F.; Meischl, C.; Weening, R.S.; Segal, A.W.; Ahlin, A.; Nemet, K.; Hossle, J.P.; Bernatowska-Matuszkiewicz, E.; Middleton-Price, H. Mutations in the X-linked and autosomal recessive forms of chronic granulomatous disease. Blood, 1996, 87(5), 1663-1681. doi: 10.1182/blood.V87.5.1663.1663 PMID: 8634410
  172. Csányi, G.; Cifuentes-Pagano, E.; Al Ghouleh, I.; Ranayhossaini, D.J.; Egaña, L.; Lopes, L.R.; Jackson, H.M.; Kelley, E.E.; Pagano, P.J. Nox2 B-loop peptide, Nox2ds, specifically inhibits the NADPH oxidase Nox2. Free Radic. Biol. Med., 2011, 51(6), 1116-1125. doi: 10.1016/j.freeradbiomed.2011.04.025 PMID: 21586323
  173. Hodge, R.G.; Ridley, A.J. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol., 2016, 17(8), 496-510. doi: 10.1038/nrm.2016.67 PMID: 27301673
  174. Acevedo, A.; González-Billault, C. Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic. Biol. Med., 2018, 116, 101-113. doi: 10.1016/j.freeradbiomed.2018.01.008 PMID: 29330095
  175. Price, M.O.; Atkinson, S.J.; Knaus, U.G.; Dinauer, M.C. Rac activation induces NADPH oxidase activity in transgenic COSphox cells, and the level of superoxide production is exchange factor-dependent. J. Biol. Chem., 2002, 277(21), 19220-19228. doi: 10.1074/jbc.M200061200 PMID: 11896053
  176. Tan, A.M.; Samad, O.A.; Liu, S.; Bandaru, S.; Zhao, P.; Waxman, S.G. Burn injury-induced mechanical allodynia is maintained by Rac1-regulated dendritic spine dysgenesis. Exp. Neurol., 2013, 248, 509-519. doi: 10.1016/j.expneurol.2013.07.017 PMID: 23933578
  177. Chen, Z.; Zhang, S.; Nie, B.; Huang, J.; Han, Z.; Chen, X.; Bai, X.; Ouyang, H. Distinct roles of srGAP3‐Rac1 in the initiation and maintenance phases of neuropathic pain induced by paclitaxel. J. Physiol., 2020, 598(12), 2415-2430. doi: 10.1113/JP279525 PMID: 32237255
  178. Tell, G.; Damante, G.; Caldwell, D.; Kelley, M.R. The intracellular localization of APE1/Ref-1: More than a passive phenomenon? Antioxid. Redox Signal., 2005, 7(3-4), 367-384. doi: 10.1089/ars.2005.7.367 PMID: 15706084
  179. Angkeow, P.; Deshpande, S.S.; Qi, B.; Liu, Y-X.; Park, Y.C.; Jeon, B.H.; Ozaki, M.; Irani, K. Redox factor-1: An extra-nuclear role in the regulation of endothelial oxidative stress and apoptosis. Cell Death Differ., 2002, 9(7), 717-725. doi: 10.1038/sj.cdd.4401025 PMID: 12058277
  180. Zaky, A.; Bouali-Benazzouz, R.; Favereaux, A.; Tell, G.; Landry, M. APE1/Ref-1 redox function contributes to inflammatory pain sensitization. Exp. Neurol., 2018, 307, 1-11. doi: 10.1016/j.expneurol.2018.05.014 PMID: 29772245
  181. Santulli, G.; Lewis, D.; des Georges, A.; Marks, A.R.; Frank, J. Ryanodine receptor structure and function in health and disease. Subcell. Biochem., 2018, 87, 329-352. doi: 10.1007/978-981-10-7757-9_11 PMID: 29464565
  182. Jin, M.; Guan, C.; Jiang, Y.; Chen, G.; Zhao, C.; Cui, K.; Song, Y.; Wu, C.; Poo, M.; Yuan, X. Ca2+-dependent regulation of rho GTPases triggers turning of nerve growth cones. J. Neurosci., 2005, 25(9), 2338-2347. doi: 10.1523/JNEUROSCI.4889-04.2005 PMID: 15745960
  183. Liao, B.; Zhang, Y.; Sun, H.; Ma, B.; Qian, J. Ryanodine receptor 2 plays a critical role in spinal cord injury via induction of oxidative stress. Cell. Physiol. Biochem., 2016, 38(3), 1129-1137. doi: 10.1159/000443063 PMID: 26963898
  184. Wilson, C.; Muñoz-Palma, E.; Henríquez, D.R.; Palmisano, I.; Núñez, M.T.; Di Giovanni, S.; González-Billault, C. A feed-forward mechanism involving the NOX complex and RyR-mediated Ca2+ release during axonal specification. J. Neurosci., 2016, 36(43), 11107-11119. doi: 10.1523/JNEUROSCI.1455-16.2016 PMID: 27798190
  185. Sanmartín, C.D.; Paula-Lima, A.C.; García, A.; Barattini, P.; Hartel, S.; Núñez, M.T.; Hidalgo, C. Ryanodine receptor-mediated Ca2+ release underlies iron-induced mitochondrial fission and stimulates mitochondrial Ca2+ uptake in primary hippocampal neurons. Front. Mol. Neurosci., 2014, 7, 13. PMID: 24653672
  186. Godai, K.; Takahashi, K.; Kashiwagi, Y.; Liu, C.H.; Yi, H.; Liu, S.; Dong, C.; Lubarsky, D.A.; Hao, S. Ryanodine receptor to mitochondrial reactive oxygen species pathway plays an important role in chronic human immunodeficiency virus gp120MN-induced neuropathic pain in rats. Anesth. Analg., 2019, 129(1), 276-286. doi: 10.1213/ANE.0000000000003916 PMID: 30507840
  187. Fridolfsson, H.N.; Roth, D.M.; Insel, P.A.; Patel, H.H. Regulation of intracellular signaling and function by caveolin. FASEB J., 2014, 28(9), 3823-3831. doi: 10.1096/fj.14-252320 PMID: 24858278
  188. Zhang, Y.; Peng, F.; Gao, B.; Ingram, A.J.; Krepinsky, J.C. Mechanical strain-induced RhoA activation requires NADPH oxidase-mediated ROS generation in caveolae. Antioxid. Redox Signal., 2010, 13(7), 959-973. doi: 10.1089/ars.2009.2908 PMID: 20380579
  189. Chen, J.L.; Lu, J.H.; Xie, C.S.; Shen, Y.J.; Wang, J.W.; Ye, X.Y.; Zhang, M.B.; Jia, G.L.; Tao, Y.X.; Li, J.; Cao, H. Caveolin-1 in spinal cord modulates type-2 diabetic neuropathic pain through the Rac1/NOX2/NR2B signaling pathway. Am. J. Transl. Res., 2020, 12(5), 1714-1727. PMID: 32509171
  190. El-Benna, J.; Dang, P.M.C.; Gougerot-Pocidalo, M.A.; Marie, J.C.; Braut-Boucher, F. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: Structure, phosphorylation and implication in diseases. Exp. Mol. Med., 2009, 41(4), 217-225. doi: 10.3858/emm.2009.41.4.058 PMID: 19372727
  191. Zhao, W.C.; Zhang, B.; Liao, M.J.; Zhang, W.X.; He, W.Y.; Wang, H.B.; Yang, C.X. Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord. Neurosci. Lett., 2014, 560, 81-85. doi: 10.1016/j.neulet.2013.12.019 PMID: 24370596
  192. Hultqvist, M.; Bäcklund, J.; Bauer, K.; Gelderman, K.A.; Holmdahl, R. Lack of reactive oxygen species breaks T cell tolerance to collagen type II and allows development of arthritis in mice. J. Immunol., 2007, 179(3), 1431-1437. doi: 10.4049/jimmunol.179.3.1431 PMID: 17641008
  193. Shin, H.J.; Park, H.; Shin, N.; Kwon, H.H.; Yin, Y.; Hwang, J.A.; Kim, S.I.; Kim, S.R.; Kim, S.; Joo, Y.; Kim, Y.; Kim, J.; Beom, J.; Kim, D.W. p47phox siRNA-loaded PLGA nanoparticles suppress ROS/oxidative stress-induced chondrocyte damage in osteoarthritis. Polymers, 2020, 12(2), 443. doi: 10.3390/polym12020443 PMID: 32069893
  194. Yin, D.H.; Liang, X.C.; Zhao, L.; Zhang, H.; Sun, Q.; Wang, P.Y.; Sun, L.Q. Jinmaitong decreases sciatic nerve DNA oxidative damage and apoptosis in a streptozotocin-induced diabetic rat model. Exp. Ther. Med., 2015, 10(2), 778-786. doi: 10.3892/etm.2015.2543 PMID: 26622393
  195. Sandoval, R.; Lazcano, P.; Ferrari, F.; Pinto-Pardo, N.; González-Billault, C.; Utreras, E. TNF-α increases production of reactive oxygen species through Cdk5 activation in nociceptive neurons. Front. Physiol., 2018, 9, 65. doi: 10.3389/fphys.2018.00065 PMID: 29467671
  196. Sun, J.; Chen, F.; Braun, C.; Zhou, Y.Q.; Rittner, H.; Tian, Y.K.; Cai, X.Y.; Ye, D.W. Role of curcumin in the management of pathological pain. Phytomedicine, 2018, 48, 129-140. doi: 10.1016/j.phymed.2018.04.045 PMID: 30195871
  197. Demaurex, N.; El Chemaly, A. Physiological roles of voltage-gated proton channels in leukocytes. J. Physiol., 2010, 588(23), 4659-4665. doi: 10.1113/jphysiol.2010.194225 PMID: 20693294
  198. Peng, J.; Yi, M.H.; Jeong, H.; McEwan, P.P.; Zheng, J.; Wu, G.; Ganatra, S.; Ren, Y.; Richardson, J.R.; Oh, S.B.; Wu, L.J. The voltage-gated proton channel Hv1 promotes microglia-astrocyte communication and neuropathic pain after peripheral nerve injury. Mol. Brain, 2021, 14(1), 99. doi: 10.1186/s13041-021-00812-8 PMID: 34183051
  199. Zhang, Q.; Ren, Y.; Mo, Y.; Guo, P.; Liao, P.; Luo, Y.; Mu, J.; Chen, Z.; Zhang, Y.; Li, Y.; Yang, L.; Liao, D.; Fu, J.; Shen, J.; Huang, W.; Xu, X.; Guo, Y.; Mei, L.; Zuo, Y.; Liu, J.; Yang, H.; Jiang, R. Inhibiting Hv1 channel in peripheral sensory neurons attenuates chronic inflammatory pain and opioid side effects. Cell Res., 2022, 32(5), 461-476. doi: 10.1038/s41422-022-00616-y PMID: 35115667
  200. Wang, Y.; Li, S.J.; Wu, X.; Che, Y.; Li, Q. Clinicopathological and biological significance of human voltage-gated proton channel Hv1 protein overexpression in breast cancer. J. Biol. Chem., 2012, 287(17), 13877-13888. doi: 10.1074/jbc.M112.345280 PMID: 22367212
  201. Shimizu, S.; Takahashi, N.; Mori, Y. TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters). Handb. Exp. Pharmacol., 2014, 223, 767-794. doi: 10.1007/978-3-319-05161-1_3 PMID: 24961969
  202. De Logu, F.; Li Puma, S.; Landini, L.; Portelli, F.; Innocenti, A.; de Araujo, D.S.M.; Janal, M.N.; Patacchini, R.; Bunnett, N.W.; Geppetti, P.; Nassini, R. Schwann cells expressing nociceptive channel TRPA1 orchestrate ethanol-evoked neuropathic pain in mice. J. Clin. Invest., 2019, 129(12), 5424-5441. doi: 10.1172/JCI128022 PMID: 31487269
  203. Marone, I.M.; De Logu, F.; Nassini, R.; De Carvalho Goncalves, M.; Benemei, S.; Ferreira, J.; Jain, P.; Li Puma, S.; Bunnett, N.W.; Geppetti, P.; Materazzi, S. TRPA1/NOX in the soma of trigeminal ganglion neurons mediates migraine-related pain of glyceryl trinitrate in mice. Brain, 2018, 141(8), 2312-2328. doi: 10.1093/brain/awy177 PMID: 29985973
  204. De Logu, F.; De Siena, G.; Landini, L.; Marini, M.; Souza Monteiro de Araujo, D.; Albanese, V.; Preti, D.; Romitelli, A.; Chieca, M.; Titiz, M.; Iannone, L.F.; Geppetti, P.; Nassini, R. Non-neuronal TRPA1 encodes mechanical allodynia associated with neurogenic inflammation and partial nerve injury in rats. Br. J. Pharmacol., 2022. PMID: 36494916
  205. Savio, L.E.B.; Leite-Aguiar, R.; Alves, V.S.; Coutinho-Silva, R.; Wyse, A.T.S. Purinergic signaling in the modulation of redox biology. Redox Biol., 2021, 47, 102137. doi: 10.1016/j.redox.2021.102137 PMID: 34563872
  206. Chessell, I.P.; Hatcher, J.P.; Bountra, C.; Michel, A.D.; Hughes, J.P.; Green, P.; Egerton, J.; Murfin, M.; Richardson, J.; Peck, W.L.; Grahames, C.B.A.; Casula, M.A.; Yiangou, Y.; Birch, R.; Anand, P.; Buell, G.N. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain, 2005, 114(3), 386-396. doi: 10.1016/j.pain.2005.01.002 PMID: 15777864
  207. Munoz, F.M.; Gao, R.; Tian, Y.; Henstenburg, B.A.; Barrett, J.E.; Hu, H. Neuronal P2X7 receptor-induced reactive oxygen species production contributes to nociceptive behavior in mice. Sci. Rep., 2017, 7(1), 3539. doi: 10.1038/s41598-017-03813-7 PMID: 28615626
  208. Apolloni, S.; Parisi, C.; Pesaresi, M.G.; Rossi, S.; Carrì, M.T.; Cozzolino, M.; Volonté, C.; D’Ambrosi, N. The NADPH oxidase pathway is dysregulated by the P2X7 receptor in the SOD1-G93A microglia model of amyotrophic lateral sclerosis. J. Immunol., 2013, 190(10), 5187-5195. doi: 10.4049/jimmunol.1203262 PMID: 23589615
  209. Qian, Y.; Xu, S.; Yang, X.; Xiao, Q. Purinergic receptor P2Y6 contributes to 1-methyl-4-phenylpyridinium-induced oxidative stress and cell death in neuronal SH-SY5Y cells. J. Neurosci. Res., 2018, 96(2), 253-264. doi: 10.1002/jnr.24119 PMID: 28752899
  210. Wang, Z.; Zhao, W.; Shen, X.; Wan, H.; Yu, J.M. The role of P2Y6 receptors in the maintenance of neuropathic pain and its improvement of oxidative stress in rats. J. Cell. Biochem., 2019, 120(10), 17123-17130. doi: 10.1002/jcb.28972 PMID: 31106899
  211. Cirillo, G.; Colangelo, A.M.; Berbenni, M.; Ippolito, V.M.; De Luca, C.; Verdesca, F.; Savarese, L.; Alberghina, L.; Maggio, N.; Papa, M. Purinergic modulation of spinal neuroglial maladaptive plasticity following peripheral nerve injury. Mol. Neurobiol., 2015, 52(3), 1440-1457. doi: 10.1007/s12035-014-8943-y PMID: 25352445
  212. Park, H.S.; Jung, H.Y.; Park, E.Y.; Kim, J.; Lee, W.J.; Bae, Y.S. Cutting edge: Direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J. Immunol., 2004, 173(6), 3589-3593. doi: 10.4049/jimmunol.173.6.3589 PMID: 15356101
  213. Janciauskiene, S.; Vijayan, V.; Immenschuh, S. TLR4 signaling by heme and the role of heme-binding blood proteins. Front. Immunol., 2020, 11, 1964. doi: 10.3389/fimmu.2020.01964 PMID: 32983129
  214. Lei, J.; Paul, J.; Wang, Y.; Gupta, M.; Vang, D.; Thompson, S.; Jha, R.; Nguyen, J.; Valverde, Y.; Lamarre, Y.; Jones, M.K.; Gupta, K. Heme causes pain in sickle mice via toll-like receptor 4-mediated reactive oxygen species- and endoplasmic reticulum stress-induced glial activation. Antioxid. Redox Signal., 2021, 34(4), 279-293. doi: 10.1089/ars.2019.7913 PMID: 32729340
  215. Soh, W.T.; Zhang, J.; Hollenberg, M.D.; Vliagoftis, H.; Rothenberg, M.E.; Sokol, C.L.; Robinson, C.; Jacquet, A. Protease allergens as initiators–regulators of allergic inflammation. Allergy, 2023, 78(5), 1148-1168. doi: 10.1111/all.15678 PMID: 36794967
  216. Monnet, F.P. Sigma-1 receptor as regulator of neuronal intracellular Ca2+: clinical and therapeutic relevance. Biol. Cell, 2005, 97(12), 873-883. doi: 10.1042/BC20040149 PMID: 16293108
  217. Roh, D.H.; Kim, H.W.; Yoon, S.Y.; Seo, H.S.; Kwon, Y.B.; Kim, K.W.; Han, H.J.; Beitz, A.J.; Lee, J.H. Intrathecal administration of sigma-1 receptor agonists facilitates nociception: Involvement of a protein kinase C-dependent pathway. J. Neurosci. Res., 2008, 86(16), 3644-3654. doi: 10.1002/jnr.21802 PMID: 18655205
  218. Dang, P.M.C.; Fontayne, A.; Hakim, J.; El Benna, J.; Périanin, A. Protein kinase C zeta phosphorylates a subset of selective sites of the NADPH oxidase component p47phox and participates in formyl peptide-mediated neutrophil respiratory burst. J. Immunol., 2001, 166(2), 1206-1213. doi: 10.4049/jimmunol.166.2.1206 PMID: 11145703
  219. Choi, S.R.; Roh, D.H.; Yoon, S.Y.; Kang, S.Y.; Moon, J.Y.; Kwon, S.G.; Choi, H.S.; Han, H.J.; Beitz, A.J.; Oh, S.B.; Lee, J.H. Spinal sigma-1 receptors activate NADPH oxidase 2 leading to the induction of pain hypersensitivity in mice and mechanical allodynia in neuropathic rats. Pharmacol. Res., 2013, 74, 56-67. doi: 10.1016/j.phrs.2013.05.004 PMID: 23732704
  220. Choi, S.R.; Kwon, S.G.; Choi, H.S.; Han, H.J.; Beitz, A.J.; Lee, J.H. Neuronal NOS activates spinal NADPH oxidase 2 contributing to central sigma-1 receptor-induced pain hypersensitivity in mice. Biol. Pharm. Bull., 2016, 39(12), 1922-1931. doi: 10.1248/bpb.b16-00326 PMID: 27601184
  221. Roh, D.H.; Kim, H.W.; Yoon, S.Y.; Seo, H.S.; Kwon, Y.B.; Kim, K.W.; Han, H.J.; Beitz, A.J.; Na, H.S.; Lee, J.H. Intrathecal injection of the sigma(1) receptor antagonist BD1047 blocks both mechanical allodynia and increases in spinal NR1 expression during the induction phase of rodent neuropathic pain. Anesthesiology, 2008, 109(5), 879-889. doi: 10.1097/ALN.0b013e3181895a83 PMID: 18946301
  222. Schmitz, J.; Owyang, A.; Oldham, E.; Song, Y.; Murphy, E.; McClanahan, T.K.; Zurawski, G.; Moshrefi, M.; Qin, J.; Li, X.; Gorman, D.M.; Bazan, J.F.; Kastelein, R.A. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity, 2005, 23(5), 479-490. doi: 10.1016/j.immuni.2005.09.015 PMID: 16286016
  223. Yin, C.; Liu, B.; Li, Y.; Li, X.; Wang, J.; Chen, R.; Tai, Y.; Shou, Q.; Wang, P.; Shao, X.; Liang, Y.; Zhou, H.; Mi, W.; Fang, J.; Liu, B. IL-33/ST2 induces neutrophil-dependent reactive oxygen species production and mediates gout pain. Theranostics, 2020, 10(26), 12189-12203. doi: 10.7150/thno.48028 PMID: 33204337
  224. Li, Y.; Li, H.; Han, J. Sphingosine‐1‐phosphate receptor 2 modulates pain sensitivity by suppressing the ROS‐RUNX3 pathway in a rat model of neuropathy. J. Cell. Physiol., 2020, 235(4), 3864-3873. doi: 10.1002/jcp.29280 PMID: 31603252
  225. Levanon, D.; Bettoun, D.; Harris-Cerruti, C.; Woolf, E.; Negreanu, V.; Eilam, R.; Bernstein, Y.; Goldenberg, D.; Xiao, C.; Fliegauf, M.; Kremer, E.; Otto, F.; Brenner, O.; Lev-Tov, A.; Groner, Y. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J., 2002, 21(13), 3454-3463. doi: 10.1093/emboj/cdf370 PMID: 12093746
  226. Serafim, K.G.G.; Navarro, S.A.; Zarpelon, A.C.; Pinho-Ribeiro, F.A.; Fattori, V.; Cunha, T.M.; Alves-Filho, J.C.; Cunha, F.Q.; Casagrande, R.; Verri, W.A., Jr Bosentan, a mixed endothelin receptor antagonist, inhibits superoxide anion-induced pain and inflammation in mice. Naunyn Schmiedebergs Arch. Pharmacol., 2015, 388(11), 1211-1221. doi: 10.1007/s00210-015-1160-z PMID: 26246053
  227. Fattori, V.; Serafim, K.G.G.; Zarpelon, A.C.; Borghi, S.M.; Pinho-Ribeiro, F.A.; Alves-Filho, J.C.; Cunha, T.M.; Cunha, F.Q.; Casagrande, R.; Verri, W.A., Jr Differential regulation of oxidative stress and cytokine production by endothelin ET A and ET B receptors in superoxide anion-induced inflammation and pain in mice. J. Drug Target., 2017, 25(3), 264-274. doi: 10.1080/1061186X.2016.1245308 PMID: 27701898
  228. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233. doi: 10.1016/j.cell.2009.01.002 PMID: 19167326
  229. Im, Y.B.; Jee, M.K.; Choi, J.I.; Cho, H.T.; Kwon, O.H.; Kang, S.K. Molecular targeting of NOX4 for neuropathic pain after traumatic injury of the spinal cord. Cell Death Dis., 2012, 3(11), e426. doi: 10.1038/cddis.2012.168 PMID: 23152062
  230. López-González, M.J.; Landry, M.; Favereaux, A. MicroRNA and chronic pain: From mechanisms to therapeutic potential. Pharmacol. Ther., 2017, 180, 1-15. doi: 10.1016/j.pharmthera.2017.06.001 PMID: 28579386
  231. Gambari, R.; Fabbri, E.; Borgatti, M.; Lampronti, I.; Finotti, A.; Brognara, E.; Bianchi, N.; Manicardi, A.; Marchelli, R.; Corradini, R. Targeting microRNAs involved in human diseases: A novel approach for modification of gene expression and drug development. Biochem. Pharmacol., 2011, 82(10), 1416-1429. doi: 10.1016/j.bcp.2011.08.007 PMID: 21864506
  232. Boveris, A.; Oshino, N.; Chance, B. The cellular production of hydrogen peroxide. Biochem. J., 1972, 128(3), 617-630. doi: 10.1042/bj1280617 PMID: 4404507
  233. Fransen, M.; Nordgren, M.; Wang, B.; Apanasets, O. Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(9), 1363-1373. doi: 10.1016/j.bbadis.2011.12.001 PMID: 22178243
  234. De Duve, C.; Baudhuin, P. Peroxisomes (microbodies and related particles). Physiol. Rev., 1966, 46(2), 323-357. doi: 10.1152/physrev.1966.46.2.323 PMID: 5325972
  235. Huang, J.L.; Chen, X.L.; Guo, C.; Wang, Y.X. Contributions of spinal d-amino acid oxidase to bone cancer pain. Amino Acids, 2012, 43(5), 1905-1918. doi: 10.1007/s00726-012-1390-z PMID: 22996731
  236. Yamanaka, M.; Miyoshi, Y.; Ohide, H.; Hamase, K.; Konno, R. d-Amino acids in the brain and mutant rodents lacking d-amino-acid oxidase activity. Amino Acids, 2012, 43(5), 1811-1821. doi: 10.1007/s00726-012-1384-x PMID: 22892863
  237. Ma, S.; Li, X.Y.; Gong, N.; Wang, Y.X. Contributions of spinal d-amino acid oxidase to chronic morphine-induced hyperalgesia. J. Pharm. Biomed. Anal., 2015, 116, 131-138. doi: 10.1016/j.jpba.2015.03.021 PMID: 25850373
  238. Lu, J.M.; Gong, N.; Wang, Y.C.; Wang, Y.X. D-Amino acid oxidase-mediated increase in spinal hydrogen peroxide is mainly responsible for formalin-induced tonic pain. Br. J. Pharmacol., 2012, 165(6), 1941-1955. doi: 10.1111/j.1476-5381.2011.01680.x PMID: 21950354
  239. Zhao, W.J.; Gao, Z.Y.; Wei, H.; Nie, H.Z.; Zhao, Q.; Zhou, X.J.; Wang, Y.X. Spinal D-amino acid oxidase contributes to neuropathic pain in rats. J. Pharmacol. Exp. Ther., 2010, 332(1), 248-254. doi: 10.1124/jpet.109.158816 PMID: 19828879
  240. Wei, H.; Gong, N.; Huang, J.L.; Fan, H.; Ma, A.N.; Li, X.Y.; Wang, Y.X.; Pertovaara, A. Spinal D-amino acid oxidase contributes to mechanical pain hypersensitivity induced by sleep deprivation in the rat. Pharmacol. Biochem. Behav., 2013, 111, 30-36. doi: 10.1016/j.pbb.2013.08.003 PMID: 23958579
  241. Gong, N.; Li, X.Y.; Xiao, Q.; Wang, Y.X. Identification of a novel spinal dorsal horn astroglial D-amino acid oxidase-hydrogen peroxide pathway involved in morphine antinociceptive tolerance. Anesthesiology, 2014, 120(4), 962-975. doi: 10.1097/ALN.0b013e3182a66d2a PMID: 23928652
  242. Zhao, W.; Konno, R.; Zhou, X.J.; Yin, M.; Wang, Y.X. Inhibition of D-amino-Acid oxidase activity induces pain relief in mice. Cell. Mol. Neurobiol., 2008, 28(4), 581-591. doi: 10.1007/s10571-007-9200-y PMID: 17874293
  243. Hopkins, S.C.; Zhao, F.Y.; Bowen, C.A.; Fang, X.; Wei, H.; Heffernan, M.L.R.; Spear, K.L.; Spanswick, D.C.; Varney, M.A.; Large, T.H. Pharmacodynamic effects of a D-amino acid oxidase inhibitor indicate a spinal site of action in rat models of neuropathic pain. J. Pharmacol. Exp. Ther., 2013, 345(3), 502-511. doi: 10.1124/jpet.113.204016 PMID: 23520265
  244. Wake, K.; Yamazaki, H.; Hanzawa, S.; Konno, R.; Sakio, H.; Niwa, A.; Hori, Y. Exaggerated responses to chronic nociceptive stimuli and enhancement of N-methyl-d-aspartate receptor-mediated synaptic transmission in mutant mice lacking d-amino-acid oxidase. Neurosci. Lett., 2001, 297(1), 25-28. doi: 10.1016/S0304-3940(00)01658-X PMID: 11114476
  245. Choi, S.R.; Moon, J.Y.; Roh, D.H.; Yoon, S.Y.; Kwon, S.G.; Choi, H.S.; Kang, S.Y.; Han, H.J.; Beitz, A.J.; Lee, J.H. Spinal D-serine increases PKC-dependent GluN1 phosphorylation contributing to the sigma-1 receptor-induced development of mechanical allodynia in a mouse model of neuropathic pain. J. Pain, 2017, 18(4), 415-427. doi: 10.1016/j.jpain.2016.12.002 PMID: 27986591
  246. Dieb, W.; Hafidi, A. Astrocytes are involved in trigeminal dynamic mechanical allodynia: potential role of D-serine. J. Dent. Res., 2013, 92(9), 808-813. doi: 10.1177/0022034513498898 PMID: 23881719
  247. Mothet, J.P.; Parent, A.T.; Wolosker, H.; Brady, R.O., Jr; Linden, D.J.; Ferris, C.D.; Rogawski, M.A.; Snyder, S.H. D -Serine is an endogenous ligand for the glycine site of the N -methyl- D -aspartate receptor. Proc. Natl. Acad. Sci. USA, 2000, 97(9), 4926-4931. doi: 10.1073/pnas.97.9.4926 PMID: 10781100
  248. Inoguchi, T.; Nawata, H. NAD(P)H oxidase activation: A potential target mechanism for diabetic vascular complications, progressive beta-cell dysfunction and metabolic syndrome. Curr. Drug Targets, 2005, 6(4), 495-501. doi: 10.2174/1389450054021927 PMID: 16026268
  249. Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58. doi: 10.1038/nrd.2018.168 PMID: 30310233
  250. Wilkaniec, A.; Cieślik, M.; Murawska, E.; Babiec, L.; Gąssowska-Dobrowolska, M.; Pałasz, E.; Jęśko, H.; Adamczyk, A. P2X7 receptor is involved in mitochondrial dysfunction induced by extracellular alpha synuclein in neuroblastoma SH-SY5Y Cells. Int. J. Mol. Sci., 2020, 21(11), 3959. doi: 10.3390/ijms21113959 PMID: 32486485
  251. Ushio-Fukai, M. Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid. Redox Signal., 2009, 11(6), 1289-1299. doi: 10.1089/ars.2008.2333 PMID: 18999986

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers