Chronic Lithium Treatment Alters NMDA and AMPA Receptor Synaptic Availability and Dendritic Spine Organization in the Rat Hippocampus
- Authors: Caffino L.1, Targa G.2, Mallien A.3, Mottarlini F.1, Rizzi B.1, Homberg J.4, Gass P.3, Fumagalli F.1
-
Affiliations:
- Department of Pharmacological and Biomolecular Sciences Rodolfo Paoletti, Università degli Studi di Milano
- Department of Pharmacological and Biomolecular Sciences Rodolfo Paoletti, Università degli Studi di Milano
- Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University
- Department of Cognitive Neuroscience, Division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre
- Issue: Vol 22, No 12 (2024)
- Pages: 2045-2058
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644446
- DOI: https://doi.org/10.2174/1570159X21666230913144420
- ID: 644446
Cite item
Full Text
Abstract
Background:The mechanisms underlying the action of lithium (LiCl) in bipolar disorder (BD) are still far from being completely understood. Previous evidence has revealed that BD is characterized by glutamate hyperexcitability, suggesting that LiCl may act, at least partially, by toning down glutamatergic signaling abnormalities.
Objective:In this study, taking advantage of western blot and confocal microscopy, we used a combination of integrative molecular and morphological approaches in rats exposed to repeated administration of LiCl at a therapeutic dose (between 0.6 and 1.2 mmol/l) and sacrificed at two different time points, i.e., 24 hours and 7 days after the last exposure.
Results:We report that repeated LiCl treatment activates multiple, parallel, but also converging forms of compensatory neuroplasticity related to glutamatergic signaling. More specifically, LiCl promoted a wave of neuroplasticity in the hippocampus, involving the synaptic recruitment of GluN2A-containing NMDA receptors, GluA1-containing AMPA receptors, and the neurotrophin BDNF that are indicative of a more plastic spine. The latter is evidenced by morphological analyses showing changes in dendritic spine morphology, such as increased length and head diameter of such spines. These changes may counteract the potentially negative extra-synaptic movements of GluN2B-containing NMDA receptors as well as the increase in the formation of GluA2-lacking Ca2+-permeable AMPA receptors.
Conclusion:Our findings highlight a previously unknown cohesive picture of the glutamatergic implications of LiCl action that persist long after the end of its administration, revealing for the first time a profound and persistent reorganization of the glutamatergic postsynaptic density receptor composition and structure.
Keywords
About the authors
Lucia Caffino
Department of Pharmacological and Biomolecular Sciences Rodolfo Paoletti, Università degli Studi di Milano
Email: info@benthamscience.net
Giorgia Targa
Department of Pharmacological and Biomolecular Sciences Rodolfo Paoletti, Università degli Studi di Milano
Email: info@benthamscience.net
Anne Mallien
Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University
Email: info@benthamscience.net
Francesca Mottarlini
Department of Pharmacological and Biomolecular Sciences Rodolfo Paoletti, Università degli Studi di Milano
Email: info@benthamscience.net
Beatrice Rizzi
Department of Pharmacological and Biomolecular Sciences Rodolfo Paoletti, Università degli Studi di Milano
Email: info@benthamscience.net
Judith Homberg
Department of Cognitive Neuroscience, Division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre
Email: info@benthamscience.net
Peter Gass
Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University
Email: info@benthamscience.net
Fabio Fumagalli
Department of Pharmacological and Biomolecular Sciences Rodolfo Paoletti, Università degli Studi di Milano
Author for correspondence.
Email: info@benthamscience.net
References
- Young, A.H.; MacPherson, H. Detection of bipolar disorder. Br. J. Psychiatry, 2011, 199(1), 3-4. doi: 10.1192/bjp.bp.110.089128 PMID: 21719873
- Kavalali, E.T.; Monteggia, L.M. Targeting homeostatic synaptic plasticity for treatment of mood disorders. Neuron, 2020, 106(5), 715-726. doi: 10.1016/j.neuron.2020.05.015 PMID: 32497508
- Vieta, E.; Valentí, M. Pharmacological management of bipolar depression: acute treatment, maintenance, and prophylaxis. CNS Drugs, 2013, 27(7), 515-529. doi: 10.1007/s40263-013-0073-y PMID: 23749421
- Malhi, G.S.; Outhred, T. Therapeutic mechanisms of lithium in bipolar disorder: Recent advances and current understanding. CNS Drugs, 2016, 30(10), 931-949. doi: 10.1007/s40263-016-0380-1 PMID: 27638546
- Zanni, G.; Michno, W.; Di Martino, E.; Tjärnlund-Wolf, A.; Pettersson, J.; Mason, C.E.; Hellspong, G.; Blomgren, K.; Hanrieder, J. Lithium accumulates in neurogenic brain regions as revealed by high resolution ion imaging. Sci. Rep., 2017, 7(1), 40726. doi: 10.1038/srep40726 PMID: 28098178
- Stout, J.; Hozer, F.; Coste, A.; Mauconduit, F.; Djebrani-Oussedik, N.; Sarrazin, S.; Poupon, J.; Meyrel, M.; Romanzetti, S.; Etain, B.; Rabrait-Lerman, C.; Houenou, J.; Bellivier, F.; Duchesnay, E.; Boumezbeur, F. Accumulation of lithium in the hippocampus of patients with bipolar disorder: A lithium-7 magnetic resonance imaging study at 7 tesla. Biol. Psychiatry, 2020, 88(5), 426-433. doi: 10.1016/j.biopsych.2020.02.1181 PMID: 32340717
- Hajek, T.; Kopecek, M.; Höschl, C.; Alda, M. Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. J. Psychiatry Neurosci., 2012, 37(5), 333-343. doi: 10.1503/jpn.110143 PMID: 22498078
- Michael, N.; Erfurth, A.; Ohrmann, P.; Gössling, M.; Arolt, V.; Heindel, W.; Pfleiderer, B. Acute mania is accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefrontal cortex. Psychopharmacology (Berl.), 2003, 168(3), 344-346. doi: 10.1007/s00213-003-1440-z PMID: 12684737
- Öngür, D.; Jensen, J.E.; Prescot, A.P.; Stork, C.; Lundy, M.; Cohen, B.M.; Renshaw, P.F. Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania. Biol. Psychiatry, 2008, 64(8), 718-726. doi: 10.1016/j.biopsych.2008.05.014 PMID: 18602089
- Lan, M.J.; McLoughlin, G.A.; Griffin, J.L.; Tsang, T.M.; Huang, J.T.J.; Yuan, P.; Manji, H.; Holmes, E.; Bahn, S. Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder. Mol. Psychiatry, 2009, 14(3), 269-279. doi: 10.1038/sj.mp.4002130 PMID: 18256615
- Chitty, K.M.; Lagopoulos, J.; Lee, R.S.C.; Hickie, I.B.; Hermens, D.F. A systematic review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity in bipolar disorder. Eur. Neuropsychopharmacol., 2013, 23(11), 1348-1363. doi: 10.1016/j.euroneuro.2013.07.007 PMID: 23968965
- Mertens, J.; Wang, Q.W.; Kim, Y.; Yu, D.X.; Pham, S.; Yang, B.; Zheng, Y.; Diffenderfer, K.E.; Zhang, J.; Soltani, S.; Eames, T.; Schafer, S.T.; Boyer, L.; Marchetto, M.C.; Nurnberger, J.I.; Calabrese, J.R.; Oedegaard, K.J.; McCarthy, M.J.; Zandi, P.P.; Alda, M.; Nievergelt, C.M.; Mi, S.; Brennand, K.J.; Kelsoe, J.R.; Gage, F.H.; Yao, J. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature, 2015, 527(7576), 95-99. doi: 10.1038/nature15526 PMID: 26524527
- Nonaka, S.; Hough, C.J.; Chuang, D.M. Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx. Proc. Natl. Acad. Sci. USA, 1998, 95(5), 2642-2647. doi: 10.1073/pnas.95.5.2642 PMID: 9482940
- Gideons, E.S.; Lin, P.Y.; Mahgoub, M.; Kavalali, E.T.; Monteggia, L.M. Chronic lithium treatment elicits its antimanic effects via BDNF-TrkB dependent synaptic downscaling. eLife, 2017, 6, e25480. doi: 10.7554/eLife.25480 PMID: 28621662
- Tang, W.; Cory, B.; Lim, K.L.; Fivaz, M. The mood stabilizer lithium slows down synaptic vesicle cycling at glutamatergic synapses. Neuromolecular Med., 2023, 25(1), 125-135. doi: 10.1007/s12017-022-08729-8 PMID: 36436129
- Liu, Z.; Song, D.; Yan, E.; Verkhratsky, A.; Peng, L. Chronic treatment with anti-bipolar drugs suppresses glutamate release from astroglial cultures. Amino Acids, 2015, 47(5), 1045-1051. doi: 10.1007/s00726-015-1936-y PMID: 25676933
- Uezato, A.; Meador-Woodruff, J.H.; McCullumsmith, R.E. Vesicular glutamate transporter mRNA expression in the medial temporal lobe in major depressive disorder, bipolar disorder, and schizophrenia. Bipolar Disord., 2009, 11(7), 711-725. doi: 10.1111/j.1399-5618.2009.00752.x PMID: 19839996
- Eastwood, S.L.; Harrison, P.J. Markers of glutamate synaptic transmission and plasticity are increased in the anterior cingulate cortex in bipolar disorder. Biol. Psychiatry, 2010, 67(11), 1010-1016. doi: 10.1016/j.biopsych.2009.12.004 PMID: 20079890
- Dixon, J.F.; Hokin, L.E. Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral cortex. Proc. Natl. Acad. Sci. USA, 1998, 95(14), 8363-8368. doi: 10.1073/pnas.95.14.8363 PMID: 9653192
- Du, J.; Gray, N.A.; Falke, C.A.; Chen, W.; Yuan, P.; Szabo, S.T.; Einat, H.; Manji, H.K. Modulation of synaptic plasticity by antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic expression. J. Neurosci., 2004, 24(29), 6578-6589. doi: 10.1523/JNEUROSCI.1258-04.2004 PMID: 15269270
- Khayachi, A.; Ase, A.; Liao, C.; Kamesh, A.; Kuhlmann, N.; Schorova, L.; Chaumette, B.; Dion, P.; Alda, M.; Séguéla, P.; Rouleau, G.; Milnerwood, A. Chronic lithium treatment alters the excitatory/inhibitory balance of synaptic networks and reduces mGluR5PKC signalling in mouse cortical neurons. J. Psychiatry Neurosci., 2021, 46(3), E402-E414. doi: 10.1503/jpn.200185 PMID: 34077150
- Roberts-Wolfe, D.; Kalivas, P. Glutamate transporter GLT-1 as a therapeutic target for substance use disorders. CNS Neurol. Disord. Drug Targets, 2015, 14(6), 745-756. doi: 10.2174/1871527314666150529144655 PMID: 26022265
- Bridges, R.; Lutgen, V.; Lobner, D.; Baker, D.A. Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling. Pharmacol. Rev., 2012, 64(3), 780-802. doi: 10.1124/pr.110.003889 PMID: 22759795
- Vickers, C.A.; Stephens, B.; Bowen, J.; Arbuthnott, G.W.; Grant, S.G.N.; Ingham, C.A. Neurone specific regulation of dendritic spines in vivo by post synaptic density 95 protein (PSD-95). Brain Res., 2006, 1090(1), 89-98. doi: 10.1016/j.brainres.2006.03.075 PMID: 16677619
- Haas, K.T.; Compans, B.; Letellier, M.; Bartol, T.M.; Grillo-Bosch, D.; Sejnowski, T.J.; Sainlos, M.; Choquet, D.; Thoumine, O.; Hosy, E. Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. eLife, 2018, 7, e31755. doi: 10.7554/eLife.31755 PMID: 30044218
- Blacker, C.J.; Lewis, C.P.; Frye, M.A.; Veldic, M. Metabotropic glutamate receptors as emerging research targets in bipolar disorder. Psychiatry Res., 2017, 257, 327-337. doi: 10.1016/j.psychres.2017.07.059 PMID: 28800512
- Yasuda, R.; Hayashi, Y.; Hell, J.W. CαMKII: A central molecular organizer of synaptic plasticity, learning and memory. Nat. Rev. Neurosci., 2022, 23(11), 666-682. doi: 10.1038/s41583-022-00624-2 PMID: 36056211
- Martin, J.L.; Finsterwald, C. Cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development. Commun. Integr. Biol., 2011, 4(1), 14-16. doi: 10.4161/cib.13761 PMID: 21509169
- Popović, N.; Stojiljković, V.; Pejić, S.; Todorović, A.; Pavlović, I.; Gavrilović, L.; Pajović, S.B. Modulation of hippocampal antioxidant defense system in chronically stressed rats by lithium. Oxid. Med. Cell. Longev., 2019, 2019, 1-11. doi: 10.1155/2019/8745376 PMID: 30911352
- Wijeratne, C.; Draper, B. Reformulation of current recommendations for target serum lithium concentration according to clinical indication, age and physical comorbidity. Aust. N. Z. J. Psychiatry, 2011, 45(12), 1026-1032. doi: 10.3109/00048674.2011.610296 PMID: 21961481
- Gass, P.; Prior, P.; Kiessling, M. Correlation stress protein between seizure intensity and expression after limbic epilepsy in the rat brain. Neuroscience, 1995, 65(l), 27-36. doi: 10.1016/0306-4522(95)92049-P PMID: 7753400
- Caffino, L.; Giannotti, G.; Messa, G.; Mottarlini, F.; Fumagalli, F. Repeated cocaine exposure dysregulates BDNF expression and signaling in the mesocorticolimbic pathway of the adolescent rat. World J. Biol. Psychiatry, 2019, 20(7), 531-544. doi: 10.1080/15622975.2018.1433328 PMID: 29380665
- Piva, A.; Caffino, L.; Padovani, L.; Pintori, N.; Mottarlini, F.; Sferrazza, G.; Paolone, G.; Fumagalli, F.; Chiamulera, C. The metaplastic effects of ketamine on sucrose renewal and contextual memory reconsolidation in rats. Behav. Brain Res., 2020, 379, 112347. doi: 10.1016/j.bbr.2019.112347 PMID: 31706797
- Caffino, L.; Verheij, M.M.M.; Roversi, K.; Targa, G.; Mottarlini, F.; Popik, P.; Nikiforuk, A.; Golebiowska, J.; Fumagalli, F.; Homberg, J.R. Hypersensitivity to amphetamines psychomotor and reinforcing effects in serotonin transporter knockout rats: Glutamate in the nucleus accumbens. Br. J. Pharmacol., 2020, 177(19), 4532-4547. doi: 10.1111/bph.15211 PMID: 32721055
- Caffino, L.; Giannotti, G.; Malpighi, C.; Racagni, G.; Fumagalli, F. Short-term withdrawal from developmental exposure to cocaine activates the glucocorticoid receptor and alters spine dynamics. Eur. Neuropsychopharmacol., 2015, 25(10), 1832-1841. doi: 10.1016/j.euroneuro.2015.05.002 PMID: 26004981
- Mottarlini, F.; Targa, G.; Bottan, G.; Tarenzi, B.; Fumagalli, F.; Caffino, L. Cortical reorganization of the glutamate synapse in the activity‐based anorexia rat model: Impact on cognition. J. Neurochem., 2022, 161(4), 350-365. doi: 10.1111/jnc.15605 PMID: 35257377
- Harris, K.M.; Jensen, F.E.; Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation published erratum appears in J Neurosci 1992; 12(8): Following table of contents. J. Neurosci., 1992, 12(7), 2685-2705. doi: 10.1523/JNEUROSCI.12-07-02685.1992 PMID: 1613552
- Gardoni, F.; Di Luca, M.; Malinverno, M.; Marcello, E.; Verpelli, C.; Sala, C.; Di Luca, M. The neuropeptide PACAP38 induces dendritic spine remodeling through ADAM10/N-Cadherin signaling pathway. J. Cell Sci., 2012, 125(Pt 6), jcs.097576. doi: 10.1242/jcs.097576 PMID: 22328515
- Franchini, L.; Carrano, N.; Di Luca, M.; Gardoni, F. Synaptic GluN2A-containing NMDA receptors: From physiology to pathological synaptic plasticity. Int. J. Mol. Sci., 2020, 21(4), 1538. doi: 10.3390/ijms21041538 PMID: 32102377
- Shipton, O.A.; Paulsen, O. GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1633, 2013, 369. doi: 10.1098/rstb.2013.0163 PMID: 24298164
- Hardingham, G.E.; Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci., 2010, 11(10), 682-696. doi: 10.1038/nrn2911 PMID: 20842175
- Gebhardt, C.; Cull-Candy, S.G. Lithium acts as a potentiator of AMPAR currents in hippocampal CA1 cells by selectively increasing channel open probability. J. Physiol., 2010, 588(20), 3933-3941. doi: 10.1113/jphysiol.2010.195115 PMID: 20807790
- Man, H.Y. GluA2-lacking, calcium-permeable AMPA receptors inducers of plasticity? Curr. Opin. Neurobiol., 2011, 21(2), 291-298. doi: 10.1016/j.conb.2011.01.001 PMID: 21295464
- Sourial-Bassillious, N.; Rydelius, P.A.; Aperia, A.; Aizman, O. Glutamate-mediated calcium signaling: A potential target for lithium action. Neuroscience, 2009, 161(4), 1126-1134. doi: 10.1016/j.neuroscience.2009.04.013 PMID: 19362133
- Borroto-Escuela, D.O.; Tarakanov, A.O.; Brito, I.; Fuxe, K. Glutamate heteroreceptor complexes in the brain. Pharmacol. Rep., 2018, 70(5), 936-950. doi: 10.1016/j.pharep.2018.04.002 PMID: 30103174
- Spampinato, S.F.; Copani, A.; Nicoletti, F.; Sortino, M.A.; Caraci, F. Metabotropic glutamate receptors in glial cells: A new potential target for neuroprotection? Front. Mol. Neurosci., 2018, 11, 414. doi: 10.3389/fnmol.2018.00414 PMID: 30483053
- De Bundel, D.; Schallier, A.; Loyens, E.; Fernando, R.; Miyashita, H.; Van Liefferinge, J.; Vermoesen, K.; Bannai, S.; Sato, H.; Michotte, Y.; Smolders, I.; Massie, A. Loss of system x(c)- does not induce oxidative stress but decreases extracellular glutamate in hippocampus and influences spatial working memory and limbic seizure susceptibility. J. Neurosci., 2011, 31(15), 5792-5803. doi: 10.1523/JNEUROSCI.5465-10.2011 PMID: 21490221
- Léveillé, F.; gaamouch, F.E.; Gouix, E.; Lecocq, M.; Lobner, D.; Nicole, O.; Buisson, A. Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J., 2008, 22(12), 4258-4271. doi: 10.1096/fj.08-107268 PMID: 18711223
- Liu, Y.; Wong, T.P.; Aarts, M.; Rooyakkers, A.; Liu, L.; Lai, T.W.; Wu, D.C.; Lu, J.; Tymianski, M.; Craig, A.M.; Wang, Y.T. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J. Neurosci., 2007, 27(11), 2846-2857. doi: 10.1523/JNEUROSCI.0116-07.2007 PMID: 17360906
- Parekh, P.K.; Becker-Krail, D.; Sundaravelu, P.; Ishigaki, S.; Okado, H.; Sobue, G.; Huang, Y.; McClung, C.A. Altered GluA1 (Gria1) Function and Accumbal Synaptic Plasticity in the ClockΔ19 Model of Bipolar Mania. Biol. Psychiatry, 2018, 84(11), 817-826. doi: 10.1016/j.biopsych.2017.06.022 PMID: 28780133
- Xiao, D.; Liu, L.; Li, Y.; Ruan, J.; Wang, H.; Licorisoflavan, A. Licorisoflavan A Exerts Antidepressant-Like Effect in Mice: Involvement of BDNF-TrkB Pathway and AMPA Receptors. Neurochem. Res., 2019, 44(9), 2044-2056. doi: 10.1007/s11064-019-02840-2 PMID: 31278631
- Jacot-Descombes, S.; Keshav, N.U.; Dickstein, D.L.; Wicinski, B.; Janssen, W.G.M.; Hiester, L.L.; Sarfo, E.K.; Warda, T.; Fam, M.M.; Harony-Nicolas, H.; Buxbaum, J.D.; Hof, P.R.; Varghese, M. Altered synaptic ultrastructure in the prefrontal cortex of Shank3-deficient rats. Mol. Autism, 2020, 11(1), 89. doi: 10.1186/s13229-020-00393-8 PMID: 33203459
- Bourne, J.; Harris, K.M. Do thin spines learn to be mushroom spines that remember? Curr. Opin. Neurobiol., 2007, 17(3), 381-386. doi: 10.1016/j.conb.2007.04.009 PMID: 17498943
- Bosch, M.; Hayashi, Y. Structural plasticity of dendritic spines. Curr. Opin. Neurobiol., 2012, 22(3), 383-388. doi: 10.1016/j.conb.2011.09.002 PMID: 21963169
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; Garner, P.; Holgate, S.T.; Howells, D.W.; Karp, N.A.; Lazic, S.E.; Lidster, K.; MacCallum, C.J.; Macleod, M.; Pearl, E.J.; Petersen, O.H.; Rawle, F.; Reynolds, P.; Rooney, K.; Sena, E.S.; Silberberg, S.D.; Steckler, T.; Würbel, H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Br. J. Pharmacol., 2020, 177(16), 3617-3624. doi: 10.1111/bph.15193 PMID: 32662519
Supplementary files
