Chronic Lithium Treatment Alters NMDA and AMPA Receptor Synaptic Availability and Dendritic Spine Organization in the Rat Hippocampus


Cite item

Full Text

Abstract

Background:The mechanisms underlying the action of lithium (LiCl) in bipolar disorder (BD) are still far from being completely understood. Previous evidence has revealed that BD is characterized by glutamate hyperexcitability, suggesting that LiCl may act, at least partially, by toning down glutamatergic signaling abnormalities.

Objective:In this study, taking advantage of western blot and confocal microscopy, we used a combination of integrative molecular and morphological approaches in rats exposed to repeated administration of LiCl at a therapeutic dose (between 0.6 and 1.2 mmol/l) and sacrificed at two different time points, i.e., 24 hours and 7 days after the last exposure.

Results:We report that repeated LiCl treatment activates multiple, parallel, but also converging forms of compensatory neuroplasticity related to glutamatergic signaling. More specifically, LiCl promoted a wave of neuroplasticity in the hippocampus, involving the synaptic recruitment of GluN2A-containing NMDA receptors, GluA1-containing AMPA receptors, and the neurotrophin BDNF that are indicative of a more plastic spine. The latter is evidenced by morphological analyses showing changes in dendritic spine morphology, such as increased length and head diameter of such spines. These changes may counteract the potentially negative extra-synaptic movements of GluN2B-containing NMDA receptors as well as the increase in the formation of GluA2-lacking Ca2+-permeable AMPA receptors.

Conclusion:Our findings highlight a previously unknown cohesive picture of the glutamatergic implications of LiCl action that persist long after the end of its administration, revealing for the first time a profound and persistent reorganization of the glutamatergic postsynaptic density receptor composition and structure.

About the authors

Lucia Caffino

Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti, Università degli Studi di Milano

Email: info@benthamscience.net

Giorgia Targa

Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano

Email: info@benthamscience.net

Anne Mallien

Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University

Email: info@benthamscience.net

Francesca Mottarlini

Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti, Università degli Studi di Milano

Email: info@benthamscience.net

Beatrice Rizzi

Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti, Università degli Studi di Milano

Email: info@benthamscience.net

Judith Homberg

Department of Cognitive Neuroscience, Division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre

Email: info@benthamscience.net

Peter Gass

Department of Psychiatry and Psychotherapy, RG Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University

Email: info@benthamscience.net

Fabio Fumagalli

Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti, Università degli Studi di Milano

Author for correspondence.
Email: info@benthamscience.net

References

  1. Young, A.H.; MacPherson, H. Detection of bipolar disorder. Br. J. Psychiatry, 2011, 199(1), 3-4. doi: 10.1192/bjp.bp.110.089128 PMID: 21719873
  2. Kavalali, E.T.; Monteggia, L.M. Targeting homeostatic synaptic plasticity for treatment of mood disorders. Neuron, 2020, 106(5), 715-726. doi: 10.1016/j.neuron.2020.05.015 PMID: 32497508
  3. Vieta, E.; Valentí, M. Pharmacological management of bipolar depression: acute treatment, maintenance, and prophylaxis. CNS Drugs, 2013, 27(7), 515-529. doi: 10.1007/s40263-013-0073-y PMID: 23749421
  4. Malhi, G.S.; Outhred, T. Therapeutic mechanisms of lithium in bipolar disorder: Recent advances and current understanding. CNS Drugs, 2016, 30(10), 931-949. doi: 10.1007/s40263-016-0380-1 PMID: 27638546
  5. Zanni, G.; Michno, W.; Di Martino, E.; Tjärnlund-Wolf, A.; Pettersson, J.; Mason, C.E.; Hellspong, G.; Blomgren, K.; Hanrieder, J. Lithium accumulates in neurogenic brain regions as revealed by high resolution ion imaging. Sci. Rep., 2017, 7(1), 40726. doi: 10.1038/srep40726 PMID: 28098178
  6. Stout, J.; Hozer, F.; Coste, A.; Mauconduit, F.; Djebrani-Oussedik, N.; Sarrazin, S.; Poupon, J.; Meyrel, M.; Romanzetti, S.; Etain, B.; Rabrait-Lerman, C.; Houenou, J.; Bellivier, F.; Duchesnay, E.; Boumezbeur, F. Accumulation of lithium in the hippocampus of patients with bipolar disorder: A lithium-7 magnetic resonance imaging study at 7 tesla. Biol. Psychiatry, 2020, 88(5), 426-433. doi: 10.1016/j.biopsych.2020.02.1181 PMID: 32340717
  7. Hajek, T.; Kopecek, M.; Höschl, C.; Alda, M. Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. J. Psychiatry Neurosci., 2012, 37(5), 333-343. doi: 10.1503/jpn.110143 PMID: 22498078
  8. Michael, N.; Erfurth, A.; Ohrmann, P.; Gössling, M.; Arolt, V.; Heindel, W.; Pfleiderer, B. Acute mania is accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefrontal cortex. Psychopharmacology (Berl.), 2003, 168(3), 344-346. doi: 10.1007/s00213-003-1440-z PMID: 12684737
  9. Öngür, D.; Jensen, J.E.; Prescot, A.P.; Stork, C.; Lundy, M.; Cohen, B.M.; Renshaw, P.F. Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania. Biol. Psychiatry, 2008, 64(8), 718-726. doi: 10.1016/j.biopsych.2008.05.014 PMID: 18602089
  10. Lan, M.J.; McLoughlin, G.A.; Griffin, J.L.; Tsang, T.M.; Huang, J.T.J.; Yuan, P.; Manji, H.; Holmes, E.; Bahn, S. Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder. Mol. Psychiatry, 2009, 14(3), 269-279. doi: 10.1038/sj.mp.4002130 PMID: 18256615
  11. Chitty, K.M.; Lagopoulos, J.; Lee, R.S.C.; Hickie, I.B.; Hermens, D.F. A systematic review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity in bipolar disorder. Eur. Neuropsychopharmacol., 2013, 23(11), 1348-1363. doi: 10.1016/j.euroneuro.2013.07.007 PMID: 23968965
  12. Mertens, J.; Wang, Q.W.; Kim, Y.; Yu, D.X.; Pham, S.; Yang, B.; Zheng, Y.; Diffenderfer, K.E.; Zhang, J.; Soltani, S.; Eames, T.; Schafer, S.T.; Boyer, L.; Marchetto, M.C.; Nurnberger, J.I.; Calabrese, J.R.; Oedegaard, K.J.; McCarthy, M.J.; Zandi, P.P.; Alda, M.; Nievergelt, C.M.; Mi, S.; Brennand, K.J.; Kelsoe, J.R.; Gage, F.H.; Yao, J. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature, 2015, 527(7576), 95-99. doi: 10.1038/nature15526 PMID: 26524527
  13. Nonaka, S.; Hough, C.J.; Chuang, D.M. Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx. Proc. Natl. Acad. Sci. USA, 1998, 95(5), 2642-2647. doi: 10.1073/pnas.95.5.2642 PMID: 9482940
  14. Gideons, E.S.; Lin, P.Y.; Mahgoub, M.; Kavalali, E.T.; Monteggia, L.M. Chronic lithium treatment elicits its antimanic effects via BDNF-TrkB dependent synaptic downscaling. eLife, 2017, 6, e25480. doi: 10.7554/eLife.25480 PMID: 28621662
  15. Tang, W.; Cory, B.; Lim, K.L.; Fivaz, M. The mood stabilizer lithium slows down synaptic vesicle cycling at glutamatergic synapses. Neuromolecular Med., 2023, 25(1), 125-135. doi: 10.1007/s12017-022-08729-8 PMID: 36436129
  16. Liu, Z.; Song, D.; Yan, E.; Verkhratsky, A.; Peng, L. Chronic treatment with anti-bipolar drugs suppresses glutamate release from astroglial cultures. Amino Acids, 2015, 47(5), 1045-1051. doi: 10.1007/s00726-015-1936-y PMID: 25676933
  17. Uezato, A.; Meador-Woodruff, J.H.; McCullumsmith, R.E. Vesicular glutamate transporter mRNA expression in the medial temporal lobe in major depressive disorder, bipolar disorder, and schizophrenia. Bipolar Disord., 2009, 11(7), 711-725. doi: 10.1111/j.1399-5618.2009.00752.x PMID: 19839996
  18. Eastwood, S.L.; Harrison, P.J. Markers of glutamate synaptic transmission and plasticity are increased in the anterior cingulate cortex in bipolar disorder. Biol. Psychiatry, 2010, 67(11), 1010-1016. doi: 10.1016/j.biopsych.2009.12.004 PMID: 20079890
  19. Dixon, J.F.; Hokin, L.E. Lithium acutely inhibits and chronically up-regulates and stabilizes glutamate uptake by presynaptic nerve endings in mouse cerebral cortex. Proc. Natl. Acad. Sci. USA, 1998, 95(14), 8363-8368. doi: 10.1073/pnas.95.14.8363 PMID: 9653192
  20. Du, J.; Gray, N.A.; Falke, C.A.; Chen, W.; Yuan, P.; Szabo, S.T.; Einat, H.; Manji, H.K. Modulation of synaptic plasticity by antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic expression. J. Neurosci., 2004, 24(29), 6578-6589. doi: 10.1523/JNEUROSCI.1258-04.2004 PMID: 15269270
  21. Khayachi, A.; Ase, A.; Liao, C.; Kamesh, A.; Kuhlmann, N.; Schorova, L.; Chaumette, B.; Dion, P.; Alda, M.; Séguéla, P.; Rouleau, G.; Milnerwood, A. Chronic lithium treatment alters the excitatory/inhibitory balance of synaptic networks and reduces mGluR5–PKC signalling in mouse cortical neurons. J. Psychiatry Neurosci., 2021, 46(3), E402-E414. doi: 10.1503/jpn.200185 PMID: 34077150
  22. Roberts-Wolfe, D.; Kalivas, P. Glutamate transporter GLT-1 as a therapeutic target for substance use disorders. CNS Neurol. Disord. Drug Targets, 2015, 14(6), 745-756. doi: 10.2174/1871527314666150529144655 PMID: 26022265
  23. Bridges, R.; Lutgen, V.; Lobner, D.; Baker, D.A. Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling. Pharmacol. Rev., 2012, 64(3), 780-802. doi: 10.1124/pr.110.003889 PMID: 22759795
  24. Vickers, C.A.; Stephens, B.; Bowen, J.; Arbuthnott, G.W.; Grant, S.G.N.; Ingham, C.A. Neurone specific regulation of dendritic spines in vivo by post synaptic density 95 protein (PSD-95). Brain Res., 2006, 1090(1), 89-98. doi: 10.1016/j.brainres.2006.03.075 PMID: 16677619
  25. Haas, K.T.; Compans, B.; Letellier, M.; Bartol, T.M.; Grillo-Bosch, D.; Sejnowski, T.J.; Sainlos, M.; Choquet, D.; Thoumine, O.; Hosy, E. Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. eLife, 2018, 7, e31755. doi: 10.7554/eLife.31755 PMID: 30044218
  26. Blacker, C.J.; Lewis, C.P.; Frye, M.A.; Veldic, M. Metabotropic glutamate receptors as emerging research targets in bipolar disorder. Psychiatry Res., 2017, 257, 327-337. doi: 10.1016/j.psychres.2017.07.059 PMID: 28800512
  27. Yasuda, R.; Hayashi, Y.; Hell, J.W. CαMKII: A central molecular organizer of synaptic plasticity, learning and memory. Nat. Rev. Neurosci., 2022, 23(11), 666-682. doi: 10.1038/s41583-022-00624-2 PMID: 36056211
  28. Martin, J.L.; Finsterwald, C. Cooperation between BDNF and glutamate in the regulation of synaptic transmission and neuronal development. Commun. Integr. Biol., 2011, 4(1), 14-16. doi: 10.4161/cib.13761 PMID: 21509169
  29. Popović, N.; Stojiljković, V.; Pejić, S.; Todorović, A.; Pavlović, I.; Gavrilović, L.; Pajović, S.B. Modulation of hippocampal antioxidant defense system in chronically stressed rats by lithium. Oxid. Med. Cell. Longev., 2019, 2019, 1-11. doi: 10.1155/2019/8745376 PMID: 30911352
  30. Wijeratne, C.; Draper, B. Reformulation of current recommendations for target serum lithium concentration according to clinical indication, age and physical comorbidity. Aust. N. Z. J. Psychiatry, 2011, 45(12), 1026-1032. doi: 10.3109/00048674.2011.610296 PMID: 21961481
  31. Gass, P.; Prior, P.; Kiessling, M. Correlation stress protein between seizure intensity and expression after limbic epilepsy in the rat brain. Neuroscience, 1995, 65(l), 27-36. doi: 10.1016/0306-4522(95)92049-P PMID: 7753400
  32. Caffino, L.; Giannotti, G.; Messa, G.; Mottarlini, F.; Fumagalli, F. Repeated cocaine exposure dysregulates BDNF expression and signaling in the mesocorticolimbic pathway of the adolescent rat. World J. Biol. Psychiatry, 2019, 20(7), 531-544. doi: 10.1080/15622975.2018.1433328 PMID: 29380665
  33. Piva, A.; Caffino, L.; Padovani, L.; Pintori, N.; Mottarlini, F.; Sferrazza, G.; Paolone, G.; Fumagalli, F.; Chiamulera, C. The metaplastic effects of ketamine on sucrose renewal and contextual memory reconsolidation in rats. Behav. Brain Res., 2020, 379, 112347. doi: 10.1016/j.bbr.2019.112347 PMID: 31706797
  34. Caffino, L.; Verheij, M.M.M.; Roversi, K.; Targa, G.; Mottarlini, F.; Popik, P.; Nikiforuk, A.; Golebiowska, J.; Fumagalli, F.; Homberg, J.R. Hypersensitivity to amphetamine’s psychomotor and reinforcing effects in serotonin transporter knockout rats: Glutamate in the nucleus accumbens. Br. J. Pharmacol., 2020, 177(19), 4532-4547. doi: 10.1111/bph.15211 PMID: 32721055
  35. Caffino, L.; Giannotti, G.; Malpighi, C.; Racagni, G.; Fumagalli, F. Short-term withdrawal from developmental exposure to cocaine activates the glucocorticoid receptor and alters spine dynamics. Eur. Neuropsychopharmacol., 2015, 25(10), 1832-1841. doi: 10.1016/j.euroneuro.2015.05.002 PMID: 26004981
  36. Mottarlini, F.; Targa, G.; Bottan, G.; Tarenzi, B.; Fumagalli, F.; Caffino, L. Cortical reorganization of the glutamate synapse in the activity‐based anorexia rat model: Impact on cognition. J. Neurochem., 2022, 161(4), 350-365. doi: 10.1111/jnc.15605 PMID: 35257377
  37. Harris, K.M.; Jensen, F.E.; Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation published erratum appears in J Neurosci 1992; 12(8): Following table of contents. J. Neurosci., 1992, 12(7), 2685-2705. doi: 10.1523/JNEUROSCI.12-07-02685.1992 PMID: 1613552
  38. Gardoni, F.; Di Luca, M.; Malinverno, M.; Marcello, E.; Verpelli, C.; Sala, C.; Di Luca, M. The neuropeptide PACAP38 induces dendritic spine remodeling through ADAM10/N-Cadherin signaling pathway. J. Cell Sci., 2012, 125(Pt 6), jcs.097576. doi: 10.1242/jcs.097576 PMID: 22328515
  39. Franchini, L.; Carrano, N.; Di Luca, M.; Gardoni, F. Synaptic GluN2A-containing NMDA receptors: From physiology to pathological synaptic plasticity. Int. J. Mol. Sci., 2020, 21(4), 1538. doi: 10.3390/ijms21041538 PMID: 32102377
  40. Shipton, O.A.; Paulsen, O. GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1633, 2013, 369. doi: 10.1098/rstb.2013.0163 PMID: 24298164
  41. Hardingham, G.E.; Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci., 2010, 11(10), 682-696. doi: 10.1038/nrn2911 PMID: 20842175
  42. Gebhardt, C.; Cull-Candy, S.G. Lithium acts as a potentiator of AMPAR currents in hippocampal CA1 cells by selectively increasing channel open probability. J. Physiol., 2010, 588(20), 3933-3941. doi: 10.1113/jphysiol.2010.195115 PMID: 20807790
  43. Man, H.Y. GluA2-lacking, calcium-permeable AMPA receptors — inducers of plasticity? Curr. Opin. Neurobiol., 2011, 21(2), 291-298. doi: 10.1016/j.conb.2011.01.001 PMID: 21295464
  44. Sourial-Bassillious, N.; Rydelius, P.A.; Aperia, A.; Aizman, O. Glutamate-mediated calcium signaling: A potential target for lithium action. Neuroscience, 2009, 161(4), 1126-1134. doi: 10.1016/j.neuroscience.2009.04.013 PMID: 19362133
  45. Borroto-Escuela, D.O.; Tarakanov, A.O.; Brito, I.; Fuxe, K. Glutamate heteroreceptor complexes in the brain. Pharmacol. Rep., 2018, 70(5), 936-950. doi: 10.1016/j.pharep.2018.04.002 PMID: 30103174
  46. Spampinato, S.F.; Copani, A.; Nicoletti, F.; Sortino, M.A.; Caraci, F. Metabotropic glutamate receptors in glial cells: A new potential target for neuroprotection? Front. Mol. Neurosci., 2018, 11, 414. doi: 10.3389/fnmol.2018.00414 PMID: 30483053
  47. De Bundel, D.; Schallier, A.; Loyens, E.; Fernando, R.; Miyashita, H.; Van Liefferinge, J.; Vermoesen, K.; Bannai, S.; Sato, H.; Michotte, Y.; Smolders, I.; Massie, A. Loss of system x(c)- does not induce oxidative stress but decreases extracellular glutamate in hippocampus and influences spatial working memory and limbic seizure susceptibility. J. Neurosci., 2011, 31(15), 5792-5803. doi: 10.1523/JNEUROSCI.5465-10.2011 PMID: 21490221
  48. Léveillé, F.; gaamouch, F.E.; Gouix, E.; Lecocq, M.; Lobner, D.; Nicole, O.; Buisson, A. Neuronal viability is controlled by a functional relation between synaptic and extrasynaptic NMDA receptors. FASEB J., 2008, 22(12), 4258-4271. doi: 10.1096/fj.08-107268 PMID: 18711223
  49. Liu, Y.; Wong, T.P.; Aarts, M.; Rooyakkers, A.; Liu, L.; Lai, T.W.; Wu, D.C.; Lu, J.; Tymianski, M.; Craig, A.M.; Wang, Y.T. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J. Neurosci., 2007, 27(11), 2846-2857. doi: 10.1523/JNEUROSCI.0116-07.2007 PMID: 17360906
  50. Parekh, P.K.; Becker-Krail, D.; Sundaravelu, P.; Ishigaki, S.; Okado, H.; Sobue, G.; Huang, Y.; McClung, C.A. Altered GluA1 (Gria1) Function and Accumbal Synaptic Plasticity in the ClockΔ19 Model of Bipolar Mania. Biol. Psychiatry, 2018, 84(11), 817-826. doi: 10.1016/j.biopsych.2017.06.022 PMID: 28780133
  51. Xiao, D.; Liu, L.; Li, Y.; Ruan, J.; Wang, H.; Licorisoflavan, A. Licorisoflavan A Exerts Antidepressant-Like Effect in Mice: Involvement of BDNF-TrkB Pathway and AMPA Receptors. Neurochem. Res., 2019, 44(9), 2044-2056. doi: 10.1007/s11064-019-02840-2 PMID: 31278631
  52. Jacot-Descombes, S.; Keshav, N.U.; Dickstein, D.L.; Wicinski, B.; Janssen, W.G.M.; Hiester, L.L.; Sarfo, E.K.; Warda, T.; Fam, M.M.; Harony-Nicolas, H.; Buxbaum, J.D.; Hof, P.R.; Varghese, M. Altered synaptic ultrastructure in the prefrontal cortex of Shank3-deficient rats. Mol. Autism, 2020, 11(1), 89. doi: 10.1186/s13229-020-00393-8 PMID: 33203459
  53. Bourne, J.; Harris, K.M. Do thin spines learn to be mushroom spines that remember? Curr. Opin. Neurobiol., 2007, 17(3), 381-386. doi: 10.1016/j.conb.2007.04.009 PMID: 17498943
  54. Bosch, M.; Hayashi, Y. Structural plasticity of dendritic spines. Curr. Opin. Neurobiol., 2012, 22(3), 383-388. doi: 10.1016/j.conb.2011.09.002 PMID: 21963169
  55. Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; Garner, P.; Holgate, S.T.; Howells, D.W.; Karp, N.A.; Lazic, S.E.; Lidster, K.; MacCallum, C.J.; Macleod, M.; Pearl, E.J.; Petersen, O.H.; Rawle, F.; Reynolds, P.; Rooney, K.; Sena, E.S.; Silberberg, S.D.; Steckler, T.; Würbel, H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Br. J. Pharmacol., 2020, 177(16), 3617-3624. doi: 10.1111/bph.15193 PMID: 32662519

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers