Long-Term Implicit Epigenetic Stress Information in the Enteric Nervous System and its Contribution to Developing and Perpetuating IBS
- Authors: Noemi C.1, Bob P.2, Bókkon I.3
-
Affiliations:
- , National University of Public Services
- Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry & UHSL, First Faculty of Medicine, and Department of Psychiatry, Faculty of Medicine Pilsen, Charles University
- , Psychosomatic Outpatient Clinics
- Issue: Vol 22, No 13 (2024)
- Pages: 2100-2112
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644466
- DOI: https://doi.org/10.2174/1570159X22666240507095700
- ID: 644466
Cite item
Full Text
Abstract
:Psychiatric and mood disorders may play an important role in the development and persistence of irritable bowel syndrome (IBS). Previously, we hypothesized that stress-induced implicit memories may persist throughout life via epigenetic processes in the enteric nervous system (ENS), independent of the central nervous system (CNS). These epigenetic memories in the ENS may contribute to developing and perpetuating IBS. Here, we further elaborate on our earlier hypothesis. That is, during pregnancy, maternal prenatal stresses perturb the HPA axis and increase circulating cortisol levels, which can affect the maternal gut microbiota. Maternal cortisol can cross the placental barrier and increase cortisol-circulating levels in the fetus. This leads to dysregulation of the HPA axis, affecting the gut microbiota, microbial metabolites, and intestinal permeability in the fetus. Microbial metabolites, such as short-chain fatty acids (which also regulate the development of fetal ENS), can modulate a range of diseases by inducing epigenetic changes. These mentioned processes suggest that stress-related, implicit, long-term epigenetic memories may be programmed into the fetal ENS during pregnancy. Subsequently, this implicit epigenetic stress information from the fetal ENS could be conveyed to the CNS through the bidirectional microbiota-gut-brain axis (MGBA), leading to perturbed functional connectivity among various brain networks and the dysregulation of affective and pain processes.
About the authors
Császár-Nagy Noemi
, National University of Public Services
Email: info@benthamscience.net
Petr Bob
Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry & UHSL, First Faculty of Medicine, and Department of Psychiatry, Faculty of Medicine Pilsen, Charles University
Email: info@benthamscience.net
István Bókkon
, Psychosomatic Outpatient Clinics
Author for correspondence.
Email: info@benthamscience.net
References
- Chen, J.; Barandouzi, Z.A.; Lee, J.; Xu, W.; Feng, B.; Starkweather, A.; Cong, X. Psychosocial and sensory factors contribute to self-reported pain and quality of life in young adults with irritable bowel syndrome. Pain Manag. Nurs., 2022, 23(5), 646-654. doi: 10.1016/j.pmn.2021.12.004 PMID: 35074280
- Tripathi, R.; Mehrotra, S. Irritable bowel syndrome and its psychological management. Ind. Psychiatry J., 2015, 24(1), 91-93. doi: 10.4103/0972-6748.160947 PMID: 26257492
- van Tilburg, M.A.L.; Palsson, O.S.; Whitehead, W.E. Which psychological factors exacerbate irritable bowel syndrome? Development of a comprehensive model. J. Psychosom. Res., 2013, 74(6), 486-492. doi: 10.1016/j.jpsychores.2013.03.004 PMID: 23731745
- Sharkey, K.A.; Mawe, G.M. The enteric nervous system. Physiol. Rev., 2023, 103(2), 1487-1564. doi: 10.1152/physrev.00018.2022 PMID: 36521049
- Furness, J.B. Comparative and evolutionary aspects of the digestive system and its enteric nervous system control. Adv. Exp. Med. Biol., 2022, 1383, 165-177. doi: 10.1007/978-3-031-05843-1_16 PMID: 36587156
- Green, S.A.; Uy, B.R.; Bronner, M.E. Ancient evolutionary origin of vertebrate enteric neurons from trunk-derived neural crest. Nature, 2017, 544(7648), 88-91. doi: 10.1038/nature21679 PMID: 28321127
- Furness, J.B.; Stebbing, M.J. The first brain: Species comparisons and evolutionary implications for the enteric and central nervous systems. Neurogastroenterol. Motil., 2018, 30(2), e13234. doi: 10.1111/nmo.13234 PMID: 29024273
- Császár-Nagy, N.; Bókkon, I. Hypnotherapy and IBS: Implicit, long-term stress memory in the ENS? Heliyon, 2023, 9(1), e12751. doi: 10.1016/j.heliyon.2022.e12751 PMID: 36685398
- Mao, C.P.; Chen, F.R.; Huo, J.H.; Zhang, L.; Zhang, G.R.; Zhang, B.; Zhou, X.Q. Altered resting‐state functional connectivity and effective connectivity of the habenula in irritable bowel syndrome: A cross‐sectional and machine learning study. Hum. Brain Mapp., 2020, 41(13), 3655-3666. doi: 10.1002/hbm.25038 PMID: 32488929
- Weng, Y.; Qi, R.; Liu, C.; Ke, J.; Xu, Q.; Wang, F.; Zhang, L.J.; Lu, G.M. Disrupted functional connectivity density in irritable bowel syndrome patients. Brain Imaging Behav., 2017, 11(6), 1812-1822. doi: 10.1007/s11682-016-9653-z PMID: 27848148
- Bhatt, R.R.; Gupta, A.; Labus, J.S.; Zeltzer, L.K.; Tsao, J.C.; Shulman, R.J.; Tillisch, K. Altered brain structure and functional connectivity and its relation to pain perception in girls with irritable bowel syndrome. Psychosom. Med., 2019, 81(2), 146-154. doi: 10.1097/PSY.0000000000000655 PMID: 30615602
- Nisticò, V.; Rossi, R.E.; DArrigo, A.M.; Priori, A.; Gambini, O.; Demartini, B. Functional neuroimaging in irritable bowel syndrome: A systematic review highlights common brain alterations with functional movement disorders. J. Neurogastroenterol. Motil., 2022, 28(2), 185-203. doi: 10.5056/jnm21079 PMID: 35189600
- Qi, R.; Liu, C.; Weng, Y.; Xu, Q.; Chen, L.; Wang, F.; Zhang, L.J.; Lu, G.M. Disturbed interhemispheric functional connectivity rather than structural connectivity in irritable bowel syndrome. Front. Mol. Neurosci., 2016, 9, 141. doi: 10.3389/fnmol.2016.00141 PMID: 27999530
- Li, J.; He, P.; Lu, X.; Guo, Y.; Liu, M.; Li, G.; Ding, J. A resting-state functional magnetic resonance imaging study of whole-brain functional connectivity of voxel levels in patients with irritable bowel syndrome with depressive symptoms. J. Neurogastroenterol. Motil., 2021, 27(2), 248-256. doi: 10.5056/jnm20209 PMID: 33795543
- Martinou, E.; Stefanova, I.; Iosif, E.; Angelidi, A.M. Neurohormonal changes in the gut-brain axis and underlying neuroendocrine mechanisms following bariatric surgery. Int. J. Mol. Sci., 2022, 23(6), 3339. doi: 10.3390/ijms23063339 PMID: 35328759
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol., 2015, 28(2), 203-209. PMID: 25830558
- Muhammad, F.; Fan, B.; Wang, R.; Ren, J.; Jia, S.; Wang, L.; Chen, Z.; Liu, X.A. The molecular gut-brain axis in early brain development. Int. J. Mol. Sci., 2022, 23(23), 15389. doi: 10.3390/ijms232315389 PMID: 36499716
- Sarubbo, F.; Cavallucci, V.; Pani, G. The influence of gut microbiota on neurogenesis: Evidence and hopes. Cells, 2022, 11(3), 382. doi: 10.3390/cells11030382 PMID: 35159192
- Song, J.G.; Yu, M.S.; Lee, B.; Lee, J.; Hwang, S.H.; Na, D.; Kim, H.W. Analysis methods for the gut microbiome in neuropsychiatric and neurodegenerative disorders. Comput. Struct. Biotechnol. J., 2022, 20, 1097-1110. doi: 10.1016/j.csbj.2022.02.024 PMID: 35317228
- Wachsmuth, H.R.; Weninger, S.N.; Duca, F.A. Role of the gutbrain axis in energy and glucose metabolism. Exp. Mol. Med., 2022, 54(4), 377-392. doi: 10.1038/s12276-021-00677-w PMID: 35474341
- Chakrabarti, A.; Geurts, L.; Hoyles, L.; Iozzo, P.; Kraneveld, A.D.; La Fata, G.; Miani, M.; Patterson, E.; Pot, B.; Shortt, C.; Vauzour, D. The microbiota-gut-brain axis: Pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cell. Mol. Life Sci., 2022, 79(2), 80. doi: 10.1007/s00018-021-04060-w PMID: 35044528
- Rutsch, A.; Kantsjö, J.B.; Ronchi, F. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol., 2020, 11, 604179. doi: 10.3389/fimmu.2020.604179 PMID: 33362788
- Karl, J.P.; Hatch, A.M.; Arcidiacono, S.M.; Pearce, S.C.; Feliciano, P.I.G.; Doherty, L.A.; Soares, J.W. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol., 2018, 9, 2013. doi: 10.3389/fmicb.2018.02013 PMID: 30258412
- Gebrayel, P.; Nicco, C.; Al Khodor, S.; Bilinski, J.; Caselli, E.; Comelli, E.M.; Egert, M.; Giaroni, C.; Karpinski, T.M.; Loniewski, I.; Mulak, A.; Reygner, J.; Samczuk, P.; Serino, M.; Sikora, M.; Terranegra, A.; Ufnal, M.; Villeger, R.; Pichon, C.; Konturek, P.; Edeas, M. Microbiota medicine: Towards clinical revolution. J. Transl. Med., 2022, 20(1), 111. doi: 10.1186/s12967-022-03296-9 PMID: 35255932
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; Aadil, R.M. Human gut microbiota in health and disease: Unveiling the relationship. Front. Microbiol., 2022, 13, 999001. doi: 10.3389/fmicb.2022.999001 PMID: 36225386
- Chidambaram, S.B.; Essa, M.M.; Rathipriya, A.G.; Bishir, M.; Ray, B.; Mahalakshmi, A.M.; Tousif, A.H.; Sakharkar, M.K.; Kashyap, R.S.; Friedland, R.P.; Monaghan, T.M. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol. Ther., 2022, 231, 107988. doi: 10.1016/j.pharmthera.2021.107988 PMID: 34536490
- Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis., 2015, 26, 26191. PMID: 25651997
- Scriven, M.; Dinan, T.; Cryan, J.; Wall, M. Neuropsychiatric disorders: Influence of gut microbe to brain signalling. Diseases, 2018, 6(3), 78. doi: 10.3390/diseases6030078 PMID: 30200574
- Sandhu, K.V.; Sherwin, E.; Schellekens, H.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Feeding the microbiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Transl. Res., 2017, 179, 223-244. doi: 10.1016/j.trsl.2016.10.002 PMID: 27832936
- Socała, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Włodarczyk, M.; Zielińska, A.; Poleszak, E.; Fichna, J.; Wlaź, P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res., 2021, 172, 105840. doi: 10.1016/j.phrs.2021.105840 PMID: 34450312
- Zang, Y.; Lai, X.; Li, C.; Ding, D.; Wang, Y.; Zhu, Y. The role of gut microbiota in various neurological and psychiatric disorders-an evidence mapping based on quantified evidence. Mediators Inflamm., 2023, 2023, 1-16. doi: 10.1155/2023/5127157 PMID: 36816743
- Suganya, K.; Koo, B.S. Gut-brain axis: Role of gut microbiota on neurological disorders and how probiotics/prebiotics beneficially modulate microbial and immune pathways to improve brain functions. Int. J. Mol. Sci., 2020, 21(20), 7551. doi: 10.3390/ijms21207551 PMID: 33066156
- Abo-Shaban, T.; Sharna, S.S.; Hosie, S.; Lee, C.Y.Q.; Balasuriya, G.K.; McKeown, S.J.; Franks, A.E.; Yardin, H.E.L. Issues for patchy tissues: Defining roles for gut-associated lymphoid tissue in neurodevelopment and disease. J. Neural Transm., 2023, 130(3), 269-280. doi: 10.1007/s00702-022-02561-x PMID: 36309872
- Agustí, A.; Pardo, G.M.P.; Almela, L.I.; Campillo, I.; Maes, M.; Pérez, R.M.; Sanz, Y. Interplay between the gut-brain axis, obesity and cognitive function. Front. Neurosci., 2018, 12, 155. doi: 10.3389/fnins.2018.00155 PMID: 29615850
- Rudzki, L.; Maes, M. The microbiota-gut-immune-glia (MGIG) axis in major depression. Mol. Neurobiol., 2020, 57(10), 4269-4295. doi: 10.1007/s12035-020-01961-y PMID: 32700250
- Clapp, M.; Aurora, N.; Herrera, L.; Bhatia, M.; Wilen, E.; Wakefield, S. Gut microbiotas effect on mental health: The gut-brain axis. Clin. Pract., 2017, 7(4), 987. doi: 10.4081/cp.2017.987 PMID: 29071061
- Berk, M.; Williams, L.J.; Jacka, F.N.; ONeil, A.; Pasco, J.A.; Moylan, S.; Allen, N.B.; Stuart, A.L.; Hayley, A.C.; Byrne, M.L.; Maes, M. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med., 2013, 11(1), 200. doi: 10.1186/1741-7015-11-200 PMID: 24228900
- Maes, M.; Vasupanrajit, A.; Jirakran, K.; Klomkliew, P.; Chanchaem, P.; Tunvirachaisakul, C.; Plaimas, K.; Suratanee, A.; Payungporn, S. Adverse childhood experiences and reoccurrence of illness impact the gut microbiome, which affects suicidal behaviours and the phenome of major depression: Towards enterotypic phenotypes. Acta Neuropsychiatr., 2023, 35(6), 328-345. doi: 10.1017/neu.2023.21 PMID: 37052305
- Maes, M.; Yirmyia, R.; Noraberg, J.; Brene, S.; Hibbeln, J.; Perini, G.; Kubera, M.; Bob, P.; Lerer, B.; Maj, M. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab. Brain Dis., 2009, 24(1), 27-53. doi: 10.1007/s11011-008-9118-1 PMID: 19085093
- Rudzki, L.; Maes, M. From "Leaky Gut" to impaired glia-neuron communication in depression. Adv. Exp. Med. Biol., 2021, 1305, 129-155. doi: 10.1007/978-981-33-6044-0_9 PMID: 33834399
- Martínez, R.S.; Real, S.L.; García, G.A.P.; Cruz, T.E.; Jonapa, C.L.A.; Amedei, A.; García, A.M.M. Neuroinflammation, microbiota-gut-brain axis, and depression: The vicious circle. J. Integr. Neurosci., 2023, 22(3), 65. doi: 10.31083/j.jin2203065 PMID: 37258450
- Qin, H.Y.; Cheng, C.W.; Tang, X.D.; Bian, Z.X. Impact of psychological stress on irritable bowel syndrome. World J. Gastroenterol., 2014, 20(39), 14126-14131. doi: 10.3748/wjg.v20.i39.14126 PMID: 25339801
- Belei, O.; Basaca, D.G.; Olariu, L.; Pantea, M.; Bozgan, D.; Nanu, A.; Sîrbu, I.; Mărginean, O.; Enătescu, I. The interaction between stress and inflammatory bowel disease in pediatric and adult patients. J. Clin. Med., 2024, 13(5), 1361. doi: 10.3390/jcm13051361 PMID: 38592680
- Howland, R.H. Vagus nerve stimulation. Curr. Behav. Neurosci. Rep., 2014, 1(2), 64-73. doi: 10.1007/s40473-014-0010-5 PMID: 24834378
- Berthoud, H.R.; Neuhuber, W.L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci., 2000, 85(1-3), 1-17. doi: 10.1016/S1566-0702(00)00215-0 PMID: 11189015
- Forsythe, P.; Bienenstock, J.; Kunze, W.A. Vagal pathways for microbiome-brain-gut axis communication. Adv. Exp. Med. Biol., 2014, 817, 115-133. doi: 10.1007/978-1-4939-0897-4_5 PMID: 24997031
- Latorre, R.; Sternini, C.; Giorgio, D.R.; Meerveld, G.V.B. Enteroendocrine cells: A review of their role in braingut communication. Neurogastroenterol. Motil., 2016, 28(5), 620-630. doi: 10.1111/nmo.12754 PMID: 26691223
- Kanai, T.; Teratani, T. Role of the vagus nerve in the gut-brain axis: Development and maintenance of gut regulatory T cells via the liver-brain-gut vago-vagal reflex. Brain Nerve, 2022, 74(8), 971-977. PMID: 35941793
- Han, Y.; Wang, B.; Gao, H.; He, C.; Hua, R.; Liang, C.; Zhang, S.; Wang, Y.; Xin, S.; Xu, J. Vagus nerve and underlying impact on the gut microbiota-brain axis in behavior and neurodegenerative diseases. J. Inflamm. Res., 2022, 15, 6213-6230. doi: 10.2147/JIR.S384949 PMID: 36386584
- Chang, L.; Wei, Y.; Hashimoto, K. Braingutmicrobiota axis in depression: A historical overview and future directions. Brain Res. Bull., 2022, 182, 44-56. doi: 10.1016/j.brainresbull.2022.02.004 PMID: 35151796
- Garg, K.; Mohajeri, M.H. Potential effects of the most prescribed drugs on the microbiota-gut-brain-axis: A review. Brain Res. Bull., 2024, 207, 110883. doi: 10.1016/j.brainresbull.2024.110883 PMID: 38244807
- Vich Vila, A.; Collij, V.; Sanna, S.; Sinha, T.; Imhann, F.; Bourgonje, A.R.; Mujagic, Z.; Jonkers, D.M.A.E.; Masclee, A.A.M.; Fu, J.; Kurilshikov, A.; Wijmenga, C.; Zhernakova, A.; Weersma, R.K. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun., 2020, 11(1), 362. doi: 10.1038/s41467-019-14177-z PMID: 31953381
- Karakan, T.; Ozkul, C.; Akkol, K.E.; Bilici, S.; Sánchez, S.E.; Capasso, R. Gut-brain-microbiota axis: Antibiotics and functional gastrointestinal disorders. Nutrients, 2021, 13(2), 389. doi: 10.3390/nu13020389 PMID: 33513791
- Maier, L.; Pruteanu, M.; Kuhn, M.; Zeller, G.; Telzerow, A.; Anderson, E.E.; Brochado, A.R.; Fernandez, K.C.; Dose, H.; Mori, H.; Patil, K.R.; Bork, P.; Typas, A. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature, 2018, 555(7698), 623-628. doi: 10.1038/nature25979 PMID: 29555994
- Essmat, N.; Karádi, D.Á.; Zádor, F.; Király, K.; Fürst, S.; Khrasani, A.M. Insights into the current and possible future use of opioid antagonists in relation to opioid-induced constipation and dysbiosis. Molecules, 2023, 28(23), 7766. doi: 10.3390/molecules28237766 PMID: 38067494
- Bernabè, G.; Shalata, M.E.M.; Zatta, V.; Bellato, M.; Porzionato, A.; Castagliuolo, I.; Brun, P. Antibiotic treatment induces long-lasting effects on gut microbiota and the enteric nervous system in mice. Antibiotics, 2023, 12(6), 1000. doi: 10.3390/antibiotics12061000 PMID: 37370319
- Caparrós-Martín, J.A.; Lareu, R.R.; Ramsay, J.P.; Peplies, J.; Reen, F.J.; Headlam, H.A.; Ward, N.C.; Croft, K.D.; Newsholme, P.; Hughes, J.D.; OGara, F. Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism. Microbiome, 2017, 5(1), 95. doi: 10.1186/s40168-017-0312-4 PMID: 28793934
- Doestzada, M.; Vila, A.V.; Zhernakova, A.; Koonen, D.P.Y.; Weersma, R.K.; Touw, D.J.; Kuipers, F.; Wijmenga, C.; Fu, J. Pharmacomicrobiomics: A novel route towards personalized medicine? Protein Cell, 2018, 9(5), 432-445. doi: 10.1007/s13238-018-0547-2 PMID: 29705929
- Crişan, I.M.; Dumitraşcu, D.L. Irritable bowel syndrome: Peripheral mechanisms and therapeutic implications. Clujul Med., 2014, 87(2), 73-79. PMID: 26528001
- Saha, L. Irritable bowel syndrome: Pathogenesis, diagnosis, treatment, and evidence-based medicine. World J. Gastroenterol., 2014, 20(22), 6759-6773. doi: 10.3748/wjg.v20.i22.6759 PMID: 24944467
- Weaver, K.R.; Melkus, G.D.E.; Henderson, W.A. Irritable bowel syndrome. Am. J. Nurs., 2017, 117(6), 48-55. doi: 10.1097/01.NAJ.0000520253.57459.01 PMID: 28541989
- Lee, Y.J.; Park, K.S. Irritable bowel syndrome: Emerging paradigm in pathophysiology. World J. Gastroenterol., 2014, 20(10), 2456-2469. doi: 10.3748/wjg.v20.i10.2456 PMID: 24627583
- Chong, P.P.; Chin, V.K.; Looi, C.Y.; Wong, W.F.; Madhavan, P.; Yong, V.C. The microbiome and irritable bowel syndrome - A review on the pathophysiology, current research and future therapy. Front. Microbiol., 2019, 10, 1136. doi: 10.3389/fmicb.2019.01136 PMID: 31244784
- Oka, P.; Parr, H.; Barberio, B.; Black, C.J.; Savarino, E.V.; Ford, A.C. Global prevalence of irritable bowel syndrome according to Rome III or IV criteria: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol., 2020, 5(10), 908-917. doi: 10.1016/S2468-1253(20)30217-X PMID: 32702295
- Camilleri, M. Diagnosis and treatment of irritable bowel syndrome: A review. JAMA, 2021, 325(9), 865-877. doi: 10.1001/jama.2020.22532 PMID: 33651094
- Dinic, R.B.; Rajkovic, T.S.; Grgov, S.; Petrovic, G.; Zivkovic, V. Irritable bowel syndrome - From etiopathogenesis to therapy. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2018, 162(1), 1-9. doi: 10.5507/bp.2017.057 PMID: 29358788
- Rodiño-Janeiro, B.K.; Vicario, M.; Cotoner, A.C.; García, P.R.; Santos, J. A review of microbiota and irritable bowel syndrome: Future in therapies. Adv. Ther., 2018, 35(3), 289-310. doi: 10.1007/s12325-018-0673-5 PMID: 29498019
- Black, C.J.; Thakur, E.R.; Houghton, L.A.; Quigley, E.M.M.; Moayyedi, P.; Ford, A.C. Efficacy of psychological therapies for irritable bowel syndrome: Systematic review and network meta-analysis. Gut, 2020, 69(8), 1441-1451. doi: 10.1136/gutjnl-2020-321191 PMID: 32276950
- Grundmann, O.; Yoon, S.L. Irritable bowel syndrome: Epidemiology, diagnosis and treatment: An update for health‐care practitioners. J. Gastroenterol. Hepatol., 2010, 25(4), 691-699. doi: 10.1111/j.1440-1746.2009.06120.x PMID: 20074154
- Staudacher, H.M.; Walus, M.A.; Ford, A.C. Common mental disorders in irritable bowel syndrome: pathophysiology, management, and considerations for future randomised controlled trials. Lancet Gastroenterol. Hepatol., 2021, 6(5), 401-410. doi: 10.1016/S2468-1253(20)30363-0 PMID: 33587890
- Juruena, M.F.; Eror, F.; Cleare, A.J.; Young, A.H. The role of early life stress in HPA axis and anxiety. Adv. Exp. Med. Biol., 2020, 1191, 141-153. doi: 10.1007/978-981-32-9705-0_9 PMID: 32002927
- Distrutti, E.; Monaldi, L.; Ricci, P.; Fiorucci, S. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J. Gastroenterol., 2016, 22(7), 2219-2241. doi: 10.3748/wjg.v22.i7.2219 PMID: 26900286
- Occhipinti, K.; Smith, J. Irritable bowel syndrome: A review and update. Clin. Colon Rectal Surg., 2012, 25(1), 046-052. doi: 10.1055/s-0032-1301759 PMID: 23449495
- Kano, M.; Muratsubaki, T.; Van Oudenhove, L.; Morishita, J.; Yoshizawa, M.; Kohno, K.; Yagihashi, M.; Tanaka, Y.; Mugikura, S.; Dupont, P.; Ly, H.G.; Takase, K.; Kanazawa, M.; Fukudo, S. Altered brain and gut responses to corticotropin-releasing hormone (CRH) in patients with irritable bowel syndrome. Sci. Rep., 2017, 7(1), 12425. doi: 10.1038/s41598-017-09635-x PMID: 28963545
- Tarar, Z.I.; Farooq, U.; Zafar, Y.; Gandhi, M.; Raza, S.; Kamal, F.; Tarar, M.F.; Ghouri, Y.A. Burden of anxiety and depression among hospitalized patients with irritable bowel syndrome: A nationwide analysis. Ir. J. Med. Sci., 2023, 192(5), 2159-2166. doi: 10.1007/s11845-022-03258-6 PMID: 36593438
- Eijsbouts, C.; Zheng, T.; Kennedy, N.A.; Bonfiglio, F.; Anderson, C.A.; Moutsianas, L.; Holliday, J.; Shi, J.; Shringarpure, S.; Agee, M.; Aslibekyan, S.; Auton, A.; Bell, R.K.; Bryc, K.; Clark, S.K.; Elson, S.L.; Brant, K.; Fontanillas, P.; Furlotte, N.A.; Gandhi, P.M.; Heilbron, K.; Hicks, B.; Hinds, D.A.; Huber, K.E.; Jewett, E.M.; Jiang, Y.; Kleinman, A.; Lin, K-H.; Litterman, N.K.; Luff, M.K.; McCreight, J.C.; McIntyre, M.H.; McManus, K.F.; Mountain, J.L.; Mozaffari, S.V.; Nandakumar, P.; Noblin, E.S.; Northover, C.A.M.; OConnell, J.; Petrakovitz, A.A.; Pitts, S.J.; Poznik, G.D.; Sathirapongsasuti, J.F.; Shastri, A.J.; Shelton, J.F.; Tian, C.; Tung, J.Y.; Tunney, R.J.; Vacic, V.; Wang, X.; Zare, A.S.; Voda, A-I.; Kashyap, P.; Chang, L.; Mayer, E.; Heitkemper, M.; Sayuk, G.S.; Kulka, R.T.; Ringel, Y.; Chey, W.D.; Eswaran, S.; Merchant, J.L.; Shulman, R.J.; Bujanda, L.; Etxebarria, G.K.; Dlugosz, A.; Lindberg, G.; Schmidt, P.T.; Karling, P.; Ohlsson, B.; Walter, S.; Faresjö, Å.O.; Simren, M.; Halfvarson, J.; Portincasa, P.; Barbara, G.; Satta, U.P.; Neri, M.; Nardone, G.; Cuomo, R.; Galeazzi, F.; Bellini, M.; Latiano, A.; Houghton, L.; Jonkers, D.; Kurilshikov, A.; Weersma, R.K.; Netea, M.; Tesarz, J.; Gauss, A.; Stengel, G.M.; Andresen, V.; Frieling, T.; Pehl, C.; Schaefert, R.; Niesler, B.; Lieb, W.; Hanevik, K.; Langeland, N.; Wensaas, K-A.; Litleskare, S.; Gabrielsen, M.E.; Thomas, L.; Thijs, V.; Lemmens, R.; Van Oudenhove, L.; Wouters, M.; Farrugia, G.; Franke, A.; Hübenthal, M.; Abecasis, G.; Zawistowski, M.; Skogholt, A.H.; Jensen, N.E.; Hveem, K.; Esko, T.; Laving, T.M.; Zhernakova, A.; Camilleri, M.; Boeckxstaens, G.; Whorwell, P.J.; Spiller, R.; McVean, G.; DAmato, M.; Jostins, L.; Parkes, M. Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. Nat. Genet., 2021, 53(11), 1543-1552. doi: 10.1038/s41588-021-00950-8 PMID: 34741163
- Aziz, M.; Kumar, J.; Nawawi, M.K.; Ali, R.R.; Mokhtar, N. Irritable bowel syndrome, depression, and neurodegeneration: A bidirectional communication from gut to brain. Nutrients, 2021, 13(9), 3061. doi: 10.3390/nu13093061 PMID: 34578939
- Midenfjord, I.; Polster, A.; Sjövall, H.; Törnblom, H.; Simrén, M. Anxiety and depression in irritable bowel syndrome: Exploring the interaction with other symptoms and pathophysiology using multivariate analyses. Neurogastroenterol. Motil., 2019, 31(8), e13619. doi: 10.1111/nmo.13619 PMID: 31056802
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Venkatanarayanan, N.; Lim, D.Y.; Yeo, W.S. Systematic review with meta‐analysis: The association between post‐traumatic stress disorder and irritable bowel syndrome. J. Gastroenterol. Hepatol., 2019, 34(1), 68-73. doi: 10.1111/jgh.14446 PMID: 30144372
- Creed, F. Risk factors for self-reported irritable bowel syndrome with prior psychiatric disorder: The lifelines cohort study. J. Neurogastroenterol. Motil., 2022, 28(3), 442-453. doi: 10.5056/jnm21041 PMID: 35799238
- Fadgyas-Stanculete, M.; Buga, A.M.; Popa-Wagner, A.; Dumitrascu, D.L. The relationship between irritable bowel syndrome and psychiatric disorders: From molecular changes to clinical manifestations. J. Mol. Psychiatry, 2014, 2(1), 4. doi: 10.1186/2049-9256-2-4 PMID: 25408914
- Lydiard, R.B.; Falsetti, S.A. Experience with anxiety and depression treatment studies: implications for designing irritable bowel syndrome clinical trials. Am. J. Med., 1999, 107(5), 65-73. doi: 10.1016/S0002-9343(99)00082-0 PMID: 10588175
- Tao, E.; Long, G.; Yang, T.; Chen, B.; Guo, R.; Ye, D.; Fang, M.; Jiang, M. Maternal separation induced visceral hypersensitivity evaluated via novel and small size distention balloon in post-weaning mice. Front. Neurosci., 2022, 15, 803957. doi: 10.3389/fnins.2021.803957 PMID: 35153662
- Ge, L.; Liu, S.; Li, S.; Yang, J.; Hu, G.; Xu, C.; Song, W. Psychological stress in inflammatory bowel disease: Psychoneuroimmunological insights into bidirectional gutbrain communications. Front. Immunol., 2022, 13, 1016578. doi: 10.3389/fimmu.2022.1016578 PMID: 36275694
- Sun, Y.; Xie, R.; Li, L.; Jin, G.; Zhou, B.; Huang, H.; Li, M.; Yang, Y.; Liu, X.; Cao, X.; Wang, B.; Liu, W.; Jiang, K.; Cao, H. Prenatal maternal stress exacerbates experimental colitis of offspring in adulthood. Front. Immunol., 2021, 12, 700995. doi: 10.3389/fimmu.2021.700995 PMID: 34804005
- Császár-Nagy, N.; Bókkon, I. Mother-newborn separation at birth in hospitals: A possible risk for neurodevelopmental disorders? Neurosci. Biobehav. Rev., 2018, 84, 337-351. doi: 10.1016/j.neubiorev.2017.08.013 PMID: 28851575
- Bradford, K.; Shih, W.; Videlock, E.J.; Presson, A.P.; Naliboff, B.D.; Mayer, E.A.; Chang, L. Association between early adverse life events and irritable bowel syndrome. Clin. Gastroenterol. Hepatol., 2012, 10(4), 385-390.e1. doi: 10.1016/j.cgh.2011.12.018
- Chitkara, D.K.; van Tilburg, M.A.L.; Martin, B.N.; Whitehead, W.E. Early life risk factors that contribute to irritable bowel syndrome in adults: A systematic review. Am. J. Gastroenterol., 2008, 103(3), 765-774. doi: 10.1111/j.1572-0241.2007.01722.x PMID: 18177446
- Videlock, E.J.; Chang, L. Latest insights on the pathogenesis of irritable bowel syndrome. Gastroenterol. Clin. North Am., 2021, 50(3), 505-522. doi: 10.1016/j.gtc.2021.04.002 PMID: 34304785
- Tang, H.Y.; Jiang, A.J.; Wang, X.Y.; Wang, H.; Guan, Y.Y.; Li, F.; Shen, G.M. Uncovering the pathophysiology of irritable bowel syndrome by exploring the gut-brain axis: A narrative review. Ann. Transl. Med., 2021, 9(14), 1187. doi: 10.21037/atm-21-2779 PMID: 34430628
- Salhy, E.M. Irritable bowel syndrome: Diagnosis and pathogenesis. World J. Gastroenterol., 2012, 18(37), 5151-5163. doi: 10.3748/wjg.v18.i37.5151 PMID: 23066308
- Gieryńska, M.; Szulc-Dąbrowska, L.; Struzik, J.; Mielcarska, M.B.; Zboroch, G.K.P. Integrity of the intestinal barrier: the involvement of epithelial cells and microbiota-a mutual relationship. Animals, 2022, 12(2), 145. doi: 10.3390/ani12020145 PMID: 35049768
- Gritz, E.C.; Bhandari, V. The human neonatal gut microbiome: A brief review. Front Pediatr., 2015, 3, 17. PMID: 25798435
- Wu, H.J.; Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes, 2012, 3(1), 4-14. doi: 10.4161/gmic.19320 PMID: 22356853
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Lim, D.Y.; Yeo, W.S. The role of inflammation in irritable bowel syndrome (IBS). J. Inflamm. Res., 2018, 11, 345-349. doi: 10.2147/JIR.S174982 PMID: 30288077
- Shi, N.; Li, N.; Duan, X.; Niu, H. Interaction between the gut microbiome and mucosal immune system. Mil. Med. Res., 2017, 4(1), 14. doi: 10.1186/s40779-017-0122-9 PMID: 28465831
- Lazaridis, N.; Germanidis, G. Current insights into the innate immune system dysfunction in irritable bowel syndrome. Ann. Gastroenterol., 2018, 31(2), 171-187. doi: 10.20524/aog.2018.0229 PMID: 29507464
- Akiho, H.; Ihara, E.; Nakamura, K. Low-grade inflammation plays a pivotal role in gastrointestinal dysfunction in irritable bowel syndrome. World J. Gastrointest. Pathophysiol., 2010, 1(3), 97-105. doi: 10.4291/wjgp.v1.i3.97 PMID: 21607147
- El-Hakim, Y.; Bake, S.; Mani, K.K.; Sohrabji, F. Impact of intestinal disorders on central and peripheral nervous system diseases. Neurobiol. Dis., 2022, 165, 105627. doi: 10.1016/j.nbd.2022.105627 PMID: 35032636
- Lu, S.; Jiang, H.; Shi, Y. Association between irritable bowel syndrome and Parkinsons disease: A systematic review and meta‐analysis. Acta Neurol. Scand., 2022, 145(4), 442-448. doi: 10.1111/ane.13570 PMID: 34908158
- Yoon, S.Y.; Shin, J.; Heo, S.J.; Chang, J.S.; Sunwoo, M.K.; Kim, Y.W. Irritable bowel syndrome and subsequent risk of Parkinsons disease: A nationwide population-based matched-cohort study. J. Neurol., 2022, 269(3), 1404-1412. doi: 10.1007/s00415-021-10688-2 PMID: 34255181
- Alvino, B.; Arianna, F.; Assunta, B.; Antonio, C.; Emanuele, D.; Giorgia, M.; Leonardo, S.; Daniele, S.; Renato, D.; Buscarinu, M.C.; Massimiliano, M.; Crisafulli, S.G.; Aurora, Z.; Nicoletti, G.C.; Marco, S.; Viola, B.; Francesco, P.; Marfia, A.G.; Grazia, S.; Valentina, S.; Davide, O.; Giovanni, S.; Gioacchino, T.; Gallo, A. Prevalence and predictors of bowel dysfunction in a large multiple sclerosis outpatient population: An Italian multicenter study. J. Neurol., 2022, 269(3), 1610-1617. Erratum in: Prevalence and predictors of bowel dysfunction in a large multiple sclerosis outpatient population: An Italian multicenter study. J. Neurol., 2022; 269(5): 2824-2825.
- Lee, Y.T.; Hu, L.Y.; Shen, C.C.; Huang, M.W.; Tsai, S.J.; Yang, A.C.; Hu, C.K.; Perng, C.L.; Huang, Y.S.; Hung, J.H. Risk of psychiatric disorders following irritable bowel syndrome: A nationwide population-based cohort study. PLoS One, 2015, 10(7), e0133283. doi: 10.1371/journal.pone.0133283 PMID: 26222511
- Meade, E.; Garvey, M. The Role of neuro-immune interaction in chronic pain conditions; Functional somatic syndrome, neurogenic inflammation, and peripheral neuropathy. Int. J. Mol. Sci., 2022, 23(15), 8574. doi: 10.3390/ijms23158574 PMID: 35955708
- Frauches, B.A.C.; Boesmans, W. The enteric nervous system: The hub in a star network. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(12), 717-718. doi: 10.1038/s41575-020-00377-2 PMID: 33087897
- Holland, A.M.; Frauches, B.A.C.; Keszthelyi, D.; Melotte, V.; Boesmans, W. The enteric nervous system in gastrointestinal disease etiology. Cell. Mol. Life Sci., 2021, 78(10), 4713-4733. doi: 10.1007/s00018-021-03812-y PMID: 33770200
- Nagy, N.; Goldstein, A.M. Enteric nervous system development: A crest cells journey from neural tube to colon. Semin. Cell Dev. Biol., 2017, 66, 94-106. doi: 10.1016/j.semcdb.2017.01.006 PMID: 28087321
- Gershon, M.D.; Ratcliffe, E.M. Developmental biology of the enteric nervous system: Pathogenesis of Hirschsprungs disease and other congenital dysmotilities. Semin. Pediatr. Surg., 2004, 13(4), 224-235. doi: 10.1053/j.sempedsurg.2004.10.019 PMID: 15660316
- Torroglosa, A.; Alves, M.M.; Fernández, R.M.; Antiñolo, G.; Hofstra, R.M.; Borrego, S. Epigenetics in ENS development and Hirschsprung disease. Dev. Biol., 2016, 417(2), 209-216. doi: 10.1016/j.ydbio.2016.06.017 PMID: 27321561
- de Jonge, W.J. The guts little brain in control of intestinal immunity. ISRN Gastroenterol., 2013, 2013, 1-17. doi: 10.1155/2013/630159 PMID: 23691339
- Yang, X.; Lou, J.; Shan, W.; Ding, J.; Jin, Z.; Hu, Y.; Du, Q.; Liao, Q.; Xie, R.; Xu, J. Pathophysiologic role of neurotransmitters in digestive diseases. Front. Physiol., 2021, 12, 567650. doi: 10.3389/fphys.2021.567650 PMID: 34194334
- Spencer, N.J.; Travis, L.; Wiklendt, L.; Costa, M.; Hibberd, T.J.; Brookes, S.J.; Dinning, P.; Hu, H.; Wattchow, D.A.; Sorensen, J. Long range synchronization within the enteric nervous system underlies propulsion along the large intestine in mice. Commun. Biol., 2021, 4(1), 955. doi: 10.1038/s42003-021-02485-4 PMID: 34376798
- Annahazi, A.; Schemann, M. The enteric nervous system: "A little brain in the gut". Neuroforum, 2020, 26(1), 31-42. doi: 10.1515/nf-2019-0027
- Schemann, M.; Frieling, T.; Enck, P. To learn, to remember, to forgetHow smart is the gut? Acta Physiol., 2020, 228(1), e13296. doi: 10.1111/apha.13296 PMID: 31063665
- Furness, J.B.; Clerc, N.; Kunze, W.A. Memory in the enteric nervous system. Gut, 2000, 47(S4), 60-62. doi: 10.1136/gut.47.suppl_4.iv60
- Cheng, L. Progress on the regulation of DNA methylation in the development of the enteric nervous system. Int. J. Pediatr., 2018, 6, 756-760.
- Jaroy, E.G.; Acosta-Jimenez, L.; Hotta, R.; Goldstein, A.M.; Emblem, R.; Klungland, A.; Ougland, R. "Too much guts and not enough brains": (epi)genetic mechanisms and future therapies of Hirschsprung disease A review. Clin. Epigenetics, 2019, 11(1), 135. doi: 10.1186/s13148-019-0718-x PMID: 31519213
- Uribe, R.A. Genetic regulation of enteric nervous system development in zebrafish. Biochem. Soc. Trans., 2024, 52(1), 177-190. doi: 10.1042/BST20230343 PMID: 38174765
- Kenny, S.E.; Tam, P.K.H.; Barcelo, G.M. Hirschsprungs disease. Semin. Pediatr. Surg., 2010, 19(3), 194-200. doi: 10.1053/j.sempedsurg.2010.03.004 PMID: 20610192
- Diposarosa, R.; Bustam, N.A.; Sahiratmadja, E.; Susanto, P.S.; Sribudiani, Y. Literature review: Enteric nervous system development, genetic and epigenetic regulation in the etiology of Hirschsprungs disease. Heliyon, 2021, 7(6), e07308. doi: 10.1016/j.heliyon.2021.e07308 PMID: 34195419
- Brosens, E.; Burns, A.J.; Brooks, A.S.; Matera, I.; Borrego, S.; Ceccherini, I.; Tam, P.K.; Barceló, G.M.M.; Thapar, N.; Benninga, M.A.; Hofstra, R.M.W.; Alves, M.M. Genetics of enteric neuropathies. Dev. Biol., 2016, 417(2), 198-208. doi: 10.1016/j.ydbio.2016.07.008 PMID: 27426273
- Torroglosa, A.; Villalba-Benito, L.; Toro, L.B.; Fernández, R.M.; Antiñolo, G.; Borrego, S. Epigenetic mechanisms in hirschsprung disease. Int. J. Mol. Sci., 2019, 20(13), 3123. doi: 10.3390/ijms20133123 PMID: 31247956
- Heanue, T.A.; Shepherd, I.T.; Burns, A.J. Enteric nervous system development in avian and zebrafish models. Dev. Biol., 2016, 417(2), 129-138. doi: 10.1016/j.ydbio.2016.05.017 PMID: 27235814
- Kuil, L.E.; Chauhan, R.K.; Cheng, W.W.; Hofstra, R.M.W.; Alves, M.M. Zebrafish: A model organism for studying enteric nervous system development and disease. Front. Cell Dev. Biol., 2021, 8, 629073. doi: 10.3389/fcell.2020.629073 PMID: 33553169
- Ganz, J.; Melancon, E.; Wilson, C.; Amores, A.; Batzel, P.; Strader, M.; Braasch, I.; Diba, P.; Kuhlman, J.A.; Postlethwait, J.H.; Eisen, J.S. Epigenetic factors Dnmt1 and Uhrf1 coordinate intestinal development. Dev. Biol., 2019, 455(2), 473-484. doi: 10.1016/j.ydbio.2019.08.002 PMID: 31394080
- Feng, G.; Sun, Y. The Polycomb group gene rnf2 is essential for central and enteric neural system development in zebrafish. Front. Neurosci., 2022, 16, 960149. doi: 10.3389/fnins.2022.960149 PMID: 36117635
- Liu, J.; Tan, Y.; Cheng, H.; Zhang, D.; Feng, W.; Peng, C. Functions of gut microbiota metabolites, current status and future perspectives. Aging Dis., 2022, 13(4), 1106-1126. doi: 10.14336/AD.2022.0104 PMID: 35855347
- Fujisaka, S.; Watanabe, Y.; Tobe, K. The gut microbiome: A core regulator of metabolism. J. Endocrinol., 2023, 256(3), e220111. doi: 10.1530/JOE-22-0111 PMID: 36458804
- Ansari, M.H.R.; Saher, S.; Parveen, R.; Khan, W.; Khan, I.A.; Ahmad, S. Role of gut microbiota metabolism and biotransformation on dietary natural products to human health implications with special reference to biochemoinformatics approach. J. Tradit. Complement. Med., 2023, 13(2), 150-160. doi: 10.1016/j.jtcme.2022.03.005 PMID: 36970455
- Swer, N.M.; Venkidesh, B.S.; Murali, T.S.; Mumbrekar, K.D. Gut microbiota-derived metabolites and their importance in neurological disorders. Mol. Biol. Rep., 2023, 50(2), 1663-1675. doi: 10.1007/s11033-022-08038-0 PMID: 36399245
- Yeramilli, V.; Cheddadi, R.; Shah, J.; Brawner, K.; Martin, C. A Review of the impact of maternal prenatal stress on offspring microbiota and metabolites. Metabolites, 2023, 13(4), 535. doi: 10.3390/metabo13040535 PMID: 37110193
- Mepham, J.; McGee, N.T.; Andrews, K.; Gonzalez, A. Exploring the effect of prenatal maternal stress on the microbiomes of mothers and infants: A systematic review. Dev. Psychobiol., 2023, 65(7), e22424. doi: 10.1002/dev.22424 PMID: 37860905
- Yang, H.; Guo, R.; Li, S.; Liang, F.; Tian, C.; Zhao, X.; Long, Y.; Liu, F.; Jiang, M.; Zhang, Y.; Ma, J.; Peng, M.; Zhang, S.; Ye, W.; Gan, Q.; Zeng, F.; Mao, S.; Liang, Q.; Ma, X.; Han, M.; Gao, F.; Yang, R.; Zhang, C.; Xiao, L.; Qin, J.; Li, S.; Zhu, C. Systematic analysis of gut microbiota in pregnant women and its correlations with individual heterogeneity. NPJ Biofilms Microbiomes, 2020, 6(1), 32. doi: 10.1038/s41522-020-00142-y PMID: 32917878
- Gorczyca, K.; Obuchowska, A.; Trojnar, K.Ż.; Opoka, W.M.; Gorzelak, L.B. Changes in the gut microbiome and pathologies in pregnancy. Int. J. Environ. Res. Public Health, 2022, 19(16), 9961. doi: 10.3390/ijerph19169961 PMID: 36011603
- Srinivasan, K.; Satyanarayana, V.A.; Lukose, A. Maternal mental health in pregnancy and child behavior. Indian J. Psychiatry, 2011, 53(4), 351-361. doi: 10.4103/0019-5545.91911 PMID: 22303046
- Tuovinen, S.; Pulkkinen, L.M.; Girchenko, P.; Heinonen, K.; Lahti, J.; Reynolds, R.M.; Hämäläinen, E.; Villa, P.M.; Kajantie, E.; Laivuori, H.; Raikkonen, K. Maternal antenatal stress and mental and behavioral disorders in their children. J. Affect. Disord., 2021, 278, 57-65. doi: 10.1016/j.jad.2020.09.063 PMID: 32950844
- Van den Bergh, B.R.H.; van den Heuvel, M.I.; Lahti, M.; Braeken, M.; de Rooij, S.R.; Entringer, S.; Hoyer, D.; Roseboom, T.; Räikkönen, K.; King, S.; Schwab, M. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci. Biobehav. Rev., 2020, 117, 26-64. doi: 10.1016/j.neubiorev.2017.07.003 PMID: 28757456
- Sulkowska, S.E.M. The impact of maternal gut microbiota during pregnancy on fetal gut-brain axis development and life-long health outcomes. Microorganisms, 2023, 11(9), 2199. doi: 10.3390/microorganisms11092199 PMID: 37764043
- Rusch, J.A.; Layden, B.T.; Dugas, L.R. Signalling cognition: The gut microbiota and hypothalamic-pituitary-adrenal axis. Front. Endocrinol., 2023, 14, 1130689. doi: 10.3389/fendo.2023.1130689 PMID: 37404311
- Misiak, B.; Łoniewski, I.; Marlicz, W.; Frydecka, D.; Szulc, A.; Rudzki, L.; Samochowiec, J. The HPA axis dysregulation in severe mental illness: Can we shift the blame to gut microbiota? Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 102, 109951. doi: 10.1016/j.pnpbp.2020.109951 PMID: 32335265
- Turroni, F.; Rizzo, S.M.; Ventura, M.; Bernasconi, S. Cross-talk between the infant/maternal gut microbiota and the endocrine system: A promising topic of research. Microbiome Res Rep., 2022, 1(2), 14. doi: 10.20517/mrr.2021.14 PMID: 38045647
- Garzoni, L.; Faure, C.; Frasch, M.G. Fetal cholinergic anti-inflammatory pathway and necrotizing enterocolitis: The brain-gut connection begins in utero. Front. Integr. Nuerosci., 2013, 7, 57. doi: 10.3389/fnint.2013.00057 PMID: 23964209
- Zijlmans, M.A.C.; Korpela, K.; Walraven, R.J.M.; de Vos, W.M.; de Weerth, C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology, 2015, 53, 233-245. doi: 10.1016/j.psyneuen.2015.01.006 PMID: 25638481
- Gur, T.L.; Palkar, A.V.; Rajasekera, T.; Allen, J.; Niraula, A.; Godbout, J.; Bailey, M.T. Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behav. Brain Res., 2019, 359, 886-894. doi: 10.1016/j.bbr.2018.06.025 PMID: 29949734
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol., 2020, 11, 25. doi: 10.3389/fendo.2020.00025 PMID: 32082260
- Dalile, B.; Vervliet, B.; Bergonzelli, G.; Verbeke, K.; Oudenhove, V.L. Colon-delivered short-chain fatty acids attenuate the cortisol response to psychosocial stress in healthy men: A randomized, placebo-controlled trial. Neuropsychopharmacology, 2020, 45(13), 2257-2266. doi: 10.1038/s41386-020-0732-x PMID: 32521538
- Zhang, D.; Jian, Y.P.; Zhang, Y.N.; Li, Y.; Gu, L.T.; Sun, H.H.; Liu, M.D.; Zhou, H.L.; Wang, Y.S.; Xu, Z.X. Short-chain fatty acids in diseases. Cell Commun. Signal., 2023, 21(1), 212. doi: 10.1186/s12964-023-01219-9 PMID: 37596634
- Chen, B.; Sun, L.; Zhang, X. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. J. Autoimmun., 2017, 83, 31-42. doi: 10.1016/j.jaut.2017.03.009 PMID: 28342734
- Li, L.; Zhao, S.; Xiang, T.; Feng, H.; Ma, L.; Fu, P. Epigenetic connection between gut microbiota-derived short-chain fatty acids and chromatin histone modification in kidney diseases. Chin. Med. J., 2022, 135(14), 1692-1694. doi: 10.1097/CM9.0000000000002295 PMID: 36193977
- Stein, R.A.; Riber, L. Epigenetic effects of short-chain fatty acids from the large intestine on host cells. Microlife, 2023, 4, uqad032.
- Woo, V.; Alenghat, T. Epigenetic regulation by gut microbiota. Gut Microbes, 2022, 14(1), 2022407. doi: 10.1080/19490976.2021.2022407 PMID: 35000562
- Yang, L.L.; Millischer, V.; Rodin, S.; MacFabe, D.F.; Villaescusa, J.C.; Lavebratt, C. Enteric short‐chain fatty acids promote proliferation of human neural progenitor cells. J. Neurochem., 2020, 154(6), 635-646. doi: 10.1111/jnc.14928 PMID: 31784978
- Kimura, I.; Miyamoto, J.; Kitano, O.R.; Watanabe, K.; Yamada, T.; Onuki, M.; Aoki, R.; Isobe, Y.; Kashihara, D.; Inoue, D.; Inaba, A.; Takamura, Y.; Taira, S.; Kumaki, S.; Watanabe, M.; Ito, M.; Nakagawa, F.; Irie, J.; Kakuta, H.; Shinohara, M.; Iwatsuki, K.; Tsujimoto, G.; Ohno, H.; Arita, M.; Itoh, H.; Hase, K. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science, 2020, 367(6481), eaaw8429. doi: 10.1126/science.aaw8429 PMID: 32108090
- Liu, R.T. Childhood adversities and depression in adulthood: Current findings and future directions. Clin. Psychol. Sci. Pract., 2017, 24(2), 140-153. doi: 10.1111/cpsp.12190 PMID: 28924333
- Garcia-Rizo, C.; Bitanihirwe, B.K.Y. Implications of early life stress on fetal metabolic programming of schizophrenia: A focus on epiphenomena underlying morbidity and early mortality. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 101, 109910. doi: 10.1016/j.pnpbp.2020.109910 PMID: 32142745
- Kwon, E.J.; Kim, Y.J. What is fetal programming?: A lifetime health is under the control of in utero health. Obstet. Gynecol. Sci., 2017, 60(6), 506-519. doi: 10.5468/ogs.2017.60.6.506 PMID: 29184858
- Gluckma, P.D.; Hanson, M.A. Predictive adaptive responses and human disease. In: The fetal matrix. Evolution, development and disease Cambridge; Cambridge Universiy Press: UK, 2005; pp. 78-102.
- Zietlow, A.L.; Nonnenmacher, N.; Reck, C.; Ditzen, B.; Müller, M. Emotional stress during pregnancy - Associations with maternal anxiety disorders, infant cortisol reactivity, and mother-child interaction at pre-school age. Front. Psychol., 2019, 10, 2179. doi: 10.3389/fpsyg.2019.02179 PMID: 31607996
- Howerton, C.L.; Bale, T.L. Prenatal programing: At the intersection of maternal stress and immune activation. Horm. Behav., 2012, 62(3), 237-242. doi: 10.1016/j.yhbeh.2012.03.007 PMID: 22465455
- Van den Bergh, B.R.H.; Van Calster, B.; Smits, T.; Van Huffel, S.; Lagae, L. Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: A prospective study on the fetal origins of depressed mood. Neuropsychopharmacology, 2008, 33(3), 536-545. doi: 10.1038/sj.npp.1301450 PMID: 17507916
- Begum, N.; Mandhare, A.; Tryphena, K.P.; Srivastava, S.; Shaikh, M.F.; Singh, S.B.; Khatri, D.K. Epigenetics in depression and gut-brain axis: A molecular crosstalk. Front. Aging Neurosci., 2022, 14, 1048333. doi: 10.3389/fnagi.2022.1048333 PMID: 36583185
- Li, D.; Li, Y.; Yang, S.; Lu, J.; Jin, X.; Wu, M. Diet-gut microbiota-epigenetics in metabolic diseases: From mechanisms to therapeutics. Biomed. Pharmacother., 2022, 153, 113290. doi: 10.1016/j.biopha.2022.113290 PMID: 35724509
- ORiordan, K.J.; Collins, M.K.; Moloney, G.M.; Knox, E.G.; Aburto, M.R.; Fülling, C.; Morley, S.J.; Clarke, G.; Schellekens, H.; Cryan, J.F. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol. Cell. Endocrinol., 2022, 546, 111572. doi: 10.1016/j.mce.2022.111572 PMID: 35066114
- Walker, R.W.; Clemente, J.C.; Peter, I.; Loos, R.J.F. The prenatal gut microbiome: Are we colonized with bacteria in utero? Pediatr. Obes., 2017, 2017(12 (S1)), 3-17. doi: 10.1111/ijpo.12217
- Nuriel-Ohayon, M.; Neuman, H.; Koren, O. Microbial changes during pregnancy, birth, and infancy. Front. Microbiol., 2016, 7, 1031. doi: 10.3389/fmicb.2016.01031 PMID: 27471494
- Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. The placenta harbors a unique microbiome. Sci. Transl. Med., 2014, 6(237), 237ra65. doi: 10.1126/scitranslmed.3008599 PMID: 24848255
- Miko, E.; Csaszar, A.; Bodis, J.; Kovacs, K. The maternal-fetal gut microbiota axis: Physiological changes, dietary influence, and modulation possibilities. Life, 2022, 12(3), 424. doi: 10.3390/life12030424 PMID: 35330175
Supplementary files
