The Common Denominators of Parkinsons Disease Pathogenesis and Methamphetamine Abuse
- Authors: Vincent B.1, Shukla M.2
-
Affiliations:
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS
- Chulabhorn Graduate Institute,, Chulabhorn Royal Academy
- Issue: Vol 22, No 13 (2024)
- Pages: 2113-2156
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644470
- DOI: https://doi.org/10.2174/1570159X21666230907151226
- ID: 644470
Cite item
Full Text
Abstract
:The pervasiveness and mortality associated with methamphetamine abuse have doubled during the past decade, suggesting a possible worldwide substance use crisis. Epitomizing the pathophysiology and toxicology of methamphetamine abuse proclaims severe signs and symptoms of neurotoxic and neurobehavioral manifestations in both humans and animals. Most importantly, chronic use of this drug enhances the probability of developing neurodegenerative diseases manifolds. Parkinson's disease is one such neurological disorder, which significantly and evidently not only shares a number of toxic pathogenic mechanisms induced by methamphetamine exposure but is also interlinked both structurally and genetically. Methamphetamine-induced neurodegeneration involves altered dopamine homeostasis that promotes the aggregation of α-synuclein protofibrils in the dopaminergic neurons and drives these neurons to make them more vulnerable to degeneration, as recognized in Parkinsons disease. Moreover, the pathologic mechanisms such as mitochondrial dysfunction, oxidative stress, neuroinflammation and decreased neurogenesis detected in methamphetamine abusers dramatically resemble to what is observed in Parkinsons disease cases. Therefore, the present review comprehensively cumulates a holistic illustration of various genetic and molecular mechanisms putting across the notion of how methamphetamine administration and intoxication might lead to Parkinsons disease-like pathology and Parkinsonism.
About the authors
Bruno Vincent
Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS
Author for correspondence.
Email: info@benthamscience.net
Mayuri Shukla
Chulabhorn Graduate Institute,, Chulabhorn Royal Academy
Email: info@benthamscience.net
References
- de Lau, L.M.L.; Breteler, M.M.B. Epidemiology of Parkinsons disease. Lancet Neurol., 2006, 5(6), 525-535. doi: 10.1016/S1474-4422(06)70471-9 PMID: 16713924
- Dorsey, E.R.; Elbaz, A.; Nichols, E.; Abbasi, N.; Abd-Allah, F.; Abdelalim, A.; Adsuar, J.C.; Ansha, M.G.; Brayne, C.; Choi, J-Y.J.; Collado-Mateo, D.; Dahodwala, N.; Do, H.P.; Edessa, D.; Endres, M.; Fereshtehnejad, S-M.; Foreman, K.J.; Gankpe, F.G.; Gupta, R.; Hamidi, S.; Hankey, G.J.; Hay, S.I.; Hegazy, M.I.; Hibstu, D.T.; Kasaeian, A.; Khader, Y.; Khalil, I.; Khang, Y-H.; Kim, Y.J.; Kokubo, Y.; Logroscino, G.; Massano, J.; Mohamed Ibrahim, N.; Mohammed, M.A.; Mohammadi, A.; Moradi-Lakeh, M.; Naghavi, M.; Nguyen, B.T.; Nirayo, Y.L.; Ogbo, F.A.; Owolabi, M.O.; Pereira, D.M.; Postma, M.J.; Qorbani, M.; Rahman, M.A.; Roba, K.T.; Safari, H.; Safiri, S.; Satpathy, M.; Sawhney, M.; Shafieesabet, A.; Shiferaw, M.S.; Smith, M.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Truong, N.T.; Ukwaja, K.N.; Venketasubramanian, N.; Villafaina, S. weldegwergs, K.; Westerman, R.; Wijeratne, T.; Winkler, A.S.; Xuan, B.T.; Yonemoto, N.; Feigin, V.L.; Vos, T.; Murray, C.J.L. Global, regional, and national burden of Parkinsons disease, 19902016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2018, 17(11), 939-953. doi: 10.1016/S1474-4422(18)30295-3 PMID: 30287051
- Schneider, S.A.; Obeso, J.A. Clinical and pathological features of Parkinsons disease. Curr. Top. Behav. Neurosci., 2014, 22, 205-220. doi: 10.1007/7854_2014_317 PMID: 24850081
- Burré, J.; Vivona, S.; Diao, J.; Sharma, M.; Brunger, A.T.; Südhof, T.C. Properties of native brain α-synuclein. Nature, 2013, 498(7453), E4-E6. doi: 10.1038/nature12125 PMID: 23765500
- Stefanis, L. α-Synuclein in Parkinsons disease. Cold Spring Harb. Perspect. Med., 2012, 2(2), a009399. doi: 10.1101/cshperspect.a009399 PMID: 22355802
- Baba, M.; Nakajo, S.; Tu, P.H.; Tomita, T.; Nakaya, K.; Lee, V.M.; Trojanowski, J.Q.; Iwatsubo, T. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinsons disease and dementia with Lewy bodies. Am. J. Pathol., 1998, 152(4), 879-884. PMID: 9546347
- Dickson, D.W. Parkinsons disease and parkinsonism: neuropathology. Cold Spring Harb. Perspect. Med., 2012, 2(8), a009258. doi: 10.1101/cshperspect.a009258 PMID: 22908195
- Masato, A.; Plotegher, N.; Boassa, D.; Bubacco, L. Impaired dopamine metabolism in Parkinsons disease pathogenesis. Mol. Neurodegener., 2019, 14(1), 35. doi: 10.1186/s13024-019-0332-6 PMID: 31488222
- Hisahara, S.; Shimohama, S. Dopamine receptors and Parkinsons disease. Int. J. Med. Chem., 2011, 2011, 1-16. doi: 10.1155/2011/403039 PMID: 25954517
- Jankovic, J.; Tan, E.K. Parkinsons disease: etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry, 2020, 91(8), 795-808. doi: 10.1136/jnnp-2019-322338 PMID: 32576618
- Levy, O.A.; Malagelada, C.; Greene, L.A. Cell death pathways in Parkinsons disease: proximal triggers, distal effectors, and final steps. Apoptosis, 2009, 14(4), 478-500. doi: 10.1007/s10495-008-0309-3 PMID: 19165601
- Paulus, M.P.; Stewart, J.L. Neurobiology, clinical presentation, and treatment of methamphetamine use disorder: A review. JAMA Psychiatry, 2020, 77(9), 959-966. doi: 10.1001/jamapsychiatry.2020.0246 PMID: 32267484
- Farrell, M.; Martin, N.K.; Stockings, E.; Bórquez, A.; Cepeda, J.A.; Degenhardt, L.; Ali, R.; Tran, L.T.; Rehm, J.; Torrens, M.; Shoptaw, S.; McKetin, R. Responding to global stimulant use: challenges and opportunities. Lancet, 2019, 394(10209), 1652-1667. doi: 10.1016/S0140-6736(19)32230-5 PMID: 31668409
- McGregor, C.; Srisurapanont, M.; Jittiwutikarn, J.; Laobhripatr, S.; Wongtan, T.; White, J.M. The nature, time course and severity of methamphetamine withdrawal. Addiction, 2005, 100(9), 1320-1329. doi: 10.1111/j.1360-0443.2005.01160.x PMID: 16128721
- Hartz, D.T.; Frederick-Osborne, S.L.; Galloway, G.P. Craving predicts use during treatment for methamphetamine dependence: a prospective, repeated-measures, within-subject analysis. Drug Alcohol Depend., 2001, 63(3), 269-276. doi: 10.1016/S0376-8716(00)00217-9 PMID: 11418231
- Martinotti, G.; De Risio, L.; Vannini, C.; Schifano, F.; Pettorruso, M.; Di Giannantonio, M. Substance-related exogenous psychosis: a postmodern syndrome. CNS Spectr., 2021, 26(1), 84-91. doi: 10.1017/S1092852920001479 PMID: 32580808
- Martinotti, G.; Negri, A.; Schiavone, S.; Montemitro, C.; Vannini, C.; Baroni, G.; Pettorruso, M.; De Giorgio, F.; Giorgetti, R.; Verrastro, V.; Trabace, L.; Garcia, A.; Castro, I.; Iglesias Lopez, J.; Merino Del Villar, C.; Schifano, F.; di Giannantonio, M. Club drugs: psychotropic effects and psychopathological characteristics of a sample of inpatients. Front. Psychiatry, 2020, 11, 879. doi: 10.3389/fpsyt.2020.00879 PMID: 33110412
- Martinotti, G.; Lupi, M.; Carlucci, L.; Cinosi, E.; Santacroce, R.; Acciavatti, T.; Chillemi, E.; Bonifaci, L.; Janiri, L.; Di Giannantonio, M. Novel psychoactive substances: use and knowledge among adolescents and young adults in urban and rural areas. Hum. Psychopharmacol., 2015, 30(4), 295-301. doi: 10.1002/hup.2486 PMID: 26216566
- Chiappini, S.; Mosca, A.; Miuli, A.; Santovito, M.C.; Orsolini, L.; Corkery, J.M.; Guirguis, A.; Pettorruso, M.; Martinotti, G.; Di Giannantonio, M.; Schifano, F. New psychoactive substances and suicidality: a systematic review of the current literature. Medicina (Kaunas), 2021, 57(6), 580. doi: 10.3390/medicina57060580 PMID: 34204131
- Schifano, F.; Chiappini, S.; Miuli, A.; Corkery, J.M.; Scherbaum, N.; Napoletano, F.; Arillotta, D.; Zangani, C.; Catalani, V.; Vento, A.; Pettorruso, M.; Martinotti, G.; Massimo, D.G.; Guirguis, A. New psychoactive substances (NPS) and serotonin syndrome onset: A systematic review. Exp. Neurol., 2021, 339, 113638. doi: 10.1016/j.expneurol.2021.113638 PMID: 33571533
- Corazza, O.; Valeriani, G.; Bersani, F.S.; Corkery, J.; Martinotti, G.; Bersani, G.; Schifano, F. "Spice," "kryptonite," "black mamba": an overview of brand names and marketing strategies of novel psychoactive substances on the web. J. Psychoactive Drugs, 2014, 46(4), 287-294. doi: 10.1080/02791072.2014.944291 PMID: 25188698
- Schifano, F.; Leoni, M.; Martinotti, G.; Rawaf, S.; Rovetto, F. Importance of cyberspace for the assessment of the drug abuse market: preliminary results from the Psychonaut 2002 project. Cyberpsychol. Behav., 2003, 6(4), 405-410. doi: 10.1089/109493103322278790 PMID: 14511453
- Schifano, F.; Deluca, P.; Agosti, L.; Martinotti, G.; Corkery, J.M.; Alex, B.; Caterina, B.; Heikki, B.; Raffaella, B.; Anna, C.; Lucia, D.F.; Dorte, D.R.; Magi, F.; Susana, F.; Irene, F.; Claude, G.; Lisbet, H.; Lene, S.J.; Mauro, L.; Christopher, L.; Aino, M.; Teuvo, P.; Milena, P.; Salman, R.; Damien, R.; Angela, R.M.; Francesco, R.; Norbert, S.; Holger, S.; Josep, T.; Marta, T.; Francesco, Z. New trends in the cyber and street market of recreational drugs? The case of 2C-T-7 (Blue Mystic). J. Psychopharmacol., 2005, 19(6), 675-679. doi: 10.1177/0269881105056660 PMID: 16272191
- Shukla, M.; Vincent, B. The multi-faceted impact of methamphetamine on Alzheimers disease: From a triggering role to a possible therapeutic use. Ageing Res. Rev., 2020, 60, 101062. doi: 10.1016/j.arr.2020.101062 PMID: 32304732
- Lappin, J.M.; Darke, S. Methamphetamine and heightened risk for early-onset stroke and Parkinsons disease: A review. Exp. Neurol., 2021, 343, 113793. doi: 10.1016/j.expneurol.2021.113793 PMID: 34166684
- Das, A.; Price, D.; Clothier, J. Case Series: Choreoathetoid movements associated with methamphetamine: A case report and review of literature. Am. J. Addict., 2018, 27(5), 364-367. doi: 10.1111/ajad.12759 PMID: 29968954
- Millot, M.; Saga, Y.; Duperrier, S.; Météreau, E.; Beaudoin-Gobert, M.; Sgambato, V. Prior MDMA administration aggravates MPTP-induced Parkinsonism in macaque monkeys. Neurobiol. Dis., 2020, 134, 104643. doi: 10.1016/j.nbd.2019.104643 PMID: 31689516
- Boroujeni, M.E.; Nasrollahi, A.; Boroujeni, P.B.; Fadaeifathabadi, F.; Farhadieh, M.; Tehrani, A.M.; Nakhaei, H.; Sajedian, A.M.; Peirouvi, T.; Aliaghaei, A. Exposure to methamphetamine exacerbates motor activities and alters circular RNA profile of cerebellum. J. Pharmacol. Sci., 2020, 144(1), 1-8. doi: 10.1016/j.jphs.2020.05.010 PMID: 32576439
- Todd, G.; Burns, L.; Pearson-Dennett, V.; Esterman, A.; Faulkner, P.L.; Wilcox, R.A.; Thewlis, D.; Vogel, A.P.; White, J.M. Prevalence of self-reported movement dysfunction among young adults with a history of ecstasy and methamphetamine use. Drug Alcohol Depend., 2019, 205, 107595. doi: 10.1016/j.drugalcdep.2019.107595 PMID: 31600615
- Temmingh, H.S.; van den Brink, W.; Howells, F.; Sibeko, G.; Stein, D.J. Methamphetamine use and antipsychotic-related extrapyramidal side-effects in patients with psychotic disorders. J. Dual Diagn., 2020, 16(2), 208-217. doi: 10.1080/15504263.2020.1714099 PMID: 31984872
- Shukla, M.; Vincent, B. Methamphetamine abuse disturbs the dopaminergic system to impair hippocampal-based learning and memory: An overview of animal and human investigations. Neurosci. Biobehav. Rev., 2021, 131, 541-559. doi: 10.1016/j.neubiorev.2021.09.016 PMID: 34606820
- Foroughi, K.; Khaksari, M.; Shayannia, A. Molecular docking studies of methamphetamine and amphetamine-related derivatives as an inhibitor against dopamine receptor. Curr. Computeraided Drug Des., 2020, 16(2), 122-133. doi: 10.2174/1573409915666181204144411 PMID: 30514192
- Pregeljc, D.; Teodorescu-Perijoc, D.; Vianello, R.; Umek, N.; Mavri, J. How important is the use of cocaine and amphetamines in the development of Parkinson disease? A computational study. Neurotox. Res., 2020, 37(3), 724-731. doi: 10.1007/s12640-019-00149-0 PMID: 31828739
- Ares-Santos, S.; Granado, N.; Moratalla, R. The role of dopamine receptors in the neurotoxicity of methamphetamine. J. Intern. Med., 2013, 273(5), 437-453. doi: 10.1111/joim.12049 PMID: 23600399
- Francardo, V. Sigma-1 receptor: a potential new target for Parkinson′s disease? Neural Regen. Res., 2014, 9(21), 1882-1883. doi: 10.4103/1673-5374.145351 PMID: 25558236
- Hedges, D.M.; Obray, J.D.; Yorgason, J.T.; Jang, E.Y.; Weerasekara, V.K.; Uys, J.D.; Bellinger, F.P.; Steffensen, S.C. Methamphetamine induces dopamine release in the nucleus accumbens through a sigma receptor-mediated pathway. Neuropsychopharmacology, 2018, 43(6), 1405-1414. doi: 10.1038/npp.2017.291 PMID: 29185481
- Shin, E.J.; Dang, D.K.; Tran, T.V.; Tran, H.Q.; Jeong, J.H.; Nah, S.Y.; Jang, C.G.; Yamada, K.; Nabeshima, T.; Kim, H.C. Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch. Pharm. Res., 2017, 40(4), 403-428. doi: 10.1007/s12272-017-0897-y PMID: 28243833
- Jiang, W.; Li, J.; Zhang, Z.; Wang, H.; Wang, Z. Epigenetic upregulation of alpha-synuclein in the rats exposed to methamphetamine. Eur. J. Pharmacol., 2014, 745, 243-248. doi: 10.1016/j.ejphar.2014.10.043 PMID: 25445041
- Ding, J.; Hu, S.; Meng, Y.; Li, C.; Huang, J.; He, Y.; Qiu, P. Alpha-Synuclein deficiency ameliorates chronic methamphetamine induced neurodegeneration in mice. Toxicology, 2020, 438, 152461. doi: 10.1016/j.tox.2020.152461 PMID: 32278788
- Wu, M.; Su, H.; Zhao, M. The role of α-Synuclein in methamphetamine-induced neurotoxicity. Neurotox. Res., 2021, 39(3), 1007-1021. doi: 10.1007/s12640-021-00332-2 PMID: 33555547
- Gelfand, Y.; Kaplitt, M.G. Gene therapy for psychiatric disorders. World Neurosurg, 2013, 80(3-4), S32.e11-S32.e28. doi: 10.1016/j.wneu.2012.12.028 PMID: 23268195
- Bousman, C.A.; Glatt, S.J.; Everall, I.P.; Tsuang, M.T. Genetic association studies of methamphetamine use disorders: A systematic review and synthesis. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2009, 150B(8), 1025-1049. doi: 10.1002/ajmg.b.30936 PMID: 19219857
- Clinton, L.K.; Blurton-Jones, M.; Myczek, K.; Trojanowski, J.Q.; LaFerla, F.M. Synergistic Interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline. J. Neurosci., 2010, 30(21), 7281-7289. doi: 10.1523/JNEUROSCI.0490-10.2010 PMID: 20505094
- Mullin, S.; Schapira, A. The genetics of Parkinsons disease. Br. Med. Bull., 2015, 114(1), 39-52. doi: 10.1093/bmb/ldv022 PMID: 25995343
- Wray, S.; Lewis, P.A. A tangled web - tau and sporadic Parkinsons disease. Front. Psychiatry, 2010, 1, 150. doi: 10.3389/fpsyt.2010.00150 PMID: 21423457
- Tavassoly, O.; Lee, J.S. Methamphetamine binds to α-synuclein and causes a conformational change which can be detected by nanopore analysis. FEBS Lett., 2012, 586(19), 3222-3228. doi: 10.1016/j.febslet.2012.06.040 PMID: 22771474
- Butler, B.; Gamble-George, J.; Prins, P.; North, A.; Clarke, J.T.; Khoshbouei, H. Chronic methamphetamine increases alpha-synuclein protein levels in the striatum and hippocampus but not in the cortex of juvenile mice. J. Addict. Prev., 2014, 2(2), 6. PMID: 25621291
- Satake, W.; Nakabayashi, Y.; Mizuta, I.; Hirota, Y.; Ito, C.; Kubo, M.; Kawaguchi, T.; Tsunoda, T.; Watanabe, M.; Takeda, A.; Tomiyama, H.; Nakashima, K.; Hasegawa, K.; Obata, F.; Yoshikawa, T.; Kawakami, H.; Sakoda, S.; Yamamoto, M.; Hattori, N.; Murata, M.; Nakamura, Y.; Toda, T. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinsons disease. Nat. Genet., 2009, 41(12), 1303-1307. doi: 10.1038/ng.485 PMID: 19915576
- Simón-Sánchez, J.; Schulte, C.; Bras, J.M.; Sharma, M.; Gibbs, J.R.; Berg, D.; Paisan-Ruiz, C.; Lichtner, P.; Scholz, S.W.; Hernandez, D.G.; Krüger, R.; Federoff, M.; Klein, C.; Goate, A.; Perlmutter, J.; Bonin, M.; Nalls, M.A.; Illig, T.; Gieger, C.; Houlden, H.; Steffens, M.; Okun, M.S.; Racette, B.A.; Cookson, M.R.; Foote, K.D.; Fernandez, H.H.; Traynor, B.J.; Schreiber, S.; Arepalli, S.; Zonozi, R.; Gwinn, K.; van der Brug, M.; Lopez, G.; Chanock, S.J.; Schatzkin, A.; Park, Y.; Hollenbeck, A.; Gao, J.; Huang, X.; Wood, N.W.; Lorenz, D.; Deuschl, G.; Chen, H.; Riess, O.; Hardy, J.A.; Singleton, A.B.; Gasser, T. Genome-wide association study reveals genetic risk underlying Parkinsons disease. Nat. Genet., 2009, 41(12), 1308-1312. doi: 10.1038/ng.487 PMID: 19915575
- Biagioni, F.; Ferese, R.; Limanaqi, F.; Madonna, M.; Lenzi, P.; Gambardella, S.; Fornai, F. Methamphetamine persistently increases alpha-synuclein and suppresses gene promoter methylation within striatal neurons. Brain Res., 2019, 1719, 157-175. doi: 10.1016/j.brainres.2019.05.035 PMID: 31150652
- Heinzerling, K.G.; Shoptaw, S. Gender, brain-derived neurotrophic factor Val66Met, and frequency of methamphetamine use. Gend. Med., 2012, 9(2), 112-120. doi: 10.1016/j.genm.2012.02.005 PMID: 22445683
- Altmann, V.; Schumacher-Schuh, A.F.; Rieck, M.; Callegari-Jacques, S.M.; Rieder, C.R.M.; Hutz, M.H. Val66Met BDNF polymorphism is associated with Parkinsons disease cognitive impairment. Neurosci. Lett., 2016, 615, 88-91. doi: 10.1016/j.neulet.2016.01.030 PMID: 26806863
- Autry, A.E.; Monteggia, L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev., 2012, 64(2), 238-258. doi: 10.1124/pr.111.005108 PMID: 22407616
- Costa, A.; Peppe, A.; Carlesimo, G.A.; Zabberoni, S.; Scalici, F.; Caltagirone, C.; Angelucci, F. Brain-derived neurotrophic factor serum levels correlate with cognitive performance in Parkinsons disease patients with mild cognitive impairment. Front. Behav. Neurosci., 2015, 9, 253. doi: 10.3389/fnbeh.2015.00253 PMID: 26441580
- He, L.; Liao, Y.; Wu, Q.; Liu, T. Association between brain-derived neurotrophic factor Val66Met polymorphism and methamphetamine use disorder: A meta-analysis. Front. Psychiatry, 2020, 11, 585852. doi: 10.3389/fpsyt.2020.585852 PMID: 33329128
- Tekumalla, P.K.; Calon, F.; Rahman, Z.; Birdi, S.; Rajput, A.H.; Hornykiewicz, O.; Di Paolo, T.; Bédard, P.J.; Nestler, E.J. Elevated levels of ΔFosB and RGS9 in striatum in Parkinsons disease. Biol. Psychiatry, 2001, 50(10), 813-816. doi: 10.1016/S0006-3223(01)01234-3 PMID: 11720701
- Okahisa, Y.; Kodama, M.; Takaki, M.; Inada, T.; Uchimura, N.; Yamada, M.; Iwata, N.; Iyo, M.; Sora, I.; Ozaki, N.; Ujike, H. Association between the regulator of G-protein signaling 9 gene and patients with methamphetamine use. Curr. Neuropharmacol., 2011, 9(1), 190-194. doi: 10.2174/157015911795017029 PMID: 21886588
- Liu, W.; Wu, H.; Chen, L.; Wen, Y.; Kong, X.; Gao, W.Q. Park7 interacts with p47phox to direct NADPH oxidase-dependent ROS production and protect against sepsis. Cell Res., 2015, 25(6), 691-706. doi: 10.1038/cr.2015.63 PMID: 26021615
- Polissidis, A.; Petropoulou-Vathi, L.; Nakos-Bimpos, M.; Rideout, H.J. The future of targeted gene-based treatment strategies and biomarkers in Parkinsons disease. Biomolecules, 2020, 10(6), 912. doi: 10.3390/biom10060912 PMID: 32560161
- Chouliaras, L.; Kumar, G.S.; Thomas, A.J.; Lunnon, K.; Chinnery, P.F.; OBrien, J.T. Epigenetic regulation in the pathophysiology of Lewy body dementia. Prog. Neurobiol., 2020, 192, 101822. doi: 10.1016/j.pneurobio.2020.101822 PMID: 32407744
- Li, L.; Chen, S.; Wang, Y.; Yue, X.; Xu, J.; Xie, W.; Qiu, P.; Liu, C.; Wang, A.; Wang, H. Role of GSK3β/α-synuclein axis in methamphetamine-induced neurotoxicity in PC12 cells. Toxicol. Res. (Camb.), 2018, 7(2), 221-234. doi: 10.1039/C7TX00189D PMID: 30090577
- Tong, Y.; Xu, Y.; Scearce-Levie, K.; Ptáček, L.J.; Fu, Y.H. COL25A1 triggers and promotes Alzheimers disease-like pathology in vivo. Neurogenetics, 2010, 11(1), 41-52. doi: 10.1007/s10048-009-0201-5 PMID: 19548013
- Sarajärvi, T.; Tuusa, J.T.; Haapasalo, A.; Lackman, J.J.; Sormunen, R.; Helisalmi, S.; Roehr, J.T.; Parrado, A.R.; Mäkinen, P.; Bertram, L.; Soininen, H.; Tanzi, R.E.; Petäjä-Repo, U.E.; Hiltunen, M. Cysteine 27 variant of the delta-opioid receptor affects amyloid precursor protein processing through altered endocytic trafficking. Mol. Cell. Biol., 2011, 31(11), 2326-2340. doi: 10.1128/MCB.05015-11 PMID: 21464208
- Voineskos, A.N.; Lerch, J.P.; Felsky, D.; Shaikh, S.; Rajji, T.K.; Miranda, D.; Lobaugh, N.J.; Mulsant, B.H.; Pollock, B.G.; Kennedy, J.L. The brain-derived neurotrophic factor Val66Met polymorphism and prediction of neural risk for Alzheimer disease. Arch. Gen. Psychiatry, 2011, 68(2), 198-206. doi: 10.1001/archgenpsychiatry.2010.194 PMID: 21300947
- Roussotte, F.F.; Jahanshad, N.; Hibar, D.P.; Sowell, E.R.; Kohannim, O.; Barysheva, M.; Hansell, N.K.; McMahon, K.L.; de Zubicaray, G.I.; Montgomery, G.W.; Martin, N.G.; Wright, M.J.; Toga, A.W.; Jack, C.R., Jr; Weiner, M.W.; Thompson, P.M. ADNI. A commonly carried genetic variant in the delta opioid receptor gene, OPRD1, is associated with smaller regional brain volumes: Replication in elderly and young populations. Hum. Brain Mapp., 2014, 35(4), 1226-1236. doi: 10.1002/hbm.22247 PMID: 23427138
- Roos, A.; Fouche, J.P.; Toit, S.; Plessis, S.; Stein, D.J.; Donald, K.A. Structural brain network development in children following prenatal methamphetamine exposure. J. Comp. Neurol., 2020, 528(11), 1856-1863. doi: 10.1002/cne.24858 PMID: 31953852
- Feier, G.; Valvassori, S.S.; Lopes-Borges, J.; Varela, R.B.; Bavaresco, D.V.; Scaini, G.; Morais, M.O.; Andersen, M.L.; Streck, E.L.; Quevedo, J. Behavioral changes and brain energy metabolism dysfunction in rats treated with methamphetamine or dextroamphetamine. Neurosci. Lett., 2012, 530(1), 75-79. doi: 10.1016/j.neulet.2012.09.039 PMID: 23022501
- Bu, Q.; Lv, L.; Yan, G.; Deng, P.; Wang, Y.; Zhou, J.; Yang, Y.; Li, Y.; Cen, X. NMR-based metabonomic in hippocampus, nucleus accumbens and prefrontal cortex of methamphetamine-sensitized rats. Neurotoxicology, 2013, 36, 17-23. doi: 10.1016/j.neuro.2013.02.007 PMID: 23462569
- Chavoshi, H.; Boroujeni, M.E.; Abdollahifar, M.A.; Amini, A.; Tehrani, A.M.; Moghaddam, M.H.; Norozian, M.; Farahani, R.M.; Aliaghaei, A. From dysregulated microRNAs to structural alterations in the striatal region of METH-injected rats. J. Chem. Neuroanat., 2020, 109, 101854. doi: 10.1016/j.jchemneu.2020.101854 PMID: 32795519
- Huang, X.; Chen, Y-Y.; Shen, Y.; Cao, X.; Li, A.; Liu, Q.; Li, Z.; Zhang, L-B.; Dai, W.; Tan, T.; Arias-Carrion, O.; Xue, Y-X.; Su, H.; Yuan, T-F. Methamphetamine abuse impairs motor cortical plasticity and function. Mol. Psychiatry, 2017, 22(9), 1274-1281. doi: 10.1038/mp.2017.143 PMID: 28831198
- Gama, R.L.; Bruin, V.M.S.; Távora, D.G.F.; Duran, F.L.S.; Bittencourt, L.; Tufik, S. Structural brain abnormalities in patients with Parkinsons disease with visual hallucinations: A comparative voxel-based analysis. Brain Cogn., 2014, 87, 97-103. doi: 10.1016/j.bandc.2014.03.011 PMID: 24732953
- Gao, Y.; Nie, K.; Huang, B.; Mei, M.; Guo, M.; Xie, S.; Huang, Z.; Wang, L.; Zhao, J.; Zhang, Y.; Wang, L. Changes of brain structure in Parkinsons disease patients with mild cognitive impairment analyzed via VBM technology. Neurosci. Lett., 2017, 658, 121-132. doi: 10.1016/j.neulet.2017.08.028 PMID: 28823894
- Li, R.; Zou, T.; Wang, X.; Wang, H.; Hu, X.; Xie, F.; Meng, L.; Chen, H. Basal ganglia atrophyassociated causal structural network degeneration in Parkinsons disease. Hum. Brain Mapp., 2022, 43(3), 1145-1156. doi: 10.1002/hbm.25715 PMID: 34792836
- Rektor, I.; Svátková, A.; Vojtíek, L.; Zikmundová, I.; Vaníček, J.; Király, A.; Szabó, N. White matter alterations in Parkinsons disease with normal cognition precede grey matter atrophy. PLoS One, 2018, 13(1), e0187939. doi: 10.1371/journal.pone.0187939 PMID: 29304183
- Thompson, P.M.; Hayashi, K.M.; Simon, S.L.; Geaga, J.A.; Hong, M.S.; Sui, Y.; Lee, J.Y.; Toga, A.W.; Ling, W.; London, E.D. Structural abnormalities in the brains of human subjects who use methamphetamine. J. Neurosci., 2004, 24(26), 6028-6036. doi: 10.1523/JNEUROSCI.0713-04.2004 PMID: 15229250
- Chang, L.; Smith, L.M.; LoPresti, C.; Yonekura, M.L.; Kuo, J.; Walot, I.; Ernst, T. Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Res. Neuroimaging, 2004, 132(2), 95-106. doi: 10.1016/j.pscychresns.2004.06.004 PMID: 15598544
- Chang, L.; Cloak, C.; Patterson, K.; Grob, C.; Miller, E.N.; Ernst, T. Enlarged striatum in abstinent methamphetamine abusers: A possible compensatory response. Biol. Psychiatry, 2005, 57(9), 967-974. doi: 10.1016/j.biopsych.2005.01.039 PMID: 15860336
- Bae, S.C.; Lyoo, I.K.; Sung, Y.H.; Yoo, J.; Chung, A.; Yoon, S.J.; Kim, D.J.; Hwang, J.; Kim, S.J.; Renshaw, P.F. Increased white matter hyperintensities in male methamphetamine abusers. Drug Alcohol Depend., 2006, 81(1), 83-88. doi: 10.1016/j.drugalcdep.2005.05.016 PMID: 16005161
- Heidari, Z.; Mahmoudzadeh-Sagheb, H.; Shakiba, M. Alhagh, Charkhat, G.E. Stereological analysis of the brain in methamphetamine abusers compared to the controls. Int. J. High Risk Behav. Addict., 2017, 6(4), e63201. doi: 10.5812/ijhrba.63201
- Nie, L.; Zhao, Z.; Wen, X.; Luo, W.; Ju, T.; Ren, A.; Wu, B.; Li, J. Gray-matter structure in long-term abstinent methamphetamine users. BMC Psychiatry, 2020, 20(1), 158. doi: 10.1186/s12888-020-02567-3 PMID: 32272912
- He, H.; Liang, L.; Tang, T.; Luo, J.; Wang, Y.; Cui, H. Progressive brain changes in Parkinsons disease: A meta-analysis of structural magnetic resonance imaging studies. Brain Res., 2020, 1740, 146847. doi: 10.1016/j.brainres.2020.146847 PMID: 32330518
- Arab, A.; Ruda-Kucerova, J.; Minsterova, A.; Drazanova, E.; Szabó, N.; Starcuk, Z., Jr; Rektorova, I.; Khairnar, A. Rektorova, I.; Khairnar, A. Diffusion Kurtosis imaging detects microstructural changes in a methamphetamine-induced mouse model of Parkinsons disease. Neurotox. Res., 2019, 36(4), 724-735. doi: 10.1007/s12640-019-00068-0 PMID: 31209787
- Thanos, P.K.; Kim, R.; Delis, F.; Ananth, M.; Chachati, G.; Rocco, M.J.; Masad, I.; Muniz, J.A.; Grant, S.C.; Gold, M.S.; Cadet, J.L.; Volkow, N.D. Chronic methamphetamine effects on brain structure and function in rats. PLoS One, 2016, 11(6), e0155457. doi: 10.1371/journal.pone.0155457 PMID: 27275601
- Huang, S.; Dai, Y.; Zhang, C.; Yang, C.; Huang, Q.; Hao, W.; Shen, H. Higher impulsivity and lower grey matter volume in the bilateral prefrontal cortex in long-term abstinent individuals with severe methamphetamine use disorder. Drug Alcohol Depend., 2020, 212, 108040. doi: 10.1016/j.drugalcdep.2020.108040 PMID: 32428790
- Ravanidis, S.; Bougea, A.; Karampatsi, D.; Papagiannakis, N.; Maniati, M.; Stefanis, L.; Doxakis, E. Differentially expressed circular RNAs in peripheral blood mononuclear cells of patients with Parkinsons disease. Mov. Disord., 2021, 36(5), 1170-1179. doi: 10.1002/mds.28467 PMID: 33433033
- Lu, Y.; Peng, Q.; Zeng, Z.; Wang, J.; Deng, Y.; Xie, L.; Mo, C.; Zeng, J.; Qin, X.; Li, S. CYP2D6 phenotypes and Parkinsons disease risk: A meta-analysis. J. Neurol. Sci., 2014, 336(1-2), 161-168. doi: 10.1016/j.jns.2013.10.030 PMID: 24211060
- Dean, A.C.; Nurmi, E.L.; Morales, A.M.; Cho, A.K.; Seaman, L.C.; London, E.D. CYP2D6 genotype may moderate measures of brain structure in methamphetamine users. Addict. Biol., 2021, 26(3), e12950. doi: 10.1111/adb.12950 PMID: 32767519
- Lappin, J.M.; Darke, S.; Farrell, M. Methamphetamine use and future risk for Parkinsons disease: Evidence and clinical implications. Drug Alcohol Depend., 2018, 187, 134-140. doi: 10.1016/j.drugalcdep.2018.02.032 PMID: 29665491
- Thrash, B.; Thiruchelvan, K.; Ahuja, M.; Suppiramaniam, V.; Dhanasekaran, M. Methamphetamine-induced neurotoxicity: the road to Parkinsons disease. Pharmacol. Rep., 2009, 61(6), 966-977. doi: 10.1016/S1734-1140(09)70158-6 PMID: 20081231
- Davidson, C.; Gow, A.J.; Lee, T.H.; Ellinwood, E.H. Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res. Brain Res. Rev., 2001, 36(1), 1-22. doi: 10.1016/S0165-0173(01)00054-6 PMID: 11516769
- Itzhak, Y.; Martin, J.L.; Ali, S.F. Methamphetamine-induced dopaminergic neurotoxicity in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2002, 26(6), 1177-1183. doi: 10.1016/S0278-5846(02)00257-9 PMID: 12452543
- Sonsalla, P.K.; Jochnowitz, N.D.; Zeevalk, G.D.; Oostveen, J.A.; Hall, E.D. Treatment of mice with methamphetamine produces cell loss in the substantia nigra. Brain Res., 1996, 738(1), 172-175. doi: 10.1016/0006-8993(96)00995-X PMID: 8949944
- Ares-Santos, S.; Granado, N.; Espadas, I.; Martinez-Murillo, R.; Moratalla, R. Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology, 2014, 39(5), 1066-1080. doi: 10.1038/npp.2013.307 PMID: 24169803
- Mishra, A.; Singh, S.; Shukla, S. Physiological and functional basis of dopamine receptors and their role in neurogenesis: Possible implication for Parkinsons disease. J. Exp. Neurosci., 2018, 12. doi: 10.1177/1179069518779829 PMID: 29899667
- Kaasinen, V.; Vahlberg, T.; Stoessl, A.J.; Strafella, A.P.; Antonini, A. Dopamine receptors in Parkinsons disease: A meta-analysis of imaging studies. Mov. Disord., 2021, 36(8), 1781-1791. doi: 10.1002/mds.28632 PMID: 33955044
- Beauvais, G.; Atwell, K.; Jayanthi, S.; Ladenheim, B.; Cadet, J.L. Involvement of dopamine receptors in binge methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways. PLoS One, 2011, 6(12), e28946. doi: 10.1371/journal.pone.0028946 PMID: 22174933
- Coppedè, F. Genetics and epigenetics of Parkinsons disease. ScientificWorldJournal, 2012, 2012, 1-12. doi: 10.1100/2012/489830 PMID: 22623900
- Labbé, C.; Lorenzo-Betancor, O.; Ross, O.A. Epigenetic regulation in Parkinsons disease. Acta Neuropathol., 2016, 132(4), 515-530. doi: 10.1007/s00401-016-1590-9 PMID: 27358065
- Cadet, J.L.; Jayanthi, S. Epigenetics of addiction. Neurochem. Int., 2021, 147, 105069. doi: 10.1016/j.neuint.2021.105069 PMID: 33992741
- Cadet, J.L.; Jayanthi, S. Epigenetic landscape of methamphetamine use disorder. Curr. Neuropharmacol., 2021, 19(12), 2060-2066. doi: 10.2174/1570159X19666210524111915 PMID: 34030618
- Cadet, J.L.; Jayanthi, S.; Mccoy, M.T.; Vawter, M.; Ladenheim, B. Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: Evidence from cDNA array. Synapse, 2001, 41(1), 40-48. doi: 10.1002/syn.1058 PMID: 11354012
- Thomas, D.M.; Francescutti-Verbeem, D.M.; Liu, X.; Kuhn, D.M. Identification of differentially regulated transcripts in mouse striatum following methamphetamine treatment - an oligonucleotide microarray approach. J. Neurochem., 2004, 88(2), 380-393. doi: 10.1046/j.1471-4159.2003.02182.x PMID: 14690526
- Martin, T.A.; Jayanthi, S.; McCoy, M.T.; Brannock, C.; Ladenheim, B.; Garrett, T.; Lehrmann, E.; Becker, K.G.; Cadet, J.L. Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens. PLoS One, 2012, 7(3), e34236. doi: 10.1371/journal.pone.0034236 PMID: 22470541
- Godino, A.; Jayanthi, S.; Cadet, J.L. Epigenetic landscape of amphetamine and methamphetamine addiction in rodents. Epigenetics, 2015, 10(7), 574-580. doi: 10.1080/15592294.2015.1055441 PMID: 26023847
- Limanaqi, F.; Gambardella, S.; Biagioni, F.; Busceti, C.L.; Fornai, F. Epigenetic effects induced by methamphetamine and methamphetamine-dependent oxidative stress. Oxid. Med. Cell. Longev., 2018, 2018, 1-28. doi: 10.1155/2018/4982453 PMID: 30140365
- Marshall, L.L.; Killinger, B.A.; Ensink, E.; Li, P.; Li, K.X.; Cui, W.; Lubben, N.; Weiland, M.; Wang, X.; Gordevicius, J.; Coetzee, G.A.; Ma, J.; Jovinge, S.; Labrie, V. Epigenomic analysis of Parkinsons disease neurons identifies Tet2 loss as neuroprotective. Nat. Neurosci., 2020, 23(10), 1203-1214. doi: 10.1038/s41593-020-0690-y PMID: 32807949
- Jayanthi, S.; Gonzalez, B.; McCoy, M.T.; Ladenheim, B.; Bisagno, V.; Cadet, J.L. Methamphetamine induces TET1- and TET3-dependent DNA hydroxymethylation of Crh and Avp genes in the rat nucleus accumbens. Mol. Neurobiol., 2018, 55(6), 5154-5166. doi: 10.1007/s12035-017-0750-9 PMID: 28842817
- Tan, Y.; Delvaux, E.; Nolz, J.; Coleman, P.D.; Chen, S.; Mastroeni, D. Upregulation of histone deacetylase 2 in laser capture nigral microglia in Parkinsons disease. Neurobiol. Aging, 2018, 68, 134-141. doi: 10.1016/j.neurobiolaging.2018.02.018 PMID: 29803514
- González, B.; Bernardi, A.; Torres, O.V.; Jayanthi, S.; Gomez, N.; Sosa, M.H.; García-Rill, E.; Urbano, F.J.; Cadet, J.L.; Bisagno, V. HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex. Addict. Biol., 2020, 25(2), e12737. doi: 10.1111/adb.12737 PMID: 30811820
- Li, H.; Chen, J.A.; Ding, Q.Z.; Lu, G.Y.; Wu, N.; Su, R.B.; Li, F.; Li, J. Behavioral sensitization induced by methamphetamine causes differential alterations in gene expression and histone acetylation of the prefrontal cortex in rats. BMC Neurosci., 2021, 22(1), 24. doi: 10.1186/s12868-021-00616-5 PMID: 33823794
- Deng, H.; Wang, P.; Jankovic, J. The genetics of Parkinson disease. Ageing Res. Rev., 2018, 42, 72-85. doi: 10.1016/j.arr.2017.12.007 PMID: 29288112
- Nakahara, T.; Kuroki, T.; Ohta, E.; Kajihata, T.; Yamada, H.; Yamanaka, M.; Hashimoto, K.; Tsutsumi, T.; Hirano, M.; Uchimura, H. Effect of the neurotoxic dose of methamphetamine on gene expression of parkin and Pael-receptors in rat striatum. Parkinsonism Relat. Disord., 2003, 9(4), 213-219. doi: 10.1016/S1353-8020(02)00052-4 PMID: 12618056
- Guhathakurta, S.; Kim, J.; Adams, L.; Basu, S.; Song, M.K.; Adler, E.; Je, G.; Fiadeiro, M.B.; Kim, Y.S. Targeted attenuation of elevated histone marks at SNCA alleviates α‐synuclein in Parkinsons disease. EMBO Mol. Med., 2021, 13(2), e12188. doi: 10.15252/emmm.202012188 PMID: 33428332
- Södersten, E.; Toskas, K.; Rraklli, V.; Tiklova, K.; Björklund, Å.K.; Ringnér, M.; Perlmann, T.; Holmberg, J. A comprehensive map coupling histone modifications with gene regulation in adult dopaminergic and serotonergic neurons. Nat. Commun., 2018, 9(1), 1226. doi: 10.1038/s41467-018-03538-9 PMID: 29581424
- Lin, X.; Parisiadou, L.; Gu, X.L.; Wang, L.; Shim, H.; Sun, L.; Xie, C.; Long, C.X.; Yang, W.J.; Ding, J.; Chen, Z.Z.; Gallant, P.E.; Tao-Cheng, J.H.; Rudow, G.; Troncoso, J.C.; Liu, Z.; Li, Z.; Cai, H. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinsons-disease-related mutant alpha-synuclein. Neuron, 2009, 64(6), 807-827. doi: 10.1016/j.neuron.2009.11.006 PMID: 20064389
- Tong, Y.; Yamaguchi, H.; Giaime, E.; Boyle, S.; Kopan, R.; Kelleher, R.J., III; Shen, J. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of α-synuclein, and apoptotic cell death in aged mice. Proc. Natl. Acad. Sci. USA, 2010, 107(21), 9879-9884. doi: 10.1073/pnas.1004676107 PMID: 20457918
- Gehrke, S.; Imai, Y.; Sokol, N.; Lu, B. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature, 2010, 466(7306), 637-641. doi: 10.1038/nature09191 PMID: 20671708
- Zhao, Y.; Zhang, K.; Jiang, H.; Du, J.; Na, Z.; Hao, W.; Yu, S.; Zhao, M. Decreased expression of plasma microRNA in patients with methamphetamine (MA) use disorder. J. Neuroimmune Pharmacol., 2016, 11(3), 542-548. doi: 10.1007/s11481-016-9671-z PMID: 27108111
- Zhu, L.; Li, J.; Dong, N.; Guan, F.; Liu, Y.; Ma, D.; Goh, E.L.K.; Chen, T. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice. Sci. Rep., 2016, 6(1), 36993. doi: 10.1038/srep36993 PMID: 27869204
- Kobeissy, F.H.; Warren, M.W.; Ottens, A.K.; Sadasivan, S.; Zhang, Z.; Gold, M.S.; Wang, K.K.W. Psychoproteomic analysis of rat cortex following acute methamphetamine exposure. J. Proteome Res., 2008, 7(5), 1971-1983. doi: 10.1021/pr800029h PMID: 18452277
- Wang, J.; Liu, Y.; Chen, T. Identification of key genes and pathways in Parkinsons disease through integrated analysis. Mol. Med. Rep., 2017, 16(4), 3769-3776. doi: 10.3892/mmr.2017.7112 PMID: 28765971
- Kirilyuk, A.; Shimoji, M.; Catania, J.; Sahu, G.; Pattabiraman, N.; Giordano, A.; Albanese, C.; Mocchetti, I.; Toretsky, J.A.; Uversky, V.N.; Avantaggiati, M.L. An intrinsically disordered region of the acetyltransferase p300 with similarity to prion-like domains plays a role in aggregation. PLoS One, 2012, 7(11), e48243. doi: 10.1371/journal.pone.0048243 PMID: 23133622
- Palasz, E.; Wysocka, A.; Gasiorowska, A.; Chalimoniuk, M.; Niewiadomski, W.; Niewiadomska, G. BDNF as a promising therapeutic agent in Parkinsons disease. Int. J. Mol. Sci., 2020, 21(3), 1170. doi: 10.3390/ijms21031170 PMID: 32050617
- Iamjan, S.; Thanoi, S.; Watiktinkorn, P.; Fachim, H.; Dalton, C.F.; Nudmamud-Thanoi, S.; Reynolds, G.P. Changes of BDNF exon IV DNA methylation are associated with methamphetamine dependence. Epigenomics, 2021, 13(12), 953-965. doi: 10.2217/epi-2020-0463 PMID: 34008409
- Nies, Y.H.; Mohamad Najib, N.H.; Lim, W.L.; Kamaruzzaman, M.A.; Yahaya, M.F.; Teoh, S.L. MicroRNA dysregulation in Parkinsons disease: A narrative review. Front. Neurosci., 2021, 15, 660379. doi: 10.3389/fnins.2021.660379 PMID: 33994934
- Sandau, U.S.; Duggan, E.; Shi, X.; Smith, S.J.; Huckans, M.; Schutzer, W.E.; Loftis, J.M.; Janowsky, A.; Nolan, J.P.; Saugstad, J.A. Methamphetamine use alters human plasma extracellular vesicles and their microRNA cargo: An exploratory study. J. Extracell. Vesicles, 2020, 10(1), e12028. doi: 10.1002/jev2.12028 PMID: 33613872
- Liu, D.; Zhu, L.; Ni, T.; Guan, F.; Chen, Y.; Ma, D.; Goh, E.L.K.; Chen, T. Ago2 and Dicer1 are involved in METH‐induced locomotor sensitization in mice via biogenesis of miRNA. Addict. Biol., 2019, 24(3), 498-508. doi: 10.1111/adb.12616 PMID: 29516602
- Ghafouri-Fard, S.; Gholipour, M.; Abak, A.; Mazdeh, M.; Taheri, M.; Sayad, A. Expression analysis of NF-κB-related lncRNAs in Parkinsons disease. Front. Immunol., 2021, 12, 755246. doi: 10.3389/fimmu.2021.755246 PMID: 34721431
- Hernandez, S.M.; Tikhonova, E.B.; Baca, K.R.; Zhao, F.; Zhu, X.; Karamyshev, A.L. Unexpected implication of SRP and AGO2 in Parkinsons disease: Involvement in alpha-synuclein biogenesis. Cells, 2021, 10(10), 2792. doi: 10.3390/cells10102792 PMID: 34685771
- Yang, J.; Li, L.; Hong, S.; Zhang, D.; Zhou, Y. Methamphetamine leads to the alterations of microRNA profiles in the nucleus accumbens of rats. Pharm. Biol., 2020, 58(1), 797-805. doi: 10.1080/13880209.2020.1803366 PMID: 32893733
- Mavridis, I.N. Neurology nucleus accumbens and Parkinsons disease: exploring the role of Mavridis atrophy. OA Case Rep, 2014, 3(4), 35.
- Zhou, L.; Yang, L.; Li, Y.; Mei, R.; Yu, H.; Gong, Y.; Du, M.; Wang, F. MicroRNA-128 protects dopamine neurons from apoptosis and upregulates the expression of excitatory amino acid transporter 4 in Parkinsons disease by binding to AXIN1. Cell. Physiol. Biochem., 2018, 51(5), 2275-2289. doi: 10.1159/000495872 PMID: 30537735
- Zhang, K.; Wang, Q.; Jing, X.; Zhao, Y.; Jiang, H.; Du, J.; Yu, S.; Zhao, M. miR-181a is a negative regulator of GRIA2 in methamphetamine-use disorder. Sci. Rep., 2016, 6(1), 35691. doi: 10.1038/srep35691 PMID: 27767084
- Li, J.; Zhu, L.; Su, H.; Liu, D.; Yan, Z.; Ni, T.; Wei, H.; Goh, E.L.K.; Chen, T. Regulation of miR‐128 in the nucleus accumbens affects methamphetamine‐induced behavioral sensitization by modulating proteins involved in neuroplasticity. Addict. Biol., 2021, 26(1), e12881. doi: 10.1111/adb.12881 PMID: 32058631
- Cheng, M.; Liu, L.; Lao, Y.; Liao, W.; Liao, M.; Luo, X.; Wu, J.; Xie, W.; Zhang, Y.; Xu, N. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis. Oncotarget, 2016, 7(27), 42274-42287. doi: 10.18632/oncotarget.9786 PMID: 27281615
- Zhang, Y.; Tan, F.; Xu, P.; Qu, S. Recent advance in the relationship between excitatory amino acid transporters and Parkinsons disease. Neural Plast., 2016, 2016, 1-8. doi: 10.1155/2016/8941327 PMID: 26981287
- Wang, Y.; Wei, T.; Zhao, W.; Ren, Z.; Wang, Y.; Zhou, Y.; Song, X.; Zhou, R.; Zhang, X.; Jiao, D. MicroRNA-181a is involved in methamphetamine addiction through the ERAD pathway. Front. Mol. Neurosci., 2021, 14, 667725. doi: 10.3389/fnmol.2021.667725 PMID: 34025353
- Kanagaraj, N.; Beiping, H.; Dheen, S.T.; Tay, S.S.W. Downregulation of miR-124 in MPTP-treated mouse model of Parkinsons disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins. Neuroscience, 2014, 272, 167-179. doi: 10.1016/j.neuroscience.2014.04.039 PMID: 24792712
- Bosch, P.J.; Benton, M.C.; Macartney-Coxson, D.; Kivell, B.M. mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats. BMC Neurosci., 2015, 16(1), 43. doi: 10.1186/s12868-015-0186-y PMID: 26188473
- Liu, T.; Zhang, Y.; Liu, W.; Zhao, J. LncRNA NEAT1 regulates the development of Parkinsons disease by targeting AXIN1 via sponging miR-212-3p. Neurochem. Res., 2021, 46(2), 230-240. doi: 10.1007/s11064-020-03157-1 PMID: 33241432
- Pan, Y.; Nicolazzo, J.A. Impact of aging, Alzheimers disease and Parkinsons disease on the blood-brain barrier transport of therapeutics. Adv. Drug Deliv. Rev., 2018, 135, 62-74. doi: 10.1016/j.addr.2018.04.009 PMID: 29665383
- Desai, B.S.; Monahan, A.J.; Carvey, P.M.; Hendey, B. Blood-brain barrier pathology in Alzheimers and Parkinsons disease: implications for drug therapy. Cell Transplant., 2007, 16(3), 285-299. doi: 10.3727/000000007783464731 PMID: 17503739
- Cabezas, R.; Avila, M.; Gonzalez, J.; El-Bachá, R.S.; Báez, E.; García-Segura, L.M.; Jurado, C.J.C.; Capani, F.; Cardona-Gomez, G.P.; Barreto, G.E. Astrocytic modulation of blood brain barrier: perspectives on Parkinsons disease. Front. Cell. Neurosci., 2014, 8, 211. doi: 10.3389/fncel.2014.00211 PMID: 25136294
- Al-Bachari, S.; Naish, J.H.; Parker, G.J.M.; Emsley, H.C.A.; Parkes, L.M. Blood-brain barrier leakage is increased in Parkinsons disease. Front. Physiol., 2020, 11, 593026. doi: 10.3389/fphys.2020.593026 PMID: 33414722
- Gray, M.T.; Woulfe, J.M. Striatal blood-brain barrier permeability in Parkinsons disease. J. Cereb. Blood Flow Metab., 2015, 35(5), 747-750. doi: 10.1038/jcbfm.2015.32 PMID: 25757748
- Bates, C.A.; Zheng, W. Brain disposition of α-Synuclein: roles of brain barrier systems and implications for Parkinsons disease. Fluids Barriers CNS, 2014, 11(1), 17. doi: 10.1186/2045-8118-11-17 PMID: 25093076
- Lee, H.; Pienaar, I.S. Disruption of the blood-brain barrier in parkinsons disease: curse or route to a cure? Front. Biosci., 2014, 19(2), 272-280. doi: 10.2741/4206 PMID: 24389183
- Elabi, O.; Gaceb, A.; Carlsson, R.; Padel, T.; Soylu-Kucharz, R.; Cortijo, I.; Li, W.; Li, J.Y.; Paul, G. Human α-synuclein overexpression in a mouse model of Parkinsons disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Sci. Rep., 2021, 11(1), 1120. doi: 10.1038/s41598-020-80889-8 PMID: 33441868
- Northrop, N.A.; Yamamoto, B.K. Methamphetamine effects on blood-brain barrier structure and function. Front. Neurosci., 2015, 9, 69. doi: 10.3389/fnins.2015.00069 PMID: 25788874
- Gonçalves, J.; Leitão, R.A.; Higuera-Matas, A.; Assis, M.A.; Coria, S.M.; Fontes-Ribeiro, C.; Ambrosio, E.; Silva, A.P. Extended-access methamphetamine self-administration elicits neuroinflammatory response along with blood-brain barrier breakdown. Brain Behav. Immun., 2017, 62, 306-317. doi: 10.1016/j.bbi.2017.02.017 PMID: 28237710
- Kiyatkin, E.A.; Sharma, H.S. Leakage of the blood-brain barrier followed by vasogenic edema as the ultimate cause of death induced by acute methamphetamine overdose. Int. Rev. Neurobiol., 2019, 146, 189-207. doi: 10.1016/bs.irn.2019.06.010 PMID: 31349927
- Dunn, L.; Allen, G.F.G.; Mamais, A.; Ling, H.; Li, A.; Duberley, K.E.; Hargreaves, I.P.; Pope, S.; Holton, J.L.; Lees, A.; Heales, S.J.; Bandopadhyay, R. Dysregulation of glucose metabolism is an early event in sporadic Parkinsons disease. Neurobiol. Aging, 2014, 35(5), 1111-1115. doi: 10.1016/j.neurobiolaging.2013.11.001 PMID: 24300239
- Chang, L.; Alicata, D.; Ernst, T.; Volkow, N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction, 2007, 102(Suppl. 1), 16-32. doi: 10.1111/j.1360-0443.2006.01782.x PMID: 17493050
- Herland, A.; Maoz, B.M.; FitzGerald, E.A.; Grevesse, T.; Vidoudez, C.; Sheehy, S.P.; Budnik, N.; Dauth, S.; Mannix, R.; Budnik, B.; Parker, K.K.; Ingber, D.E. Proteomic and metabolomic characterization of human neurovascular unit cells in response to methamphetamine. Adv. Biosyst., 2020, 4(9), 1900230. doi: 10.1002/adbi.201900230 PMID: 32744807
- Ventura, F.; Muga, M.; Coelho-Santos, V.; Fontes-Ribeiro, C.A.; Leitão, R.A.; Silva, A.P. Protective effect of neuropeptide Y2 receptor activation against methamphetamine-induced brain endothelial cell alterations. Toxicol. Lett., 2020, 334, 53-59. doi: 10.1016/j.toxlet.2020.09.013 PMID: 32956829
- Li, C.; Wu, X.; Liu, S.; Zhao, Y.; Zhu, J.; Liu, K. Roles of neuropeptide Y in neurodegenerative and neuroimmune diseases. Front. Neurosci., 2019, 13, 869. doi: 10.3389/fnins.2019.00869 PMID: 31481869
- Hwang, J.S.; Cha, E.H.; Park, B.; Ha, E.; Seo, J.H. PBN inhibits a detrimental effect of methamphetamine on brain endothelial cells by alleviating the generation of reactive oxygen species. Arch. Pharm. Res., 2020, 43(12), 1347-1355. doi: 10.1007/s12272-020-01284-5 PMID: 33200316
- Namyen, J.; Permpoonputtana, K.; Nopparat, C.; Tocharus, J.; Tocharus, C.; Govitrapong, P. Protective effects of melatonin on methamphetamine-induced blood-brain barrier dysfunction in rat model. Neurotox. Res., 2020, 37(3), 640-660. doi: 10.1007/s12640-019-00156-1 PMID: 31900895
- Xue, Y.; He, J.T.; Zhang, K.K.; Chen, L.J.; Wang, Q.; Xie, X.L. Methamphetamine reduces expressions of tight junction proteins, rearranges F-actin cytoskeleton and increases the blood brain barrier permeability via the RhoA/ROCK-dependent pathway. Biochem. Biophys. Res. Commun., 2019, 509(2), 395-401. doi: 10.1016/j.bbrc.2018.12.144 PMID: 30594393
- Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol., 2007, 8(7), 519-529. doi: 10.1038/nrm2199 PMID: 17565364
- Costa, C.A.; Manaa, W.E.; Duplan, E.; Checler, F. The endoplasmic reticulum stress/unfolded protein response and their contributions to Parkinsons disease physiopathology. Cells, 2020, 9(11), 2495. doi: 10.3390/cells9112495 PMID: 33212954
- Tsujii, S.; Ishisaka, M.; Hara, H. Modulation of endoplasmic reticulum stress in Parkinsons disease. Eur. J. Pharmacol., 2015, 765, 154-156. doi: 10.1016/j.ejphar.2015.08.033 PMID: 26297973
- Mercado, G.; Castillo, V.; Soto, P.; Sidhu, A. ER stress and Parkinsons disease: Pathological inputs that converge into the secretory pathway. Brain Res., 2016, 1648(Pt B), 626-632. doi: 10.1016/j.brainres.2016.04.042 PMID: 27103567
- Du, X.; Xie, X.; Liu, R. The role of α-synuclein oligomers in Parkinsons disease. Int. J. Mol. Sci., 2020, 21(22), 8645. doi: 10.3390/ijms21228645 PMID: 33212758
- Shah, A.; Kumar, A. Methamphetamine-mediated endoplasmic reticulum (ER) stress induces type-1 programmed cell death in astrocytes via ATF6, IRE1α and PERK pathways. Oncotarget, 2016, 7(29), 46100-46119. doi: 10.18632/oncotarget.10025 PMID: 27323860
- Hayashi, T.; Justinova, Z.; Hayashi, E.; Cormaci, G.; Mori, T.; Tsai, S.Y.; Barnes, C.; Goldberg, S.R.; Su, T.P. Regulation of sigma-1 receptors and endoplasmic reticulum chaperones in the brain of methamphetamine self-administering rats. J. Pharmacol. Exp. Ther., 2010, 332(3), 1054-1063. doi: 10.1124/jpet.109.159244 PMID: 19940104
- Irie, Y.; Saeki, M.; Tanaka, H.; Kanemura, Y.; Otake, S.; Ozono, Y.; Nagai, T.; Kondo, Y.; Kudo, K.; Kamisaki, Y.; Miki, N.; Taira, E. Methamphetamine induces endoplasmic reticulum stress related gene CHOP/Gadd153/ddit3 in dopaminergic cells. Cell Tissue Res., 2011, 345(2), 231-241. doi: 10.1007/s00441-011-1207-5 PMID: 21789578
- Chao, J.; Zhang, Y.; Du, L.; Zhou, R.; Wu, X.; Shen, K.; Yao, H. Molecular mechanisms underlying the involvement of the sigma-1 receptor in methamphetamine-mediated microglial polarization. Sci. Rep., 2017, 7(1), 11540. doi: 10.1038/s41598-017-11065-8 PMID: 28912535
- Wongprayoon, P.; Govitrapong, P. Melatonin protects SH-SY5Y neuronal cells against methamphetamine-induced endoplasmic reticulum stress and apoptotic cell death. Neurotox. Res., 2017, 31(1), 1-10. doi: 10.1007/s12640-016-9647-z PMID: 27370255
- Tsai, S-Y.A.; Bendriem, R.M.; Lee, C.T.D. The cellular basis of fetal endoplasmic reticulum stress and oxidative stress in drug-induced neurodevelopmental deficits. Neurobiol. Stress, 2019, 10, 100145. doi: 10.1016/j.ynstr.2018.100145 PMID: 30937351
- Tabatabaei Mirakabad, F.S.; Khoramgah, M.S.; Abdollahifar, M.A.; Tehrani, A.S.; Rezaei-Tavirani, M.; Niknazar, S.; Tahmasebinia, F.; Mahmoudiasl, G.R.; Khoshsirat, S.; Abbaszadeh, H.A. NUPR1-CHOP experssion, autophagosome formation and apoptosis in the postmortem striatum of chronic methamphetamine user. J. Chem. Neuroanat., 2021, 114, 101942. doi: 10.1016/j.jchemneu.2021.101942 PMID: 33675952
- Chen, G.; Yu, G.; Yong, Z.; Yan, H.; Su, R.; Wang, H. A large dose of methamphetamine inhibits drug evoked synaptic plasticity via ER stress in the hippocampus. Mol. Med. Rep., 2021, 23(4), 278. doi: 10.3892/mmr.2021.11917 PMID: 33576466
- Chen, G.; Wei, X.; Xu, X.; Yu, G.; Yong, Z.; Su, R.; Tao, L. Methamphetamine inhibits long-term memory acquisition and synaptic plasticity by evoking endoplasmic reticulum stress. Front. Neurosci., 2021, 14, 630713. doi: 10.3389/fnins.2020.630713 PMID: 33519373
- Anderson, F.L.; von Herrmann, K.M.; Andrew, A.S.; Kuras, Y.I.; Young, A.L.; Scherzer, C.R.; Hickey, W.F.; Lee, S.L.; Havrda, M.C. Plasma-borne indicators of inflammasome activity in Parkinsons disease patients. NPJ Parkinsons Dis., 2021, 7(1), 2. doi: 10.1038/s41531-020-00147-6 PMID: 33398042
- Kovacs, S.B.; Miao, E.A. Gasdermins: Effectors of Pyroptosis. Trends Cell Biol., 2017, 27(9), 673-684. doi: 10.1016/j.tcb.2017.05.005 PMID: 28619472
- Liu, Y.; Wen, D.; Gao, J.; Xie, B.; Yu, H.; Shen, Q.; Zhang, J.; Jing, W.; Cong, B.; Ma, C. Methamphetamine induces GSDME-dependent cell death in hippocampal neuronal cells through the endoplasmic reticulum stress pathway. Brain Res. Bull., 2020, 162, 73-83. doi: 10.1016/j.brainresbull.2020.06.005 PMID: 32544512
- Qie, X.; Wen, D.; Guo, H.; Xu, G.; Liu, S.; Shen, Q.; Liu, Y.; Zhang, W.; Cong, B.; Ma, C. Endoplasmic reticulum stress mediates methamphetamine-induced blood-brain barrier damage. Front. Pharmacol., 2017, 8, 639. doi: 10.3389/fphar.2017.00639 PMID: 28959203
- Winklhofer, K.F.; Haass, C. Mitochondrial dysfunction in Parkinsons disease. Biochim. Biophys. Acta Mol. Basis Dis., 2010, 1802(1), 29-44. doi: 10.1016/j.bbadis.2009.08.013 PMID: 19733240
- Trinh, D.; Israwi, A.R.; Arathoon, L.R.; Gleave, J.A.; Nash, J.E. The multi‐faceted role of mitochondria in the pathology of Parkinsons disease. J. Neurochem., 2021, 156(6), 715-752. doi: 10.1111/jnc.15154 PMID: 33616931
- Chang, K.H.; Chen, C.M. The role of oxidative stress in Parkinsons disease. Antioxidants, 2020, 9(7), 597. doi: 10.3390/antiox9070597 PMID: 32650609
- Clark, E.H.; Vázquez de la Torre, A.; Hoshikawa, T.; Briston, T. Targeting mitophagy in Parkinsons disease. J. Biol. Chem., 2021, 296, 100209. doi: 10.1074/jbc.REV120.014294 PMID: 33372898
- Borsche, M.; Pereira, S.L.; Klein, C.; Grünewald, A. Mitochondria and Parkinsons disease: Clinical, molecular, and translational aspects. J. Parkinsons Dis., 2021, 11(1), 45-60. doi: 10.3233/JPD-201981 PMID: 33074190
- Langston, J.W.; Ballard, P.; Tetrud, J.W.; Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 1983, 219(4587), 979-980. doi: 10.1126/science.6823561 PMID: 6823561
- Nicklas, W.J.; Vyas, I.; Heikkila, R.E. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci., 1985, 36(26), 2503-2508. doi: 10.1016/0024-3205(85)90146-8 PMID: 2861548
- Exner, N.; Treske, B.; Paquet, D.; Holmström, K.; Schiesling, C.; Gispert, S.; Carballo-Carbajal, I.; Berg, D.; Hoepken, H.H.; Gasser, T.; Krüger, R.; Winklhofer, K.F.; Vogel, F.; Reichert, A.S.; Auburger, G.; Kahle, P.J.; Schmid, B.; Haass, C. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci., 2007, 27(45), 12413-12418. doi: 10.1523/JNEUROSCI.0719-07.2007 PMID: 17989306
- Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; Zhou, J.; Chen, Q. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J. Biol. Chem., 2011, 286(13), 11649-11658. doi: 10.1074/jbc.M110.144238 PMID: 21292769
- Portz, P.; Lee, M.K. Changes in Drp1 function and mitochondrial morphology are associated with the α-synuclein pathology in a transgenic mouse model of Parkinsons disease. Cells, 2021, 10(4), 885. doi: 10.3390/cells10040885 PMID: 33924585
- Moszczynska, A.; Yamamoto, B.K. Methamphetamine oxidatively damages parkin and decreases the activity of 26S proteasome in vivo. J. Neurochem., 2011, 116(6), 1005-1017. doi: 10.1111/j.1471-4159.2010.07147.x PMID: 21166679
- Moon, H.E.; Paek, S.H. Mitochondrial dysfunction in Parkinsons disease. Exp. Neurobiol., 2015, 24(2), 103-116. doi: 10.5607/en.2015.24.2.103 PMID: 26113789
- Ryan, B.J.; Hoek, S.; Fon, E.A.; Wade-Martins, R. Mitochondrial dysfunction and mitophagy in Parkinsons: from familial to sporadic disease. Trends Biochem. Sci., 2015, 40(4), 200-210. doi: 10.1016/j.tibs.2015.02.003 PMID: 25757399
- Bose, A.; Beal, M.F. Mitochondrial dysfunction in Parkinsons disease. J. Neurochem., 2016, 139(Suppl. 1), 216-231. doi: 10.1111/jnc.13731 PMID: 27546335
- Brown, J.M.; Quinton, M.S.; Yamamoto, B.K. Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. J. Neurochem., 2005, 95(2), 429-436. doi: 10.1111/j.1471-4159.2005.03379.x PMID: 16086684
- Tian, C.; Murrin, L.C.; Zheng, J.C. Mitochondrial fragmentation is involved in methamphetamine-induced cell death in rat hippocampal neural progenitor cells. PLoS One, 2009, 4(5), e5546. doi: 10.1371/journal.pone.0005546 PMID: 19436752
- Shin, E.J.; Tran, H.Q.; Nguyen, P.T.; Jeong, J.H.; Nah, S.Y.; Jang, C.G.; Nabeshima, T.; Kim, H.C. Role of mitochondria in methamphetamine-induced dopaminergic neurotoxicity: Involvement in oxidative stress, neuroinflammation, and pro-apoptosis-A review. Neurochem. Res., 2018, 43(1), 66-78. doi: 10.1007/s11064-017-2318-5 PMID: 28589520
- Samidurai, M.; Palanisamy, B.N.; Bargues-Carot, A.; Hepker, M.; Kondru, N.; Manne, S.; Zenitsky, G.; Jin, H.; Anantharam, V.; Kanthasamy, A.G.; Kanthasamy, A. PKC delta activation promotes endoplasmic reticulum stress (ERS) and NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation subsequent to asynuclein-induced microglial activation: Involvement of thioredoxin-interacting protein (TXNIP)/thioredoxin (Trx) redoxisome pathway. Front. Aging Neurosci., 2021, 13, 661505. doi: 10.3389/fnagi.2021.661505 PMID: 34276337
- Nash, J.E.; Ravenscroft, P.; McGuire, S.; Crossman, A.R.; Menniti, F.S.; Brotchie, J.M. The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-DOPA in the MPTP-lesioned marmoset model of Parkinsons disease. Exp. Neurol., 2004, 188(2), 471-479. doi: 10.1016/j.expneurol.2004.05.004 PMID: 15246846
- Yang, L.; Guo, N.; Fan, W.; Ni, C.; Huang, M.; Bai, L.; Zhang, L.; Zhang, X.; Wen, Y.; Li, Y.; Zhou, X.; Bai, J. Thioredoxin-1 blocks methamphetamine-induced injury in brain through inhibiting endoplasmic reticulum and mitochondria-mediated apoptosis in mice. Neurotoxicology, 2020, 78, 163-169. doi: 10.1016/j.neuro.2020.03.006 PMID: 32203791
- Carrillo-Mora, P.; Silva-Adaya, D.; Villaseñor-Aguayo, K. Glutamate in Parkinsons disease: Role of antiglutamatergic drugs. Basal Ganglia, 2013, 3(3), 147-157. doi: 10.1016/j.baga.2013.09.001
- Wang, R.; Sun, H.; Ren, H.; Wang, G. α-Synuclein aggregation and transmission in Parkinsons disease: a link to mitochondria and lysosome. Sci. China Life Sci., 2020, 63(12), 1850-1859. doi: 10.1007/s11427-020-1756-9 PMID: 32681494
- Dorszewska, J.; Kowalska, M.; Prendecki, M.; Piekut, T.; Kozłowska, J.; Kozubski, W. Oxidative stress factors in Parkinsons disease. Neural Regen. Res., 2021, 16(7), 1383-1391. doi: 10.4103/1673-5374.300980 PMID: 33318422
- Sun, L.; Li, H.M.; Seufferheld, M.J.; Walters, K.R., Jr; Margam, V.M.; Jannasch, A.; Diaz, N.; Riley, C.P.; Sun, W.; Li, Y.F.; Muir, W.M.; Xie, J.; Wu, J.; Zhang, F.; Chen, J.Y.; Barker, E.L.; Adamec, J.; Pittendrigh, B.R. Systems-scale analysis reveals pathways involved in cellular response to methamphetamine. PLoS One, 2011, 6(4), e18215. doi: 10.1371/journal.pone.0018215 PMID: 21533132
- Majdi, F.; Taheri, F.; Salehi, P.; Motaghinejad, M.; Safari, S. Cannabinoids Δ9-tetrahydrocannabinol and cannabidiol may be effective against methamphetamine induced mitochondrial dysfunction and inflammation by modulation of Toll-like type-4(Toll-like 4) receptors and NF-κB signaling. Med. Hypotheses, 2019, 133, 109371. doi: 10.1016/j.mehy.2019.109371 PMID: 31465975
- Zeng, Q.; Xiong, Q.; Zhou, M.; Tian, X.; Yue, K.; Li, Y.; Shu, X.; Ru, Q. Resveratrol attenuates methamphetamine‐induced memory impairment via inhibition of oxidative stress and apoptosis in mice. J. Food Biochem., 2021, 45(2), e13622. doi: 10.1111/jfbc.13622 PMID: 33502009
- Zhong, Y.; Cai, X.; Ding, L.; Liao, J.; Liu, X.; Huang, Y.; Chen, X.; Long, L. Nrf2 inhibits the progression of Parkinsons disease by upregulating AABR07032261.5 to repress pyroptosis. J. Inflamm. Res., 2022, 15, 669-685. doi: 10.2147/JIR.S345895 PMID: 35140498
- Potula, R.; Hawkins, B.J.; Cenna, J.M.; Fan, S.; Dykstra, H.; Ramirez, S.H.; Morsey, B.; Brodie, M.R.; Persidsky, Y. Methamphetamine causes mitrochondrial oxidative damage in human T lymphocytes leading to functional impairment. J. Immunol., 2010, 185(5), 2867-2876. doi: 10.4049/jimmunol.0903691 PMID: 20668216
- Chen, X.; Qiu, F.; Zhao, X.; Lu, J.; Tan, X.; Xu, J.; Chen, C.; Zhang, F.; Liu, C.; Qiao, D.; Wang, H. Astrocyte-derived lipocalin-2 is involved in mitochondrion-related neuronal apoptosis induced by methamphetamine. ACS Chem. Neurosci., 2020, 11(8), 1102-1116. doi: 10.1021/acschemneuro.9b00559 PMID: 32186847
- Kim, B.W.; Jeong, K.H.; Kim, J.H.; Jin, M.; Kim, J.H.; Lee, M.G.; Choi, D.K.; Won, S.Y.; McLean, C.; Jeon, M.T.; Lee, H.W.; Kim, S.R.; Suk, K. Pathogenic upregulation of glial lipocalin-2 in the Parkinsonian dopaminergic system. J. Neurosci., 2016, 36(20), 5608-5622. doi: 10.1523/JNEUROSCI.4261-15.2016 PMID: 27194339
- Eidson, L.N.; Kannarkat, G.T.; Barnum, C.J.; Chang, J.; Chung, J.; Caspell-Garcia, C.; Taylor, P.; Mollenhauer, B.; Schlossmacher, M.G.; Ereshefsky, L.; Yen, M.; Kopil, C.; Frasier, M.; Marek, K.; Hertzberg, V.S.; Tansey, M.G. Candidate inflammatory biomarkers display unique relationships with alpha-synuclein and correlate with measures of disease severity in subjects with Parkinsons disease. J. Neuroinflammation, 2017, 14(1), 164. doi: 10.1186/s12974-017-0935-1 PMID: 28821274
- Hwang, R.D.; Wiemerslage, L.; LaBreck, C.J.; Khan, M.; Kannan, K.; Wang, X.; Zhu, X.; Lee, D.; Fridell, Y.W.C. The neuroprotective effect of human uncoupling protein 2 (hUCP2) requires cAMP-dependent protein kinase in a toxin model of Parkinsons disease. Neurobiol. Dis., 2014, 69, 180-191. doi: 10.1016/j.nbd.2014.05.032 PMID: 24965893
- Sepehr, A.; Taheri, F.; Heidarian, S.; Motaghinejad, M.; Safari, S. Neuroprotective and neuro-survival properties of safinamide against methamphetamine-induced neurodegeneration: Hypothetic possible role of BDNF/TrkB/PGC-1α signaling pathway and mitochondrial uncoupling protein −2(UCP-2). Med. Hypotheses, 2020, 143, 110094. doi: 10.1016/j.mehy.2020.110094 PMID: 32682215
- Teodorof-Diedrich, C.; Spector, S.A. Human immunodeficiency virus type 1 and methamphetamine-mediated mitochondrial damage and neuronal degeneration in human neurons. J. Virol., 2020, 94(20), e00924-e20. doi: 10.1128/JVI.00924-20 PMID: 32796068
- Vedam-Mai, V. Harnessing the immune system for the treatment of Parkinsons disease. Brain Res., 2021, 1758, 147308. doi: 10.1016/j.brainres.2021.147308 PMID: 33524380
- Kline, E.M.; Houser, M.C.; Herrick, M.K.; Seibler, P.; Klein, C.; West, A.; Tansey, M.G. Genetic and environmental factors in Parkinsons disease converge on immune function and inflammation. Mov. Disord., 2021, 36(1), 25-36. doi: 10.1002/mds.28411 PMID: 33314312
- Castorina, A.; Thomas Broome, S.; Louangaphay, K.; Keay, K.A.; Leggio, G.M.; Musumeci, G. Dopamine: an immune transmitter. Neural Regen. Res., 2020, 15(12), 2173-2185. doi: 10.4103/1673-5374.284976 PMID: 32594028
- Marogianni, C.; Sokratous, M.; Dardiotis, E.; Hadjigeorgiou, G.M.; Bogdanos, D.; Xiromerisiou, G. Neurodegeneration and inflammation-An interesting interplay in Parkinsons disease. Int. J. Mol. Sci., 2020, 21(22), 8421. doi: 10.3390/ijms21228421 PMID: 33182554
- Tan, J.S.Y.; Chao, Y.X.; Rötzschke, O.; Tan, E.K. New insights into immune-mediated mechanisms in Parkinsons disease. Int. J. Mol. Sci., 2020, 21(23), 9302. doi: 10.3390/ijms21239302 PMID: 33291304
- Sulzer, D.; Alcalay, R.N.; Garretti, F.; Cote, L.; Kanter, E.; Agin-Liebes, J.; Liong, C.; McMurtrey, C.; Hildebrand, W.H.; Mao, X.; Dawson, V.L.; Dawson, T.M.; Oseroff, C.; Pham, J.; Sidney, J.; Dillon, M.B.; Carpenter, C.; Weiskopf, D.; Phillips, E.; Mallal, S.; Peters, B.; Frazier, A.; Lindestam Arlehamn, C.S.; Sette, A. T cells from patients with Parkinsons disease recognize α-synuclein peptides. Nature, 2017, 546(7660), 656-661. doi: 10.1038/nature22815 PMID: 28636593
- Grozdanov, V.; Danzer, K.M. Intracellular alpha-synuclein and immune cell function. Front. Cell Dev. Biol., 2020, 8, 562692. doi: 10.3389/fcell.2020.562692 PMID: 33178682
- Macur, K.; Ciborowski, P. Immune system and methamphetamine: Molecular basis of a relationship. Curr. Neuropharmacol., 2021, 19(12), 2067-2076. doi: 10.2174/1570159X19666210428121632 PMID: 33913404
- Papageorgiou, M.; Raza, A.; Fraser, S.; Nurgali, K.; Apostolopoulos, V. Methamphetamine and its immune-modulating effects. Maturitas, 2019, 121, 13-21. doi: 10.1016/j.maturitas.2018.12.003 PMID: 30704560
- Prakash, M.D.; Tangalakis, K.; Antonipillai, J.; Stojanovska, L.; Nurgali, K.; Apostolopoulos, V. Methamphetamine: Effects on the brain, gut and immune system. Pharmacol. Res., 2017, 120, 60-67. doi: 10.1016/j.phrs.2017.03.009 PMID: 28302577
- Salamanca, S.A.; Sorrentino, E.E.; Nosanchuk, J.D.; Martinez, L.R. Impact of methamphetamine on infection and immunity. Front. Neurosci., 2015, 8, 445. doi: 10.3389/fnins.2014.00445 PMID: 25628526
- Potula, R.; Haldar, B.; Cenna, J.M.; Sriram, U.; Fan, S. Methamphetamine alters T cell cycle entry and progression: role in immune dysfunction. Cell Death Discov., 2018, 4(1), 44. doi: 10.1038/s41420-018-0045-6 PMID: 29581895
- Wang, X.; Northcutt, A.L.; Cochran, T.A.; Zhang, X.; Fabisiak, T.J.; Haas, M.E.; Amat, J.; Li, H.; Rice, K.C.; Maier, S.F.; Bachtell, R.K.; Hutchinson, M.R.; Watkins, L.R. Methamphetamine activates Toll-like receptor 4 to induce central immune signaling within the ventral tegmental area and contributes to extracellular dopamine increase in the nucleus accumbens shell. ACS Chem. Neurosci., 2019, 10(8), 3622-3634. doi: 10.1021/acschemneuro.9b00225 PMID: 31282647
- Xue, L.; Geng, Y.; Li, M.; Jin, Y.F.; Ren, H.X.; Li, X.; Wu, F.; Wang, B.; Cheng, W.Y.; Chen, T.; Chen, Y.J. The effects of D3R on TLR4 signaling involved in the regulation of METH-mediated mast cells activation. Int. Immunopharmacol., 2016, 36, 187-198. doi: 10.1016/j.intimp.2016.04.030 PMID: 27156126
- Tufekci, K.U.; Meuwissen, R.; Genc, S.; Genc, K. Inflammation in Parkinsons disease. Adv. Protein Chem. Struct. Biol., 2012, 88, 69-132. doi: 10.1016/B978-0-12-398314-5.00004-0 PMID: 22814707
- Olmos, G.; Lladó, J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm., 2014, 2014, 1-12. doi: 10.1155/2014/861231 PMID: 24966471
- Baud, V.; Karin, M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol., 2001, 11(9), 372-377. doi: 10.1016/S0962-8924(01)02064-5 PMID: 11514191
- Dong, Y.; Dekens, D.; De Deyn, P.; Naudé, P.; Eisel, U. Targeting of tumor necrosis factor alpha receptors as a therapeutic strategy for neurodegenerative disorders. Antibodies (Basel), 2015, 4(4), 369-408. doi: 10.3390/antib4040369
- Hirsch, E.C.; Vyas, S.; Hunot, S. Neuroinflammation in Parkinsons disease. Parkinsonism Relat. Disord., 2012, 18(Suppl. 1), S210-S212. doi: 10.1016/S1353-8020(11)70065-7 PMID: 22166438
- Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinsons disease and its potential as therapeutic target. Transl. Neurodegener., 2015, 4(1), 19. doi: 10.1186/s40035-015-0042-0 PMID: 26464797
- Krasnova, I.N.; Justinova, Z.; Cadet, J.L. Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways. Psychopharmacology (Berl.), 2016, 233(10), 1945-1962. doi: 10.1007/s00213-016-4235-8 PMID: 26873080
- Gonçalves, J.; Martins, T.; Ferreira, R.; Milhazes, N.; Borges, F.; Ribeiro, C.F.; Malva, J.O.; Macedo, T.R.; Silva, A.P. Methamphetamine-induced early increase of IL-6 and TNF-α mRNA expression in the mouse brain. Ann. N. Y. Acad. Sci., 2008, 1139(1), 103-111. doi: 10.1196/annals.1432.043 PMID: 18991854
- Coelho-Santos, V.; Leitão, R.A.; Cardoso, F.L.; Palmela, I.; Rito, M.; Barbosa, M.; Brito, M.A.; Fontes-Ribeiro, C.A.; Silva, A.P. The TNF-α/NF-κB signaling pathway has a key role in methamphetamine-induced blood-brain barrier dysfunction. J. Cereb. Blood Flow Metab., 2015, 35(8), 1260-1271. doi: 10.1038/jcbfm.2015.59 PMID: 25899299
- Hofmann, K.W.; Schuh, A.F.S.; Saute, J.; Townsend, R.; Fricke, D.; Leke, R.; Souza, D.O.; Portela, L.V.; Chaves, M.L.F.; Rieder, C.R.M. Interleukin-6 serum levels in patients with Parkinsons disease. Neurochem. Res., 2009, 34(8), 1401-1404. doi: 10.1007/s11064-009-9921-z PMID: 19214748
- Yang, X.; Zhao, H.; Liu, X.; Xie, Q.; Zhou, X.; Deng, Q.; Wang, G. The relationship between serum cytokine levels and the degree of psychosis and cognitive impairment in patients with methamphetamine-associated psychosis in Chinese patients. Front. Psychiatry, 2020, 11, 594766. doi: 10.3389/fpsyt.2020.594766 PMID: 33362607
- Benkler, M.; Agmon-Levin, N.; Shoenfeld, Y. Parkinsons disease, autoimmunity, and olfaction. Int. J. Neurosci., 2009, 119(12), 2133-2143. doi: 10.3109/00207450903178786 PMID: 19916845
- Reynolds, J.L.; Mahajan, S.D.; Sykes, D.E.; Schwartz, S.A.; Nair, M.P.N. Proteomic analyses of methamphetamine (METH)-induced differential protein expression by immature dendritic cells (IDC). Biochim. Biophys. Acta. Proteins Proteomics, 2007, 1774(4), 433-442. doi: 10.1016/j.bbapap.2007.02.001 PMID: 17363347
- Zhang, X.; Dong, F.; Mayer, G.E.; Bruch, D.C.; Ren, J.; Culver, B. Selective inhibition of cyclooxygenase-2 exacerbates methamphetamine-induced dopamine depletion in the striatum in rats. Neuroscience, 2007, 150(4), 950-958. doi: 10.1016/j.neuroscience.2007.09.059 PMID: 17988800
- Teismann, P. COX‐2 in the neurodegenerative process of Parkinsons disease. Biofactors, 2012, 38(6), 395-397. doi: 10.1002/biof.1035 PMID: 22826171
- Puchałowicz, K.; Tarnowski, M.; Baranowska-Bosiacka, I.; Chlubek, D.; Dziedziejko, V. P2X and P2Y receptorsrole in the pathophysiology of the nervous system. Int. J. Mol. Sci., 2014, 15(12), 23672-23704. doi: 10.3390/ijms151223672 PMID: 25530618
- Jun, D.J.; Kim, J.; Jung, S.Y.; Song, R.; Noh, J.H.; Park, Y.S.; Ryu, S.H.; Kim, J.H.; Kong, Y.Y.; Chung, J.M.; Kim, K.T. Extracellular ATP mediates necrotic cell swelling in SN4741 dopaminergic neurons through P2X7 receptors. J. Biol. Chem., 2007, 282(52), 37350-37358. doi: 10.1074/jbc.M707915200 PMID: 17962183
- Liu, H.; Han, X.; Li, Y.; Zou, H.; Xie, A. Association of P2X7 receptor gene polymorphisms with sporadic Parkinsons disease in a Han Chinese population. Neurosci. Lett., 2013, 546, 42-45. doi: 10.1016/j.neulet.2013.04.049 PMID: 23648388
- Fernandes, N.C.; Sriram, U.; Gofman, L.; Cenna, J.M.; Ramirez, S.H.; Potula, R. Methamphetamine alters microglial immune function through P2X7R signaling. J. Neuroinflammation, 2016, 13(1), 91. doi: 10.1186/s12974-016-0553-3 PMID: 27117066
- Herrero, M.T.; Estrada, C.; Maatouk, L.; Vyas, S. Inflammation in Parkinsons disease: role of glucocorticoids. Front. Neuroanat., 2015, 9, 32. doi: 10.3389/fnana.2015.00032 PMID: 25883554
- Zuloaga, D.G.; Jacosbskind, J.S.; Raber, J. Methamphetamine and the hypothalamic-pituitary-adrenal axis. Front. Neurosci., 2015, 9, 178. doi: 10.3389/fnins.2015.00178 PMID: 26074755
- Dang, J.; Tiwari, S.K.; Agrawal, K.; Hui, H.; Qin, Y.; Rana, T.M. Glial cell diversity and methamphetamine-induced neuroinflammation in human cerebral organoids. Mol. Psychiatry, 2021, 26(4), 1194-1207. doi: 10.1038/s41380-020-0676-x PMID: 32051547
- Ghavidel, N.; Khodagholi, F.; Ahmadiani, A.; Khosrowabadi, R.; Asadi, S.; Shams, J. Inflammation but not programmed cell death is activated in methamphetamine-dependent patients: Relevance to the brain function. Int. J. Psychophysiol., 2020, 157, 42-50. doi: 10.1016/j.ijpsycho.2020.09.004 PMID: 32976886
- Persons, A.L.; Desai Bradaric, B.; Kelly, L.P.; Kousik, S.M.; Graves, S.M.; Yamamoto, B.K.; Napier, T.C. Gut and brain profiles that resemble pre-motor and early-stage Parkinsons disease in methamphetamine self-administering rats. Drug Alcohol Depend., 2021, 225, 108746. doi: 10.1016/j.drugalcdep.2021.108746 PMID: 34098381
- Qian, M.; Fang, X.; Wang, X. Autophagy and inflammation. Clin. Transl. Med., 2017, 6(1), 24. doi: 10.1186/s40169-017-0154-5 PMID: 28748360
- Cerri, S.; Blandini, F. Role of autophagy in Parkinsons disease. Curr. Med. Chem., 2019, 26(20), 3702-3718. doi: 10.2174/0929867325666180226094351 PMID: 29484979
- Wang, B.; Abraham, N.; Gao, G.; Yang, Q. Dysregulation of autophagy and mitochondrial function in Parkinsons disease. Transl. Neurodegener., 2016, 5(1), 19. doi: 10.1186/s40035-016-0065-1 PMID: 27822367
- Moors, T.E.; Hoozemans, J.J.M.; Ingrassia, A.; Beccari, T.; Parnetti, L.; Chartier-Harlin, M.C.; van de Berg, W.D.J. Therapeutic potential of autophagy-enhancing agents in Parkinsons disease. Mol. Neurodegener., 2017, 12(1), 11. doi: 10.1186/s13024-017-0154-3 PMID: 28122627
- Meng, Y.; Ding, J.; Li, C.; Fan, H.; He, Y.; Qiu, P. Transfer of pathological α-synuclein from neurons to astrocytes via exosomes causes inflammatory responses after METH exposure. Toxicol. Lett., 2020, 331, 188-199. doi: 10.1016/j.toxlet.2020.06.016 PMID: 32569805
- Tripathi, M.K.; Rajput, C.; Mishra, S.; Rasheed, M.S.; Singh, M.P. Malfunctioning of chaperone-mediated autophagy in Parkinsons disease: feats, constraints, and flaws of modulators. Neurotox. Res., 2019, 35(1), 260-270. doi: 10.1007/s12640-018-9917-z PMID: 29949106
- Sun, L.; Lian, Y.; Ding, J.; Meng, Y.; Li, C.; Chen, L.; Qiu, P. The role of chaperone‐mediated autophagy in neurotoxicity induced by alpha‐synuclein after methamphetamine exposure. Brain Behav., 2019, 9(8), e01352. doi: 10.1002/brb3.1352 PMID: 31286692
- Roohbakhsh, A.; Shirani, K.; Karimi, G. Methamphetamine-induced toxicity: The role of autophagy? Chem. Biol. Interact., 2016, 260, 163-167. doi: 10.1016/j.cbi.2016.10.012 PMID: 27746146
- Li, B.; Chen, R.; Chen, L.; Qiu, P.; Ai, X.; Huang, E.; Huang, W.; Chen, C.; Liu, C.; Lin, Z.; Xie, W.B.; Wang, H. Effects of DDIT4 in methamphetamine-induced autophagy and apoptosis in dopaminergic neurons. Mol. Neurobiol., 2017, 54(3), 1642-1660. doi: 10.1007/s12035-015-9637-9 PMID: 26873849
- Xu, X.; Huang, E.; Tai, Y.; Zhao, X.; Chen, X.; Chen, C.; Chen, R.; Liu, C.; Lin, Z.; Wang, H.; Xie, W.B. Nupr1 modulates methamphetamine-induced dopaminergic neuronal apoptosis and autophagy through CHOP-Trib3-mediated endoplasmic reticulum stress signaling pathway. Front. Mol. Neurosci., 2017, 10, 203. doi: 10.3389/fnmol.2017.00203 PMID: 28694771
- Ma, J.; Wan, J.; Meng, J.; Banerjee, S.; Ramakrishnan, S.; Roy, S. Methamphetamine induces autophagy as a pro-survival response against apoptotic endothelial cell death through the Kappa opioid receptor. Cell Death Dis., 2014, 5(3), e1099. doi: 10.1038/cddis.2014.64 PMID: 24603327
- Khoshsirat, S.; Khoramgah, M.S.; Mahmoudiasl, G.R.; Rezaei-Tavirani, M.; Abdollahifar, M.A.; Tahmasebinia, F.; Darabi, S.; Niknazar, S.; Abbaszadeh, H.A. LC3 and ATG5 overexpression and neuronal cell death in the prefrontal cortex of postmortem chronic methamphetamine users. J. Chem. Neuroanat., 2020, 107, 101802. doi: 10.1016/j.jchemneu.2020.101802 PMID: 32416129
- Zhu, Z.; Yang, C.; Iyaswamy, A.; Krishnamoorthi, S.; Sreenivasmurthy, S.G.; Liu, J.; Wang, Z.; Tong, B.C.K.; Song, J.; Lu, J.; Cheung, K.H.; Li, M. Balancing mTOR signaling and autophagy in the treatment of Parkinsons disease. Int. J. Mol. Sci., 2019, 20(3), 728. doi: 10.3390/ijms20030728 PMID: 30744070
- Hou, X.; Watzlawik, J.O.; Fiesel, F.C.; Springer, W. Autophagy in Parkinsons disease. J. Mol. Biol., 2020, 432(8), 2651-2672. doi: 10.1016/j.jmb.2020.01.037 PMID: 32061929
- Hu, Z.; Chen, B.; Zhang, J.; Ma, Y. Up-regulation of autophagy-related gene 5 (ATG5) protects dopaminergic neurons in a zebrafish model of Parkinsons disease. J. Biol. Chem., 2017, 292(44), 18062-18074. doi: 10.1074/jbc.M116.764795 PMID: 28928221
- Sepúlveda, D.; Grunenwald, F.; Vidal, A.; Troncoso-Escudero, P.; Cisternas-Olmedo, M.; Villagra, R.; Vergara, P.; Aguilera, C.; Nassif, M.; Vidal, R.L. Insulin-like growth factor 2 and autophagy gene expression alteration arise as potential biomarkers in Parkinsons disease. Sci. Rep., 2022, 12(1), 2038. doi: 10.1038/s41598-022-05941-1 PMID: 35132125
- Kang, R.; Zeh, H.J.; Lotze, M.T.; Tang, D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ., 2011, 18(4), 571-580. doi: 10.1038/cdd.2010.191 PMID: 21311563
- Spencer, B.; Potkar, R.; Trejo, M.; Rockenstein, E.; Patrick, C.; Gindi, R.; Adame, A.; Wyss-Coray, T.; Masliah, E. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinsons and Lewy body diseases. J. Neurosci., 2009, 29(43), 13578-13588. doi: 10.1523/JNEUROSCI.4390-09.2009 PMID: 19864570
- Lucin, K.M.; OBrien, C.E.; Bieri, G.; Czirr, E.; Mosher, K.I.; Abbey, R.J.; Mastroeni, D.F.; Rogers, J.; Spencer, B.; Masliah, E.; Wyss-Coray, T. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimers disease. Neuron, 2013, 79(5), 873-886. doi: 10.1016/j.neuron.2013.06.046 PMID: 24012002
- Lin, M.; Shivalingappa, P.C.; Jin, H.; Ghosh, A.; Anantharam, V.; Ali, S.; Kanthasamy, A.G.; Kanthasamy, A. Methamphetamine-induced neurotoxicity linked to UPS dysfunction and autophagy related changes that can be modulated by PKCδ in dopaminergic neuronal cells. Neuroscience, 2012, 210, 308-332. doi: 10.1016/j.neuroscience.2012.03.004 PMID: 22445524
- Shin, E.J.; Duong, C.X.; Nguyen, X.K.T.; Li, Z.; Bing, G.; Bach, J.H.; Park, D.H.; Nakayama, K.; Ali, S.F.; Kanthasamy, A.G.; Cadet, J.L.; Nabeshima, T.; Kim, H.C. Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ. Behav. Brain Res., 2012, 232(1), 98-113. doi: 10.1016/j.bbr.2012.04.001 PMID: 22512859
- Gordon, R.; Singh, N.; Lawana, V.; Ghosh, A.; Harischandra, D.S.; Jin, H.; Hogan, C.; Sarkar, S.; Rokad, D.; Panicker, N.; Anantharam, V.; Kanthasamy, A.G.; Kanthasamy, A. Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinsons disease. Neurobiol. Dis., 2016, 93, 96-114. doi: 10.1016/j.nbd.2016.04.008 PMID: 27151770
- Zhang, D.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Neuroprotective effect of protein kinase C delta inhibitor rottlerin in cell culture and animal models of Parkinsons disease. J. Pharmacol. Exp. Ther., 2007, 322(3), 913-922. doi: 10.1124/jpet.107.124669 PMID: 17565007
- Dai, D.; Yuan, J.; Wang, Y.; Xu, J.; Mao, C.; Xiao, Y. Peli1 controls the survival of dopaminergic neurons through modulating microglia-mediated neuroinflammation. Sci. Rep., 2019, 9(1), 8034. doi: 10.1038/s41598-019-44573-w PMID: 31142803
- Yang, T.; Zang, S.; Wang, Y.; Zhu, Y.; Jiang, L.; Chen, X.; Zhang, X.; Cheng, J.; Gao, R.; Xiao, H.; Wang, J. Methamphetamine induced neuroinflammation in mouse brain and microglial cell line BV2: Roles of the TLR4/TRIF/Peli1 signaling axis. Toxicol. Lett., 2020, 333, 150-158. doi: 10.1016/j.toxlet.2020.07.028 PMID: 32768653
- Sekine, Y.; Ouchi, Y.; Sugihara, G.; Takei, N.; Yoshikawa, E.; Nakamura, K.; Iwata, Y.; Tsuchiya, K.J.; Suda, S.; Suzuki, K.; Kawai, M.; Takebayashi, K.; Yamamoto, S.; Matsuzaki, H.; Ueki, T.; Mori, N.; Gold, M.S.; Cadet, J.L. Methamphetamine causes microglial activation in the brains of human abusers. J. Neurosci., 2008, 28(22), 5756-5761. doi: 10.1523/JNEUROSCI.1179-08.2008 PMID: 18509037
- Rathitharan, G.; Truong, J.; Tong, J.; McCluskey, T.; Meyer, J.H.; Mizrahi, R.; Warsh, J.; Rusjan, P.; Kennedy, J.L.; Houle, S.; Kish, S.J.; Boileau, I. Microglia imaging in methamphetamine use disorder: A positron emission tomography study with the 18 kDa translocator protein radioligand F‐18FEPPA. Addict. Biol., 2021, 26(1), e12876. doi: 10.1111/adb.12876 PMID: 32017280
- Lucot, K.L.; Stevens, M.Y.; Bonham, T.A.; Azevedo, E.C.; Chaney, A.M.; Webber, E.D.; Jain, P.; Klockow, J.L.; Jackson, I.M.; Carlson, M.L.; Graves, E.E.; Montine, T.J.; James, M.L. Tracking innate immune activation in a mousae model of Parkinsons disease using TREM1 and TSPO PET tracers. J. Nucl. Med., 2022, 63(10), 1570-1578. doi: 10.2967/jnumed.121.263039 PMID: 35177426
- Erekat, N.S. Apoptosis and its role in Parkinsons disease. In: Parkinsons Disease: Pathogenesis and Clinical Aspects; Codon Publications: Brisbane (AU), 2018. doi: 10.15586/codonpublications.parkinsonsdisease.2018.ch4
- Bekker, M.; Abrahams, S.; Loos, B.; Bardien, S. Can the interplay between autophagy and apoptosis be targeted as a novel therapy for Parkinsons disease? Neurobiol. Aging, 2021, 100, 91-105. doi: 10.1016/j.neurobiolaging.2020.12.013 PMID: 33516928
- Alves da Costa, C.; Checler, F. Apoptosis in Parkinsons disease: Is p53 the missing link between genetic and sporadic Parkinsonism? Cell. Signal., 2011, 23(6), 963-968. doi: 10.1016/j.cellsig.2010.10.020 PMID: 20969953
- Hirata, H.; Cadet, J.L. p53-knockout mice are protected against the long-term effects of methamphetamine on dopaminergic terminals and cell bodies. J. Neurochem., 1997, 69(2), 780-790. doi: 10.1046/j.1471-4159.1997.69020780.x PMID: 9231739
- da Costa, C.A.; Sunyach, C.; Giaime, E.; West, A.; Corti, O.; Brice, A.; Safe, S.; Abou-Sleiman, P.M.; Wood, N.W.; Takahashi, H.; Goldberg, M.S.; Shen, J.; Checler, F. Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinsons disease. Nat. Cell Biol., 2009, 11(11), 1370-1375. doi: 10.1038/ncb1981 PMID: 19801972
- Biswas, S.C.; Ryu, E.; Park, C.; Malagelada, C.; Greene, L.A. Puma and p53 play required roles in death evoked in a cellular model of Parkinson disease. Neurochem. Res., 2005, 30(6-7), 839-845. doi: 10.1007/s11064-005-6877-5 PMID: 16187218
- Sanphui, P.; Kumar Das, A.; Biswas, S.C. Forkhead Box O3a requires BAF57, a subunit of chromatin remodeler SWI/SNF complex for induction of p53 up‐regulated modulator of apoptosis (Puma) in a model of Parkinsons disease. J. Neurochem., 2020, 154(5), 547-561. doi: 10.1111/jnc.14969 PMID: 31971251
- Steckley, D.; Karajgikar, M.; Dale, L.B.; Fuerth, B.; Swan, P.; Drummond-Main, C.; Poulter, M.O.; Ferguson, S.S.G.; Strasser, A.; Cregan, S.P. Puma is a dominant regulator of oxidative stress induced Bax activation and neuronal apoptosis. J. Neurosci., 2007, 27(47), 12989-12999. doi: 10.1523/JNEUROSCI.3400-07.2007 PMID: 18032672
- Madeo, G.; Schirinzi, T.; Martella, G.; Latagliata, E.C.; Puglisi, F.; Shen, J.; Valente, E.M.; Federici, M.; Mercuri, N.B.; Puglisi-Allegra, S.; Bonsi, P.; Pisani, A. PINK1 heterozygous mutations induce subtle alterations in dopamine-dependent synaptic plasticity. Mov. Disord., 2014, 29(1), 41-53. doi: 10.1002/mds.25724 PMID: 24167038
- Cadet, J.L.; Jayanthi, S.; Deng, X. Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review. Neurotox. Res., 2005, 8(3-4), 199-206. doi: 10.1007/BF03033973 PMID: 16371314
- Lenzi, P.; Marongiu, R.; Falleni, A.; Gelmetti, V.; Busceti, C.L.; Michiorri, S.; Valente, E.M.; Fornai, F. A subcellular analysis of genetic modulation of PINK1 on mitochondrial alterations, autophagy and cell death. Arch. Ital. Biol., 2012, 150(2-3), 194-217. doi: 10.4449/aib.v150i2/3.1417 PMID: 23165879
- Furuya, T.; Hayakawa, H.; Yamada, M.; Yoshimi, K.; Hisahara, S.; Miura, M.; Mizuno, Y.; Mochizuki, H. Caspase-11 mediates inflammatory dopaminergic cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinsons disease. J. Neurosci., 2004, 24(8), 1865-1872. doi: 10.1523/JNEUROSCI.3309-03.2004 PMID: 14985426
- Huang, W.; Xie, W.B.; Qiao, D.; Qiu, P.; Huang, E.; Li, B.; Chen, C.; Liu, C.; Wang, Q.; Lin, Z.; Wang, H. Caspase-11 plays an essential role in methamphetamine-induced dopaminergic neuron apoptosis. Toxicol. Sci., 2015, 145(1), 68-79. doi: 10.1093/toxsci/kfv014 PMID: 25631491
- Cai, D.; Huang, E.; Luo, B.; Yang, Y.; Zhang, F.; Liu, C.; Lin, Z.; Xie, W-B.; Wang, H. Nupr1/Chop signal axis is involved in mitochondrion-related endothelial cell apoptosis induced by methamphetamine. Cell Death Dis., 2016, 7(3), e2161. doi: 10.1038/cddis.2016.67 PMID: 27031958
- Cao, L.; Fu, M.; Kumar, S.; Kumar, A. Methamphetamine potentiates HIV-1 gp120-mediated autophagy via Beclin-1 and Atg5/7 as a pro-survival response in astrocytes. Cell Death Dis., 2016, 7(10), e2425. doi: 10.1038/cddis.2016.317 PMID: 27763640
- Dong, L.G.; Lu, F.F.; Zu, J.; Zhang, W.; Xu, C.Y.; Jin, G.L.; Yang, X.X.; Xiao, Q.H.; Cui, C.C.; Xu, R.; Zhou, S.; Zhu, J.N.; Shen, T.; Cui, G.Y. MiR-133b inhibits MPP+-induced apoptosis in Parkinsons disease model by inhibiting the ERK1/2 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(21), 11192-11198. doi: 10.26355/eurrev_202011_23607 PMID: 33215437
- Liu, H.L.; Li, T.; Wang, H.J.; Hu, T.; Hu, Y.L.; Zhang, J.; Sun, J.H.; Dong, X.G. Regulation of miR-133b on methamphetamine-induced neuronal apoptosis in PC12 cells. J Sun Yat-sen Univ. Med. Sci., 2018, 6, 26-33.
- Xu, X.; Huang, E.; Luo, B.; Cai, D.; Zhao, X.; Luo, Q.; Jin, Y.; Chen, L.; Wang, Q.; Liu, C.; Lin, Z.; Xie, W.B.; Wang, H. Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ‐related signaling pathway. FASEB J., 2018, 32(12), 6737-6759. doi: 10.1096/fj.201701460RRR PMID: 29939784
- Wu, Z.; Xia, Y.; Wang, Z.; Su, Kang S.; Lei, K.; Liu, X.; Jin, L.; Wang, X.; Cheng, L.; Ye, K. C/EBPβ/δ-secretase signaling mediates Parkinsons disease pathogenesis via regulating transcription and proteolytic cleavage of α-synuclein and MAOB. Mol. Psychiatry, 2021, 26(2), 568-585. doi: 10.1038/s41380-020-0687-7 PMID: 32086435
- Subu, R.; Jayanthi, S.; Cadet, J.L. Compulsive methamphetamine taking induces autophagic and apoptotic markers in the rat dorsal striatum. Arch. Toxicol., 2020, 94(10), 3515-3526. doi: 10.1007/s00204-020-02844-w PMID: 32676729
- Oueslati, A.; Fournier, M.; Lashuel, H.A. Role of post-translational modifications in modulating the structure, function and toxicity of α-synuclein. Prog. Brain Res., 2010, 183, 115-145. doi: 10.1016/S0079-6123(10)83007-9 PMID: 20696318
- Ding, J.; Wang, Y.; Huang, J.; Lian, Y.; Meng, Y.; Li, C.; He, Y.; Qiu, P. Role of alpha-synuclein phosphorylation at Serine 129 in methamphetamine-induced neurotoxicity in vitro and in vivo. Neuroreport, 2020, 11, 787-797. doi: 10.1097/WNR.0000000000001495 PMID: 32568772
- Kaul, S.; Kanthasamy, A.; Kitazawa, M.; Anantharam, V.; Kanthasamy, A.G. Caspase-3 dependent proteolytic activation of protein kinase Cdelta mediates and regulates 1-methyl-4-phenylpyridinium (MPP+)-induced apoptotic cell death in dopaminergic cells: relevance to oxidative stress in dopaminergic degeneration. Eur. J. Neurosci., 2003, 18(6), 1387-1401. doi: 10.1046/j.1460-9568.2003.02864.x PMID: 14511319
- Yang, Y.; Kaul, S.; Zhang, D.; Anantharam, V.; Kanthasamy, A.G. Suppression of caspase-3-dependent proteolytic activation of protein kinase Cδ by small interfering RNA prevents MPP+-induced dopaminergic degeneration. Mol. Cell. Neurosci., 2004, 25(3), 406-421. doi: 10.1016/j.mcn.2003.11.011 PMID: 15033169
- Nguyen, X.K.T.; Lee, J.; Shin, E.J.; Dang, D.K.; Jeong, J.H.; Nguyen, T.T.L.; Nam, Y.; Cho, H.J.; Lee, J.C.; Park, D.H.; Jang, C.G.; Hong, J.S.; Nabeshima, T.; Kim, H.C. Liposomal melatonin rescues methamphetamine-elicited mitochondrial burdens, pro-apoptosis, and dopaminergic degeneration through the inhibition PKCδ gene. J. Pineal Res., 2015, 58(1), 86-106. doi: 10.1111/jpi.12195 PMID: 25407782
- Dang, D.K.; Shin, E.J.; Kim, D.J.; Tran, H.Q.; Jeong, J.H.; Jang, C.G.; Ottersen, O.P.; Nah, S.Y.; Hong, J.S.; Nabeshima, T.; Kim, H.C. PKCδ-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity. Free Radic. Biol. Med., 2018, 115, 318-337. doi: 10.1016/j.freeradbiomed.2017.12.018 PMID: 29269308
- Brichta, L.; Greengard, P.; Flajolet, M. Advances in the pharmacological treatment of Parkinsons disease: targeting neurotransmitter systems. Trends Neurosci., 2013, 36(9), 543-554. doi: 10.1016/j.tins.2013.06.003 PMID: 23876424
- Werner, F.; Covenas, R. Classical neurotransmitters and neuropeptides involved in Parkinsons disease: A multi-neurotransmitter system. J. Cytol. Histol., 2014, 5(5), 1000266. doi: 10.4172/2157-7099.1000266
- Brichta, L.; Greengard, P. Molecular determinants of selective dopaminergic vulnerability in Parkinsons disease: an update. Front. Neuroanat., 2014, 8, 152. doi: 10.3389/fnana.2014.00152 PMID: 25565977
- Bubenikova-Valesova, V.; Kacer, P.; Syslova, K.; Rambousek, L.; Janovsky, M.; Schutova, B.; Hruba, L.; Slamberova, R. Prenatal methamphetamine exposure affects the mesolimbic dopaminergic system and behavior in adult offspring. Int. J. Dev. Neurosci., 2009, 27(6), 525-530. doi: 10.1016/j.ijdevneu.2009.06.012 PMID: 19591914
- Morrow, B.A.; Roth, R.H.; Redmond, D.E.; Elsworth, J.D. Impact of methamphetamine on dopamine neurons in primates is dependent on age: implications for development of Parkinsons disease. Neuroscience, 2011, 189, 277-285. doi: 10.1016/j.neuroscience.2011.05.046 PMID: 21640165
- Moreira da Silva Santos, A.; Kelly, J.P.; Doyle, K.M. Dose-dependent effects of binge-like methamphetamine dosing on dopamine and neurotrophin levels in rat brain. Neuropsychobiology, 2017, 75(2), 63-71. doi: 10.1159/000480513 PMID: 29065400
- Nakagawa, T.; Suzuki, Y.; Nagayasu, K.; Kitaichi, M.; Shirakawa, H.; Kaneko, S. Repeated exposure to methamphetamine, cocaine or morphine induces augmentation of dopamine release in rat mesocorticolimbic slice co-cultures. PLoS One, 2011, 6(9), e24865. doi: 10.1371/journal.pone.0024865 PMID: 21980362
- He, T.; Han, C.; Liu, C.; Chen, J.; Yang, H.; Zheng, L.; Waddington, J.L.; Zhen, X. Dopamine D1 receptors mediate methamphetamine-induced dopaminergic damage: involvement of autophagy regulation via the AMPK/FOXO3A pathway. Psychopharmacology (Berl.), 2022, 239(3), 951-964. doi: 10.1007/s00213-022-06097-6 PMID: 35190859
- Lin, M.; Sambo, D.; Khoshbouei, H. Methamphetamine regulation of firing activity of dopamine neurons. J. Neurosci., 2016, 36(40), 10376-10391. doi: 10.1523/JNEUROSCI.1392-16.2016 PMID: 27707972
- Zampese, E.; Surmeier, D.J. Calcium, bioenergetics, and Parkinsons disease. Cells, 2020, 9(9), 2045. doi: 10.3390/cells9092045 PMID: 32911641
- Barone, P. Neurotransmission in Parkinsons disease: beyond dopamine. Eur. J. Neurol., 2010, 17(3), 364-376. doi: 10.1111/j.1468-1331.2009.02900.x PMID: 20050885
- Miguelez, C.; De Deurwaerdère, P.; Sgambato, V. Editorial: Non-dopaminergic systems in Parkinsons disease. Front. Pharmacol., 2020, 11, 593822. doi: 10.3389/fphar.2020.593822 PMID: 33013427
- Müller, M.L.T.M.; Bohnen, N.I. Cholinergic dysfunction in Parkinsons disease. Curr. Neurol. Neurosci. Rep., 2013, 13(9), 377. doi: 10.1007/s11910-013-0377-9 PMID: 23943367
- Perez-Lloret, S.; Barrantes, F.J. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinsons disease. NPJ Parkinsons Dis., 2016, 2(1), 16001. doi: 10.1038/npjparkd.2016.1 PMID: 28725692
- Zee, S.; Müller, M.L.T.M.; Kanel, P.; Laar, T.; Bohnen, N.I. Cholinergic denervation patterns across cognitive domains in Parkinsons disease. Mov. Disord., 2021, 36(3), 642-650. doi: 10.1002/mds.28360 PMID: 33137238
- Bohnen, N.I.; Kaufer, D.I.; Ivanco, L.S.; Lopresti, B.; Koeppe, R.A.; Davis, J.G.; Mathis, C.A.; Moore, R.Y.; DeKosky, S.T. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: An in vivo positron emission tomographic study. Arch. Neurol., 2003, 60(12), 1745-1748. doi: 10.1001/archneur.60.12.1745 PMID: 14676050
- Wilkins, K.B.; Parker, J.E.; Bronte-Stewart, H.M. Gait variability is linked to the atrophy of the Nucleus Basalis of Meynert and is resistant to STN DBS in Parkinsons disease. Neurobiol. Dis., 2020, 146, 105134. doi: 10.1016/j.nbd.2020.105134 PMID: 33045357
- Bohnen, N.I.; Albin, R.L. The cholinergic system and Parkinson disease. Behav. Brain Res., 2011, 221(2), 564-573. doi: 10.1016/j.bbr.2009.12.048 PMID: 20060022
- Cai, Y.; Nielsen, B.E.; Boxer, E.E.; Aoto, J.; Ford, C.P. Loss of nigral excitation of cholinergic interneurons contributes to parkinsonian motor impairments. Neuron, 2021, 109(7), 1137-1149.e5. doi: 10.1016/j.neuron.2021.01.028 PMID: 33600762
- Siegel, J.A.; Craytor, M.J.; Raber, J. Long-term effects of methamphetamine exposure on cognitive function and muscarinic acetylcholine receptor levels in mice. Behav. Pharmacol., 2010, 21(7), 602-614. doi: 10.1097/FBP.0b013e32833e7e44 PMID: 20729719
- Escubedo, E.; Camarasa, J.; Chipana, C.; García-Ratés, S.; Pubill, D. Involvement of nicotinic receptors in methamphetamine- and MDMA-induced neurotoxicity: pharmacological implications. Int. Rev. Neurobiol., 2009, 88, 121-166. doi: 10.1016/S0074-7742(09)88006-9 PMID: 19897077
- Baladi, M.G.; Nielsen, S.M.; McIntosh, J.M.; Hanson, G.R.; Fleckenstein, A.E. Prior nicotine self-administration attenuates subsequent dopaminergic deficits of methamphetamine in rats: role of nicotinic acetylcholine receptors. Behav. Pharmacol., 2016, 27(5), 422-430. doi: 10.1097/FBP.0000000000000215 PMID: 26871405
- Vieira-Brock, P.; McFadden, L.; McIntosh, J.M.; Hanson, G.; Fleckenstein, A. Nicotine, methamphetamine-induced dopaminergic deficits, and the impact on α4β2 and α6β2 nicotinic receptors. FASEB J., 2015, 29(S1), 768.1. doi: 10.1096/fasebj.29.1_supplement.768.1
- Albin, R.L.; Müller, M.L.T.M.; Bohnen, N.I.; Spino, C.; Sarter, M.; Koeppe, R.A.; Szpara, A.; Kim, K.; Lustig, C.; Dauer, W.T. Sarter, M.; Koeppe, R.A.; Szpara, A.; Kim, K.; Lustig, C.; Dauer, W.T. α4β2* nicotinic cholinergic receptor target engagement in Parkinson disease gait-balance disorders. Ann. Neurol., 2021, 90(1), 130-142. doi: 10.1002/ana.26102 PMID: 33977560
- Mizoguchi, H.; Wang, T.; Kusaba, M.; Fukumoto, K.; Yamada, K. Nicotine and varenicline ameliorate changes in reward-based choice strategy and altered decision-making in methamphetamine-treated rats. Behav. Brain Res., 2019, 359, 935-941. doi: 10.1016/j.bbr.2018.06.016 PMID: 29935276
- Garton, D.R.; Ross, S.G.; Maldonado-Hernández, R.; Quick, M.; Lasalde-Dominicci, J.A.; Lizardi-Ortiz, J.E. Amphetamine enantiomers inhibit homomeric α7 nicotinic receptor through a competitive mechanism and within the intoxication levels in humans. Neuropharmacology, 2019, 144, 172-183. doi: 10.1016/j.neuropharm.2018.10.032 PMID: 30359640
- Myslivecek, J. Two players in the field: Hierarchical model of interaction between the dopamine and acetylcholine signaling systems in the striatum. Biomedicines, 2021, 9(1), 25. doi: 10.3390/biomedicines9010025 PMID: 33401461
- Ferrucci, M.; Limanaqi, F.; Ryskalin, L.; Biagioni, F.; Busceti, C.L.; Fornai, F. The effects of amphetamine and methamphetamine on the release of norepinephrine, dopamine and acetylcholine from the brainstem reticular formation. Front. Neuroanat., 2019, 13, 48. doi: 10.3389/fnana.2019.00048 PMID: 31133823
- Farar, V.; Valuskova, P.; Sevcikova, M.; Myslivecek, J.; Slamberova, R. Mapping of the prenatal and postnatal methamphetamine effects on D1-like dopamine, M1 and M2 muscarinic receptors in rat central nervous system. Brain Res. Bull., 2018, 137, 17-22. doi: 10.1016/j.brainresbull.2017.11.003 PMID: 29128414
- Perez, X.A. Preclinical evidence for a role of the nicotinic cholinergic system in Parkinsons disease. Neuropsychol. Rev., 2015, 25(4), 371-383. doi: 10.1007/s11065-015-9303-z PMID: 26553323
- Desai, R.I.; Bergman, J. Methamphetamine-like discriminative-stimulus effects of nicotinic agonists. J. Pharmacol. Exp. Ther., 2014, 348(3), 478-488. doi: 10.1124/jpet.113.211235 PMID: 24389640
- Takeda, A.; Tomiyama, M.; Hanajima, R. The relationship between pathophysiology and neurotransmitters in Parkinsons disease. Brain Nerve, 2021, 73(7), 829-837. doi: 10.11477/mf.1416201843 PMID: 34234041
- OGorman Tuura, R.L.; Baumann, C.R.; Baumann-Vogel, H. Beyond dopamine: GABA, glutamate, and the axial symptoms of Parkinson disease. Front. Neurol., 2018, 9, 806. doi: 10.3389/fneur.2018.00806 PMID: 30319535
- Buchanan, R.J.; Darrow, D.P.; Meier, K.T.; Robinson, J.; Schiehser, D.M.; Glahn, D.C.; Nadasdy, Z. Changes in GABA and glutamate concentrations during memory tasks in patients with Parkinsons disease undergoing DBS surgery. Front. Hum. Neurosci., 2014, 8, 81. doi: 10.3389/fnhum.2014.00081 PMID: 24639638
- Iovino, L.; Tremblay, M.E.; Civiero, L. Glutamate-induced excitotoxicity in Parkinsons disease: The role of glial cells. J. Pharmacol. Sci., 2020, 144(3), 151-164. doi: 10.1016/j.jphs.2020.07.011 PMID: 32807662
- Wang, J.; Wang, F.; Mai, D.; Qu, S. Molecular mechanisms of glutamate toxicity in Parkinsons disease. Front. Neurosci., 2020, 14, 585584. doi: 10.3389/fnins.2020.585584 PMID: 33324150
- Fujáková-Lipski, M.; Kaping, D.; írová, J.; Horáček, J.; Páleníček, T.; Zach, P.; Klaschka, J.; Kačer, P.; Syslová, K.; Vrajová, M.; Bubenikova-Valeová, V.; Beste, C.; lamberová, R. Trans-generational neurochemical modulation of methamphetamine in the adult brain of the Wistar rat. Arch. Toxicol., 2017, 91(10), 3373-3384. doi: 10.1007/s00204-017-1969-y PMID: 28477265
- He, T.; Li, N.; Shi, P.; Xu, X.; Nie, J.; Lu, X.; Yu, P.; Fan, Y.; Ge, F.; Guan, X. Electroacupuncture alleviates spatial memory deficits in METH withdrawal mice by enhancing astrocyte‐mediated glutamate clearance in the dCA1. Addict. Biol., 2022, 27(1), e13068. doi: 10.1111/adb.13068 PMID: 34128302
- Chojnacki, M.R.; Jayanthi, S.; Cadet, J.L. Methamphetamine pre-exposure induces steeper escalation of methamphetamine self-administration with consequent alterations in hippocampal glutamate AMPA receptor mRNAs. Eur. J. Pharmacol., 2020, 889, 173732. doi: 10.1016/j.ejphar.2020.173732 PMID: 33220277
- Su, H.; Chen, T.; Zhong, N.; Jiang, H.; Du, J.; Xiao, K.; Xu, D.; Wang, Z.; Zhao, M. γ-aminobutyric acid and glutamate/glutamine alterations of the left prefrontal cortex in individuals with methamphetamine use disorder: a combined transcranial magnetic stimulation-magnetic resonance spectroscopy study. Ann. Transl. Med., 2020, 8(6), 347. doi: 10.21037/atm.2020.02.95 PMID: 32355791
- Althobaiti, Y.S.; Almalki, A.H.; Das, S.C.; Alshehri, F.S.; Sari, Y. Effects of repeated high-dose methamphetamine and ceftriaxone post-treatments on tissue content of dopamine and serotonin as well as glutamate and glutamine. Neurosci. Lett., 2016, 634, 25-31. doi: 10.1016/j.neulet.2016.09.058 PMID: 27702628
- Rowley, H.L.; Pinder, L.; Kulkarni, R.; Cheetham, S.; Heal, D.J. Simultaneous determination of the effects of methamphetamine on GABA, glutamate and monoamines by microdialysis in the prefrontal cortex and hippocampus of rats. Drug Alcohol Depend., 2015, 156, e194. doi: 10.1016/j.drugalcdep.2015.07.524
- Tehrani, A.M.; Boroujeni, M.E.; Aliaghaei, A.; Feizi, M.A.H.; Safaralizadeh, R. Methamphetamine induces neurotoxicity-associated pathways and stereological changes in prefrontal cortex. Neurosci. Lett., 2019, 712, 134478. doi: 10.1016/j.neulet.2019.134478 PMID: 31491463
- Aarsland, D.; Batzu, L.; Halliday, G.M.; Geurtsen, G.J.; Ballard, C.; Ray Chaudhuri, K.; Weintraub, D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers, 2021, 7(1), 47. doi: 10.1038/s41572-021-00280-3 PMID: 34210995
- Papapetropoulos, S.; Mash, D.C. Psychotic symptoms in Parkinsons disease. J. Neurol., 2005, 252(7), 753-764. doi: 10.1007/s00415-005-0918-5 PMID: 15999234
- Marsh, L. Depression and Parkinsons disease: current knowledge. Curr. Neurol. Neurosci. Rep., 2013, 13(12), 409. doi: 10.1007/s11910-013-0409-5 PMID: 24190780
- Hsieh, J.H.; Stein, D.J.; Howells, F.M. The neurobiology of methamphetamine induced psychosis. Front. Hum. Neurosci., 2014, 8, 537. doi: 10.3389/fnhum.2014.00537 PMID: 25100979
- Zhang, Y.; Meng, X.; Jiao, Z.; Liu, Y.; Zhang, X.; Qu, S. Generation of a novel mouse model of Parkinsons disease via targeted knockdown of glutamate transporter GLT-1 in the substantia nigra. ACS Chem. Neurosci., 2020, 11(3), 406-417. doi: 10.1021/acschemneuro.9b00609 PMID: 31909584
- Fischer, K.D.; Knackstedt, L.A.; Rosenberg, P.A. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochem. Int., 2021, 144, 104896. doi: 10.1016/j.neuint.2020.104896 PMID: 33159978
- Zhang, J.N.; Huang, Y.L.; Yang, H.M.; Wang, Y.; Gu, L.; Zhang, H. Blockade of metabotropic glutamate receptor 5 attenuates axonal degeneration in 6-hydroxydopamine-induced model of Parkinsons disease. Mol. Cell. Neurosci., 2021, 110, 103572. doi: 10.1016/j.mcn.2020.103572 PMID: 33248235
- Gass, J.T.; Osborne, M.P.H.; Watson, N.L.; Brown, J.L.; Olive, M.F. mGluR5 antagonism attenuates methamphetamine reinforcement and prevents reinstatement of methamphetamine-seeking behavior in rats. Neuropsychopharmacology, 2009, 34(4), 820-833. doi: 10.1038/npp.2008.140 PMID: 18800068
- Petzold, J.; Szumlinski, K.K.; London, E.D. Targeting mGlu5 for methamphetamine use disorder. Pharmacol. Ther., 2021, 224, 107831. doi: 10.1016/j.pharmthera.2021.107831 PMID: 33705840
- Heysieattalab, S.; Naghdi, N.; Hosseinmardi, N.; Zarrindast, M.R.; Haghparast, A.; Khoshbouei, H. Methamphetamine-induced enhancement of hippocampal long-term potentiation is modulated by NMDA and GABA receptors in the shell-accumbens. Synapse, 2016, 70(8), 325-335. doi: 10.1002/syn.21905 PMID: 27029021
- Bravo, J.; Ribeiro, I.; Terceiro, A.F.; Andrade, E.B.; Portugal, C.C.; Lopes, I.M.; Azevedo, M.M.; Sousa, M.; Lopes, C.D.F.; Lobo, A.C.; Canedo, T.; Relvas, J.B.; Summavielle, T. Neuron-microglia contact-dependent mechanisms attenuate methamphetamine-induced microglia reactivity and enhance neuronal plasticity. Cells, 2022, 11(3), 355. doi: 10.3390/cells11030355 PMID: 35159165
- Simões, P.F.; Silva, A.P.; Pereira, F.C.; Marques, E.; Milhazes, N.; Borges, F.; Ribeiro, C.F.; Macedo, T.R. Methamphetamine changes NMDA and AMPA glutamate receptor subunit levels in the rat striatum and frontal cortex. Ann. N. Y. Acad. Sci., 2008, 1139(1), 232-241. doi: 10.1196/annals.1432.028 PMID: 18991869
- Jayanthi, S.; McCoy, M.T.; Chen, B.; Britt, J.P.; Kourrich, S.; Yau, H.J.; Ladenheim, B.; Krasnova, I.N.; Bonci, A.; Cadet, J.L. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biol. Psychiatry, 2014, 76(1), 47-56. doi: 10.1016/j.biopsych.2013.09.034 PMID: 24239129
- Jiao, D. liu, Y.; Li, X.; liu, J.; Zhao, M. The role of the GABA system in amphetamine-type stimulant use disorders. Front. Cell. Neurosci., 2015, 9, 162. doi: 10.3389/fncel.2015.00162 PMID: 25999814
- Zhao, Y.; Peng, S.; Jiang, H.; Du, J.; Yu, S.; Zhao, M. Variants in GABBR1 gene are associated with methamphetamine dependence and two years relapse after drug rehabilitation. J. Neuroimmune Pharmacol., 2018, 13(4), 523-531. doi: 10.1007/s11481-018-9802-9 PMID: 30143926
- Li, J.; Ma, S.; Chen, J.; Hu, K.; Li, Y.; Zhang, Z.; Su, Z.; Woodgett, J.R.; Li, M.; Huang, Q. GSK-3β contributes to Parkinsonian dopaminergic neuron death: Evidence from conditional knockout mice and tideglusib. Front. Mol. Neurosci., 2020, 13, 81. doi: 10.3389/fnmol.2020.00081 PMID: 32581704
- Duda, P.; Wiśniewski, J.; Wójtowicz, T.; Wójcicka, O.; Jaśkiewicz, M.; Drulis-Fajdasz, D.; Rakus, D.; McCubrey, J.A.; Gizak, A. Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opin. Ther. Targets, 2018, 22(10), 833-848. doi: 10.1080/14728222.2018.1526925 PMID: 30244615
- Kwok, J.B.J.; Hallupp, M.; Loy, C.T.; Chan, D.K.Y.; Woo, J.; Mellick, G.D.; Buchanan, D.D.; Silburn, P.A.; Halliday, G.M.; Schofield, P.R. GSK3B polymorphisms alter transcription and splicing in Parkinsons disease. Ann. Neurol., 2005, 58(6), 829-839. doi: 10.1002/ana.20691 PMID: 16315267
- Nagao, M.; Hayashi, H. Glycogen synthase kinase-3beta is associated with Parkinsons disease. Neurosci. Lett., 2009, 449(2), 103-107. doi: 10.1016/j.neulet.2008.10.104 PMID: 19007860
- Kalinderi, K.; Fidani, L.; Katsarou, Z.; Clarimón, J.; Bostantjopoulou, S.; Kotsis, A. GSK3β polymorphisms, MAPT H1 haplotype and Parkinsons disease in a Greek cohort. Neurobiol. Aging, 2011, 32(3), 546.e1-546.e5. doi: 10.1016/j.neurobiolaging.2009.05.007 PMID: 19573950
- Credle, J.J.; George, J.L.; Wills, J.; Duka, V.; Shah, K.; Lee, Y-C.; Rodriguez, O.; Simkins, T.; Winter, M.; Moechars, D.; Steckler, T.; Goudreau, J.; Finkelstein, D.I.; Sidhu, A. GSK-3β dysregulation contributes to parkinsons-like pathophysiology with associated region-specific phosphorylation and accumulation of tau and α-synuclein. Cell Death Differ., 2015, 22(5), 838-851. doi: 10.1038/cdd.2014.179 PMID: 25394490
- Lin, C.H.; Tsai, P.I.; Wu, R.M.; Chien, C.T. LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3ß. J. Neurosci., 2010, 30(39), 13138-13149. doi: 10.1523/JNEUROSCI.1737-10.2010 PMID: 20881132
- Kawakami, F.; Shimada, N.; Ohta, E.; Kagiya, G.; Kawashima, R.; Maekawa, T.; Maruyama, H.; Ichikawa, T. Leucine-rich repeat kinase 2 regulates tau phosphorylation through direct activation of glycogen synthase kinase-3β. FEBS J., 2014, 281(1), 3-13. doi: 10.1111/febs.12579 PMID: 24165324
- Kesh, S.; Kannan, R.R.; Sivaji, K.; Balakrishnan, A. Hesperidin downregulates kinases lrrk2 and gsk3β in a 6-OHDA induced Parkinsons disease model. Neurosci. Lett., 2021, 740, 135426. doi: 10.1016/j.neulet.2020.135426 PMID: 33075420
- Jellinger, K.A. Dementia with Lewy bodies and Parkinsons disease-dementia: current concepts and controversies. J. Neural Transm. (Vienna), 2018, 125(4), 615-650. doi: 10.1007/s00702-017-1821-9 PMID: 29222591
- Duka, T.; Duka, V.; Joyce, J.N.; Sidhu, A. α‐Synuclein contributes to GSK‐3β‐catalyzed Tau phosphorylation in Parkinsons disease models. FASEB J., 2009, 23(9), 2820-2830. doi: 10.1096/fj.08-120410 PMID: 19369384
- Coakeley, S.; Strafella, A.P. Imaging tau pathology in Parkinsonisms. NPJ Parkinsons Dis., 2017, 3(1), 22. doi: 10.1038/s41531-017-0023-3 PMID: 28685158
- Das, G.; Misra, A.K.; Das, S.K.; Ray, K.; Ray, J. Role of tau kinases (CDK5R1 and GSK3B) in Parkinsons disease: A study from India. Neurobiol. Aging, 2012, 33(7), 1485.e9-1485.e15. doi: 10.1016/j.neurobiolaging.2010.10.016 PMID: 21130530
- Li, D.W.; Liu, Z.Q. Wei-Chen; Min-Yao; Li, G.R. Association of glycogen synthase kinase-3β with Parkinsons disease (Review). Mol. Med. Rep., 2014, 9(6), 2043-2050. doi: 10.3892/mmr.2014.2080 PMID: 24681994
- Zhu, J.; Xu, X.; Liang, Y.; Zhu, R. Downregulation of microRNA-15b-5p targeting the akt3-mediated GSK-3β/β-catenin signaling pathway inhibits cell apoptosis in Parkinsons disease. BioMed Res. Int., 2021, 2021, 1-11. doi: 10.1155/2021/8814862 PMID: 33506036
- Di Martino, R.M.C.; Pruccoli, L.; Bisi, A.; Gobbi, S.; Rampa, A.; Martinez, A.; Pérez, C.; Martinez-Gonzalez, L.; Paglione, M.; Di Schiavi, E.; Seghetti, F.; Tarozzi, A.; Belluti, F. Novel curcumin-diethyl fumarate hybrid as a dualistic GSK-3β inhibitor/Nrf2 inducer for the treatment of Parkinsons disease. ACS Chem. Neurosci., 2020, 11(17), 2728-2740. doi: 10.1021/acschemneuro.0c00363 PMID: 32663009
- Teixeira, F.R.; Randle, S.J.; Patel, S.P.; Mevissen, T.E.T.; Zenkeviciute, G.; Koide, T.; Komander, D.; Laman, H. Gsk3β and Tomm20 are substrates of the SCFFbxo7/PARK15 ubiquitin ligase associated with Parkinsons disease. Biochem. J., 2016, 473(20), 3563-3580. doi: 10.1042/BCJ20160387 PMID: 27503909
- Fonzo, A.D.; Dekker, M.C.J.; Montagna, P.; Baruzzi, A.; Yonova, E.H.; Guedes, L.C.; Szczerbinska, A.; Zhao, T.; Dubbel-Hulsman, L.O.M.; Wouters, C.H.; de Graaff, E.; Oyen, W.J.G.; Simons, E.J.; Breedveld, G.J.; Oostra, B.A.; Horstink, M.W.; Bonifati, V. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology, 2009, 72(3), 240-245. doi: 10.1212/01.wnl.0000338144.10967.2b PMID: 19038853
- Yan, P.; Xu, D.; Ji, Y.; Yin, F.; Cui, J.; Su, R.; Wang, Y.; Zhu, Y.; Wei, S.; Lai, J. LiCl pretreatment ameliorates adolescent methamphetamine exposure-induced long-term alterations in behavior and hippocampal ultrastructure in adulthood in mice. Int. J. Neuropsychopharmacol., 2019, 22(4), 303-316. doi: 10.1093/ijnp/pyz001 PMID: 30649326
- Chen, L.; Zhou, L.; Yu, P.; Fang, F.; Jiang, L.; Fei, J.; Xiao, H.; Wang, J. Methamphetamine exposure upregulates the amyloid precursor protein and hyperphosphorylated tau expression: The roles of insulin signaling in SH-SY5Y cell line. J. Toxicol. Sci., 2019, 44(7), 493-503. doi: 10.2131/jts.44.493 PMID: 31270305
- Panmak, P.; Nopparat, C.; Permpoonpattana, K.; Namyen, J.; Govitrapong, P. Melatonin protects against methamphetamine-induced Alzheimers disease-like pathological changes in rat hippocampus. Neurochem. Int., 2021, 148, 105121. doi: 10.1016/j.neuint.2021.105121 PMID: 34224806
- Xu, C.; Wang, J.; Wu, P.; Xue, Y.; Zhu, W.; Li, Q.; Zhai, H.; Shi, J.; Lu, L. Glycogen synthase kinase 3β in the nucleus accumbens core is critical for methamphetamine-induced behavioral sensitization. J. Neurochem., 2011, 118(1), 126-139. doi: 10.1111/j.1471-4159.2011.07281.x PMID: 21517846
- Wang, J.; Sun, L.L.; Zhu, W.L.; Sun, Y.; Liu, J.F.; Lu, L.; Shi, J. Role of calcineurin in the VTA in rats behaviorally sensitized to methamphetamine. Psychopharmacology (Berl.), 2012, 220(1), 117-128. doi: 10.1007/s00213-011-2461-7 PMID: 21901318
- Xing, B.; Liang, X.; Liu, P.; Zhao, Y.; Chu, Z.; Dang, Y. Valproate inhibits methamphetamine induced hyperactivity via glycogen synthase kinase 3β signaling in the nucleus accumbens core. PLoS One, 2015, 10(6), e0128068. doi: 10.1371/journal.pone.0128068 PMID: 26030405
- Pogorelov, V.M.; Nomura, J.; Kim, J.; Kannan, G.; Ayhan, Y.; Yang, C.; Taniguchi, Y.; Abazyan, B.; Valentine, H.; Krasnova, I.N.; Kamiya, A.; Cadet, J.L.; Wong, D.F.; Pletnikov, M.V. Mutant DISC1 affects methamphetamine-induced sensitization and conditioned place preference: a comorbidity model. Neuropharmacology, 2012, 62(3), 1242-1251. doi: 10.1016/j.neuropharm.2011.02.003 PMID: 21315744
- Beaulieu, J.M.; Sotnikova, T.D.; Yao, W.D.; Kockeritz, L.; Woodgett, J.R.; Gainetdinov, R.R.; Caron, M.G. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc. Natl. Acad. Sci. USA, 2004, 101(14), 5099-5104. doi: 10.1073/pnas.0307921101 PMID: 15044694
- Winner, B.; Winkler, J. Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2015, 7(4), a021287. doi: 10.1101/cshperspect.a021287 PMID: 25833845
- Marxreiter, F.; Regensburger, M.; Winkler, J. Adult neurogenesis in Parkinsons disease. Cell. Mol. Life Sci., 2013, 70(3), 459-473. doi: 10.1007/s00018-012-1062-x PMID: 22766974
- Regensburger, M.; Prots, I.; Winner, B. Adult hippocampal neurogenesis in Parkinsons disease: impact on neuronal survival and plasticity. Neural Plast., 2014, 2014, 1-12. doi: 10.1155/2014/454696 PMID: 25110593
- Höglinger, G.U.; Rizk, P.; Muriel, M.P.; Duyckaerts, C.; Oertel, W.H.; Caille, I.; Hirsch, E.C. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat. Neurosci., 2004, 7(7), 726-735. doi: 10.1038/nn1265 PMID: 15195095
- Kehagia, A.A.; Barker, R.A.; Robbins, T.W. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinsons disease. Lancet Neurol., 2010, 9(12), 1200-1213. doi: 10.1016/S1474-4422(10)70212-X PMID: 20880750
- Shen, Y.; Huang, J.; Liu, L.; Xu, X.; Han, C.; Zhang, G.; Jiang, H.; Li, J.; Lin, Z.; Xiong, N.; Wang, T. A compendium of preparation and application of stem cells in Parkinsons disease: Current status and future prospects. Front. Aging Neurosci., 2016, 8, 117. doi: 10.3389/fnagi.2016.00117 PMID: 27303288
- Carlesimo, G.A.; Piras, F.; Assogna, F.; Pontieri, F.E.; Caltagirone, C.; Spalletta, G. Hippocampal abnormalities and memory deficits in Parkinson disease: A multimodal imaging study. Neurology, 2012, 78(24), 1939-1945. doi: 10.1212/WNL.0b013e318259e1c5 PMID: 22649213
- Churchyard, A.; Lees, A.J. The relationship between dementia and direct involvement of the hippocampus and amygdala in Parkinsons disease. Neurology, 1997, 49(6), 1570-1576. doi: 10.1212/WNL.49.6.1570 PMID: 9409348
- Winner, B.; Regensburger, M.; Schreglmann, S.; Boyer, L.; Prots, I.; Rockenstein, E.; Mante, M.; Zhao, C.; Winkler, J.; Masliah, E.; Gage, F.H. Role of α-synuclein in adult neurogenesis and neuronal maturation in the dentate gyrus. J. Neurosci., 2012, 32(47), 16906-16916. doi: 10.1523/JNEUROSCI.2723-12.2012 PMID: 23175842
- Ferri, A.L.M.; Cavallaro, M.; Braida, D.; Di Cristofano, A.; Canta, A.; Vezzani, A.; Ottolenghi, S.; Pandolfi, P.P.; Sala, M.; DeBiasi, S.; Nicolis, S.K. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 2004, 131(15), 3805-3819. doi: 10.1242/dev.01204 PMID: 15240551
- Schlachetzki, J.C.M.; Grimm, T.; Schlachetzki, Z.; Ben Abdallah, N.M.B.; Ettle, B.; Vöhringer, P.; Ferger, B.; Winner, B.; Nuber, S.; Winkler, J. Dopaminergic lesioning impairs adult hippocampal neurogenesis by distinct modification of α-synuclein. J. Neurosci. Res., 2016, 94(1), 62-73. doi: 10.1002/jnr.23677 PMID: 26451750
- Schreglmann, S.R.; Regensburger, M.; Rockenstein, E.; Masliah, E.; Xiang, W.; Winkler, J.; Winner, B. The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice. PLoS One, 2015, 10(5), e0126261. doi: 10.1371/journal.pone.0126261 PMID: 25961568
- Crews, L.; Mizuno, H.; Desplats, P.; Rockenstein, E.; Adame, A.; Patrick, C.; Winner, B.; Winkler, J.; Masliah, E. Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J. Neurosci., 2008, 28(16), 4250-4260. doi: 10.1523/JNEUROSCI.0066-08.2008 PMID: 18417705
- Louvi, A.; Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. Nat. Rev. Neurosci., 2006, 7(2), 93-102. doi: 10.1038/nrn1847 PMID: 16429119
- Greenberg, D.A.; Jin, K. Turning neurogenesis up a Notch. Nat. Med., 2006, 12(8), 884-885. doi: 10.1038/nm0806-884 PMID: 16892029
- Breunig, J.J.; Silbereis, J.; Vaccarino, F.M.; estan, N.; Rakic, P. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc. Natl. Acad. Sci. USA, 2007, 104(51), 20558-20563. doi: 10.1073/pnas.0710156104 PMID: 18077357
- Mason, H.A.; Rakowiecki, S.M.; Gridley, T.; Fishell, G. Loss of notch activity in the developing central nervous system leads to increased cell death. Dev. Neurosci., 2006, 28(1-2), 49-57. doi: 10.1159/000090752 PMID: 16508303
- Baker, S.A.; Baker, K.A.; Hagg, T. Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur. J. Neurosci., 2004, 20(2), 575-579. doi: 10.1111/j.1460-9568.2004.03486.x PMID: 15233767
- Desplats, P.; Spencer, B.; Crews, L.; Pathel, P.; Morvinski-Friedmann, D.; Kosberg, K.; Roberts, S.; Patrick, C.; Winner, B.; Winkler, J.; Masliah, E. α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of Notch1. J. Biol. Chem., 2012, 287(38), 31691-31702. doi: 10.1074/jbc.M112.354522 PMID: 22833673
- Venkatesan, A.; Uzasci, L.; Chen, Z.; Rajbhandari, L.; Anderson, C.; Lee, M.H.; Bianchet, M.A.; Cotter, R.; Song, H.; Nath, A. Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination. Mol. Brain, 2011, 4(1), 28. doi: 10.1186/1756-6606-4-28 PMID: 21708025
- Galinato, M.H.; Takashima, Y.; Fannon, M.J.; Quach, L.W.; Morales Silva, R.J.; Mysore, K.K.; Terranova, M.J.; Dutta, R.R.; Ostrom, R.W.; Somkuwar, S.S.; Mandyam, C.D. Neurogenesis during abstinence is necessary for context-driven methamphetamine-related memory. J. Neurosci., 2018, 38(8), 2029-2042. doi: 10.1523/JNEUROSCI.2011-17.2018 PMID: 29363584
- Grimes, D.A.; Han, F.; Panisset, M.; Racacho, L.; Xiao, F.; Zou, R.; Westaff, K.; Bulman, D.E. Translated mutation in the Nurr1 gene as a cause for Parkinsons disease. Mov. Disord., 2006, 21(7), 906-909. doi: 10.1002/mds.20820 PMID: 16532445
- Shim, J.W.; Park, C.H.; Bae, Y.C.; Bae, J.Y.; Chung, S.; Chang, M.Y.; Koh, H.C.; Lee, H.S.; Hwang, S.J.; Lee, K.H.; Lee, Y.S.; Choi, C.Y.; Lee, S.H. Generation of functional dopamine neurons from neural precursor cells isolated from the subventricular zone and white matter of the adult rat brain using Nurr1 overexpression. Stem Cells, 2007, 25(5), 1252-1262. doi: 10.1634/stemcells.2006-0274 PMID: 17234994
- Smith, G.A.; Rocha, E.M.; Rooney, T.; Barneoud, P.; McLean, J.R.; Beagan, J.; Osborn, T.; Coimbra, M.; Luo, Y.; Hallett, P.J.; Isacson, O.A. Nurr1 agonist causes neuroprotection in a Parkinsons disease lesion model primed with the toll-like receptor 3 dsRNA inflammatory stimulant poly(I:C). PLoS One, 2015, 10(3), e0121072. doi: 10.1371/journal.pone.0121072 PMID: 25815475
- Argyrofthalmidou, M.; Spathis, A.D.; Maniati, M.; Poula, A.; Katsianou, M.A.; Sotiriou, E.; Manousaki, M.; Perier, C.; Papapanagiotou, I.; Papadopoulou-Daifoti, Z.; Pitychoutis, P.M.; Alexakos, P.; Vila, M.; Stefanis, L.; Vassilatis, D.K. Nurr1 repression mediates cardinal features of Parkinsons disease in α-synuclein transgenic mice. Hum. Mol. Genet., 2021, 30(16), 1469-1483. doi: 10.1093/hmg/ddab118 PMID: 33902111
- Akiyama, K.; Isao, T.; Ide, S.; Ishikawa, M.; Saito, A. mRNA expression of the Nurr1 and NGFI-B nuclear receptor families following acute and chronic administration of methamphetamine. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(8), 1957-1966. doi: 10.1016/j.pnpbp.2008.09.021 PMID: 18930103
- Luo, Y.; Wang, Y.; Kuang, S.Y.; Chiang, Y.H.; Hoffer, B. Decreased level of Nurr1 in heterozygous young adult mice leads to exacerbated acute and long-term toxicity after repeated methamphetamine exposure. PLoS One, 2010, 5(12), e15193. doi: 10.1371/journal.pone.0015193 PMID: 21151937
- Ferrer, I.; Blanco, R. N-myc and c-myc expression in Alzheimer disease, Huntington disease and Parkinson disease. Brain Res. Mol. Brain Res., 2000, 77(2), 270-276. doi: 10.1016/S0169-328X(00)00062-0 PMID: 10837922
- Thiriet, N.; Jayanthi, S.; McCoy, M.; Ladenheim, B.; Lud Cadet, J. Methamphetamine increases expression of the apoptotic c-myc and l-myc genes in the mouse brain. Brain Res. Mol. Brain Res., 2001, 90(2), 202-204. doi: 10.1016/S0169-328X(01)00093-6 PMID: 11406298
- West, A.B.; Kapatos, G.; OFarrell, C.; Gonzalez-de-Chavez, F.; Chiu, K.; Farrer, M.J.; Maidment, N.T. N-myc regulates parkin expression. J. Biol. Chem., 2004, 279(28), 28896-28902. doi: 10.1074/jbc.M400126200 PMID: 15078880
- Xie, T.; Tong, L.; Barrett, T.; Yuan, J.; Hatzidimitriou, G.; McCann, U.D.; Becker, K.G.; Donovan, D.M.; Ricaurte, G.A. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity. J. Neurosci., 2002, 22(1), 274-283. doi: 10.1523/JNEUROSCI.22-01-00274.2002 PMID: 11756511
- Li, J.; Dani, J.A.; Le, W. The role of transcription factor Pitx3 in dopamine neuron development and Parkinsons disease. Curr. Top. Med. Chem., 2009, 9(10), 855-859.http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2872921 PMID: 19754401
- Krasnova, I.N.; Ladenheim, B.; Hodges, A.B.; Volkow, N.D.; Cadet, J.L. Chronic methamphetamine administration causes differential regulation of transcription factors in the rat midbrain. PLoS One, 2011, 6(4), e19179. doi: 10.1371/journal.pone.0019179 PMID: 21547080
- Clark, J.; Silvaggi, J.M.; Kiselak, T.; Zheng, K.; Clore, E.L.; Dai, Y.; Bass, C.E.; Simon, D.K. Pgc-1α overexpression downregulates Pitx3 and increases susceptibility to MPTP toxicity associated with decreased Bdnf. PLoS One, 2012, 7(11), e48925. doi: 10.1371/journal.pone.0048925 PMID: 23145024
- Blaudin de Thé, F.X.; Rekaik, H.; Prochiantz, A.; Fuchs, J.; Joshi, R.L. Neuroprotective transcription factors in animal models of Parkinson disease. Neural Plast., 2016, 2016, 1-11. doi: 10.1155/2016/6097107 PMID: 26881122
- Park, S.W.; He, Z.; Shen, X.; Roman, R.J.; Ma, T. Differential action of methamphetamine on tyrosine hydroxylase and dopamine transport in the nigrostriatal pathway of µ-opioid receptor knockout mice. Int. J. Neurosci., 2012, 122(6), 305-313. doi: 10.3109/00207454.2011.652319 PMID: 22329540
- Chauhan, H.; Killinger, B.; Miller, C.; Moszczynska, A. Single and binge methamphetamine administrations have different effects on the levels of dopamine D2 autoreceptor and dopamine transporter in rat striatum. Int. J. Mol. Sci., 2014, 15(4), 5884-5906. doi: 10.3390/ijms15045884 PMID: 24717411
- Mukda, S.; Vimolratana, O.; Govitrapong, P. Melatonin attenuates the amphetamine-induced decrease in vesicular monoamine transporter-2 expression in postnatal rat striatum. Neurosci. Lett., 2011, 488(2), 154-157. doi: 10.1016/j.neulet.2010.11.019 PMID: 21078367
- Pifl, C.; Rajput, A.; Reither, H.; Blesa, J.; Cavada, C.; Obeso, J.A.; Rajput, A.H.; Hornykiewicz, O. Is Parkinsons disease a vesicular dopamine storage disorder? Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum. J. Neurosci., 2014, 34(24), 8210-8218. doi: 10.1523/JNEUROSCI.5456-13.2014 PMID: 24920625
- Lohr, K.M.; Stout, K.A.; Dunn, A.R.; Wang, M.; Salahpour, A.; Guillot, T.S.; Miller, G.W. Increased vesicular monoamine transporter 2 (VMAT2; Slc18a2) protects against methamphetamine toxicity. ACS Chem. Neurosci., 2015, 6(5), 790-799. doi: 10.1021/acschemneuro.5b00010 PMID: 25746685
- Joksimovic, M.; Awatramani, R. Wnt/-catenin signaling in midbrain dopaminergic neuron specification and neurogenesis. J. Mol. Cell Biol., 2014, 6(1), 27-33. doi: 10.1093/jmcb/mjt043 PMID: 24287202
- LEpiscopo, F.; Tirolo, C.; Testa, N.; Caniglia, S.; Morale, M.C.; Serapide, M.F.; Pluchino, S.; Marchetti, B. Wnt/β-catenin signaling is required to rescue midbrain dopaminergic progenitors and promote neurorepair in ageing mouse model of Parkinsons disease. Stem Cells, 2014, 32(8), 2147-2163. doi: 10.1002/stem.1708 PMID: 24648001
- Arenas, E. Wnt signaling in midbrain dopaminergic neuron development and regenerative medicine for Parkinsons disease. J. Mol. Cell Biol., 2014, 6(1), 42-53. doi: 10.1093/jmcb/mju001 PMID: 24431302
- Sharma, A.; Hu, X.T.; Napier, T.C.; Al-Harthi, L. Methamphetamine and HIV-1 Tat down regulate β-catenin signaling: implications for methampetamine abuse and HIV-1 co-morbidity. J. Neuroimmune Pharmacol., 2011, 6(4), 597-607. doi: 10.1007/s11481-011-9295-2 PMID: 21744004
- Niehrs, C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene, 2006, 25(57), 7469-7481. doi: 10.1038/sj.onc.1210054 PMID: 17143291
- Scott, E.L.; Brann, D.W. Estrogen regulation of Dkk1 and Wnt/β-Catenin signaling in neurodegenerative disease. Brain Res., 2013, 1514, 63-74. doi: 10.1016/j.brainres.2012.12.015 PMID: 23261660
- Chen, J.J.; Marsh, L. Anxiety in Parkinsons disease: identification and management. Ther. Adv. Neurol. Disord., 2014, 7(1), 52-59. doi: 10.1177/1756285613495723 PMID: 24409202
- Revest, J-M.; Dupret, D.; Koehl, M.; Funk-Reiter, C.; Grosjean, N.; Piazza, P-V.; Abrous, D.N. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol. Psychiatry, 2009, 14(10), 959-967. doi: 10.1038/mp.2009.15 PMID: 19255582
- Yun, S.; Donovan, M.H.; Ross, M.N.; Richardson, D.R.; Reister, R.; Farnbauch, L.A.; Fischer, S.J.; Riethmacher, D.; Gershenfeld, H.K.; Lagace, D.C.; Eisch, A.J. Stress-induced anxiety- and depressive-like phenotype associated with transient reduction in neurogenesis in adult nestin-CreERT2/diphtheria toxin fragment A transgenic mice. PLoS One, 2016, 11(1), e0147256. doi: 10.1371/journal.pone.0147256 PMID: 26795203
- Vila, M.; Jackson-Lewis, V.; Vukosavic, S.; Djaldetti, R.; Liberatore, G.; Offen, D.; Korsmeyer, S.J.; Przedborski, S. Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinsons disease. Proc. Natl. Acad. Sci. USA, 2001, 98(5), 2837-2842. doi: 10.1073/pnas.051633998 PMID: 11226327
- Hill, A.S.; Sahay, A.; Hen, R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology, 2015, 40(10), 2368-2378. doi: 10.1038/npp.2015.85 PMID: 25833129
- Huckans, M.; Wilhelm, C.J.; Phillips, T.J.; Huang, E.T.; Hudson, R.; Loftis, J.M. Parallel effects of methamphetamine on anxiety and CCL3 in humans and a genetic mouse model of high methamphetamine intake. Neuropsychobiology, 2017, 75(4), 169-177. doi: 10.1159/000485129 PMID: 29402784
- Chetsawang, J.; Suwanjang, W.; Pirompul, N.; Govitrapong, P.; Chetsawang, B. Calpastatin reduces methamphetamine-induced induction in c-Jun phosphorylation, Bax and cell death in neuroblastoma SH-SY5Y cells. Neurosci. Lett., 2012, 506(1), 7-11. doi: 10.1016/j.neulet.2011.10.021 PMID: 22027180
- Kabaria, S.; Choi, D.C.; Chaudhuri, A.D.; Jain, M.R.; Li, H.; Junn, E. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression. Free Radic. Biol. Med., 2015, 89, 548-556. doi: 10.1016/j.freeradbiomed.2015.09.010 PMID: 26453926
- Kahroba, H.; Ramezani, B.; Maadi, H.; Sadeghi, M.R.; Jaberie, H.; Ramezani, F. The role of Nrf2 in neural stem/progenitors cells: From maintaining stemness and self-renewal to promoting differentiation capability and facilitating therapeutic application in neurodegenerative disease. Ageing Res. Rev., 2021, 65, 101211. doi: 10.1016/j.arr.2020.101211 PMID: 33186670
- Meng, X.; Zhang, C.; Guo, Y.; Han, Y.; Wang, C.; Chu, H.; Kong, L.; Ma, H. TBHQ attenuates neurotoxicity induced by methamphetamine in the VTA through the Nrf2/HO-1 and PI3K/AKT signaling pathways. Oxid. Med. Cell. Longev., 2020, 2020, 1-13. doi: 10.1155/2020/8787156 PMID: 32351675
- Ekthuwapranee, K.; Sotthibundhu, A.; Govitrapong, P. Melatonin attenuates methamphetamine-induced inhibition of proliferation of adult rat hippocampal progenitor cells in vitro. J. Pineal Res., 2015, 58(4), 418-428. doi: 10.1111/jpi.12225 PMID: 25752339
- Ho, D.H.; Seol, W.; Son, I. Upregulation of the p53-p21 pathway by G2019S LRRK2 contributes to the cellular senescence and accumulation of α-synuclein. Cell Cycle, 2019, 18(4), 467-475. doi: 10.1080/15384101.2019.1577666 PMID: 30712480
- Baptista, S.; Lasgi, C.; Benstaali, C.; Milhazes, N.; Borges, F.; Fontes-Ribeiro, C.; Agasse, F.; Silva, A.P. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate. Stem Cell Res. (Amst.), 2014, 13(2), 329-341. doi: 10.1016/j.scr.2014.08.003 PMID: 25201326
- Rutsch, A.; Kantsjö, J.B.; Ronchi, F. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol., 2020, 11, 604179. doi: 10.3389/fimmu.2020.604179 PMID: 33362788
- Góralczyk-Bińkowska, A.; Szmajda-Krygier, D.; Kozłowska, E. The microbiota-gut-brain axis in psychiatric disorders. Int. J. Mol. Sci., 2022, 23(19), 11245. doi: 10.3390/ijms231911245 PMID: 36232548
- Socała, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Włodarczyk, M.; Zielińska, A.; Poleszak, E.; Fichna, J.; Wlaź, P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res., 2021, 172, 105840. doi: 10.1016/j.phrs.2021.105840 PMID: 34450312
- Mayer, E.A.; Nance, K.; Chen, S. The gut-brain axis. Annu. Rev. Med., 2022, 73(1), 439-453. doi: 10.1146/annurev-med-042320-014032 PMID: 34669431
- Wang, Q.; Luo, Y.; Ray Chaudhuri, K.; Reynolds, R.; Tan, E.K.; Pettersson, S. The role of gut dysbiosis in Parkinsons disease: mechanistic insights and therapeutic options. Brain, 2021, 144(9), 2571-2593. doi: 10.1093/brain/awab156 PMID: 33856024
- Tan, A.H.; Lim, S.Y.; Lang, A.E. The microbiomegutbrain axis in Parkinson disease from basic research to the clinic. Nat. Rev. Neurol., 2022, 18(8), 476-495. doi: 10.1038/s41582-022-00681-2 PMID: 35750883
- Dogra, N.; Mani, R.J.; Katare, D.P. The gut-brain axis: Two ways signaling in Parkinsons disease. Cell. Mol. Neurobiol., 2022, 42(2), 315-332. doi: 10.1007/s10571-021-01066-7 PMID: 33649989
- Kim, S.; Kwon, S.H.; Kam, T.I.; Panicker, N.; Karuppagounder, S.S.; Lee, S.; Lee, J.H.; Kim, W.R.; Kook, M.; Foss, C.A.; Shen, C.; Lee, H.; Kulkarni, S.; Pasricha, P.J.; Lee, G.; Pomper, M.G.; Dawson, V.L.; Dawson, T.M.; Ko, H.S. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinsons disease. Neuron, 2019, 103(4), 627-641.e7. doi: 10.1016/j.neuron.2019.05.035 PMID: 31255487
- Kakoty, V. K C, S.; Dubey, S.K.; Yang, C.H.; Kesharwani, P.; Taliyan, R. The gut-brain connection in the pathogenicity of Parkinson disease: Putative role of autophagy. Neurosci. Lett., 2021, 753, 135865. doi: 10.1016/j.neulet.2021.135865 PMID: 33812929
- Klann, E.M.; Dissanayake, U.; Gurrala, A.; Farrer, M.; Shukla, A.W.; Ramirez-Zamora, A.; Mai, V.; Vedam-Mai, V. The gut-brain axis and its relation to Parkinsons disease: A review. Front. Aging Neurosci., 2022, 13, 782082. doi: 10.3389/fnagi.2021.782082 PMID: 35069178
- Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; Chesselet, M.F.; Keshavarzian, A.; Shannon, K.M.; Krajmalnik-Brown, R.; Wittung-Stafshede, P.; Knight, R.; Mazmanian, S.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinsons disease. Cell, 2016, 167(6), 1469-1480.e12. doi: 10.1016/j.cell.2016.11.018 PMID: 27912057
- Sun, M.F.; Zhu, Y.L.; Zhou, Z.L.; Jia, X.B.; Xu, Y.D.; Yang, Q.; Cui, C.; Shen, Y.Q. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinsons disease mice: Gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav. Immun., 2018, 70, 48-60. doi: 10.1016/j.bbi.2018.02.005 PMID: 29471030
- Hamamah, S.; Aghazarian, A.; Nazaryan, A.; Hajnal, A.; Covasa, M. Role of microbiota-gut-brain axis in regulating dopaminergic signaling. Biomedicines, 2022, 10(2), 436. doi: 10.3390/biomedicines10020436 PMID: 35203645
- Qin, C.; Hu, J.; Wan, Y.; Cai, M.; Wang, Z.; Peng, Z.; Liao, Y.; Li, D.; Yao, P.; Liu, L.; Rong, S.; Bao, W.; Xu, G.; Yang, W. Narrative review on potential role of gut microbiota in certain substance addiction. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 106, 110093. doi: 10.1016/j.pnpbp.2020.110093 PMID: 32898589
- Simpson, S.; Mclellan, R.; Wellmeyer, E.; Matalon, F.; George, O. Drugs and bugs: The gut-brain axis and substance use disorders. J. Neuroimmune Pharmacol., 2022, 17(1-2), 33-61. doi: 10.1007/s11481-021-10022-7 PMID: 34694571
- Wang, Z.; Hou, C.; Chen, L.; Zhang, M.; Luo, W. Potential roles of the gut microbiota in the manifestations of drug use disorders. Front. Psychiatry, 2022, 13, 1046804. doi: 10.3389/fpsyt.2022.1046804 PMID: 36590616
- Angoa-Pérez, M.; Zagorac, B.; Winters, A.D.; Greenberg, J.M.; Ahmad, M.; Theis, K.R.; Kuhn, D.M. Differential effects of synthetic psychoactive cathinones and amphetamine stimulants on the gut microbiome in mice. PLoS One, 2020, 15(1), e0227774. doi: 10.1371/journal.pone.0227774 PMID: 31978078
- Forouzan, S.; Hoffman, K.L.; Kosten, T.A. Methamphetamine exposure and its cessation alter gut microbiota and induce depressive-like behavioral effects on rats. Psychopharmacology (Berl.), 2021, 238(1), 281-292. doi: 10.1007/s00213-020-05681-y PMID: 33097978
- Chen, L.J.; Zhi, X.; Zhang, K.K.; Wang, L.B.; Li, J.H.; Liu, J.L.; Xu, L.L.; Yoshida, J.S.; Xie, X.L.; Wang, Q. Escalating dose-multiple binge methamphetamine treatment elicits neurotoxicity, altering gut microbiota and fecal metabolites in mice. Food Chem. Toxicol., 2021, 148, 111946. doi: 10.1016/j.fct.2020.111946 PMID: 33359793
- Li, Y.; Kong, D.; Bi, K.; Luo, H. Related effects of methamphetamine on the intestinal barrier via cytokines, and potential mechanisms by which methamphetamine may occur on the brain-gut axis. Front. Med. (Lausanne), 2022, 9, 783121. doi: 10.3389/fmed.2022.783121 PMID: 35620725
- Flack, A.; Persons, A.L.; Kousik, S.M.; Celeste Napier, T.; Moszczynska, A. Self-administration of methamphetamine alters gut biomarkers of toxicity. Eur. J. Neurosci., 2017, 46(3), 1918-1932. doi: 10.1111/ejn.13630 PMID: 28661099
- Shen, T.; Yue, Y.; He, T.; Huang, C.; Qu, B.; Lv, W.; Lai, H.Y. The association between the gut microbiota and Parkinsons disease, a meta-analysis. Front. Aging Neurosci., 2021, 13, 636545. doi: 10.3389/fnagi.2021.636545 PMID: 33643026
- Davidson, M.; Mayer, M.; Habib, A.; Rashidi, N.; Filippone, R.T.; Fraser, S.; Prakash, M.D.; Sinnayah, P.; Tangalakis, K.; Mathai, M.L.; Nurgali, K.; Apostolopoulos, V. Methamphetamine induces systemic inflammation and anxiety: The role of the gut-immune-brain axis. Int. J. Mol. Sci., 2022, 23(19), 11224. doi: 10.3390/ijms231911224 PMID: 36232524
- Caputi, V.; Giron, M. Microbiome-gut-brain axis and toll-like receptors in Parkinsons disease. Int. J. Mol. Sci., 2018, 19(6), 1689. doi: 10.3390/ijms19061689 PMID: 29882798
- Vargas, A.M.; Rivera-Rodriguez, D.E.; Martinez, L.R. Methamphetamine alters the TLR4 signaling pathway, NF-κB activation, and pro-inflammatory cytokine production in LPS-challenged NR-9460 microglia-like cells. Mol. Immunol., 2020, 121, 159-166. doi: 10.1016/j.molimm.2020.03.013 PMID: 32222586
- Pellegrini, C.; Antonioli, L.; Calderone, V.; Colucci, R.; Fornai, M.; Blandizzi, C. Microbiota-gut-brain axis in health and disease: Is NLRP3 inflammasome at the crossroads of microbiota-gut-brain communications? Prog. Neurobiol., 2020, 191, 101806. doi: 10.1016/j.pneurobio.2020.101806 PMID: 32473843
- Su, Q.; Ng, W.L.; Goh, S.Y.; Gulam, M.Y.; Wang, L.F.; Tan, E.K.; Ahn, M.; Chao, Y.X. Targeting the inflammasome in Parkinsons disease. Front. Aging Neurosci., 2022, 14, 957705. doi: 10.3389/fnagi.2022.957705 PMID: 36313019
- Xu, E.; Liu, J.; Liu, H.; Wang, X.; Xiong, H. Inflammasome activation by methamphetamine potentiates lipopolysaccharide stimulation of IL-1β production in microglia. J. Neuroimmune Pharmacol., 2018, 13(2), 237-253. doi: 10.1007/s11481-018-9780-y PMID: 29492824
- Zhao, J.; Shen, S.; Dai, Y.; Chen, F.; Wang, K. Methamphetamine induces intestinal inflammatory injury via nod-like receptor 3 protein (NLRP3) inflammasome overexpression in vitro and in vivo. Med. Sci. Monit., 2019, 25, 8515-8526. doi: 10.12659/MSM.920190 PMID: 31712546
- Sun, J.; Chen, F.; Chen, C.; Zhang, Z.; Zhang, Z.; Tian, W.; Yu, J.; Wang, K. Intestinal mRNA expression profile and bioinformatics analysis in a methamphetamine-induced mouse model of inflammatory bowel disease. Ann. Transl. Med., 2020, 8(24), 1669. doi: 10.21037/atm-20-7741 PMID: 33490181
- Loosen, S.H.; Yaqubi, K.; May, P.; Konrad, M.; Gollop, C.; Luedde, T.; Kostev, K.; Roderburg, C. Association between inflammatory bowel disease and subsequent development of restless legs syndrome and Parkinsons disease: A retrospective cohort study of 35,988 primary care patients in Germany. Life (Basel), 2023, 13(4), 897. doi: 10.3390/life13040897 PMID: 37109426
- Guilarte, T.R. Is methamphetamine abuse a risk factor in parkinsonism? Neurotoxicology, 2001, 22(6), 725-731. doi: 10.1016/S0161-813X(01)00046-8 PMID: 11829406
- Wilson, J.M.; Kalasinsky, K.S.; Levey, A.I.; Bergeron, C.; Reiber, G.; Anthony, R.M.; Schmunk, G.A.; Shannak, K.; Haycock, J.W.; Kish, S.J. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat. Med., 1996, 2(6), 699-703. doi: 10.1038/nm0696-699 PMID: 8640565
- Volkow, N.D.; Chang, L.; Wang, G.J.; Fowler, J.S.; Leonido-Yee, M.; Franceschi, D.; Sedler, M.J.; Gatley, S.J.; Hitzemann, R.; Ding, Y.S.; Logan, J.; Wong, C.; Miller, E.N. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am. J. Psychiatry, 2001, 158(3), 377-382. doi: 10.1176/appi.ajp.158.3.377 PMID: 11229977
- Jan, R.K.; Kydd, R.R.; Russell, B.R. Functional and structural brain changes associated with methamphetamine abuse. Brain Sci., 2012, 2(4), 434-482. doi: 10.3390/brainsci2040434 PMID: 24961256
- Granado, N.; Ares-Santos, S.; Moratalla, R. Methamphetamine and Parkinsons disease. Parkinsons Dis., 2013, 2013, 1-10. doi: 10.1155/2013/308052 PMID: 23476887
- Callaghan, R.C.; Cunningham, J.K.; Sajeev, G.; Kish, S.J. Incidence of Parkinsons disease among hospital patients with methamphetamine-use disorders. Mov. Disord., 2010, 25(14), 2333-2339. doi: 10.1002/mds.23263 PMID: 20737543
- Callaghan, R.C.; Cunningham, J.K.; Sykes, J.; Kish, S.J. Increased risk of Parkinsons disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs. Drug Alcohol Depend., 2012, 120(1-3), 35-40. doi: 10.1016/j.drugalcdep.2011.06.013 PMID: 21794992
- Curtin, K.; Fleckenstein, A.E.; Robison, R.J.; Crookston, M.J.; Smith, K.R.; Hanson, G.R. Methamphetamine/amphetamine abuse and risk of Parkinsons disease in Utah: A population-based assessment. Drug Alcohol Depend., 2015, 146, 30-38. doi: 10.1016/j.drugalcdep.2014.10.027 PMID: 25479916
- Rumpf, J.J.; Albers, J.; Fricke, C.; Mueller, W.; Classen, J. Structural abnormality of substantia nigra induced by methamphetamine abuse. Mov. Disord., 2017, 32(12), 1784-1788. doi: 10.1002/mds.27205 PMID: 29082542
- Tang, K.A.; Liang, H.; Lin, Y.; Zhang, C.; Tang, W.K.; Chu, W.C.; Ungvari, G.S. Persistent parkinsonism after high dose intravenous methamphetamine: A case report. Neurol. Asia, 2017, 22(1), 77-80.
- Matthew, B.J.; Gedzior, J.S. Drug-induced parkinsonism following chronic methamphetamine use by a patient on haloperidol decanoate. Int. J. Psychiatry Med., 2015, 50(4), 405-411. doi: 10.1177/0091217415612736 PMID: 26526398
- Yancey, J. Drug-induced Parkinsonism in a Patient with methamphetamine abuse. Neurology, 2016, 86(16 Supplement), P4.317..
- Fabbrini, G.; Abbruzzese, G.; Marconi, S.; Zappia, M. Selegiline. Clin. Neuropharmacol., 2012, 35(3), 134-140. doi: 10.1097/WNF.0b013e318255838b PMID: 22592509
- Tulloch, I.K.; Afanador, L.; Baker, L.; Ordonez, D.; Payne, H.; Mexhitaj, I.; Olivares, E.; Chowdhury, A.; Angulo, J.A. Methamphetamine induces low levels of neurogenesis in striatal neuron subpopulations and differential motor performance. Neurotox. Res., 2014, 26(2), 115-129. doi: 10.1007/s12640-014-9456-1 PMID: 24549503
Supplementary files
