The Common Denominators of Parkinson’s Disease Pathogenesis and Methamphetamine Abuse


Cite item

Full Text

Abstract

:The pervasiveness and mortality associated with methamphetamine abuse have doubled during the past decade, suggesting a possible worldwide substance use crisis. Epitomizing the pathophysiology and toxicology of methamphetamine abuse proclaims severe signs and symptoms of neurotoxic and neurobehavioral manifestations in both humans and animals. Most importantly, chronic use of this drug enhances the probability of developing neurodegenerative diseases manifolds. Parkinson's disease is one such neurological disorder, which significantly and evidently not only shares a number of toxic pathogenic mechanisms induced by methamphetamine exposure but is also interlinked both structurally and genetically. Methamphetamine-induced neurodegeneration involves altered dopamine homeostasis that promotes the aggregation of α-synuclein protofibrils in the dopaminergic neurons and drives these neurons to make them more vulnerable to degeneration, as recognized in Parkinson’s disease. Moreover, the pathologic mechanisms such as mitochondrial dysfunction, oxidative stress, neuroinflammation and decreased neurogenesis detected in methamphetamine abusers dramatically resemble to what is observed in Parkinson’s disease cases. Therefore, the present review comprehensively cumulates a holistic illustration of various genetic and molecular mechanisms putting across the notion of how methamphetamine administration and intoxication might lead to Parkinson’s disease-like pathology and Parkinsonism.

About the authors

Bruno Vincent

Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS

Author for correspondence.
Email: info@benthamscience.net

Mayuri Shukla

Chulabhorn Graduate Institute,, Chulabhorn Royal Academy

Email: info@benthamscience.net

References

  1. de Lau, L.M.L.; Breteler, M.M.B. Epidemiology of Parkinson’s disease. Lancet Neurol., 2006, 5(6), 525-535. doi: 10.1016/S1474-4422(06)70471-9 PMID: 16713924
  2. Dorsey, E.R.; Elbaz, A.; Nichols, E.; Abbasi, N.; Abd-Allah, F.; Abdelalim, A.; Adsuar, J.C.; Ansha, M.G.; Brayne, C.; Choi, J-Y.J.; Collado-Mateo, D.; Dahodwala, N.; Do, H.P.; Edessa, D.; Endres, M.; Fereshtehnejad, S-M.; Foreman, K.J.; Gankpe, F.G.; Gupta, R.; Hamidi, S.; Hankey, G.J.; Hay, S.I.; Hegazy, M.I.; Hibstu, D.T.; Kasaeian, A.; Khader, Y.; Khalil, I.; Khang, Y-H.; Kim, Y.J.; Kokubo, Y.; Logroscino, G.; Massano, J.; Mohamed Ibrahim, N.; Mohammed, M.A.; Mohammadi, A.; Moradi-Lakeh, M.; Naghavi, M.; Nguyen, B.T.; Nirayo, Y.L.; Ogbo, F.A.; Owolabi, M.O.; Pereira, D.M.; Postma, M.J.; Qorbani, M.; Rahman, M.A.; Roba, K.T.; Safari, H.; Safiri, S.; Satpathy, M.; Sawhney, M.; Shafieesabet, A.; Shiferaw, M.S.; Smith, M.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Truong, N.T.; Ukwaja, K.N.; Venketasubramanian, N.; Villafaina, S. weldegwergs, K.; Westerman, R.; Wijeratne, T.; Winkler, A.S.; Xuan, B.T.; Yonemoto, N.; Feigin, V.L.; Vos, T.; Murray, C.J.L. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2018, 17(11), 939-953. doi: 10.1016/S1474-4422(18)30295-3 PMID: 30287051
  3. Schneider, S.A.; Obeso, J.A. Clinical and pathological features of Parkinson’s disease. Curr. Top. Behav. Neurosci., 2014, 22, 205-220. doi: 10.1007/7854_2014_317 PMID: 24850081
  4. Burré, J.; Vivona, S.; Diao, J.; Sharma, M.; Brunger, A.T.; Südhof, T.C. Properties of native brain α-synuclein. Nature, 2013, 498(7453), E4-E6. doi: 10.1038/nature12125 PMID: 23765500
  5. Stefanis, L. α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med., 2012, 2(2), a009399. doi: 10.1101/cshperspect.a009399 PMID: 22355802
  6. Baba, M.; Nakajo, S.; Tu, P.H.; Tomita, T.; Nakaya, K.; Lee, V.M.; Trojanowski, J.Q.; Iwatsubo, T. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am. J. Pathol., 1998, 152(4), 879-884. PMID: 9546347
  7. Dickson, D.W. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb. Perspect. Med., 2012, 2(8), a009258. doi: 10.1101/cshperspect.a009258 PMID: 22908195
  8. Masato, A.; Plotegher, N.; Boassa, D.; Bubacco, L. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol. Neurodegener., 2019, 14(1), 35. doi: 10.1186/s13024-019-0332-6 PMID: 31488222
  9. Hisahara, S.; Shimohama, S. Dopamine receptors and Parkinson’s disease. Int. J. Med. Chem., 2011, 2011, 1-16. doi: 10.1155/2011/403039 PMID: 25954517
  10. Jankovic, J.; Tan, E.K. Parkinson’s disease: etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry, 2020, 91(8), 795-808. doi: 10.1136/jnnp-2019-322338 PMID: 32576618
  11. Levy, O.A.; Malagelada, C.; Greene, L.A. Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis, 2009, 14(4), 478-500. doi: 10.1007/s10495-008-0309-3 PMID: 19165601
  12. Paulus, M.P.; Stewart, J.L. Neurobiology, clinical presentation, and treatment of methamphetamine use disorder: A review. JAMA Psychiatry, 2020, 77(9), 959-966. doi: 10.1001/jamapsychiatry.2020.0246 PMID: 32267484
  13. Farrell, M.; Martin, N.K.; Stockings, E.; Bórquez, A.; Cepeda, J.A.; Degenhardt, L.; Ali, R.; Tran, L.T.; Rehm, J.; Torrens, M.; Shoptaw, S.; McKetin, R. Responding to global stimulant use: challenges and opportunities. Lancet, 2019, 394(10209), 1652-1667. doi: 10.1016/S0140-6736(19)32230-5 PMID: 31668409
  14. McGregor, C.; Srisurapanont, M.; Jittiwutikarn, J.; Laobhripatr, S.; Wongtan, T.; White, J.M. The nature, time course and severity of methamphetamine withdrawal. Addiction, 2005, 100(9), 1320-1329. doi: 10.1111/j.1360-0443.2005.01160.x PMID: 16128721
  15. Hartz, D.T.; Frederick-Osborne, S.L.; Galloway, G.P. Craving predicts use during treatment for methamphetamine dependence: a prospective, repeated-measures, within-subject analysis. Drug Alcohol Depend., 2001, 63(3), 269-276. doi: 10.1016/S0376-8716(00)00217-9 PMID: 11418231
  16. Martinotti, G.; De Risio, L.; Vannini, C.; Schifano, F.; Pettorruso, M.; Di Giannantonio, M. Substance-related exogenous psychosis: a postmodern syndrome. CNS Spectr., 2021, 26(1), 84-91. doi: 10.1017/S1092852920001479 PMID: 32580808
  17. Martinotti, G.; Negri, A.; Schiavone, S.; Montemitro, C.; Vannini, C.; Baroni, G.; Pettorruso, M.; De Giorgio, F.; Giorgetti, R.; Verrastro, V.; Trabace, L.; Garcia, A.; Castro, I.; Iglesias Lopez, J.; Merino Del Villar, C.; Schifano, F.; di Giannantonio, M. Club drugs: psychotropic effects and psychopathological characteristics of a sample of inpatients. Front. Psychiatry, 2020, 11, 879. doi: 10.3389/fpsyt.2020.00879 PMID: 33110412
  18. Martinotti, G.; Lupi, M.; Carlucci, L.; Cinosi, E.; Santacroce, R.; Acciavatti, T.; Chillemi, E.; Bonifaci, L.; Janiri, L.; Di Giannantonio, M. Novel psychoactive substances: use and knowledge among adolescents and young adults in urban and rural areas. Hum. Psychopharmacol., 2015, 30(4), 295-301. doi: 10.1002/hup.2486 PMID: 26216566
  19. Chiappini, S.; Mosca, A.; Miuli, A.; Santovito, M.C.; Orsolini, L.; Corkery, J.M.; Guirguis, A.; Pettorruso, M.; Martinotti, G.; Di Giannantonio, M.; Schifano, F. New psychoactive substances and suicidality: a systematic review of the current literature. Medicina (Kaunas), 2021, 57(6), 580. doi: 10.3390/medicina57060580 PMID: 34204131
  20. Schifano, F.; Chiappini, S.; Miuli, A.; Corkery, J.M.; Scherbaum, N.; Napoletano, F.; Arillotta, D.; Zangani, C.; Catalani, V.; Vento, A.; Pettorruso, M.; Martinotti, G.; Massimo, D.G.; Guirguis, A. New psychoactive substances (NPS) and serotonin syndrome onset: A systematic review. Exp. Neurol., 2021, 339, 113638. doi: 10.1016/j.expneurol.2021.113638 PMID: 33571533
  21. Corazza, O.; Valeriani, G.; Bersani, F.S.; Corkery, J.; Martinotti, G.; Bersani, G.; Schifano, F. "Spice," "kryptonite," "black mamba": an overview of brand names and marketing strategies of novel psychoactive substances on the web. J. Psychoactive Drugs, 2014, 46(4), 287-294. doi: 10.1080/02791072.2014.944291 PMID: 25188698
  22. Schifano, F.; Leoni, M.; Martinotti, G.; Rawaf, S.; Rovetto, F. Importance of cyberspace for the assessment of the drug abuse market: preliminary results from the Psychonaut 2002 project. Cyberpsychol. Behav., 2003, 6(4), 405-410. doi: 10.1089/109493103322278790 PMID: 14511453
  23. Schifano, F.; Deluca, P.; Agosti, L.; Martinotti, G.; Corkery, J.M.; Alex, B.; Caterina, B.; Heikki, B.; Raffaella, B.; Anna, C.; Lucia, D.F.; Dorte, D.R.; Magi, F.; Susana, F.; Irene, F.; Claude, G.; Lisbet, H.; Lene, S.J.; Mauro, L.; Christopher, L.; Aino, M.; Teuvo, P.; Milena, P.; Salman, R.; Damien, R.; Angela, R.M.; Francesco, R.; Norbert, S.; Holger, S.; Josep, T.; Marta, T.; Francesco, Z. New trends in the cyber and street market of recreational drugs? The case of 2C-T-7 (‘Blue Mystic’). J. Psychopharmacol., 2005, 19(6), 675-679. doi: 10.1177/0269881105056660 PMID: 16272191
  24. Shukla, M.; Vincent, B. The multi-faceted impact of methamphetamine on Alzheimer’s disease: From a triggering role to a possible therapeutic use. Ageing Res. Rev., 2020, 60, 101062. doi: 10.1016/j.arr.2020.101062 PMID: 32304732
  25. Lappin, J.M.; Darke, S. Methamphetamine and heightened risk for early-onset stroke and Parkinson’s disease: A review. Exp. Neurol., 2021, 343, 113793. doi: 10.1016/j.expneurol.2021.113793 PMID: 34166684
  26. Das, A.; Price, D.; Clothier, J. Case Series: Choreoathetoid movements associated with methamphetamine: A case report and review of literature. Am. J. Addict., 2018, 27(5), 364-367. doi: 10.1111/ajad.12759 PMID: 29968954
  27. Millot, M.; Saga, Y.; Duperrier, S.; Météreau, E.; Beaudoin-Gobert, M.; Sgambato, V. Prior MDMA administration aggravates MPTP-induced Parkinsonism in macaque monkeys. Neurobiol. Dis., 2020, 134, 104643. doi: 10.1016/j.nbd.2019.104643 PMID: 31689516
  28. Boroujeni, M.E.; Nasrollahi, A.; Boroujeni, P.B.; Fadaeifathabadi, F.; Farhadieh, M.; Tehrani, A.M.; Nakhaei, H.; Sajedian, A.M.; Peirouvi, T.; Aliaghaei, A. Exposure to methamphetamine exacerbates motor activities and alters circular RNA profile of cerebellum. J. Pharmacol. Sci., 2020, 144(1), 1-8. doi: 10.1016/j.jphs.2020.05.010 PMID: 32576439
  29. Todd, G.; Burns, L.; Pearson-Dennett, V.; Esterman, A.; Faulkner, P.L.; Wilcox, R.A.; Thewlis, D.; Vogel, A.P.; White, J.M. Prevalence of self-reported movement dysfunction among young adults with a history of ecstasy and methamphetamine use. Drug Alcohol Depend., 2019, 205, 107595. doi: 10.1016/j.drugalcdep.2019.107595 PMID: 31600615
  30. Temmingh, H.S.; van den Brink, W.; Howells, F.; Sibeko, G.; Stein, D.J. Methamphetamine use and antipsychotic-related extrapyramidal side-effects in patients with psychotic disorders. J. Dual Diagn., 2020, 16(2), 208-217. doi: 10.1080/15504263.2020.1714099 PMID: 31984872
  31. Shukla, M.; Vincent, B. Methamphetamine abuse disturbs the dopaminergic system to impair hippocampal-based learning and memory: An overview of animal and human investigations. Neurosci. Biobehav. Rev., 2021, 131, 541-559. doi: 10.1016/j.neubiorev.2021.09.016 PMID: 34606820
  32. Foroughi, K.; Khaksari, M.; Shayannia, A. Molecular docking studies of methamphetamine and amphetamine-related derivatives as an inhibitor against dopamine receptor. Curr. Computeraided Drug Des., 2020, 16(2), 122-133. doi: 10.2174/1573409915666181204144411 PMID: 30514192
  33. Pregeljc, D.; Teodorescu-Perijoc, D.; Vianello, R.; Umek, N.; Mavri, J. How important is the use of cocaine and amphetamines in the development of Parkinson disease? A computational study. Neurotox. Res., 2020, 37(3), 724-731. doi: 10.1007/s12640-019-00149-0 PMID: 31828739
  34. Ares-Santos, S.; Granado, N.; Moratalla, R. The role of dopamine receptors in the neurotoxicity of methamphetamine. J. Intern. Med., 2013, 273(5), 437-453. doi: 10.1111/joim.12049 PMID: 23600399
  35. Francardo, V. Sigma-1 receptor: a potential new target for Parkinson′s disease? Neural Regen. Res., 2014, 9(21), 1882-1883. doi: 10.4103/1673-5374.145351 PMID: 25558236
  36. Hedges, D.M.; Obray, J.D.; Yorgason, J.T.; Jang, E.Y.; Weerasekara, V.K.; Uys, J.D.; Bellinger, F.P.; Steffensen, S.C. Methamphetamine induces dopamine release in the nucleus accumbens through a sigma receptor-mediated pathway. Neuropsychopharmacology, 2018, 43(6), 1405-1414. doi: 10.1038/npp.2017.291 PMID: 29185481
  37. Shin, E.J.; Dang, D.K.; Tran, T.V.; Tran, H.Q.; Jeong, J.H.; Nah, S.Y.; Jang, C.G.; Yamada, K.; Nabeshima, T.; Kim, H.C. Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch. Pharm. Res., 2017, 40(4), 403-428. doi: 10.1007/s12272-017-0897-y PMID: 28243833
  38. Jiang, W.; Li, J.; Zhang, Z.; Wang, H.; Wang, Z. Epigenetic upregulation of alpha-synuclein in the rats exposed to methamphetamine. Eur. J. Pharmacol., 2014, 745, 243-248. doi: 10.1016/j.ejphar.2014.10.043 PMID: 25445041
  39. Ding, J.; Hu, S.; Meng, Y.; Li, C.; Huang, J.; He, Y.; Qiu, P. Alpha-Synuclein deficiency ameliorates chronic methamphetamine induced neurodegeneration in mice. Toxicology, 2020, 438, 152461. doi: 10.1016/j.tox.2020.152461 PMID: 32278788
  40. Wu, M.; Su, H.; Zhao, M. The role of α-Synuclein in methamphetamine-induced neurotoxicity. Neurotox. Res., 2021, 39(3), 1007-1021. doi: 10.1007/s12640-021-00332-2 PMID: 33555547
  41. Gelfand, Y.; Kaplitt, M.G. Gene therapy for psychiatric disorders. World Neurosurg, 2013, 80(3-4), S32.e11-S32.e28. doi: 10.1016/j.wneu.2012.12.028 PMID: 23268195
  42. Bousman, C.A.; Glatt, S.J.; Everall, I.P.; Tsuang, M.T. Genetic association studies of methamphetamine use disorders: A systematic review and synthesis. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2009, 150B(8), 1025-1049. doi: 10.1002/ajmg.b.30936 PMID: 19219857
  43. Clinton, L.K.; Blurton-Jones, M.; Myczek, K.; Trojanowski, J.Q.; LaFerla, F.M. Synergistic Interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline. J. Neurosci., 2010, 30(21), 7281-7289. doi: 10.1523/JNEUROSCI.0490-10.2010 PMID: 20505094
  44. Mullin, S.; Schapira, A. The genetics of Parkinson’s disease. Br. Med. Bull., 2015, 114(1), 39-52. doi: 10.1093/bmb/ldv022 PMID: 25995343
  45. Wray, S.; Lewis, P.A. A tangled web - tau and sporadic Parkinson’s disease. Front. Psychiatry, 2010, 1, 150. doi: 10.3389/fpsyt.2010.00150 PMID: 21423457
  46. Tavassoly, O.; Lee, J.S. Methamphetamine binds to α-synuclein and causes a conformational change which can be detected by nanopore analysis. FEBS Lett., 2012, 586(19), 3222-3228. doi: 10.1016/j.febslet.2012.06.040 PMID: 22771474
  47. Butler, B.; Gamble-George, J.; Prins, P.; North, A.; Clarke, J.T.; Khoshbouei, H. Chronic methamphetamine increases alpha-synuclein protein levels in the striatum and hippocampus but not in the cortex of juvenile mice. J. Addict. Prev., 2014, 2(2), 6. PMID: 25621291
  48. Satake, W.; Nakabayashi, Y.; Mizuta, I.; Hirota, Y.; Ito, C.; Kubo, M.; Kawaguchi, T.; Tsunoda, T.; Watanabe, M.; Takeda, A.; Tomiyama, H.; Nakashima, K.; Hasegawa, K.; Obata, F.; Yoshikawa, T.; Kawakami, H.; Sakoda, S.; Yamamoto, M.; Hattori, N.; Murata, M.; Nakamura, Y.; Toda, T. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat. Genet., 2009, 41(12), 1303-1307. doi: 10.1038/ng.485 PMID: 19915576
  49. Simón-Sánchez, J.; Schulte, C.; Bras, J.M.; Sharma, M.; Gibbs, J.R.; Berg, D.; Paisan-Ruiz, C.; Lichtner, P.; Scholz, S.W.; Hernandez, D.G.; Krüger, R.; Federoff, M.; Klein, C.; Goate, A.; Perlmutter, J.; Bonin, M.; Nalls, M.A.; Illig, T.; Gieger, C.; Houlden, H.; Steffens, M.; Okun, M.S.; Racette, B.A.; Cookson, M.R.; Foote, K.D.; Fernandez, H.H.; Traynor, B.J.; Schreiber, S.; Arepalli, S.; Zonozi, R.; Gwinn, K.; van der Brug, M.; Lopez, G.; Chanock, S.J.; Schatzkin, A.; Park, Y.; Hollenbeck, A.; Gao, J.; Huang, X.; Wood, N.W.; Lorenz, D.; Deuschl, G.; Chen, H.; Riess, O.; Hardy, J.A.; Singleton, A.B.; Gasser, T. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet., 2009, 41(12), 1308-1312. doi: 10.1038/ng.487 PMID: 19915575
  50. Biagioni, F.; Ferese, R.; Limanaqi, F.; Madonna, M.; Lenzi, P.; Gambardella, S.; Fornai, F. Methamphetamine persistently increases alpha-synuclein and suppresses gene promoter methylation within striatal neurons. Brain Res., 2019, 1719, 157-175. doi: 10.1016/j.brainres.2019.05.035 PMID: 31150652
  51. Heinzerling, K.G.; Shoptaw, S. Gender, brain-derived neurotrophic factor Val66Met, and frequency of methamphetamine use. Gend. Med., 2012, 9(2), 112-120. doi: 10.1016/j.genm.2012.02.005 PMID: 22445683
  52. Altmann, V.; Schumacher-Schuh, A.F.; Rieck, M.; Callegari-Jacques, S.M.; Rieder, C.R.M.; Hutz, M.H. Val66Met BDNF polymorphism is associated with Parkinson’s disease cognitive impairment. Neurosci. Lett., 2016, 615, 88-91. doi: 10.1016/j.neulet.2016.01.030 PMID: 26806863
  53. Autry, A.E.; Monteggia, L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev., 2012, 64(2), 238-258. doi: 10.1124/pr.111.005108 PMID: 22407616
  54. Costa, A.; Peppe, A.; Carlesimo, G.A.; Zabberoni, S.; Scalici, F.; Caltagirone, C.; Angelucci, F. Brain-derived neurotrophic factor serum levels correlate with cognitive performance in Parkinson’s disease patients with mild cognitive impairment. Front. Behav. Neurosci., 2015, 9, 253. doi: 10.3389/fnbeh.2015.00253 PMID: 26441580
  55. He, L.; Liao, Y.; Wu, Q.; Liu, T. Association between brain-derived neurotrophic factor Val66Met polymorphism and methamphetamine use disorder: A meta-analysis. Front. Psychiatry, 2020, 11, 585852. doi: 10.3389/fpsyt.2020.585852 PMID: 33329128
  56. Tekumalla, P.K.; Calon, F.; Rahman, Z.; Birdi, S.; Rajput, A.H.; Hornykiewicz, O.; Di Paolo, T.; Bédard, P.J.; Nestler, E.J. Elevated levels of ΔFosB and RGS9 in striatum in Parkinson’s disease. Biol. Psychiatry, 2001, 50(10), 813-816. doi: 10.1016/S0006-3223(01)01234-3 PMID: 11720701
  57. Okahisa, Y.; Kodama, M.; Takaki, M.; Inada, T.; Uchimura, N.; Yamada, M.; Iwata, N.; Iyo, M.; Sora, I.; Ozaki, N.; Ujike, H. Association between the regulator of G-protein signaling 9 gene and patients with methamphetamine use. Curr. Neuropharmacol., 2011, 9(1), 190-194. doi: 10.2174/157015911795017029 PMID: 21886588
  58. Liu, W.; Wu, H.; Chen, L.; Wen, Y.; Kong, X.; Gao, W.Q. Park7 interacts with p47phox to direct NADPH oxidase-dependent ROS production and protect against sepsis. Cell Res., 2015, 25(6), 691-706. doi: 10.1038/cr.2015.63 PMID: 26021615
  59. Polissidis, A.; Petropoulou-Vathi, L.; Nakos-Bimpos, M.; Rideout, H.J. The future of targeted gene-based treatment strategies and biomarkers in Parkinson’s disease. Biomolecules, 2020, 10(6), 912. doi: 10.3390/biom10060912 PMID: 32560161
  60. Chouliaras, L.; Kumar, G.S.; Thomas, A.J.; Lunnon, K.; Chinnery, P.F.; O’Brien, J.T. Epigenetic regulation in the pathophysiology of Lewy body dementia. Prog. Neurobiol., 2020, 192, 101822. doi: 10.1016/j.pneurobio.2020.101822 PMID: 32407744
  61. Li, L.; Chen, S.; Wang, Y.; Yue, X.; Xu, J.; Xie, W.; Qiu, P.; Liu, C.; Wang, A.; Wang, H. Role of GSK3β/α-synuclein axis in methamphetamine-induced neurotoxicity in PC12 cells. Toxicol. Res. (Camb.), 2018, 7(2), 221-234. doi: 10.1039/C7TX00189D PMID: 30090577
  62. Tong, Y.; Xu, Y.; Scearce-Levie, K.; Ptáček, L.J.; Fu, Y.H. COL25A1 triggers and promotes Alzheimer’s disease-like pathology in vivo. Neurogenetics, 2010, 11(1), 41-52. doi: 10.1007/s10048-009-0201-5 PMID: 19548013
  63. Sarajärvi, T.; Tuusa, J.T.; Haapasalo, A.; Lackman, J.J.; Sormunen, R.; Helisalmi, S.; Roehr, J.T.; Parrado, A.R.; Mäkinen, P.; Bertram, L.; Soininen, H.; Tanzi, R.E.; Petäjä-Repo, U.E.; Hiltunen, M. Cysteine 27 variant of the delta-opioid receptor affects amyloid precursor protein processing through altered endocytic trafficking. Mol. Cell. Biol., 2011, 31(11), 2326-2340. doi: 10.1128/MCB.05015-11 PMID: 21464208
  64. Voineskos, A.N.; Lerch, J.P.; Felsky, D.; Shaikh, S.; Rajji, T.K.; Miranda, D.; Lobaugh, N.J.; Mulsant, B.H.; Pollock, B.G.; Kennedy, J.L. The brain-derived neurotrophic factor Val66Met polymorphism and prediction of neural risk for Alzheimer disease. Arch. Gen. Psychiatry, 2011, 68(2), 198-206. doi: 10.1001/archgenpsychiatry.2010.194 PMID: 21300947
  65. Roussotte, F.F.; Jahanshad, N.; Hibar, D.P.; Sowell, E.R.; Kohannim, O.; Barysheva, M.; Hansell, N.K.; McMahon, K.L.; de Zubicaray, G.I.; Montgomery, G.W.; Martin, N.G.; Wright, M.J.; Toga, A.W.; Jack, C.R., Jr; Weiner, M.W.; Thompson, P.M. ADNI. A commonly carried genetic variant in the delta opioid receptor gene, OPRD1, is associated with smaller regional brain volumes: Replication in elderly and young populations. Hum. Brain Mapp., 2014, 35(4), 1226-1236. doi: 10.1002/hbm.22247 PMID: 23427138
  66. Roos, A.; Fouche, J.P.; Toit, S.; Plessis, S.; Stein, D.J.; Donald, K.A. Structural brain network development in children following prenatal methamphetamine exposure. J. Comp. Neurol., 2020, 528(11), 1856-1863. doi: 10.1002/cne.24858 PMID: 31953852
  67. Feier, G.; Valvassori, S.S.; Lopes-Borges, J.; Varela, R.B.; Bavaresco, D.V.; Scaini, G.; Morais, M.O.; Andersen, M.L.; Streck, E.L.; Quevedo, J. Behavioral changes and brain energy metabolism dysfunction in rats treated with methamphetamine or dextroamphetamine. Neurosci. Lett., 2012, 530(1), 75-79. doi: 10.1016/j.neulet.2012.09.039 PMID: 23022501
  68. Bu, Q.; Lv, L.; Yan, G.; Deng, P.; Wang, Y.; Zhou, J.; Yang, Y.; Li, Y.; Cen, X. NMR-based metabonomic in hippocampus, nucleus accumbens and prefrontal cortex of methamphetamine-sensitized rats. Neurotoxicology, 2013, 36, 17-23. doi: 10.1016/j.neuro.2013.02.007 PMID: 23462569
  69. Chavoshi, H.; Boroujeni, M.E.; Abdollahifar, M.A.; Amini, A.; Tehrani, A.M.; Moghaddam, M.H.; Norozian, M.; Farahani, R.M.; Aliaghaei, A. From dysregulated microRNAs to structural alterations in the striatal region of METH-injected rats. J. Chem. Neuroanat., 2020, 109, 101854. doi: 10.1016/j.jchemneu.2020.101854 PMID: 32795519
  70. Huang, X.; Chen, Y-Y.; Shen, Y.; Cao, X.; Li, A.; Liu, Q.; Li, Z.; Zhang, L-B.; Dai, W.; Tan, T.; Arias-Carrion, O.; Xue, Y-X.; Su, H.; Yuan, T-F. Methamphetamine abuse impairs motor cortical plasticity and function. Mol. Psychiatry, 2017, 22(9), 1274-1281. doi: 10.1038/mp.2017.143 PMID: 28831198
  71. Gama, R.L.; Bruin, V.M.S.; Távora, D.G.F.; Duran, F.L.S.; Bittencourt, L.; Tufik, S. Structural brain abnormalities in patients with Parkinson’s disease with visual hallucinations: A comparative voxel-based analysis. Brain Cogn., 2014, 87, 97-103. doi: 10.1016/j.bandc.2014.03.011 PMID: 24732953
  72. Gao, Y.; Nie, K.; Huang, B.; Mei, M.; Guo, M.; Xie, S.; Huang, Z.; Wang, L.; Zhao, J.; Zhang, Y.; Wang, L. Changes of brain structure in Parkinson’s disease patients with mild cognitive impairment analyzed via VBM technology. Neurosci. Lett., 2017, 658, 121-132. doi: 10.1016/j.neulet.2017.08.028 PMID: 28823894
  73. Li, R.; Zou, T.; Wang, X.; Wang, H.; Hu, X.; Xie, F.; Meng, L.; Chen, H. Basal ganglia atrophy–associated causal structural network degeneration in Parkinson’s disease. Hum. Brain Mapp., 2022, 43(3), 1145-1156. doi: 10.1002/hbm.25715 PMID: 34792836
  74. Rektor, I.; Svátková, A.; Vojtíšek, L.; Zikmundová, I.; Vaníček, J.; Király, A.; Szabó, N. White matter alterations in Parkinson’s disease with normal cognition precede grey matter atrophy. PLoS One, 2018, 13(1), e0187939. doi: 10.1371/journal.pone.0187939 PMID: 29304183
  75. Thompson, P.M.; Hayashi, K.M.; Simon, S.L.; Geaga, J.A.; Hong, M.S.; Sui, Y.; Lee, J.Y.; Toga, A.W.; Ling, W.; London, E.D. Structural abnormalities in the brains of human subjects who use methamphetamine. J. Neurosci., 2004, 24(26), 6028-6036. doi: 10.1523/JNEUROSCI.0713-04.2004 PMID: 15229250
  76. Chang, L.; Smith, L.M.; LoPresti, C.; Yonekura, M.L.; Kuo, J.; Walot, I.; Ernst, T. Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Res. Neuroimaging, 2004, 132(2), 95-106. doi: 10.1016/j.pscychresns.2004.06.004 PMID: 15598544
  77. Chang, L.; Cloak, C.; Patterson, K.; Grob, C.; Miller, E.N.; Ernst, T. Enlarged striatum in abstinent methamphetamine abusers: A possible compensatory response. Biol. Psychiatry, 2005, 57(9), 967-974. doi: 10.1016/j.biopsych.2005.01.039 PMID: 15860336
  78. Bae, S.C.; Lyoo, I.K.; Sung, Y.H.; Yoo, J.; Chung, A.; Yoon, S.J.; Kim, D.J.; Hwang, J.; Kim, S.J.; Renshaw, P.F. Increased white matter hyperintensities in male methamphetamine abusers. Drug Alcohol Depend., 2006, 81(1), 83-88. doi: 10.1016/j.drugalcdep.2005.05.016 PMID: 16005161
  79. Heidari, Z.; Mahmoudzadeh-Sagheb, H.; Shakiba, M. Alhagh, Charkhat, G.E. Stereological analysis of the brain in methamphetamine abusers compared to the controls. Int. J. High Risk Behav. Addict., 2017, 6(4), e63201. doi: 10.5812/ijhrba.63201
  80. Nie, L.; Zhao, Z.; Wen, X.; Luo, W.; Ju, T.; Ren, A.; Wu, B.; Li, J. Gray-matter structure in long-term abstinent methamphetamine users. BMC Psychiatry, 2020, 20(1), 158. doi: 10.1186/s12888-020-02567-3 PMID: 32272912
  81. He, H.; Liang, L.; Tang, T.; Luo, J.; Wang, Y.; Cui, H. Progressive brain changes in Parkinson’s disease: A meta-analysis of structural magnetic resonance imaging studies. Brain Res., 2020, 1740, 146847. doi: 10.1016/j.brainres.2020.146847 PMID: 32330518
  82. Arab, A.; Ruda-Kucerova, J.; Minsterova, A.; Drazanova, E.; Szabó, N.; Starcuk, Z., Jr; Rektorova, I.; Khairnar, A. Rektorova, I.; Khairnar, A. Diffusion Kurtosis imaging detects microstructural changes in a methamphetamine-induced mouse model of Parkinson’s disease. Neurotox. Res., 2019, 36(4), 724-735. doi: 10.1007/s12640-019-00068-0 PMID: 31209787
  83. Thanos, P.K.; Kim, R.; Delis, F.; Ananth, M.; Chachati, G.; Rocco, M.J.; Masad, I.; Muniz, J.A.; Grant, S.C.; Gold, M.S.; Cadet, J.L.; Volkow, N.D. Chronic methamphetamine effects on brain structure and function in rats. PLoS One, 2016, 11(6), e0155457. doi: 10.1371/journal.pone.0155457 PMID: 27275601
  84. Huang, S.; Dai, Y.; Zhang, C.; Yang, C.; Huang, Q.; Hao, W.; Shen, H. Higher impulsivity and lower grey matter volume in the bilateral prefrontal cortex in long-term abstinent individuals with severe methamphetamine use disorder. Drug Alcohol Depend., 2020, 212, 108040. doi: 10.1016/j.drugalcdep.2020.108040 PMID: 32428790
  85. Ravanidis, S.; Bougea, A.; Karampatsi, D.; Papagiannakis, N.; Maniati, M.; Stefanis, L.; Doxakis, E. Differentially expressed circular RNAs in peripheral blood mononuclear cells of patients with Parkinson’s disease. Mov. Disord., 2021, 36(5), 1170-1179. doi: 10.1002/mds.28467 PMID: 33433033
  86. Lu, Y.; Peng, Q.; Zeng, Z.; Wang, J.; Deng, Y.; Xie, L.; Mo, C.; Zeng, J.; Qin, X.; Li, S. CYP2D6 phenotypes and Parkinson’s disease risk: A meta-analysis. J. Neurol. Sci., 2014, 336(1-2), 161-168. doi: 10.1016/j.jns.2013.10.030 PMID: 24211060
  87. Dean, A.C.; Nurmi, E.L.; Morales, A.M.; Cho, A.K.; Seaman, L.C.; London, E.D. CYP2D6 genotype may moderate measures of brain structure in methamphetamine users. Addict. Biol., 2021, 26(3), e12950. doi: 10.1111/adb.12950 PMID: 32767519
  88. Lappin, J.M.; Darke, S.; Farrell, M. Methamphetamine use and future risk for Parkinson’s disease: Evidence and clinical implications. Drug Alcohol Depend., 2018, 187, 134-140. doi: 10.1016/j.drugalcdep.2018.02.032 PMID: 29665491
  89. Thrash, B.; Thiruchelvan, K.; Ahuja, M.; Suppiramaniam, V.; Dhanasekaran, M. Methamphetamine-induced neurotoxicity: the road to Parkinson’s disease. Pharmacol. Rep., 2009, 61(6), 966-977. doi: 10.1016/S1734-1140(09)70158-6 PMID: 20081231
  90. Davidson, C.; Gow, A.J.; Lee, T.H.; Ellinwood, E.H. Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res. Brain Res. Rev., 2001, 36(1), 1-22. doi: 10.1016/S0165-0173(01)00054-6 PMID: 11516769
  91. Itzhak, Y.; Martin, J.L.; Ali, S.F. Methamphetamine-induced dopaminergic neurotoxicity in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2002, 26(6), 1177-1183. doi: 10.1016/S0278-5846(02)00257-9 PMID: 12452543
  92. Sonsalla, P.K.; Jochnowitz, N.D.; Zeevalk, G.D.; Oostveen, J.A.; Hall, E.D. Treatment of mice with methamphetamine produces cell loss in the substantia nigra. Brain Res., 1996, 738(1), 172-175. doi: 10.1016/0006-8993(96)00995-X PMID: 8949944
  93. Ares-Santos, S.; Granado, N.; Espadas, I.; Martinez-Murillo, R.; Moratalla, R. Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology, 2014, 39(5), 1066-1080. doi: 10.1038/npp.2013.307 PMID: 24169803
  94. Mishra, A.; Singh, S.; Shukla, S. Physiological and functional basis of dopamine receptors and their role in neurogenesis: Possible implication for Parkinson’s disease. J. Exp. Neurosci., 2018, 12. doi: 10.1177/1179069518779829 PMID: 29899667
  95. Kaasinen, V.; Vahlberg, T.; Stoessl, A.J.; Strafella, A.P.; Antonini, A. Dopamine receptors in Parkinson’s disease: A meta-analysis of imaging studies. Mov. Disord., 2021, 36(8), 1781-1791. doi: 10.1002/mds.28632 PMID: 33955044
  96. Beauvais, G.; Atwell, K.; Jayanthi, S.; Ladenheim, B.; Cadet, J.L. Involvement of dopamine receptors in binge methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways. PLoS One, 2011, 6(12), e28946. doi: 10.1371/journal.pone.0028946 PMID: 22174933
  97. Coppedè, F. Genetics and epigenetics of Parkinson’s disease. ScientificWorldJournal, 2012, 2012, 1-12. doi: 10.1100/2012/489830 PMID: 22623900
  98. Labbé, C.; Lorenzo-Betancor, O.; Ross, O.A. Epigenetic regulation in Parkinson’s disease. Acta Neuropathol., 2016, 132(4), 515-530. doi: 10.1007/s00401-016-1590-9 PMID: 27358065
  99. Cadet, J.L.; Jayanthi, S. Epigenetics of addiction. Neurochem. Int., 2021, 147, 105069. doi: 10.1016/j.neuint.2021.105069 PMID: 33992741
  100. Cadet, J.L.; Jayanthi, S. Epigenetic landscape of methamphetamine use disorder. Curr. Neuropharmacol., 2021, 19(12), 2060-2066. doi: 10.2174/1570159X19666210524111915 PMID: 34030618
  101. Cadet, J.L.; Jayanthi, S.; Mccoy, M.T.; Vawter, M.; Ladenheim, B. Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: Evidence from cDNA array. Synapse, 2001, 41(1), 40-48. doi: 10.1002/syn.1058 PMID: 11354012
  102. Thomas, D.M.; Francescutti-Verbeem, D.M.; Liu, X.; Kuhn, D.M. Identification of differentially regulated transcripts in mouse striatum following methamphetamine treatment - an oligonucleotide microarray approach. J. Neurochem., 2004, 88(2), 380-393. doi: 10.1046/j.1471-4159.2003.02182.x PMID: 14690526
  103. Martin, T.A.; Jayanthi, S.; McCoy, M.T.; Brannock, C.; Ladenheim, B.; Garrett, T.; Lehrmann, E.; Becker, K.G.; Cadet, J.L. Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens. PLoS One, 2012, 7(3), e34236. doi: 10.1371/journal.pone.0034236 PMID: 22470541
  104. Godino, A.; Jayanthi, S.; Cadet, J.L. Epigenetic landscape of amphetamine and methamphetamine addiction in rodents. Epigenetics, 2015, 10(7), 574-580. doi: 10.1080/15592294.2015.1055441 PMID: 26023847
  105. Limanaqi, F.; Gambardella, S.; Biagioni, F.; Busceti, C.L.; Fornai, F. Epigenetic effects induced by methamphetamine and methamphetamine-dependent oxidative stress. Oxid. Med. Cell. Longev., 2018, 2018, 1-28. doi: 10.1155/2018/4982453 PMID: 30140365
  106. Marshall, L.L.; Killinger, B.A.; Ensink, E.; Li, P.; Li, K.X.; Cui, W.; Lubben, N.; Weiland, M.; Wang, X.; Gordevicius, J.; Coetzee, G.A.; Ma, J.; Jovinge, S.; Labrie, V. Epigenomic analysis of Parkinson’s disease neurons identifies Tet2 loss as neuroprotective. Nat. Neurosci., 2020, 23(10), 1203-1214. doi: 10.1038/s41593-020-0690-y PMID: 32807949
  107. Jayanthi, S.; Gonzalez, B.; McCoy, M.T.; Ladenheim, B.; Bisagno, V.; Cadet, J.L. Methamphetamine induces TET1- and TET3-dependent DNA hydroxymethylation of Crh and Avp genes in the rat nucleus accumbens. Mol. Neurobiol., 2018, 55(6), 5154-5166. doi: 10.1007/s12035-017-0750-9 PMID: 28842817
  108. Tan, Y.; Delvaux, E.; Nolz, J.; Coleman, P.D.; Chen, S.; Mastroeni, D. Upregulation of histone deacetylase 2 in laser capture nigral microglia in Parkinson’s disease. Neurobiol. Aging, 2018, 68, 134-141. doi: 10.1016/j.neurobiolaging.2018.02.018 PMID: 29803514
  109. González, B.; Bernardi, A.; Torres, O.V.; Jayanthi, S.; Gomez, N.; Sosa, M.H.; García-Rill, E.; Urbano, F.J.; Cadet, J.L.; Bisagno, V. HDAC superfamily promoters acetylation is differentially regulated by modafinil and methamphetamine in the mouse medial prefrontal cortex. Addict. Biol., 2020, 25(2), e12737. doi: 10.1111/adb.12737 PMID: 30811820
  110. Li, H.; Chen, J.A.; Ding, Q.Z.; Lu, G.Y.; Wu, N.; Su, R.B.; Li, F.; Li, J. Behavioral sensitization induced by methamphetamine causes differential alterations in gene expression and histone acetylation of the prefrontal cortex in rats. BMC Neurosci., 2021, 22(1), 24. doi: 10.1186/s12868-021-00616-5 PMID: 33823794
  111. Deng, H.; Wang, P.; Jankovic, J. The genetics of Parkinson disease. Ageing Res. Rev., 2018, 42, 72-85. doi: 10.1016/j.arr.2017.12.007 PMID: 29288112
  112. Nakahara, T.; Kuroki, T.; Ohta, E.; Kajihata, T.; Yamada, H.; Yamanaka, M.; Hashimoto, K.; Tsutsumi, T.; Hirano, M.; Uchimura, H. Effect of the neurotoxic dose of methamphetamine on gene expression of parkin and Pael-receptors in rat striatum. Parkinsonism Relat. Disord., 2003, 9(4), 213-219. doi: 10.1016/S1353-8020(02)00052-4 PMID: 12618056
  113. Guhathakurta, S.; Kim, J.; Adams, L.; Basu, S.; Song, M.K.; Adler, E.; Je, G.; Fiadeiro, M.B.; Kim, Y.S. Targeted attenuation of elevated histone marks at SNCA alleviates α‐synuclein in Parkinson’s disease. EMBO Mol. Med., 2021, 13(2), e12188. doi: 10.15252/emmm.202012188 PMID: 33428332
  114. Södersten, E.; Toskas, K.; Rraklli, V.; Tiklova, K.; Björklund, Å.K.; Ringnér, M.; Perlmann, T.; Holmberg, J. A comprehensive map coupling histone modifications with gene regulation in adult dopaminergic and serotonergic neurons. Nat. Commun., 2018, 9(1), 1226. doi: 10.1038/s41467-018-03538-9 PMID: 29581424
  115. Lin, X.; Parisiadou, L.; Gu, X.L.; Wang, L.; Shim, H.; Sun, L.; Xie, C.; Long, C.X.; Yang, W.J.; Ding, J.; Chen, Z.Z.; Gallant, P.E.; Tao-Cheng, J.H.; Rudow, G.; Troncoso, J.C.; Liu, Z.; Li, Z.; Cai, H. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron, 2009, 64(6), 807-827. doi: 10.1016/j.neuron.2009.11.006 PMID: 20064389
  116. Tong, Y.; Yamaguchi, H.; Giaime, E.; Boyle, S.; Kopan, R.; Kelleher, R.J., III; Shen, J. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of α-synuclein, and apoptotic cell death in aged mice. Proc. Natl. Acad. Sci. USA, 2010, 107(21), 9879-9884. doi: 10.1073/pnas.1004676107 PMID: 20457918
  117. Gehrke, S.; Imai, Y.; Sokol, N.; Lu, B. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature, 2010, 466(7306), 637-641. doi: 10.1038/nature09191 PMID: 20671708
  118. Zhao, Y.; Zhang, K.; Jiang, H.; Du, J.; Na, Z.; Hao, W.; Yu, S.; Zhao, M. Decreased expression of plasma microRNA in patients with methamphetamine (MA) use disorder. J. Neuroimmune Pharmacol., 2016, 11(3), 542-548. doi: 10.1007/s11481-016-9671-z PMID: 27108111
  119. Zhu, L.; Li, J.; Dong, N.; Guan, F.; Liu, Y.; Ma, D.; Goh, E.L.K.; Chen, T. mRNA changes in nucleus accumbens related to methamphetamine addiction in mice. Sci. Rep., 2016, 6(1), 36993. doi: 10.1038/srep36993 PMID: 27869204
  120. Kobeissy, F.H.; Warren, M.W.; Ottens, A.K.; Sadasivan, S.; Zhang, Z.; Gold, M.S.; Wang, K.K.W. Psychoproteomic analysis of rat cortex following acute methamphetamine exposure. J. Proteome Res., 2008, 7(5), 1971-1983. doi: 10.1021/pr800029h PMID: 18452277
  121. Wang, J.; Liu, Y.; Chen, T. Identification of key genes and pathways in Parkinson’s disease through integrated analysis. Mol. Med. Rep., 2017, 16(4), 3769-3776. doi: 10.3892/mmr.2017.7112 PMID: 28765971
  122. Kirilyuk, A.; Shimoji, M.; Catania, J.; Sahu, G.; Pattabiraman, N.; Giordano, A.; Albanese, C.; Mocchetti, I.; Toretsky, J.A.; Uversky, V.N.; Avantaggiati, M.L. An intrinsically disordered region of the acetyltransferase p300 with similarity to prion-like domains plays a role in aggregation. PLoS One, 2012, 7(11), e48243. doi: 10.1371/journal.pone.0048243 PMID: 23133622
  123. Palasz, E.; Wysocka, A.; Gasiorowska, A.; Chalimoniuk, M.; Niewiadomski, W.; Niewiadomska, G. BDNF as a promising therapeutic agent in Parkinson’s disease. Int. J. Mol. Sci., 2020, 21(3), 1170. doi: 10.3390/ijms21031170 PMID: 32050617
  124. Iamjan, S.; Thanoi, S.; Watiktinkorn, P.; Fachim, H.; Dalton, C.F.; Nudmamud-Thanoi, S.; Reynolds, G.P. Changes of BDNF exon IV DNA methylation are associated with methamphetamine dependence. Epigenomics, 2021, 13(12), 953-965. doi: 10.2217/epi-2020-0463 PMID: 34008409
  125. Nies, Y.H.; Mohamad Najib, N.H.; Lim, W.L.; Kamaruzzaman, M.A.; Yahaya, M.F.; Teoh, S.L. MicroRNA dysregulation in Parkinson’s disease: A narrative review. Front. Neurosci., 2021, 15, 660379. doi: 10.3389/fnins.2021.660379 PMID: 33994934
  126. Sandau, U.S.; Duggan, E.; Shi, X.; Smith, S.J.; Huckans, M.; Schutzer, W.E.; Loftis, J.M.; Janowsky, A.; Nolan, J.P.; Saugstad, J.A. Methamphetamine use alters human plasma extracellular vesicles and their microRNA cargo: An exploratory study. J. Extracell. Vesicles, 2020, 10(1), e12028. doi: 10.1002/jev2.12028 PMID: 33613872
  127. Liu, D.; Zhu, L.; Ni, T.; Guan, F.; Chen, Y.; Ma, D.; Goh, E.L.K.; Chen, T. Ago2 and Dicer1 are involved in METH‐induced locomotor sensitization in mice via biogenesis of miRNA. Addict. Biol., 2019, 24(3), 498-508. doi: 10.1111/adb.12616 PMID: 29516602
  128. Ghafouri-Fard, S.; Gholipour, M.; Abak, A.; Mazdeh, M.; Taheri, M.; Sayad, A. Expression analysis of NF-κB-related lncRNAs in Parkinson’s disease. Front. Immunol., 2021, 12, 755246. doi: 10.3389/fimmu.2021.755246 PMID: 34721431
  129. Hernandez, S.M.; Tikhonova, E.B.; Baca, K.R.; Zhao, F.; Zhu, X.; Karamyshev, A.L. Unexpected implication of SRP and AGO2 in Parkinson’s disease: Involvement in alpha-synuclein biogenesis. Cells, 2021, 10(10), 2792. doi: 10.3390/cells10102792 PMID: 34685771
  130. Yang, J.; Li, L.; Hong, S.; Zhang, D.; Zhou, Y. Methamphetamine leads to the alterations of microRNA profiles in the nucleus accumbens of rats. Pharm. Biol., 2020, 58(1), 797-805. doi: 10.1080/13880209.2020.1803366 PMID: 32893733
  131. Mavridis, I.N. Neurology nucleus accumbens and Parkinson’s disease: exploring the role of Mavridis atrophy. OA Case Rep, 2014, 3(4), 35.
  132. Zhou, L.; Yang, L.; Li, Y.; Mei, R.; Yu, H.; Gong, Y.; Du, M.; Wang, F. MicroRNA-128 protects dopamine neurons from apoptosis and upregulates the expression of excitatory amino acid transporter 4 in Parkinson’s disease by binding to AXIN1. Cell. Physiol. Biochem., 2018, 51(5), 2275-2289. doi: 10.1159/000495872 PMID: 30537735
  133. Zhang, K.; Wang, Q.; Jing, X.; Zhao, Y.; Jiang, H.; Du, J.; Yu, S.; Zhao, M. miR-181a is a negative regulator of GRIA2 in methamphetamine-use disorder. Sci. Rep., 2016, 6(1), 35691. doi: 10.1038/srep35691 PMID: 27767084
  134. Li, J.; Zhu, L.; Su, H.; Liu, D.; Yan, Z.; Ni, T.; Wei, H.; Goh, E.L.K.; Chen, T. Regulation of miR‐128 in the nucleus accumbens affects methamphetamine‐induced behavioral sensitization by modulating proteins involved in neuroplasticity. Addict. Biol., 2021, 26(1), e12881. doi: 10.1111/adb.12881 PMID: 32058631
  135. Cheng, M.; Liu, L.; Lao, Y.; Liao, W.; Liao, M.; Luo, X.; Wu, J.; Xie, W.; Zhang, Y.; Xu, N. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis. Oncotarget, 2016, 7(27), 42274-42287. doi: 10.18632/oncotarget.9786 PMID: 27281615
  136. Zhang, Y.; Tan, F.; Xu, P.; Qu, S. Recent advance in the relationship between excitatory amino acid transporters and Parkinson’s disease. Neural Plast., 2016, 2016, 1-8. doi: 10.1155/2016/8941327 PMID: 26981287
  137. Wang, Y.; Wei, T.; Zhao, W.; Ren, Z.; Wang, Y.; Zhou, Y.; Song, X.; Zhou, R.; Zhang, X.; Jiao, D. MicroRNA-181a is involved in methamphetamine addiction through the ERAD pathway. Front. Mol. Neurosci., 2021, 14, 667725. doi: 10.3389/fnmol.2021.667725 PMID: 34025353
  138. Kanagaraj, N.; Beiping, H.; Dheen, S.T.; Tay, S.S.W. Downregulation of miR-124 in MPTP-treated mouse model of Parkinson’s disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins. Neuroscience, 2014, 272, 167-179. doi: 10.1016/j.neuroscience.2014.04.039 PMID: 24792712
  139. Bosch, P.J.; Benton, M.C.; Macartney-Coxson, D.; Kivell, B.M. mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats. BMC Neurosci., 2015, 16(1), 43. doi: 10.1186/s12868-015-0186-y PMID: 26188473
  140. Liu, T.; Zhang, Y.; Liu, W.; Zhao, J. LncRNA NEAT1 regulates the development of Parkinson’s disease by targeting AXIN1 via sponging miR-212-3p. Neurochem. Res., 2021, 46(2), 230-240. doi: 10.1007/s11064-020-03157-1 PMID: 33241432
  141. Pan, Y.; Nicolazzo, J.A. Impact of aging, Alzheimer’s disease and Parkinson’s disease on the blood-brain barrier transport of therapeutics. Adv. Drug Deliv. Rev., 2018, 135, 62-74. doi: 10.1016/j.addr.2018.04.009 PMID: 29665383
  142. Desai, B.S.; Monahan, A.J.; Carvey, P.M.; Hendey, B. Blood-brain barrier pathology in Alzheimer’s and Parkinson’s disease: implications for drug therapy. Cell Transplant., 2007, 16(3), 285-299. doi: 10.3727/000000007783464731 PMID: 17503739
  143. Cabezas, R.; Avila, M.; Gonzalez, J.; El-Bachá, R.S.; Báez, E.; García-Segura, L.M.; Jurado, C.J.C.; Capani, F.; Cardona-Gomez, G.P.; Barreto, G.E. Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front. Cell. Neurosci., 2014, 8, 211. doi: 10.3389/fncel.2014.00211 PMID: 25136294
  144. Al-Bachari, S.; Naish, J.H.; Parker, G.J.M.; Emsley, H.C.A.; Parkes, L.M. Blood-brain barrier leakage is increased in Parkinson’s disease. Front. Physiol., 2020, 11, 593026. doi: 10.3389/fphys.2020.593026 PMID: 33414722
  145. Gray, M.T.; Woulfe, J.M. Striatal blood-brain barrier permeability in Parkinson’s disease. J. Cereb. Blood Flow Metab., 2015, 35(5), 747-750. doi: 10.1038/jcbfm.2015.32 PMID: 25757748
  146. Bates, C.A.; Zheng, W. Brain disposition of α-Synuclein: roles of brain barrier systems and implications for Parkinson’s disease. Fluids Barriers CNS, 2014, 11(1), 17. doi: 10.1186/2045-8118-11-17 PMID: 25093076
  147. Lee, H.; Pienaar, I.S. Disruption of the blood-brain barrier in parkinson’s disease: curse or route to a cure? Front. Biosci., 2014, 19(2), 272-280. doi: 10.2741/4206 PMID: 24389183
  148. Elabi, O.; Gaceb, A.; Carlsson, R.; Padel, T.; Soylu-Kucharz, R.; Cortijo, I.; Li, W.; Li, J.Y.; Paul, G. Human α-synuclein overexpression in a mouse model of Parkinson’s disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Sci. Rep., 2021, 11(1), 1120. doi: 10.1038/s41598-020-80889-8 PMID: 33441868
  149. Northrop, N.A.; Yamamoto, B.K. Methamphetamine effects on blood-brain barrier structure and function. Front. Neurosci., 2015, 9, 69. doi: 10.3389/fnins.2015.00069 PMID: 25788874
  150. Gonçalves, J.; Leitão, R.A.; Higuera-Matas, A.; Assis, M.A.; Coria, S.M.; Fontes-Ribeiro, C.; Ambrosio, E.; Silva, A.P. Extended-access methamphetamine self-administration elicits neuroinflammatory response along with blood-brain barrier breakdown. Brain Behav. Immun., 2017, 62, 306-317. doi: 10.1016/j.bbi.2017.02.017 PMID: 28237710
  151. Kiyatkin, E.A.; Sharma, H.S. Leakage of the blood-brain barrier followed by vasogenic edema as the ultimate cause of death induced by acute methamphetamine overdose. Int. Rev. Neurobiol., 2019, 146, 189-207. doi: 10.1016/bs.irn.2019.06.010 PMID: 31349927
  152. Dunn, L.; Allen, G.F.G.; Mamais, A.; Ling, H.; Li, A.; Duberley, K.E.; Hargreaves, I.P.; Pope, S.; Holton, J.L.; Lees, A.; Heales, S.J.; Bandopadhyay, R. Dysregulation of glucose metabolism is an early event in sporadic Parkinson’s disease. Neurobiol. Aging, 2014, 35(5), 1111-1115. doi: 10.1016/j.neurobiolaging.2013.11.001 PMID: 24300239
  153. Chang, L.; Alicata, D.; Ernst, T.; Volkow, N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction, 2007, 102(Suppl. 1), 16-32. doi: 10.1111/j.1360-0443.2006.01782.x PMID: 17493050
  154. Herland, A.; Maoz, B.M.; FitzGerald, E.A.; Grevesse, T.; Vidoudez, C.; Sheehy, S.P.; Budnik, N.; Dauth, S.; Mannix, R.; Budnik, B.; Parker, K.K.; Ingber, D.E. Proteomic and metabolomic characterization of human neurovascular unit cells in response to methamphetamine. Adv. Biosyst., 2020, 4(9), 1900230. doi: 10.1002/adbi.201900230 PMID: 32744807
  155. Ventura, F.; Muga, M.; Coelho-Santos, V.; Fontes-Ribeiro, C.A.; Leitão, R.A.; Silva, A.P. Protective effect of neuropeptide Y2 receptor activation against methamphetamine-induced brain endothelial cell alterations. Toxicol. Lett., 2020, 334, 53-59. doi: 10.1016/j.toxlet.2020.09.013 PMID: 32956829
  156. Li, C.; Wu, X.; Liu, S.; Zhao, Y.; Zhu, J.; Liu, K. Roles of neuropeptide Y in neurodegenerative and neuroimmune diseases. Front. Neurosci., 2019, 13, 869. doi: 10.3389/fnins.2019.00869 PMID: 31481869
  157. Hwang, J.S.; Cha, E.H.; Park, B.; Ha, E.; Seo, J.H. PBN inhibits a detrimental effect of methamphetamine on brain endothelial cells by alleviating the generation of reactive oxygen species. Arch. Pharm. Res., 2020, 43(12), 1347-1355. doi: 10.1007/s12272-020-01284-5 PMID: 33200316
  158. Namyen, J.; Permpoonputtana, K.; Nopparat, C.; Tocharus, J.; Tocharus, C.; Govitrapong, P. Protective effects of melatonin on methamphetamine-induced blood-brain barrier dysfunction in rat model. Neurotox. Res., 2020, 37(3), 640-660. doi: 10.1007/s12640-019-00156-1 PMID: 31900895
  159. Xue, Y.; He, J.T.; Zhang, K.K.; Chen, L.J.; Wang, Q.; Xie, X.L. Methamphetamine reduces expressions of tight junction proteins, rearranges F-actin cytoskeleton and increases the blood brain barrier permeability via the RhoA/ROCK-dependent pathway. Biochem. Biophys. Res. Commun., 2019, 509(2), 395-401. doi: 10.1016/j.bbrc.2018.12.144 PMID: 30594393
  160. Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol., 2007, 8(7), 519-529. doi: 10.1038/nrm2199 PMID: 17565364
  161. Costa, C.A.; Manaa, W.E.; Duplan, E.; Checler, F. The endoplasmic reticulum stress/unfolded protein response and their contributions to Parkinson’s disease physiopathology. Cells, 2020, 9(11), 2495. doi: 10.3390/cells9112495 PMID: 33212954
  162. Tsujii, S.; Ishisaka, M.; Hara, H. Modulation of endoplasmic reticulum stress in Parkinson’s disease. Eur. J. Pharmacol., 2015, 765, 154-156. doi: 10.1016/j.ejphar.2015.08.033 PMID: 26297973
  163. Mercado, G.; Castillo, V.; Soto, P.; Sidhu, A. ER stress and Parkinson’s disease: Pathological inputs that converge into the secretory pathway. Brain Res., 2016, 1648(Pt B), 626-632. doi: 10.1016/j.brainres.2016.04.042 PMID: 27103567
  164. Du, X.; Xie, X.; Liu, R. The role of α-synuclein oligomers in Parkinson’s disease. Int. J. Mol. Sci., 2020, 21(22), 8645. doi: 10.3390/ijms21228645 PMID: 33212758
  165. Shah, A.; Kumar, A. Methamphetamine-mediated endoplasmic reticulum (ER) stress induces type-1 programmed cell death in astrocytes via ATF6, IRE1α and PERK pathways. Oncotarget, 2016, 7(29), 46100-46119. doi: 10.18632/oncotarget.10025 PMID: 27323860
  166. Hayashi, T.; Justinova, Z.; Hayashi, E.; Cormaci, G.; Mori, T.; Tsai, S.Y.; Barnes, C.; Goldberg, S.R.; Su, T.P. Regulation of sigma-1 receptors and endoplasmic reticulum chaperones in the brain of methamphetamine self-administering rats. J. Pharmacol. Exp. Ther., 2010, 332(3), 1054-1063. doi: 10.1124/jpet.109.159244 PMID: 19940104
  167. Irie, Y.; Saeki, M.; Tanaka, H.; Kanemura, Y.; Otake, S.; Ozono, Y.; Nagai, T.; Kondo, Y.; Kudo, K.; Kamisaki, Y.; Miki, N.; Taira, E. Methamphetamine induces endoplasmic reticulum stress related gene CHOP/Gadd153/ddit3 in dopaminergic cells. Cell Tissue Res., 2011, 345(2), 231-241. doi: 10.1007/s00441-011-1207-5 PMID: 21789578
  168. Chao, J.; Zhang, Y.; Du, L.; Zhou, R.; Wu, X.; Shen, K.; Yao, H. Molecular mechanisms underlying the involvement of the sigma-1 receptor in methamphetamine-mediated microglial polarization. Sci. Rep., 2017, 7(1), 11540. doi: 10.1038/s41598-017-11065-8 PMID: 28912535
  169. Wongprayoon, P.; Govitrapong, P. Melatonin protects SH-SY5Y neuronal cells against methamphetamine-induced endoplasmic reticulum stress and apoptotic cell death. Neurotox. Res., 2017, 31(1), 1-10. doi: 10.1007/s12640-016-9647-z PMID: 27370255
  170. Tsai, S-Y.A.; Bendriem, R.M.; Lee, C.T.D. The cellular basis of fetal endoplasmic reticulum stress and oxidative stress in drug-induced neurodevelopmental deficits. Neurobiol. Stress, 2019, 10, 100145. doi: 10.1016/j.ynstr.2018.100145 PMID: 30937351
  171. Tabatabaei Mirakabad, F.S.; Khoramgah, M.S.; Abdollahifar, M.A.; Tehrani, A.S.; Rezaei-Tavirani, M.; Niknazar, S.; Tahmasebinia, F.; Mahmoudiasl, G.R.; Khoshsirat, S.; Abbaszadeh, H.A. NUPR1-CHOP experssion, autophagosome formation and apoptosis in the postmortem striatum of chronic methamphetamine user. J. Chem. Neuroanat., 2021, 114, 101942. doi: 10.1016/j.jchemneu.2021.101942 PMID: 33675952
  172. Chen, G.; Yu, G.; Yong, Z.; Yan, H.; Su, R.; Wang, H. A large dose of methamphetamine inhibits drug evoked synaptic plasticity via ER stress in the hippocampus. Mol. Med. Rep., 2021, 23(4), 278. doi: 10.3892/mmr.2021.11917 PMID: 33576466
  173. Chen, G.; Wei, X.; Xu, X.; Yu, G.; Yong, Z.; Su, R.; Tao, L. Methamphetamine inhibits long-term memory acquisition and synaptic plasticity by evoking endoplasmic reticulum stress. Front. Neurosci., 2021, 14, 630713. doi: 10.3389/fnins.2020.630713 PMID: 33519373
  174. Anderson, F.L.; von Herrmann, K.M.; Andrew, A.S.; Kuras, Y.I.; Young, A.L.; Scherzer, C.R.; Hickey, W.F.; Lee, S.L.; Havrda, M.C. Plasma-borne indicators of inflammasome activity in Parkinson’s disease patients. NPJ Parkinsons Dis., 2021, 7(1), 2. doi: 10.1038/s41531-020-00147-6 PMID: 33398042
  175. Kovacs, S.B.; Miao, E.A. Gasdermins: Effectors of Pyroptosis. Trends Cell Biol., 2017, 27(9), 673-684. doi: 10.1016/j.tcb.2017.05.005 PMID: 28619472
  176. Liu, Y.; Wen, D.; Gao, J.; Xie, B.; Yu, H.; Shen, Q.; Zhang, J.; Jing, W.; Cong, B.; Ma, C. Methamphetamine induces GSDME-dependent cell death in hippocampal neuronal cells through the endoplasmic reticulum stress pathway. Brain Res. Bull., 2020, 162, 73-83. doi: 10.1016/j.brainresbull.2020.06.005 PMID: 32544512
  177. Qie, X.; Wen, D.; Guo, H.; Xu, G.; Liu, S.; Shen, Q.; Liu, Y.; Zhang, W.; Cong, B.; Ma, C. Endoplasmic reticulum stress mediates methamphetamine-induced blood-brain barrier damage. Front. Pharmacol., 2017, 8, 639. doi: 10.3389/fphar.2017.00639 PMID: 28959203
  178. Winklhofer, K.F.; Haass, C. Mitochondrial dysfunction in Parkinson’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2010, 1802(1), 29-44. doi: 10.1016/j.bbadis.2009.08.013 PMID: 19733240
  179. Trinh, D.; Israwi, A.R.; Arathoon, L.R.; Gleave, J.A.; Nash, J.E. The multi‐faceted role of mitochondria in the pathology of Parkinson’s disease. J. Neurochem., 2021, 156(6), 715-752. doi: 10.1111/jnc.15154 PMID: 33616931
  180. Chang, K.H.; Chen, C.M. The role of oxidative stress in Parkinson’s disease. Antioxidants, 2020, 9(7), 597. doi: 10.3390/antiox9070597 PMID: 32650609
  181. Clark, E.H.; Vázquez de la Torre, A.; Hoshikawa, T.; Briston, T. Targeting mitophagy in Parkinson’s disease. J. Biol. Chem., 2021, 296, 100209. doi: 10.1074/jbc.REV120.014294 PMID: 33372898
  182. Borsche, M.; Pereira, S.L.; Klein, C.; Grünewald, A. Mitochondria and Parkinson’s disease: Clinical, molecular, and translational aspects. J. Parkinsons Dis., 2021, 11(1), 45-60. doi: 10.3233/JPD-201981 PMID: 33074190
  183. Langston, J.W.; Ballard, P.; Tetrud, J.W.; Irwin, I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 1983, 219(4587), 979-980. doi: 10.1126/science.6823561 PMID: 6823561
  184. Nicklas, W.J.; Vyas, I.; Heikkila, R.E. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci., 1985, 36(26), 2503-2508. doi: 10.1016/0024-3205(85)90146-8 PMID: 2861548
  185. Exner, N.; Treske, B.; Paquet, D.; Holmström, K.; Schiesling, C.; Gispert, S.; Carballo-Carbajal, I.; Berg, D.; Hoepken, H.H.; Gasser, T.; Krüger, R.; Winklhofer, K.F.; Vogel, F.; Reichert, A.S.; Auburger, G.; Kahle, P.J.; Schmid, B.; Haass, C. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci., 2007, 27(45), 12413-12418. doi: 10.1523/JNEUROSCI.0719-07.2007 PMID: 17989306
  186. Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; Zhou, J.; Chen, Q. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J. Biol. Chem., 2011, 286(13), 11649-11658. doi: 10.1074/jbc.M110.144238 PMID: 21292769
  187. Portz, P.; Lee, M.K. Changes in Drp1 function and mitochondrial morphology are associated with the α-synuclein pathology in a transgenic mouse model of Parkinson’s disease. Cells, 2021, 10(4), 885. doi: 10.3390/cells10040885 PMID: 33924585
  188. Moszczynska, A.; Yamamoto, B.K. Methamphetamine oxidatively damages parkin and decreases the activity of 26S proteasome in vivo. J. Neurochem., 2011, 116(6), 1005-1017. doi: 10.1111/j.1471-4159.2010.07147.x PMID: 21166679
  189. Moon, H.E.; Paek, S.H. Mitochondrial dysfunction in Parkinson’s disease. Exp. Neurobiol., 2015, 24(2), 103-116. doi: 10.5607/en.2015.24.2.103 PMID: 26113789
  190. Ryan, B.J.; Hoek, S.; Fon, E.A.; Wade-Martins, R. Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem. Sci., 2015, 40(4), 200-210. doi: 10.1016/j.tibs.2015.02.003 PMID: 25757399
  191. Bose, A.; Beal, M.F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem., 2016, 139(Suppl. 1), 216-231. doi: 10.1111/jnc.13731 PMID: 27546335
  192. Brown, J.M.; Quinton, M.S.; Yamamoto, B.K. Methamphetamine-induced inhibition of mitochondrial complex II: roles of glutamate and peroxynitrite. J. Neurochem., 2005, 95(2), 429-436. doi: 10.1111/j.1471-4159.2005.03379.x PMID: 16086684
  193. Tian, C.; Murrin, L.C.; Zheng, J.C. Mitochondrial fragmentation is involved in methamphetamine-induced cell death in rat hippocampal neural progenitor cells. PLoS One, 2009, 4(5), e5546. doi: 10.1371/journal.pone.0005546 PMID: 19436752
  194. Shin, E.J.; Tran, H.Q.; Nguyen, P.T.; Jeong, J.H.; Nah, S.Y.; Jang, C.G.; Nabeshima, T.; Kim, H.C. Role of mitochondria in methamphetamine-induced dopaminergic neurotoxicity: Involvement in oxidative stress, neuroinflammation, and pro-apoptosis-A review. Neurochem. Res., 2018, 43(1), 66-78. doi: 10.1007/s11064-017-2318-5 PMID: 28589520
  195. Samidurai, M.; Palanisamy, B.N.; Bargues-Carot, A.; Hepker, M.; Kondru, N.; Manne, S.; Zenitsky, G.; Jin, H.; Anantharam, V.; Kanthasamy, A.G.; Kanthasamy, A. PKC delta activation promotes endoplasmic reticulum stress (ERS) and NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation subsequent to asynuclein-induced microglial activation: Involvement of thioredoxin-interacting protein (TXNIP)/thioredoxin (Trx) redoxisome pathway. Front. Aging Neurosci., 2021, 13, 661505. doi: 10.3389/fnagi.2021.661505 PMID: 34276337
  196. Nash, J.E.; Ravenscroft, P.; McGuire, S.; Crossman, A.R.; Menniti, F.S.; Brotchie, J.M. The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-DOPA in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp. Neurol., 2004, 188(2), 471-479. doi: 10.1016/j.expneurol.2004.05.004 PMID: 15246846
  197. Yang, L.; Guo, N.; Fan, W.; Ni, C.; Huang, M.; Bai, L.; Zhang, L.; Zhang, X.; Wen, Y.; Li, Y.; Zhou, X.; Bai, J. Thioredoxin-1 blocks methamphetamine-induced injury in brain through inhibiting endoplasmic reticulum and mitochondria-mediated apoptosis in mice. Neurotoxicology, 2020, 78, 163-169. doi: 10.1016/j.neuro.2020.03.006 PMID: 32203791
  198. Carrillo-Mora, P.; Silva-Adaya, D.; Villaseñor-Aguayo, K. Glutamate in Parkinson’s disease: Role of antiglutamatergic drugs. Basal Ganglia, 2013, 3(3), 147-157. doi: 10.1016/j.baga.2013.09.001
  199. Wang, R.; Sun, H.; Ren, H.; Wang, G. α-Synuclein aggregation and transmission in Parkinson’s disease: a link to mitochondria and lysosome. Sci. China Life Sci., 2020, 63(12), 1850-1859. doi: 10.1007/s11427-020-1756-9 PMID: 32681494
  200. Dorszewska, J.; Kowalska, M.; Prendecki, M.; Piekut, T.; Kozłowska, J.; Kozubski, W. Oxidative stress factors in Parkinson’s disease. Neural Regen. Res., 2021, 16(7), 1383-1391. doi: 10.4103/1673-5374.300980 PMID: 33318422
  201. Sun, L.; Li, H.M.; Seufferheld, M.J.; Walters, K.R., Jr; Margam, V.M.; Jannasch, A.; Diaz, N.; Riley, C.P.; Sun, W.; Li, Y.F.; Muir, W.M.; Xie, J.; Wu, J.; Zhang, F.; Chen, J.Y.; Barker, E.L.; Adamec, J.; Pittendrigh, B.R. Systems-scale analysis reveals pathways involved in cellular response to methamphetamine. PLoS One, 2011, 6(4), e18215. doi: 10.1371/journal.pone.0018215 PMID: 21533132
  202. Majdi, F.; Taheri, F.; Salehi, P.; Motaghinejad, M.; Safari, S. Cannabinoids Δ9-tetrahydrocannabinol and cannabidiol may be effective against methamphetamine induced mitochondrial dysfunction and inflammation by modulation of Toll-like type-4(Toll-like 4) receptors and NF-κB signaling. Med. Hypotheses, 2019, 133, 109371. doi: 10.1016/j.mehy.2019.109371 PMID: 31465975
  203. Zeng, Q.; Xiong, Q.; Zhou, M.; Tian, X.; Yue, K.; Li, Y.; Shu, X.; Ru, Q. Resveratrol attenuates methamphetamine‐induced memory impairment via inhibition of oxidative stress and apoptosis in mice. J. Food Biochem., 2021, 45(2), e13622. doi: 10.1111/jfbc.13622 PMID: 33502009
  204. Zhong, Y.; Cai, X.; Ding, L.; Liao, J.; Liu, X.; Huang, Y.; Chen, X.; Long, L. Nrf2 inhibits the progression of Parkinson’s disease by upregulating AABR07032261.5 to repress pyroptosis. J. Inflamm. Res., 2022, 15, 669-685. doi: 10.2147/JIR.S345895 PMID: 35140498
  205. Potula, R.; Hawkins, B.J.; Cenna, J.M.; Fan, S.; Dykstra, H.; Ramirez, S.H.; Morsey, B.; Brodie, M.R.; Persidsky, Y. Methamphetamine causes mitrochondrial oxidative damage in human T lymphocytes leading to functional impairment. J. Immunol., 2010, 185(5), 2867-2876. doi: 10.4049/jimmunol.0903691 PMID: 20668216
  206. Chen, X.; Qiu, F.; Zhao, X.; Lu, J.; Tan, X.; Xu, J.; Chen, C.; Zhang, F.; Liu, C.; Qiao, D.; Wang, H. Astrocyte-derived lipocalin-2 is involved in mitochondrion-related neuronal apoptosis induced by methamphetamine. ACS Chem. Neurosci., 2020, 11(8), 1102-1116. doi: 10.1021/acschemneuro.9b00559 PMID: 32186847
  207. Kim, B.W.; Jeong, K.H.; Kim, J.H.; Jin, M.; Kim, J.H.; Lee, M.G.; Choi, D.K.; Won, S.Y.; McLean, C.; Jeon, M.T.; Lee, H.W.; Kim, S.R.; Suk, K. Pathogenic upregulation of glial lipocalin-2 in the Parkinsonian dopaminergic system. J. Neurosci., 2016, 36(20), 5608-5622. doi: 10.1523/JNEUROSCI.4261-15.2016 PMID: 27194339
  208. Eidson, L.N.; Kannarkat, G.T.; Barnum, C.J.; Chang, J.; Chung, J.; Caspell-Garcia, C.; Taylor, P.; Mollenhauer, B.; Schlossmacher, M.G.; Ereshefsky, L.; Yen, M.; Kopil, C.; Frasier, M.; Marek, K.; Hertzberg, V.S.; Tansey, M.G. Candidate inflammatory biomarkers display unique relationships with alpha-synuclein and correlate with measures of disease severity in subjects with Parkinson’s disease. J. Neuroinflammation, 2017, 14(1), 164. doi: 10.1186/s12974-017-0935-1 PMID: 28821274
  209. Hwang, R.D.; Wiemerslage, L.; LaBreck, C.J.; Khan, M.; Kannan, K.; Wang, X.; Zhu, X.; Lee, D.; Fridell, Y.W.C. The neuroprotective effect of human uncoupling protein 2 (hUCP2) requires cAMP-dependent protein kinase in a toxin model of Parkinson’s disease. Neurobiol. Dis., 2014, 69, 180-191. doi: 10.1016/j.nbd.2014.05.032 PMID: 24965893
  210. Sepehr, A.; Taheri, F.; Heidarian, S.; Motaghinejad, M.; Safari, S. Neuroprotective and neuro-survival properties of safinamide against methamphetamine-induced neurodegeneration: Hypothetic possible role of BDNF/TrkB/PGC-1α signaling pathway and mitochondrial uncoupling protein −2(UCP-2). Med. Hypotheses, 2020, 143, 110094. doi: 10.1016/j.mehy.2020.110094 PMID: 32682215
  211. Teodorof-Diedrich, C.; Spector, S.A. Human immunodeficiency virus type 1 and methamphetamine-mediated mitochondrial damage and neuronal degeneration in human neurons. J. Virol., 2020, 94(20), e00924-e20. doi: 10.1128/JVI.00924-20 PMID: 32796068
  212. Vedam-Mai, V. Harnessing the immune system for the treatment of Parkinson’s disease. Brain Res., 2021, 1758, 147308. doi: 10.1016/j.brainres.2021.147308 PMID: 33524380
  213. Kline, E.M.; Houser, M.C.; Herrick, M.K.; Seibler, P.; Klein, C.; West, A.; Tansey, M.G. Genetic and environmental factors in Parkinson’s disease converge on immune function and inflammation. Mov. Disord., 2021, 36(1), 25-36. doi: 10.1002/mds.28411 PMID: 33314312
  214. Castorina, A.; Thomas Broome, S.; Louangaphay, K.; Keay, K.A.; Leggio, G.M.; Musumeci, G. Dopamine: an immune transmitter. Neural Regen. Res., 2020, 15(12), 2173-2185. doi: 10.4103/1673-5374.284976 PMID: 32594028
  215. Marogianni, C.; Sokratous, M.; Dardiotis, E.; Hadjigeorgiou, G.M.; Bogdanos, D.; Xiromerisiou, G. Neurodegeneration and inflammation-An interesting interplay in Parkinson’s disease. Int. J. Mol. Sci., 2020, 21(22), 8421. doi: 10.3390/ijms21228421 PMID: 33182554
  216. Tan, J.S.Y.; Chao, Y.X.; Rötzschke, O.; Tan, E.K. New insights into immune-mediated mechanisms in Parkinson’s disease. Int. J. Mol. Sci., 2020, 21(23), 9302. doi: 10.3390/ijms21239302 PMID: 33291304
  217. Sulzer, D.; Alcalay, R.N.; Garretti, F.; Cote, L.; Kanter, E.; Agin-Liebes, J.; Liong, C.; McMurtrey, C.; Hildebrand, W.H.; Mao, X.; Dawson, V.L.; Dawson, T.M.; Oseroff, C.; Pham, J.; Sidney, J.; Dillon, M.B.; Carpenter, C.; Weiskopf, D.; Phillips, E.; Mallal, S.; Peters, B.; Frazier, A.; Lindestam Arlehamn, C.S.; Sette, A. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature, 2017, 546(7660), 656-661. doi: 10.1038/nature22815 PMID: 28636593
  218. Grozdanov, V.; Danzer, K.M. Intracellular alpha-synuclein and immune cell function. Front. Cell Dev. Biol., 2020, 8, 562692. doi: 10.3389/fcell.2020.562692 PMID: 33178682
  219. Macur, K.; Ciborowski, P. Immune system and methamphetamine: Molecular basis of a relationship. Curr. Neuropharmacol., 2021, 19(12), 2067-2076. doi: 10.2174/1570159X19666210428121632 PMID: 33913404
  220. Papageorgiou, M.; Raza, A.; Fraser, S.; Nurgali, K.; Apostolopoulos, V. Methamphetamine and its immune-modulating effects. Maturitas, 2019, 121, 13-21. doi: 10.1016/j.maturitas.2018.12.003 PMID: 30704560
  221. Prakash, M.D.; Tangalakis, K.; Antonipillai, J.; Stojanovska, L.; Nurgali, K.; Apostolopoulos, V. Methamphetamine: Effects on the brain, gut and immune system. Pharmacol. Res., 2017, 120, 60-67. doi: 10.1016/j.phrs.2017.03.009 PMID: 28302577
  222. Salamanca, S.A.; Sorrentino, E.E.; Nosanchuk, J.D.; Martinez, L.R. Impact of methamphetamine on infection and immunity. Front. Neurosci., 2015, 8, 445. doi: 10.3389/fnins.2014.00445 PMID: 25628526
  223. Potula, R.; Haldar, B.; Cenna, J.M.; Sriram, U.; Fan, S. Methamphetamine alters T cell cycle entry and progression: role in immune dysfunction. Cell Death Discov., 2018, 4(1), 44. doi: 10.1038/s41420-018-0045-6 PMID: 29581895
  224. Wang, X.; Northcutt, A.L.; Cochran, T.A.; Zhang, X.; Fabisiak, T.J.; Haas, M.E.; Amat, J.; Li, H.; Rice, K.C.; Maier, S.F.; Bachtell, R.K.; Hutchinson, M.R.; Watkins, L.R. Methamphetamine activates Toll-like receptor 4 to induce central immune signaling within the ventral tegmental area and contributes to extracellular dopamine increase in the nucleus accumbens shell. ACS Chem. Neurosci., 2019, 10(8), 3622-3634. doi: 10.1021/acschemneuro.9b00225 PMID: 31282647
  225. Xue, L.; Geng, Y.; Li, M.; Jin, Y.F.; Ren, H.X.; Li, X.; Wu, F.; Wang, B.; Cheng, W.Y.; Chen, T.; Chen, Y.J. The effects of D3R on TLR4 signaling involved in the regulation of METH-mediated mast cells activation. Int. Immunopharmacol., 2016, 36, 187-198. doi: 10.1016/j.intimp.2016.04.030 PMID: 27156126
  226. Tufekci, K.U.; Meuwissen, R.; Genc, S.; Genc, K. Inflammation in Parkinson’s disease. Adv. Protein Chem. Struct. Biol., 2012, 88, 69-132. doi: 10.1016/B978-0-12-398314-5.00004-0 PMID: 22814707
  227. Olmos, G.; Lladó, J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm., 2014, 2014, 1-12. doi: 10.1155/2014/861231 PMID: 24966471
  228. Baud, V.; Karin, M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol., 2001, 11(9), 372-377. doi: 10.1016/S0962-8924(01)02064-5 PMID: 11514191
  229. Dong, Y.; Dekens, D.; De Deyn, P.; Naudé, P.; Eisel, U. Targeting of tumor necrosis factor alpha receptors as a therapeutic strategy for neurodegenerative disorders. Antibodies (Basel), 2015, 4(4), 369-408. doi: 10.3390/antib4040369
  230. Hirsch, E.C.; Vyas, S.; Hunot, S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat. Disord., 2012, 18(Suppl. 1), S210-S212. doi: 10.1016/S1353-8020(11)70065-7 PMID: 22166438
  231. Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener., 2015, 4(1), 19. doi: 10.1186/s40035-015-0042-0 PMID: 26464797
  232. Krasnova, I.N.; Justinova, Z.; Cadet, J.L. Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways. Psychopharmacology (Berl.), 2016, 233(10), 1945-1962. doi: 10.1007/s00213-016-4235-8 PMID: 26873080
  233. Gonçalves, J.; Martins, T.; Ferreira, R.; Milhazes, N.; Borges, F.; Ribeiro, C.F.; Malva, J.O.; Macedo, T.R.; Silva, A.P. Methamphetamine-induced early increase of IL-6 and TNF-α mRNA expression in the mouse brain. Ann. N. Y. Acad. Sci., 2008, 1139(1), 103-111. doi: 10.1196/annals.1432.043 PMID: 18991854
  234. Coelho-Santos, V.; Leitão, R.A.; Cardoso, F.L.; Palmela, I.; Rito, M.; Barbosa, M.; Brito, M.A.; Fontes-Ribeiro, C.A.; Silva, A.P. The TNF-α/NF-κB signaling pathway has a key role in methamphetamine-induced blood-brain barrier dysfunction. J. Cereb. Blood Flow Metab., 2015, 35(8), 1260-1271. doi: 10.1038/jcbfm.2015.59 PMID: 25899299
  235. Hofmann, K.W.; Schuh, A.F.S.; Saute, J.; Townsend, R.; Fricke, D.; Leke, R.; Souza, D.O.; Portela, L.V.; Chaves, M.L.F.; Rieder, C.R.M. Interleukin-6 serum levels in patients with Parkinson’s disease. Neurochem. Res., 2009, 34(8), 1401-1404. doi: 10.1007/s11064-009-9921-z PMID: 19214748
  236. Yang, X.; Zhao, H.; Liu, X.; Xie, Q.; Zhou, X.; Deng, Q.; Wang, G. The relationship between serum cytokine levels and the degree of psychosis and cognitive impairment in patients with methamphetamine-associated psychosis in Chinese patients. Front. Psychiatry, 2020, 11, 594766. doi: 10.3389/fpsyt.2020.594766 PMID: 33362607
  237. Benkler, M.; Agmon-Levin, N.; Shoenfeld, Y. Parkinson’s disease, autoimmunity, and olfaction. Int. J. Neurosci., 2009, 119(12), 2133-2143. doi: 10.3109/00207450903178786 PMID: 19916845
  238. Reynolds, J.L.; Mahajan, S.D.; Sykes, D.E.; Schwartz, S.A.; Nair, M.P.N. Proteomic analyses of methamphetamine (METH)-induced differential protein expression by immature dendritic cells (IDC). Biochim. Biophys. Acta. Proteins Proteomics, 2007, 1774(4), 433-442. doi: 10.1016/j.bbapap.2007.02.001 PMID: 17363347
  239. Zhang, X.; Dong, F.; Mayer, G.E.; Bruch, D.C.; Ren, J.; Culver, B. Selective inhibition of cyclooxygenase-2 exacerbates methamphetamine-induced dopamine depletion in the striatum in rats. Neuroscience, 2007, 150(4), 950-958. doi: 10.1016/j.neuroscience.2007.09.059 PMID: 17988800
  240. Teismann, P. COX‐2 in the neurodegenerative process of Parkinson’s disease. Biofactors, 2012, 38(6), 395-397. doi: 10.1002/biof.1035 PMID: 22826171
  241. Puchałowicz, K.; Tarnowski, M.; Baranowska-Bosiacka, I.; Chlubek, D.; Dziedziejko, V. P2X and P2Y receptors—role in the pathophysiology of the nervous system. Int. J. Mol. Sci., 2014, 15(12), 23672-23704. doi: 10.3390/ijms151223672 PMID: 25530618
  242. Jun, D.J.; Kim, J.; Jung, S.Y.; Song, R.; Noh, J.H.; Park, Y.S.; Ryu, S.H.; Kim, J.H.; Kong, Y.Y.; Chung, J.M.; Kim, K.T. Extracellular ATP mediates necrotic cell swelling in SN4741 dopaminergic neurons through P2X7 receptors. J. Biol. Chem., 2007, 282(52), 37350-37358. doi: 10.1074/jbc.M707915200 PMID: 17962183
  243. Liu, H.; Han, X.; Li, Y.; Zou, H.; Xie, A. Association of P2X7 receptor gene polymorphisms with sporadic Parkinson’s disease in a Han Chinese population. Neurosci. Lett., 2013, 546, 42-45. doi: 10.1016/j.neulet.2013.04.049 PMID: 23648388
  244. Fernandes, N.C.; Sriram, U.; Gofman, L.; Cenna, J.M.; Ramirez, S.H.; Potula, R. Methamphetamine alters microglial immune function through P2X7R signaling. J. Neuroinflammation, 2016, 13(1), 91. doi: 10.1186/s12974-016-0553-3 PMID: 27117066
  245. Herrero, M.T.; Estrada, C.; Maatouk, L.; Vyas, S. Inflammation in Parkinson’s disease: role of glucocorticoids. Front. Neuroanat., 2015, 9, 32. doi: 10.3389/fnana.2015.00032 PMID: 25883554
  246. Zuloaga, D.G.; Jacosbskind, J.S.; Raber, J. Methamphetamine and the hypothalamic-pituitary-adrenal axis. Front. Neurosci., 2015, 9, 178. doi: 10.3389/fnins.2015.00178 PMID: 26074755
  247. Dang, J.; Tiwari, S.K.; Agrawal, K.; Hui, H.; Qin, Y.; Rana, T.M. Glial cell diversity and methamphetamine-induced neuroinflammation in human cerebral organoids. Mol. Psychiatry, 2021, 26(4), 1194-1207. doi: 10.1038/s41380-020-0676-x PMID: 32051547
  248. Ghavidel, N.; Khodagholi, F.; Ahmadiani, A.; Khosrowabadi, R.; Asadi, S.; Shams, J. Inflammation but not programmed cell death is activated in methamphetamine-dependent patients: Relevance to the brain function. Int. J. Psychophysiol., 2020, 157, 42-50. doi: 10.1016/j.ijpsycho.2020.09.004 PMID: 32976886
  249. Persons, A.L.; Desai Bradaric, B.; Kelly, L.P.; Kousik, S.M.; Graves, S.M.; Yamamoto, B.K.; Napier, T.C. Gut and brain profiles that resemble pre-motor and early-stage Parkinson’s disease in methamphetamine self-administering rats. Drug Alcohol Depend., 2021, 225, 108746. doi: 10.1016/j.drugalcdep.2021.108746 PMID: 34098381
  250. Qian, M.; Fang, X.; Wang, X. Autophagy and inflammation. Clin. Transl. Med., 2017, 6(1), 24. doi: 10.1186/s40169-017-0154-5 PMID: 28748360
  251. Cerri, S.; Blandini, F. Role of autophagy in Parkinson’s disease. Curr. Med. Chem., 2019, 26(20), 3702-3718. doi: 10.2174/0929867325666180226094351 PMID: 29484979
  252. Wang, B.; Abraham, N.; Gao, G.; Yang, Q. Dysregulation of autophagy and mitochondrial function in Parkinson’s disease. Transl. Neurodegener., 2016, 5(1), 19. doi: 10.1186/s40035-016-0065-1 PMID: 27822367
  253. Moors, T.E.; Hoozemans, J.J.M.; Ingrassia, A.; Beccari, T.; Parnetti, L.; Chartier-Harlin, M.C.; van de Berg, W.D.J. Therapeutic potential of autophagy-enhancing agents in Parkinson’s disease. Mol. Neurodegener., 2017, 12(1), 11. doi: 10.1186/s13024-017-0154-3 PMID: 28122627
  254. Meng, Y.; Ding, J.; Li, C.; Fan, H.; He, Y.; Qiu, P. Transfer of pathological α-synuclein from neurons to astrocytes via exosomes causes inflammatory responses after METH exposure. Toxicol. Lett., 2020, 331, 188-199. doi: 10.1016/j.toxlet.2020.06.016 PMID: 32569805
  255. Tripathi, M.K.; Rajput, C.; Mishra, S.; Rasheed, M.S.; Singh, M.P. Malfunctioning of chaperone-mediated autophagy in Parkinson’s disease: feats, constraints, and flaws of modulators. Neurotox. Res., 2019, 35(1), 260-270. doi: 10.1007/s12640-018-9917-z PMID: 29949106
  256. Sun, L.; Lian, Y.; Ding, J.; Meng, Y.; Li, C.; Chen, L.; Qiu, P. The role of chaperone‐mediated autophagy in neurotoxicity induced by alpha‐synuclein after methamphetamine exposure. Brain Behav., 2019, 9(8), e01352. doi: 10.1002/brb3.1352 PMID: 31286692
  257. Roohbakhsh, A.; Shirani, K.; Karimi, G. Methamphetamine-induced toxicity: The role of autophagy? Chem. Biol. Interact., 2016, 260, 163-167. doi: 10.1016/j.cbi.2016.10.012 PMID: 27746146
  258. Li, B.; Chen, R.; Chen, L.; Qiu, P.; Ai, X.; Huang, E.; Huang, W.; Chen, C.; Liu, C.; Lin, Z.; Xie, W.B.; Wang, H. Effects of DDIT4 in methamphetamine-induced autophagy and apoptosis in dopaminergic neurons. Mol. Neurobiol., 2017, 54(3), 1642-1660. doi: 10.1007/s12035-015-9637-9 PMID: 26873849
  259. Xu, X.; Huang, E.; Tai, Y.; Zhao, X.; Chen, X.; Chen, C.; Chen, R.; Liu, C.; Lin, Z.; Wang, H.; Xie, W.B. Nupr1 modulates methamphetamine-induced dopaminergic neuronal apoptosis and autophagy through CHOP-Trib3-mediated endoplasmic reticulum stress signaling pathway. Front. Mol. Neurosci., 2017, 10, 203. doi: 10.3389/fnmol.2017.00203 PMID: 28694771
  260. Ma, J.; Wan, J.; Meng, J.; Banerjee, S.; Ramakrishnan, S.; Roy, S. Methamphetamine induces autophagy as a pro-survival response against apoptotic endothelial cell death through the Kappa opioid receptor. Cell Death Dis., 2014, 5(3), e1099. doi: 10.1038/cddis.2014.64 PMID: 24603327
  261. Khoshsirat, S.; Khoramgah, M.S.; Mahmoudiasl, G.R.; Rezaei-Tavirani, M.; Abdollahifar, M.A.; Tahmasebinia, F.; Darabi, S.; Niknazar, S.; Abbaszadeh, H.A. LC3 and ATG5 overexpression and neuronal cell death in the prefrontal cortex of postmortem chronic methamphetamine users. J. Chem. Neuroanat., 2020, 107, 101802. doi: 10.1016/j.jchemneu.2020.101802 PMID: 32416129
  262. Zhu, Z.; Yang, C.; Iyaswamy, A.; Krishnamoorthi, S.; Sreenivasmurthy, S.G.; Liu, J.; Wang, Z.; Tong, B.C.K.; Song, J.; Lu, J.; Cheung, K.H.; Li, M. Balancing mTOR signaling and autophagy in the treatment of Parkinson’s disease. Int. J. Mol. Sci., 2019, 20(3), 728. doi: 10.3390/ijms20030728 PMID: 30744070
  263. Hou, X.; Watzlawik, J.O.; Fiesel, F.C.; Springer, W. Autophagy in Parkinson’s disease. J. Mol. Biol., 2020, 432(8), 2651-2672. doi: 10.1016/j.jmb.2020.01.037 PMID: 32061929
  264. Hu, Z.; Chen, B.; Zhang, J.; Ma, Y. Up-regulation of autophagy-related gene 5 (ATG5) protects dopaminergic neurons in a zebrafish model of Parkinson’s disease. J. Biol. Chem., 2017, 292(44), 18062-18074. doi: 10.1074/jbc.M116.764795 PMID: 28928221
  265. Sepúlveda, D.; Grunenwald, F.; Vidal, A.; Troncoso-Escudero, P.; Cisternas-Olmedo, M.; Villagra, R.; Vergara, P.; Aguilera, C.; Nassif, M.; Vidal, R.L. Insulin-like growth factor 2 and autophagy gene expression alteration arise as potential biomarkers in Parkinson’s disease. Sci. Rep., 2022, 12(1), 2038. doi: 10.1038/s41598-022-05941-1 PMID: 35132125
  266. Kang, R.; Zeh, H.J.; Lotze, M.T.; Tang, D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ., 2011, 18(4), 571-580. doi: 10.1038/cdd.2010.191 PMID: 21311563
  267. Spencer, B.; Potkar, R.; Trejo, M.; Rockenstein, E.; Patrick, C.; Gindi, R.; Adame, A.; Wyss-Coray, T.; Masliah, E. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J. Neurosci., 2009, 29(43), 13578-13588. doi: 10.1523/JNEUROSCI.4390-09.2009 PMID: 19864570
  268. Lucin, K.M.; O’Brien, C.E.; Bieri, G.; Czirr, E.; Mosher, K.I.; Abbey, R.J.; Mastroeni, D.F.; Rogers, J.; Spencer, B.; Masliah, E.; Wyss-Coray, T. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer’s disease. Neuron, 2013, 79(5), 873-886. doi: 10.1016/j.neuron.2013.06.046 PMID: 24012002
  269. Lin, M.; Shivalingappa, P.C.; Jin, H.; Ghosh, A.; Anantharam, V.; Ali, S.; Kanthasamy, A.G.; Kanthasamy, A. Methamphetamine-induced neurotoxicity linked to UPS dysfunction and autophagy related changes that can be modulated by PKCδ in dopaminergic neuronal cells. Neuroscience, 2012, 210, 308-332. doi: 10.1016/j.neuroscience.2012.03.004 PMID: 22445524
  270. Shin, E.J.; Duong, C.X.; Nguyen, X.K.T.; Li, Z.; Bing, G.; Bach, J.H.; Park, D.H.; Nakayama, K.; Ali, S.F.; Kanthasamy, A.G.; Cadet, J.L.; Nabeshima, T.; Kim, H.C. Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ. Behav. Brain Res., 2012, 232(1), 98-113. doi: 10.1016/j.bbr.2012.04.001 PMID: 22512859
  271. Gordon, R.; Singh, N.; Lawana, V.; Ghosh, A.; Harischandra, D.S.; Jin, H.; Hogan, C.; Sarkar, S.; Rokad, D.; Panicker, N.; Anantharam, V.; Kanthasamy, A.G.; Kanthasamy, A. Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson’s disease. Neurobiol. Dis., 2016, 93, 96-114. doi: 10.1016/j.nbd.2016.04.008 PMID: 27151770
  272. Zhang, D.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Neuroprotective effect of protein kinase C delta inhibitor rottlerin in cell culture and animal models of Parkinson’s disease. J. Pharmacol. Exp. Ther., 2007, 322(3), 913-922. doi: 10.1124/jpet.107.124669 PMID: 17565007
  273. Dai, D.; Yuan, J.; Wang, Y.; Xu, J.; Mao, C.; Xiao, Y. Peli1 controls the survival of dopaminergic neurons through modulating microglia-mediated neuroinflammation. Sci. Rep., 2019, 9(1), 8034. doi: 10.1038/s41598-019-44573-w PMID: 31142803
  274. Yang, T.; Zang, S.; Wang, Y.; Zhu, Y.; Jiang, L.; Chen, X.; Zhang, X.; Cheng, J.; Gao, R.; Xiao, H.; Wang, J. Methamphetamine induced neuroinflammation in mouse brain and microglial cell line BV2: Roles of the TLR4/TRIF/Peli1 signaling axis. Toxicol. Lett., 2020, 333, 150-158. doi: 10.1016/j.toxlet.2020.07.028 PMID: 32768653
  275. Sekine, Y.; Ouchi, Y.; Sugihara, G.; Takei, N.; Yoshikawa, E.; Nakamura, K.; Iwata, Y.; Tsuchiya, K.J.; Suda, S.; Suzuki, K.; Kawai, M.; Takebayashi, K.; Yamamoto, S.; Matsuzaki, H.; Ueki, T.; Mori, N.; Gold, M.S.; Cadet, J.L. Methamphetamine causes microglial activation in the brains of human abusers. J. Neurosci., 2008, 28(22), 5756-5761. doi: 10.1523/JNEUROSCI.1179-08.2008 PMID: 18509037
  276. Rathitharan, G.; Truong, J.; Tong, J.; McCluskey, T.; Meyer, J.H.; Mizrahi, R.; Warsh, J.; Rusjan, P.; Kennedy, J.L.; Houle, S.; Kish, S.J.; Boileau, I. Microglia imaging in methamphetamine use disorder: A positron emission tomography study with the 18 kDa translocator protein radioligand F‐18FEPPA. Addict. Biol., 2021, 26(1), e12876. doi: 10.1111/adb.12876 PMID: 32017280
  277. Lucot, K.L.; Stevens, M.Y.; Bonham, T.A.; Azevedo, E.C.; Chaney, A.M.; Webber, E.D.; Jain, P.; Klockow, J.L.; Jackson, I.M.; Carlson, M.L.; Graves, E.E.; Montine, T.J.; James, M.L. Tracking innate immune activation in a mousae model of Parkinson’s disease using TREM1 and TSPO PET tracers. J. Nucl. Med., 2022, 63(10), 1570-1578. doi: 10.2967/jnumed.121.263039 PMID: 35177426
  278. Erekat, N.S. Apoptosis and its role in Parkinson’s disease. In: Parkinson’s Disease: Pathogenesis and Clinical Aspects; Codon Publications: Brisbane (AU), 2018. doi: 10.15586/codonpublications.parkinsonsdisease.2018.ch4
  279. Bekker, M.; Abrahams, S.; Loos, B.; Bardien, S. Can the interplay between autophagy and apoptosis be targeted as a novel therapy for Parkinson’s disease? Neurobiol. Aging, 2021, 100, 91-105. doi: 10.1016/j.neurobiolaging.2020.12.013 PMID: 33516928
  280. Alves da Costa, C.; Checler, F. Apoptosis in Parkinson’s disease: Is p53 the missing link between genetic and sporadic Parkinsonism? Cell. Signal., 2011, 23(6), 963-968. doi: 10.1016/j.cellsig.2010.10.020 PMID: 20969953
  281. Hirata, H.; Cadet, J.L. p53-knockout mice are protected against the long-term effects of methamphetamine on dopaminergic terminals and cell bodies. J. Neurochem., 1997, 69(2), 780-790. doi: 10.1046/j.1471-4159.1997.69020780.x PMID: 9231739
  282. da Costa, C.A.; Sunyach, C.; Giaime, E.; West, A.; Corti, O.; Brice, A.; Safe, S.; Abou-Sleiman, P.M.; Wood, N.W.; Takahashi, H.; Goldberg, M.S.; Shen, J.; Checler, F. Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson’s disease. Nat. Cell Biol., 2009, 11(11), 1370-1375. doi: 10.1038/ncb1981 PMID: 19801972
  283. Biswas, S.C.; Ryu, E.; Park, C.; Malagelada, C.; Greene, L.A. Puma and p53 play required roles in death evoked in a cellular model of Parkinson disease. Neurochem. Res., 2005, 30(6-7), 839-845. doi: 10.1007/s11064-005-6877-5 PMID: 16187218
  284. Sanphui, P.; Kumar Das, A.; Biswas, S.C. Forkhead Box O3a requires BAF57, a subunit of chromatin remodeler SWI/SNF complex for induction of p53 up‐regulated modulator of apoptosis (Puma) in a model of Parkinson’s disease. J. Neurochem., 2020, 154(5), 547-561. doi: 10.1111/jnc.14969 PMID: 31971251
  285. Steckley, D.; Karajgikar, M.; Dale, L.B.; Fuerth, B.; Swan, P.; Drummond-Main, C.; Poulter, M.O.; Ferguson, S.S.G.; Strasser, A.; Cregan, S.P. Puma is a dominant regulator of oxidative stress induced Bax activation and neuronal apoptosis. J. Neurosci., 2007, 27(47), 12989-12999. doi: 10.1523/JNEUROSCI.3400-07.2007 PMID: 18032672
  286. Madeo, G.; Schirinzi, T.; Martella, G.; Latagliata, E.C.; Puglisi, F.; Shen, J.; Valente, E.M.; Federici, M.; Mercuri, N.B.; Puglisi-Allegra, S.; Bonsi, P.; Pisani, A. PINK1 heterozygous mutations induce subtle alterations in dopamine-dependent synaptic plasticity. Mov. Disord., 2014, 29(1), 41-53. doi: 10.1002/mds.25724 PMID: 24167038
  287. Cadet, J.L.; Jayanthi, S.; Deng, X. Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review. Neurotox. Res., 2005, 8(3-4), 199-206. doi: 10.1007/BF03033973 PMID: 16371314
  288. Lenzi, P.; Marongiu, R.; Falleni, A.; Gelmetti, V.; Busceti, C.L.; Michiorri, S.; Valente, E.M.; Fornai, F. A subcellular analysis of genetic modulation of PINK1 on mitochondrial alterations, autophagy and cell death. Arch. Ital. Biol., 2012, 150(2-3), 194-217. doi: 10.4449/aib.v150i2/3.1417 PMID: 23165879
  289. Furuya, T.; Hayakawa, H.; Yamada, M.; Yoshimi, K.; Hisahara, S.; Miura, M.; Mizuno, Y.; Mochizuki, H. Caspase-11 mediates inflammatory dopaminergic cell death in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. J. Neurosci., 2004, 24(8), 1865-1872. doi: 10.1523/JNEUROSCI.3309-03.2004 PMID: 14985426
  290. Huang, W.; Xie, W.B.; Qiao, D.; Qiu, P.; Huang, E.; Li, B.; Chen, C.; Liu, C.; Wang, Q.; Lin, Z.; Wang, H. Caspase-11 plays an essential role in methamphetamine-induced dopaminergic neuron apoptosis. Toxicol. Sci., 2015, 145(1), 68-79. doi: 10.1093/toxsci/kfv014 PMID: 25631491
  291. Cai, D.; Huang, E.; Luo, B.; Yang, Y.; Zhang, F.; Liu, C.; Lin, Z.; Xie, W-B.; Wang, H. Nupr1/Chop signal axis is involved in mitochondrion-related endothelial cell apoptosis induced by methamphetamine. Cell Death Dis., 2016, 7(3), e2161. doi: 10.1038/cddis.2016.67 PMID: 27031958
  292. Cao, L.; Fu, M.; Kumar, S.; Kumar, A. Methamphetamine potentiates HIV-1 gp120-mediated autophagy via Beclin-1 and Atg5/7 as a pro-survival response in astrocytes. Cell Death Dis., 2016, 7(10), e2425. doi: 10.1038/cddis.2016.317 PMID: 27763640
  293. Dong, L.G.; Lu, F.F.; Zu, J.; Zhang, W.; Xu, C.Y.; Jin, G.L.; Yang, X.X.; Xiao, Q.H.; Cui, C.C.; Xu, R.; Zhou, S.; Zhu, J.N.; Shen, T.; Cui, G.Y. MiR-133b inhibits MPP+-induced apoptosis in Parkinson’s disease model by inhibiting the ERK1/2 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(21), 11192-11198. doi: 10.26355/eurrev_202011_23607 PMID: 33215437
  294. Liu, H.L.; Li, T.; Wang, H.J.; Hu, T.; Hu, Y.L.; Zhang, J.; Sun, J.H.; Dong, X.G. Regulation of miR-133b on methamphetamine-induced neuronal apoptosis in PC12 cells. J Sun Yat-sen Univ. Med. Sci., 2018, 6, 26-33.
  295. Xu, X.; Huang, E.; Luo, B.; Cai, D.; Zhao, X.; Luo, Q.; Jin, Y.; Chen, L.; Wang, Q.; Liu, C.; Lin, Z.; Xie, W.B.; Wang, H. Methamphetamine exposure triggers apoptosis and autophagy in neuronal cells by activating the C/EBPβ‐related signaling pathway. FASEB J., 2018, 32(12), 6737-6759. doi: 10.1096/fj.201701460RRR PMID: 29939784
  296. Wu, Z.; Xia, Y.; Wang, Z.; Su, Kang S.; Lei, K.; Liu, X.; Jin, L.; Wang, X.; Cheng, L.; Ye, K. C/EBPβ/δ-secretase signaling mediates Parkinson’s disease pathogenesis via regulating transcription and proteolytic cleavage of α-synuclein and MAOB. Mol. Psychiatry, 2021, 26(2), 568-585. doi: 10.1038/s41380-020-0687-7 PMID: 32086435
  297. Subu, R.; Jayanthi, S.; Cadet, J.L. Compulsive methamphetamine taking induces autophagic and apoptotic markers in the rat dorsal striatum. Arch. Toxicol., 2020, 94(10), 3515-3526. doi: 10.1007/s00204-020-02844-w PMID: 32676729
  298. Oueslati, A.; Fournier, M.; Lashuel, H.A. Role of post-translational modifications in modulating the structure, function and toxicity of α-synuclein. Prog. Brain Res., 2010, 183, 115-145. doi: 10.1016/S0079-6123(10)83007-9 PMID: 20696318
  299. Ding, J.; Wang, Y.; Huang, J.; Lian, Y.; Meng, Y.; Li, C.; He, Y.; Qiu, P. Role of alpha-synuclein phosphorylation at Serine 129 in methamphetamine-induced neurotoxicity in vitro and in vivo. Neuroreport, 2020, 11, 787-797. doi: 10.1097/WNR.0000000000001495 PMID: 32568772
  300. Kaul, S.; Kanthasamy, A.; Kitazawa, M.; Anantharam, V.; Kanthasamy, A.G. Caspase-3 dependent proteolytic activation of protein kinase Cdelta mediates and regulates 1-methyl-4-phenylpyridinium (MPP+)-induced apoptotic cell death in dopaminergic cells: relevance to oxidative stress in dopaminergic degeneration. Eur. J. Neurosci., 2003, 18(6), 1387-1401. doi: 10.1046/j.1460-9568.2003.02864.x PMID: 14511319
  301. Yang, Y.; Kaul, S.; Zhang, D.; Anantharam, V.; Kanthasamy, A.G. Suppression of caspase-3-dependent proteolytic activation of protein kinase Cδ by small interfering RNA prevents MPP+-induced dopaminergic degeneration. Mol. Cell. Neurosci., 2004, 25(3), 406-421. doi: 10.1016/j.mcn.2003.11.011 PMID: 15033169
  302. Nguyen, X.K.T.; Lee, J.; Shin, E.J.; Dang, D.K.; Jeong, J.H.; Nguyen, T.T.L.; Nam, Y.; Cho, H.J.; Lee, J.C.; Park, D.H.; Jang, C.G.; Hong, J.S.; Nabeshima, T.; Kim, H.C. Liposomal melatonin rescues methamphetamine-elicited mitochondrial burdens, pro-apoptosis, and dopaminergic degeneration through the inhibition PKCδ gene. J. Pineal Res., 2015, 58(1), 86-106. doi: 10.1111/jpi.12195 PMID: 25407782
  303. Dang, D.K.; Shin, E.J.; Kim, D.J.; Tran, H.Q.; Jeong, J.H.; Jang, C.G.; Ottersen, O.P.; Nah, S.Y.; Hong, J.S.; Nabeshima, T.; Kim, H.C. PKCδ-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity. Free Radic. Biol. Med., 2018, 115, 318-337. doi: 10.1016/j.freeradbiomed.2017.12.018 PMID: 29269308
  304. Brichta, L.; Greengard, P.; Flajolet, M. Advances in the pharmacological treatment of Parkinson’s disease: targeting neurotransmitter systems. Trends Neurosci., 2013, 36(9), 543-554. doi: 10.1016/j.tins.2013.06.003 PMID: 23876424
  305. Werner, F.; Covenas, R. Classical neurotransmitters and neuropeptides involved in Parkinson’s disease: A multi-neurotransmitter system. J. Cytol. Histol., 2014, 5(5), 1000266. doi: 10.4172/2157-7099.1000266
  306. Brichta, L.; Greengard, P. Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update. Front. Neuroanat., 2014, 8, 152. doi: 10.3389/fnana.2014.00152 PMID: 25565977
  307. Bubenikova-Valesova, V.; Kacer, P.; Syslova, K.; Rambousek, L.; Janovsky, M.; Schutova, B.; Hruba, L.; Slamberova, R. Prenatal methamphetamine exposure affects the mesolimbic dopaminergic system and behavior in adult offspring. Int. J. Dev. Neurosci., 2009, 27(6), 525-530. doi: 10.1016/j.ijdevneu.2009.06.012 PMID: 19591914
  308. Morrow, B.A.; Roth, R.H.; Redmond, D.E.; Elsworth, J.D. Impact of methamphetamine on dopamine neurons in primates is dependent on age: implications for development of Parkinson’s disease. Neuroscience, 2011, 189, 277-285. doi: 10.1016/j.neuroscience.2011.05.046 PMID: 21640165
  309. Moreira da Silva Santos, A.; Kelly, J.P.; Doyle, K.M. Dose-dependent effects of binge-like methamphetamine dosing on dopamine and neurotrophin levels in rat brain. Neuropsychobiology, 2017, 75(2), 63-71. doi: 10.1159/000480513 PMID: 29065400
  310. Nakagawa, T.; Suzuki, Y.; Nagayasu, K.; Kitaichi, M.; Shirakawa, H.; Kaneko, S. Repeated exposure to methamphetamine, cocaine or morphine induces augmentation of dopamine release in rat mesocorticolimbic slice co-cultures. PLoS One, 2011, 6(9), e24865. doi: 10.1371/journal.pone.0024865 PMID: 21980362
  311. He, T.; Han, C.; Liu, C.; Chen, J.; Yang, H.; Zheng, L.; Waddington, J.L.; Zhen, X. Dopamine D1 receptors mediate methamphetamine-induced dopaminergic damage: involvement of autophagy regulation via the AMPK/FOXO3A pathway. Psychopharmacology (Berl.), 2022, 239(3), 951-964. doi: 10.1007/s00213-022-06097-6 PMID: 35190859
  312. Lin, M.; Sambo, D.; Khoshbouei, H. Methamphetamine regulation of firing activity of dopamine neurons. J. Neurosci., 2016, 36(40), 10376-10391. doi: 10.1523/JNEUROSCI.1392-16.2016 PMID: 27707972
  313. Zampese, E.; Surmeier, D.J. Calcium, bioenergetics, and Parkinson’s disease. Cells, 2020, 9(9), 2045. doi: 10.3390/cells9092045 PMID: 32911641
  314. Barone, P. Neurotransmission in Parkinson’s disease: beyond dopamine. Eur. J. Neurol., 2010, 17(3), 364-376. doi: 10.1111/j.1468-1331.2009.02900.x PMID: 20050885
  315. Miguelez, C.; De Deurwaerdère, P.; Sgambato, V. Editorial: Non-dopaminergic systems in Parkinson’s disease. Front. Pharmacol., 2020, 11, 593822. doi: 10.3389/fphar.2020.593822 PMID: 33013427
  316. Müller, M.L.T.M.; Bohnen, N.I. Cholinergic dysfunction in Parkinson’s disease. Curr. Neurol. Neurosci. Rep., 2013, 13(9), 377. doi: 10.1007/s11910-013-0377-9 PMID: 23943367
  317. Perez-Lloret, S.; Barrantes, F.J. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. NPJ Parkinsons Dis., 2016, 2(1), 16001. doi: 10.1038/npjparkd.2016.1 PMID: 28725692
  318. Zee, S.; Müller, M.L.T.M.; Kanel, P.; Laar, T.; Bohnen, N.I. Cholinergic denervation patterns across cognitive domains in Parkinson’s disease. Mov. Disord., 2021, 36(3), 642-650. doi: 10.1002/mds.28360 PMID: 33137238
  319. Bohnen, N.I.; Kaufer, D.I.; Ivanco, L.S.; Lopresti, B.; Koeppe, R.A.; Davis, J.G.; Mathis, C.A.; Moore, R.Y.; DeKosky, S.T. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: An in vivo positron emission tomographic study. Arch. Neurol., 2003, 60(12), 1745-1748. doi: 10.1001/archneur.60.12.1745 PMID: 14676050
  320. Wilkins, K.B.; Parker, J.E.; Bronte-Stewart, H.M. Gait variability is linked to the atrophy of the Nucleus Basalis of Meynert and is resistant to STN DBS in Parkinson’s disease. Neurobiol. Dis., 2020, 146, 105134. doi: 10.1016/j.nbd.2020.105134 PMID: 33045357
  321. Bohnen, N.I.; Albin, R.L. The cholinergic system and Parkinson disease. Behav. Brain Res., 2011, 221(2), 564-573. doi: 10.1016/j.bbr.2009.12.048 PMID: 20060022
  322. Cai, Y.; Nielsen, B.E.; Boxer, E.E.; Aoto, J.; Ford, C.P. Loss of nigral excitation of cholinergic interneurons contributes to parkinsonian motor impairments. Neuron, 2021, 109(7), 1137-1149.e5. doi: 10.1016/j.neuron.2021.01.028 PMID: 33600762
  323. Siegel, J.A.; Craytor, M.J.; Raber, J. Long-term effects of methamphetamine exposure on cognitive function and muscarinic acetylcholine receptor levels in mice. Behav. Pharmacol., 2010, 21(7), 602-614. doi: 10.1097/FBP.0b013e32833e7e44 PMID: 20729719
  324. Escubedo, E.; Camarasa, J.; Chipana, C.; García-Ratés, S.; Pubill, D. Involvement of nicotinic receptors in methamphetamine- and MDMA-induced neurotoxicity: pharmacological implications. Int. Rev. Neurobiol., 2009, 88, 121-166. doi: 10.1016/S0074-7742(09)88006-9 PMID: 19897077
  325. Baladi, M.G.; Nielsen, S.M.; McIntosh, J.M.; Hanson, G.R.; Fleckenstein, A.E. Prior nicotine self-administration attenuates subsequent dopaminergic deficits of methamphetamine in rats: role of nicotinic acetylcholine receptors. Behav. Pharmacol., 2016, 27(5), 422-430. doi: 10.1097/FBP.0000000000000215 PMID: 26871405
  326. Vieira-Brock, P.; McFadden, L.; McIntosh, J.M.; Hanson, G.; Fleckenstein, A. Nicotine, methamphetamine-induced dopaminergic deficits, and the impact on α4β2 and α6β2 nicotinic receptors. FASEB J., 2015, 29(S1), 768.1. doi: 10.1096/fasebj.29.1_supplement.768.1
  327. Albin, R.L.; Müller, M.L.T.M.; Bohnen, N.I.; Spino, C.; Sarter, M.; Koeppe, R.A.; Szpara, A.; Kim, K.; Lustig, C.; Dauer, W.T. Sarter, M.; Koeppe, R.A.; Szpara, A.; Kim, K.; Lustig, C.; Dauer, W.T. α4β2* nicotinic cholinergic receptor target engagement in Parkinson disease gait-balance disorders. Ann. Neurol., 2021, 90(1), 130-142. doi: 10.1002/ana.26102 PMID: 33977560
  328. Mizoguchi, H.; Wang, T.; Kusaba, M.; Fukumoto, K.; Yamada, K. Nicotine and varenicline ameliorate changes in reward-based choice strategy and altered decision-making in methamphetamine-treated rats. Behav. Brain Res., 2019, 359, 935-941. doi: 10.1016/j.bbr.2018.06.016 PMID: 29935276
  329. Garton, D.R.; Ross, S.G.; Maldonado-Hernández, R.; Quick, M.; Lasalde-Dominicci, J.A.; Lizardi-Ortiz, J.E. Amphetamine enantiomers inhibit homomeric α7 nicotinic receptor through a competitive mechanism and within the intoxication levels in humans. Neuropharmacology, 2019, 144, 172-183. doi: 10.1016/j.neuropharm.2018.10.032 PMID: 30359640
  330. Myslivecek, J. Two players in the field: Hierarchical model of interaction between the dopamine and acetylcholine signaling systems in the striatum. Biomedicines, 2021, 9(1), 25. doi: 10.3390/biomedicines9010025 PMID: 33401461
  331. Ferrucci, M.; Limanaqi, F.; Ryskalin, L.; Biagioni, F.; Busceti, C.L.; Fornai, F. The effects of amphetamine and methamphetamine on the release of norepinephrine, dopamine and acetylcholine from the brainstem reticular formation. Front. Neuroanat., 2019, 13, 48. doi: 10.3389/fnana.2019.00048 PMID: 31133823
  332. Farar, V.; Valuskova, P.; Sevcikova, M.; Myslivecek, J.; Slamberova, R. Mapping of the prenatal and postnatal methamphetamine effects on D1-like dopamine, M1 and M2 muscarinic receptors in rat central nervous system. Brain Res. Bull., 2018, 137, 17-22. doi: 10.1016/j.brainresbull.2017.11.003 PMID: 29128414
  333. Perez, X.A. Preclinical evidence for a role of the nicotinic cholinergic system in Parkinson’s disease. Neuropsychol. Rev., 2015, 25(4), 371-383. doi: 10.1007/s11065-015-9303-z PMID: 26553323
  334. Desai, R.I.; Bergman, J. Methamphetamine-like discriminative-stimulus effects of nicotinic agonists. J. Pharmacol. Exp. Ther., 2014, 348(3), 478-488. doi: 10.1124/jpet.113.211235 PMID: 24389640
  335. Takeda, A.; Tomiyama, M.; Hanajima, R. The relationship between pathophysiology and neurotransmitters in Parkinson’s disease. Brain Nerve, 2021, 73(7), 829-837. doi: 10.11477/mf.1416201843 PMID: 34234041
  336. O’Gorman Tuura, R.L.; Baumann, C.R.; Baumann-Vogel, H. Beyond dopamine: GABA, glutamate, and the axial symptoms of Parkinson disease. Front. Neurol., 2018, 9, 806. doi: 10.3389/fneur.2018.00806 PMID: 30319535
  337. Buchanan, R.J.; Darrow, D.P.; Meier, K.T.; Robinson, J.; Schiehser, D.M.; Glahn, D.C.; Nadasdy, Z. Changes in GABA and glutamate concentrations during memory tasks in patients with Parkinson’s disease undergoing DBS surgery. Front. Hum. Neurosci., 2014, 8, 81. doi: 10.3389/fnhum.2014.00081 PMID: 24639638
  338. Iovino, L.; Tremblay, M.E.; Civiero, L. Glutamate-induced excitotoxicity in Parkinson’s disease: The role of glial cells. J. Pharmacol. Sci., 2020, 144(3), 151-164. doi: 10.1016/j.jphs.2020.07.011 PMID: 32807662
  339. Wang, J.; Wang, F.; Mai, D.; Qu, S. Molecular mechanisms of glutamate toxicity in Parkinson’s disease. Front. Neurosci., 2020, 14, 585584. doi: 10.3389/fnins.2020.585584 PMID: 33324150
  340. Fujáková-Lipski, M.; Kaping, D.; Šírová, J.; Horáček, J.; Páleníček, T.; Zach, P.; Klaschka, J.; Kačer, P.; Syslová, K.; Vrajová, M.; Bubenikova-Valešová, V.; Beste, C.; Šlamberová, R. Trans-generational neurochemical modulation of methamphetamine in the adult brain of the Wistar rat. Arch. Toxicol., 2017, 91(10), 3373-3384. doi: 10.1007/s00204-017-1969-y PMID: 28477265
  341. He, T.; Li, N.; Shi, P.; Xu, X.; Nie, J.; Lu, X.; Yu, P.; Fan, Y.; Ge, F.; Guan, X. Electroacupuncture alleviates spatial memory deficits in METH withdrawal mice by enhancing astrocyte‐mediated glutamate clearance in the dCA1. Addict. Biol., 2022, 27(1), e13068. doi: 10.1111/adb.13068 PMID: 34128302
  342. Chojnacki, M.R.; Jayanthi, S.; Cadet, J.L. Methamphetamine pre-exposure induces steeper escalation of methamphetamine self-administration with consequent alterations in hippocampal glutamate AMPA receptor mRNAs. Eur. J. Pharmacol., 2020, 889, 173732. doi: 10.1016/j.ejphar.2020.173732 PMID: 33220277
  343. Su, H.; Chen, T.; Zhong, N.; Jiang, H.; Du, J.; Xiao, K.; Xu, D.; Wang, Z.; Zhao, M. γ-aminobutyric acid and glutamate/glutamine alterations of the left prefrontal cortex in individuals with methamphetamine use disorder: a combined transcranial magnetic stimulation-magnetic resonance spectroscopy study. Ann. Transl. Med., 2020, 8(6), 347. doi: 10.21037/atm.2020.02.95 PMID: 32355791
  344. Althobaiti, Y.S.; Almalki, A.H.; Das, S.C.; Alshehri, F.S.; Sari, Y. Effects of repeated high-dose methamphetamine and ceftriaxone post-treatments on tissue content of dopamine and serotonin as well as glutamate and glutamine. Neurosci. Lett., 2016, 634, 25-31. doi: 10.1016/j.neulet.2016.09.058 PMID: 27702628
  345. Rowley, H.L.; Pinder, L.; Kulkarni, R.; Cheetham, S.; Heal, D.J. Simultaneous determination of the effects of methamphetamine on GABA, glutamate and monoamines by microdialysis in the prefrontal cortex and hippocampus of rats. Drug Alcohol Depend., 2015, 156, e194. doi: 10.1016/j.drugalcdep.2015.07.524
  346. Tehrani, A.M.; Boroujeni, M.E.; Aliaghaei, A.; Feizi, M.A.H.; Safaralizadeh, R. Methamphetamine induces neurotoxicity-associated pathways and stereological changes in prefrontal cortex. Neurosci. Lett., 2019, 712, 134478. doi: 10.1016/j.neulet.2019.134478 PMID: 31491463
  347. Aarsland, D.; Batzu, L.; Halliday, G.M.; Geurtsen, G.J.; Ballard, C.; Ray Chaudhuri, K.; Weintraub, D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers, 2021, 7(1), 47. doi: 10.1038/s41572-021-00280-3 PMID: 34210995
  348. Papapetropoulos, S.; Mash, D.C. Psychotic symptoms in Parkinson’s disease. J. Neurol., 2005, 252(7), 753-764. doi: 10.1007/s00415-005-0918-5 PMID: 15999234
  349. Marsh, L. Depression and Parkinson’s disease: current knowledge. Curr. Neurol. Neurosci. Rep., 2013, 13(12), 409. doi: 10.1007/s11910-013-0409-5 PMID: 24190780
  350. Hsieh, J.H.; Stein, D.J.; Howells, F.M. The neurobiology of methamphetamine induced psychosis. Front. Hum. Neurosci., 2014, 8, 537. doi: 10.3389/fnhum.2014.00537 PMID: 25100979
  351. Zhang, Y.; Meng, X.; Jiao, Z.; Liu, Y.; Zhang, X.; Qu, S. Generation of a novel mouse model of Parkinson’s disease via targeted knockdown of glutamate transporter GLT-1 in the substantia nigra. ACS Chem. Neurosci., 2020, 11(3), 406-417. doi: 10.1021/acschemneuro.9b00609 PMID: 31909584
  352. Fischer, K.D.; Knackstedt, L.A.; Rosenberg, P.A. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochem. Int., 2021, 144, 104896. doi: 10.1016/j.neuint.2020.104896 PMID: 33159978
  353. Zhang, J.N.; Huang, Y.L.; Yang, H.M.; Wang, Y.; Gu, L.; Zhang, H. Blockade of metabotropic glutamate receptor 5 attenuates axonal degeneration in 6-hydroxydopamine-induced model of Parkinson’s disease. Mol. Cell. Neurosci., 2021, 110, 103572. doi: 10.1016/j.mcn.2020.103572 PMID: 33248235
  354. Gass, J.T.; Osborne, M.P.H.; Watson, N.L.; Brown, J.L.; Olive, M.F. mGluR5 antagonism attenuates methamphetamine reinforcement and prevents reinstatement of methamphetamine-seeking behavior in rats. Neuropsychopharmacology, 2009, 34(4), 820-833. doi: 10.1038/npp.2008.140 PMID: 18800068
  355. Petzold, J.; Szumlinski, K.K.; London, E.D. Targeting mGlu5 for methamphetamine use disorder. Pharmacol. Ther., 2021, 224, 107831. doi: 10.1016/j.pharmthera.2021.107831 PMID: 33705840
  356. Heysieattalab, S.; Naghdi, N.; Hosseinmardi, N.; Zarrindast, M.R.; Haghparast, A.; Khoshbouei, H. Methamphetamine-induced enhancement of hippocampal long-term potentiation is modulated by NMDA and GABA receptors in the shell-accumbens. Synapse, 2016, 70(8), 325-335. doi: 10.1002/syn.21905 PMID: 27029021
  357. Bravo, J.; Ribeiro, I.; Terceiro, A.F.; Andrade, E.B.; Portugal, C.C.; Lopes, I.M.; Azevedo, M.M.; Sousa, M.; Lopes, C.D.F.; Lobo, A.C.; Canedo, T.; Relvas, J.B.; Summavielle, T. Neuron-microglia contact-dependent mechanisms attenuate methamphetamine-induced microglia reactivity and enhance neuronal plasticity. Cells, 2022, 11(3), 355. doi: 10.3390/cells11030355 PMID: 35159165
  358. Simões, P.F.; Silva, A.P.; Pereira, F.C.; Marques, E.; Milhazes, N.; Borges, F.; Ribeiro, C.F.; Macedo, T.R. Methamphetamine changes NMDA and AMPA glutamate receptor subunit levels in the rat striatum and frontal cortex. Ann. N. Y. Acad. Sci., 2008, 1139(1), 232-241. doi: 10.1196/annals.1432.028 PMID: 18991869
  359. Jayanthi, S.; McCoy, M.T.; Chen, B.; Britt, J.P.; Kourrich, S.; Yau, H.J.; Ladenheim, B.; Krasnova, I.N.; Bonci, A.; Cadet, J.L. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biol. Psychiatry, 2014, 76(1), 47-56. doi: 10.1016/j.biopsych.2013.09.034 PMID: 24239129
  360. Jiao, D. liu, Y.; Li, X.; liu, J.; Zhao, M. The role of the GABA system in amphetamine-type stimulant use disorders. Front. Cell. Neurosci., 2015, 9, 162. doi: 10.3389/fncel.2015.00162 PMID: 25999814
  361. Zhao, Y.; Peng, S.; Jiang, H.; Du, J.; Yu, S.; Zhao, M. Variants in GABBR1 gene are associated with methamphetamine dependence and two years’ relapse after drug rehabilitation. J. Neuroimmune Pharmacol., 2018, 13(4), 523-531. doi: 10.1007/s11481-018-9802-9 PMID: 30143926
  362. Li, J.; Ma, S.; Chen, J.; Hu, K.; Li, Y.; Zhang, Z.; Su, Z.; Woodgett, J.R.; Li, M.; Huang, Q. GSK-3β contributes to Parkinsonian dopaminergic neuron death: Evidence from conditional knockout mice and tideglusib. Front. Mol. Neurosci., 2020, 13, 81. doi: 10.3389/fnmol.2020.00081 PMID: 32581704
  363. Duda, P.; Wiśniewski, J.; Wójtowicz, T.; Wójcicka, O.; Jaśkiewicz, M.; Drulis-Fajdasz, D.; Rakus, D.; McCubrey, J.A.; Gizak, A. Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opin. Ther. Targets, 2018, 22(10), 833-848. doi: 10.1080/14728222.2018.1526925 PMID: 30244615
  364. Kwok, J.B.J.; Hallupp, M.; Loy, C.T.; Chan, D.K.Y.; Woo, J.; Mellick, G.D.; Buchanan, D.D.; Silburn, P.A.; Halliday, G.M.; Schofield, P.R. GSK3B polymorphisms alter transcription and splicing in Parkinson’s disease. Ann. Neurol., 2005, 58(6), 829-839. doi: 10.1002/ana.20691 PMID: 16315267
  365. Nagao, M.; Hayashi, H. Glycogen synthase kinase-3beta is associated with Parkinson’s disease. Neurosci. Lett., 2009, 449(2), 103-107. doi: 10.1016/j.neulet.2008.10.104 PMID: 19007860
  366. Kalinderi, K.; Fidani, L.; Katsarou, Z.; Clarimón, J.; Bostantjopoulou, S.; Kotsis, A. GSK3β polymorphisms, MAPT H1 haplotype and Parkinson’s disease in a Greek cohort. Neurobiol. Aging, 2011, 32(3), 546.e1-546.e5. doi: 10.1016/j.neurobiolaging.2009.05.007 PMID: 19573950
  367. Credle, J.J.; George, J.L.; Wills, J.; Duka, V.; Shah, K.; Lee, Y-C.; Rodriguez, O.; Simkins, T.; Winter, M.; Moechars, D.; Steckler, T.; Goudreau, J.; Finkelstein, D.I.; Sidhu, A. GSK-3β dysregulation contributes to parkinson’s-like pathophysiology with associated region-specific phosphorylation and accumulation of tau and α-synuclein. Cell Death Differ., 2015, 22(5), 838-851. doi: 10.1038/cdd.2014.179 PMID: 25394490
  368. Lin, C.H.; Tsai, P.I.; Wu, R.M.; Chien, C.T. LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3ß. J. Neurosci., 2010, 30(39), 13138-13149. doi: 10.1523/JNEUROSCI.1737-10.2010 PMID: 20881132
  369. Kawakami, F.; Shimada, N.; Ohta, E.; Kagiya, G.; Kawashima, R.; Maekawa, T.; Maruyama, H.; Ichikawa, T. Leucine-rich repeat kinase 2 regulates tau phosphorylation through direct activation of glycogen synthase kinase-3β. FEBS J., 2014, 281(1), 3-13. doi: 10.1111/febs.12579 PMID: 24165324
  370. Kesh, S.; Kannan, R.R.; Sivaji, K.; Balakrishnan, A. Hesperidin downregulates kinases lrrk2 and gsk3β in a 6-OHDA induced Parkinson’s disease model. Neurosci. Lett., 2021, 740, 135426. doi: 10.1016/j.neulet.2020.135426 PMID: 33075420
  371. Jellinger, K.A. Dementia with Lewy bodies and Parkinson’s disease-dementia: current concepts and controversies. J. Neural Transm. (Vienna), 2018, 125(4), 615-650. doi: 10.1007/s00702-017-1821-9 PMID: 29222591
  372. Duka, T.; Duka, V.; Joyce, J.N.; Sidhu, A. α‐Synuclein contributes to GSK‐3β‐catalyzed Tau phosphorylation in Parkinson’s disease models. FASEB J., 2009, 23(9), 2820-2830. doi: 10.1096/fj.08-120410 PMID: 19369384
  373. Coakeley, S.; Strafella, A.P. Imaging tau pathology in Parkinsonisms. NPJ Parkinsons Dis., 2017, 3(1), 22. doi: 10.1038/s41531-017-0023-3 PMID: 28685158
  374. Das, G.; Misra, A.K.; Das, S.K.; Ray, K.; Ray, J. Role of tau kinases (CDK5R1 and GSK3B) in Parkinson’s disease: A study from India. Neurobiol. Aging, 2012, 33(7), 1485.e9-1485.e15. doi: 10.1016/j.neurobiolaging.2010.10.016 PMID: 21130530
  375. Li, D.W.; Liu, Z.Q. Wei-Chen; Min-Yao; Li, G.R. Association of glycogen synthase kinase-3β with Parkinson’s disease (Review). Mol. Med. Rep., 2014, 9(6), 2043-2050. doi: 10.3892/mmr.2014.2080 PMID: 24681994
  376. Zhu, J.; Xu, X.; Liang, Y.; Zhu, R. Downregulation of microRNA-15b-5p targeting the akt3-mediated GSK-3β/β-catenin signaling pathway inhibits cell apoptosis in Parkinson’s disease. BioMed Res. Int., 2021, 2021, 1-11. doi: 10.1155/2021/8814862 PMID: 33506036
  377. Di Martino, R.M.C.; Pruccoli, L.; Bisi, A.; Gobbi, S.; Rampa, A.; Martinez, A.; Pérez, C.; Martinez-Gonzalez, L.; Paglione, M.; Di Schiavi, E.; Seghetti, F.; Tarozzi, A.; Belluti, F. Novel curcumin-diethyl fumarate hybrid as a dualistic GSK-3β inhibitor/Nrf2 inducer for the treatment of Parkinson’s disease. ACS Chem. Neurosci., 2020, 11(17), 2728-2740. doi: 10.1021/acschemneuro.0c00363 PMID: 32663009
  378. Teixeira, F.R.; Randle, S.J.; Patel, S.P.; Mevissen, T.E.T.; Zenkeviciute, G.; Koide, T.; Komander, D.; Laman, H. Gsk3β and Tomm20 are substrates of the SCFFbxo7/PARK15 ubiquitin ligase associated with Parkinson’s disease. Biochem. J., 2016, 473(20), 3563-3580. doi: 10.1042/BCJ20160387 PMID: 27503909
  379. Fonzo, A.D.; Dekker, M.C.J.; Montagna, P.; Baruzzi, A.; Yonova, E.H.; Guedes, L.C.; Szczerbinska, A.; Zhao, T.; Dubbel-Hulsman, L.O.M.; Wouters, C.H.; de Graaff, E.; Oyen, W.J.G.; Simons, E.J.; Breedveld, G.J.; Oostra, B.A.; Horstink, M.W.; Bonifati, V. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology, 2009, 72(3), 240-245. doi: 10.1212/01.wnl.0000338144.10967.2b PMID: 19038853
  380. Yan, P.; Xu, D.; Ji, Y.; Yin, F.; Cui, J.; Su, R.; Wang, Y.; Zhu, Y.; Wei, S.; Lai, J. LiCl pretreatment ameliorates adolescent methamphetamine exposure-induced long-term alterations in behavior and hippocampal ultrastructure in adulthood in mice. Int. J. Neuropsychopharmacol., 2019, 22(4), 303-316. doi: 10.1093/ijnp/pyz001 PMID: 30649326
  381. Chen, L.; Zhou, L.; Yu, P.; Fang, F.; Jiang, L.; Fei, J.; Xiao, H.; Wang, J. Methamphetamine exposure upregulates the amyloid precursor protein and hyperphosphorylated tau expression: The roles of insulin signaling in SH-SY5Y cell line. J. Toxicol. Sci., 2019, 44(7), 493-503. doi: 10.2131/jts.44.493 PMID: 31270305
  382. Panmak, P.; Nopparat, C.; Permpoonpattana, K.; Namyen, J.; Govitrapong, P. Melatonin protects against methamphetamine-induced Alzheimer’s disease-like pathological changes in rat hippocampus. Neurochem. Int., 2021, 148, 105121. doi: 10.1016/j.neuint.2021.105121 PMID: 34224806
  383. Xu, C.; Wang, J.; Wu, P.; Xue, Y.; Zhu, W.; Li, Q.; Zhai, H.; Shi, J.; Lu, L. Glycogen synthase kinase 3β in the nucleus accumbens core is critical for methamphetamine-induced behavioral sensitization. J. Neurochem., 2011, 118(1), 126-139. doi: 10.1111/j.1471-4159.2011.07281.x PMID: 21517846
  384. Wang, J.; Sun, L.L.; Zhu, W.L.; Sun, Y.; Liu, J.F.; Lu, L.; Shi, J. Role of calcineurin in the VTA in rats behaviorally sensitized to methamphetamine. Psychopharmacology (Berl.), 2012, 220(1), 117-128. doi: 10.1007/s00213-011-2461-7 PMID: 21901318
  385. Xing, B.; Liang, X.; Liu, P.; Zhao, Y.; Chu, Z.; Dang, Y. Valproate inhibits methamphetamine induced hyperactivity via glycogen synthase kinase 3β signaling in the nucleus accumbens core. PLoS One, 2015, 10(6), e0128068. doi: 10.1371/journal.pone.0128068 PMID: 26030405
  386. Pogorelov, V.M.; Nomura, J.; Kim, J.; Kannan, G.; Ayhan, Y.; Yang, C.; Taniguchi, Y.; Abazyan, B.; Valentine, H.; Krasnova, I.N.; Kamiya, A.; Cadet, J.L.; Wong, D.F.; Pletnikov, M.V. Mutant DISC1 affects methamphetamine-induced sensitization and conditioned place preference: a comorbidity model. Neuropharmacology, 2012, 62(3), 1242-1251. doi: 10.1016/j.neuropharm.2011.02.003 PMID: 21315744
  387. Beaulieu, J.M.; Sotnikova, T.D.; Yao, W.D.; Kockeritz, L.; Woodgett, J.R.; Gainetdinov, R.R.; Caron, M.G. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc. Natl. Acad. Sci. USA, 2004, 101(14), 5099-5104. doi: 10.1073/pnas.0307921101 PMID: 15044694
  388. Winner, B.; Winkler, J. Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2015, 7(4), a021287. doi: 10.1101/cshperspect.a021287 PMID: 25833845
  389. Marxreiter, F.; Regensburger, M.; Winkler, J. Adult neurogenesis in Parkinson’s disease. Cell. Mol. Life Sci., 2013, 70(3), 459-473. doi: 10.1007/s00018-012-1062-x PMID: 22766974
  390. Regensburger, M.; Prots, I.; Winner, B. Adult hippocampal neurogenesis in Parkinson’s disease: impact on neuronal survival and plasticity. Neural Plast., 2014, 2014, 1-12. doi: 10.1155/2014/454696 PMID: 25110593
  391. Höglinger, G.U.; Rizk, P.; Muriel, M.P.; Duyckaerts, C.; Oertel, W.H.; Caille, I.; Hirsch, E.C. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat. Neurosci., 2004, 7(7), 726-735. doi: 10.1038/nn1265 PMID: 15195095
  392. Kehagia, A.A.; Barker, R.A.; Robbins, T.W. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol., 2010, 9(12), 1200-1213. doi: 10.1016/S1474-4422(10)70212-X PMID: 20880750
  393. Shen, Y.; Huang, J.; Liu, L.; Xu, X.; Han, C.; Zhang, G.; Jiang, H.; Li, J.; Lin, Z.; Xiong, N.; Wang, T. A compendium of preparation and application of stem cells in Parkinson’s disease: Current status and future prospects. Front. Aging Neurosci., 2016, 8, 117. doi: 10.3389/fnagi.2016.00117 PMID: 27303288
  394. Carlesimo, G.A.; Piras, F.; Assogna, F.; Pontieri, F.E.; Caltagirone, C.; Spalletta, G. Hippocampal abnormalities and memory deficits in Parkinson disease: A multimodal imaging study. Neurology, 2012, 78(24), 1939-1945. doi: 10.1212/WNL.0b013e318259e1c5 PMID: 22649213
  395. Churchyard, A.; Lees, A.J. The relationship between dementia and direct involvement of the hippocampus and amygdala in Parkinson’s disease. Neurology, 1997, 49(6), 1570-1576. doi: 10.1212/WNL.49.6.1570 PMID: 9409348
  396. Winner, B.; Regensburger, M.; Schreglmann, S.; Boyer, L.; Prots, I.; Rockenstein, E.; Mante, M.; Zhao, C.; Winkler, J.; Masliah, E.; Gage, F.H. Role of α-synuclein in adult neurogenesis and neuronal maturation in the dentate gyrus. J. Neurosci., 2012, 32(47), 16906-16916. doi: 10.1523/JNEUROSCI.2723-12.2012 PMID: 23175842
  397. Ferri, A.L.M.; Cavallaro, M.; Braida, D.; Di Cristofano, A.; Canta, A.; Vezzani, A.; Ottolenghi, S.; Pandolfi, P.P.; Sala, M.; DeBiasi, S.; Nicolis, S.K. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 2004, 131(15), 3805-3819. doi: 10.1242/dev.01204 PMID: 15240551
  398. Schlachetzki, J.C.M.; Grimm, T.; Schlachetzki, Z.; Ben Abdallah, N.M.B.; Ettle, B.; Vöhringer, P.; Ferger, B.; Winner, B.; Nuber, S.; Winkler, J. Dopaminergic lesioning impairs adult hippocampal neurogenesis by distinct modification of α-synuclein. J. Neurosci. Res., 2016, 94(1), 62-73. doi: 10.1002/jnr.23677 PMID: 26451750
  399. Schreglmann, S.R.; Regensburger, M.; Rockenstein, E.; Masliah, E.; Xiang, W.; Winkler, J.; Winner, B. The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice. PLoS One, 2015, 10(5), e0126261. doi: 10.1371/journal.pone.0126261 PMID: 25961568
  400. Crews, L.; Mizuno, H.; Desplats, P.; Rockenstein, E.; Adame, A.; Patrick, C.; Winner, B.; Winkler, J.; Masliah, E. Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J. Neurosci., 2008, 28(16), 4250-4260. doi: 10.1523/JNEUROSCI.0066-08.2008 PMID: 18417705
  401. Louvi, A.; Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. Nat. Rev. Neurosci., 2006, 7(2), 93-102. doi: 10.1038/nrn1847 PMID: 16429119
  402. Greenberg, D.A.; Jin, K. Turning neurogenesis up a Notch. Nat. Med., 2006, 12(8), 884-885. doi: 10.1038/nm0806-884 PMID: 16892029
  403. Breunig, J.J.; Silbereis, J.; Vaccarino, F.M.; Šestan, N.; Rakic, P. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc. Natl. Acad. Sci. USA, 2007, 104(51), 20558-20563. doi: 10.1073/pnas.0710156104 PMID: 18077357
  404. Mason, H.A.; Rakowiecki, S.M.; Gridley, T.; Fishell, G. Loss of notch activity in the developing central nervous system leads to increased cell death. Dev. Neurosci., 2006, 28(1-2), 49-57. doi: 10.1159/000090752 PMID: 16508303
  405. Baker, S.A.; Baker, K.A.; Hagg, T. Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur. J. Neurosci., 2004, 20(2), 575-579. doi: 10.1111/j.1460-9568.2004.03486.x PMID: 15233767
  406. Desplats, P.; Spencer, B.; Crews, L.; Pathel, P.; Morvinski-Friedmann, D.; Kosberg, K.; Roberts, S.; Patrick, C.; Winner, B.; Winkler, J.; Masliah, E. α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of Notch1. J. Biol. Chem., 2012, 287(38), 31691-31702. doi: 10.1074/jbc.M112.354522 PMID: 22833673
  407. Venkatesan, A.; Uzasci, L.; Chen, Z.; Rajbhandari, L.; Anderson, C.; Lee, M.H.; Bianchet, M.A.; Cotter, R.; Song, H.; Nath, A. Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination. Mol. Brain, 2011, 4(1), 28. doi: 10.1186/1756-6606-4-28 PMID: 21708025
  408. Galinato, M.H.; Takashima, Y.; Fannon, M.J.; Quach, L.W.; Morales Silva, R.J.; Mysore, K.K.; Terranova, M.J.; Dutta, R.R.; Ostrom, R.W.; Somkuwar, S.S.; Mandyam, C.D. Neurogenesis during abstinence is necessary for context-driven methamphetamine-related memory. J. Neurosci., 2018, 38(8), 2029-2042. doi: 10.1523/JNEUROSCI.2011-17.2018 PMID: 29363584
  409. Grimes, D.A.; Han, F.; Panisset, M.; Racacho, L.; Xiao, F.; Zou, R.; Westaff, K.; Bulman, D.E. Translated mutation in the Nurr1 gene as a cause for Parkinson’s disease. Mov. Disord., 2006, 21(7), 906-909. doi: 10.1002/mds.20820 PMID: 16532445
  410. Shim, J.W.; Park, C.H.; Bae, Y.C.; Bae, J.Y.; Chung, S.; Chang, M.Y.; Koh, H.C.; Lee, H.S.; Hwang, S.J.; Lee, K.H.; Lee, Y.S.; Choi, C.Y.; Lee, S.H. Generation of functional dopamine neurons from neural precursor cells isolated from the subventricular zone and white matter of the adult rat brain using Nurr1 overexpression. Stem Cells, 2007, 25(5), 1252-1262. doi: 10.1634/stemcells.2006-0274 PMID: 17234994
  411. Smith, G.A.; Rocha, E.M.; Rooney, T.; Barneoud, P.; McLean, J.R.; Beagan, J.; Osborn, T.; Coimbra, M.; Luo, Y.; Hallett, P.J.; Isacson, O.A. Nurr1 agonist causes neuroprotection in a Parkinson’s disease lesion model primed with the toll-like receptor 3 dsRNA inflammatory stimulant poly(I:C). PLoS One, 2015, 10(3), e0121072. doi: 10.1371/journal.pone.0121072 PMID: 25815475
  412. Argyrofthalmidou, M.; Spathis, A.D.; Maniati, M.; Poula, A.; Katsianou, M.A.; Sotiriou, E.; Manousaki, M.; Perier, C.; Papapanagiotou, I.; Papadopoulou-Daifoti, Z.; Pitychoutis, P.M.; Alexakos, P.; Vila, M.; Stefanis, L.; Vassilatis, D.K. Nurr1 repression mediates cardinal features of Parkinson’s disease in α-synuclein transgenic mice. Hum. Mol. Genet., 2021, 30(16), 1469-1483. doi: 10.1093/hmg/ddab118 PMID: 33902111
  413. Akiyama, K.; Isao, T.; Ide, S.; Ishikawa, M.; Saito, A. mRNA expression of the Nurr1 and NGFI-B nuclear receptor families following acute and chronic administration of methamphetamine. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(8), 1957-1966. doi: 10.1016/j.pnpbp.2008.09.021 PMID: 18930103
  414. Luo, Y.; Wang, Y.; Kuang, S.Y.; Chiang, Y.H.; Hoffer, B. Decreased level of Nurr1 in heterozygous young adult mice leads to exacerbated acute and long-term toxicity after repeated methamphetamine exposure. PLoS One, 2010, 5(12), e15193. doi: 10.1371/journal.pone.0015193 PMID: 21151937
  415. Ferrer, I.; Blanco, R. N-myc and c-myc expression in Alzheimer disease, Huntington disease and Parkinson disease. Brain Res. Mol. Brain Res., 2000, 77(2), 270-276. doi: 10.1016/S0169-328X(00)00062-0 PMID: 10837922
  416. Thiriet, N.; Jayanthi, S.; McCoy, M.; Ladenheim, B.; Lud Cadet, J. Methamphetamine increases expression of the apoptotic c-myc and l-myc genes in the mouse brain. Brain Res. Mol. Brain Res., 2001, 90(2), 202-204. doi: 10.1016/S0169-328X(01)00093-6 PMID: 11406298
  417. West, A.B.; Kapatos, G.; O’Farrell, C.; Gonzalez-de-Chavez, F.; Chiu, K.; Farrer, M.J.; Maidment, N.T. N-myc regulates parkin expression. J. Biol. Chem., 2004, 279(28), 28896-28902. doi: 10.1074/jbc.M400126200 PMID: 15078880
  418. Xie, T.; Tong, L.; Barrett, T.; Yuan, J.; Hatzidimitriou, G.; McCann, U.D.; Becker, K.G.; Donovan, D.M.; Ricaurte, G.A. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity. J. Neurosci., 2002, 22(1), 274-283. doi: 10.1523/JNEUROSCI.22-01-00274.2002 PMID: 11756511
  419. Li, J.; Dani, J.A.; Le, W. The role of transcription factor Pitx3 in dopamine neuron development and Parkinson’s disease. Curr. Top. Med. Chem., 2009, 9(10), 855-859.http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2872921 PMID: 19754401
  420. Krasnova, I.N.; Ladenheim, B.; Hodges, A.B.; Volkow, N.D.; Cadet, J.L. Chronic methamphetamine administration causes differential regulation of transcription factors in the rat midbrain. PLoS One, 2011, 6(4), e19179. doi: 10.1371/journal.pone.0019179 PMID: 21547080
  421. Clark, J.; Silvaggi, J.M.; Kiselak, T.; Zheng, K.; Clore, E.L.; Dai, Y.; Bass, C.E.; Simon, D.K. Pgc-1α overexpression downregulates Pitx3 and increases susceptibility to MPTP toxicity associated with decreased Bdnf. PLoS One, 2012, 7(11), e48925. doi: 10.1371/journal.pone.0048925 PMID: 23145024
  422. Blaudin de Thé, F.X.; Rekaik, H.; Prochiantz, A.; Fuchs, J.; Joshi, R.L. Neuroprotective transcription factors in animal models of Parkinson disease. Neural Plast., 2016, 2016, 1-11. doi: 10.1155/2016/6097107 PMID: 26881122
  423. Park, S.W.; He, Z.; Shen, X.; Roman, R.J.; Ma, T. Differential action of methamphetamine on tyrosine hydroxylase and dopamine transport in the nigrostriatal pathway of µ-opioid receptor knockout mice. Int. J. Neurosci., 2012, 122(6), 305-313. doi: 10.3109/00207454.2011.652319 PMID: 22329540
  424. Chauhan, H.; Killinger, B.; Miller, C.; Moszczynska, A. Single and binge methamphetamine administrations have different effects on the levels of dopamine D2 autoreceptor and dopamine transporter in rat striatum. Int. J. Mol. Sci., 2014, 15(4), 5884-5906. doi: 10.3390/ijms15045884 PMID: 24717411
  425. Mukda, S.; Vimolratana, O.; Govitrapong, P. Melatonin attenuates the amphetamine-induced decrease in vesicular monoamine transporter-2 expression in postnatal rat striatum. Neurosci. Lett., 2011, 488(2), 154-157. doi: 10.1016/j.neulet.2010.11.019 PMID: 21078367
  426. Pifl, C.; Rajput, A.; Reither, H.; Blesa, J.; Cavada, C.; Obeso, J.A.; Rajput, A.H.; Hornykiewicz, O. Is Parkinson’s disease a vesicular dopamine storage disorder? Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum. J. Neurosci., 2014, 34(24), 8210-8218. doi: 10.1523/JNEUROSCI.5456-13.2014 PMID: 24920625
  427. Lohr, K.M.; Stout, K.A.; Dunn, A.R.; Wang, M.; Salahpour, A.; Guillot, T.S.; Miller, G.W. Increased vesicular monoamine transporter 2 (VMAT2; Slc18a2) protects against methamphetamine toxicity. ACS Chem. Neurosci., 2015, 6(5), 790-799. doi: 10.1021/acschemneuro.5b00010 PMID: 25746685
  428. Joksimovic, M.; Awatramani, R. Wnt/-catenin signaling in midbrain dopaminergic neuron specification and neurogenesis. J. Mol. Cell Biol., 2014, 6(1), 27-33. doi: 10.1093/jmcb/mjt043 PMID: 24287202
  429. L’Episcopo, F.; Tirolo, C.; Testa, N.; Caniglia, S.; Morale, M.C.; Serapide, M.F.; Pluchino, S.; Marchetti, B. Wnt/β-catenin signaling is required to rescue midbrain dopaminergic progenitors and promote neurorepair in ageing mouse model of Parkinson’s disease. Stem Cells, 2014, 32(8), 2147-2163. doi: 10.1002/stem.1708 PMID: 24648001
  430. Arenas, E. Wnt signaling in midbrain dopaminergic neuron development and regenerative medicine for Parkinson’s disease. J. Mol. Cell Biol., 2014, 6(1), 42-53. doi: 10.1093/jmcb/mju001 PMID: 24431302
  431. Sharma, A.; Hu, X.T.; Napier, T.C.; Al-Harthi, L. Methamphetamine and HIV-1 Tat down regulate β-catenin signaling: implications for methampetamine abuse and HIV-1 co-morbidity. J. Neuroimmune Pharmacol., 2011, 6(4), 597-607. doi: 10.1007/s11481-011-9295-2 PMID: 21744004
  432. Niehrs, C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene, 2006, 25(57), 7469-7481. doi: 10.1038/sj.onc.1210054 PMID: 17143291
  433. Scott, E.L.; Brann, D.W. Estrogen regulation of Dkk1 and Wnt/β-Catenin signaling in neurodegenerative disease. Brain Res., 2013, 1514, 63-74. doi: 10.1016/j.brainres.2012.12.015 PMID: 23261660
  434. Chen, J.J.; Marsh, L. Anxiety in Parkinson’s disease: identification and management. Ther. Adv. Neurol. Disord., 2014, 7(1), 52-59. doi: 10.1177/1756285613495723 PMID: 24409202
  435. Revest, J-M.; Dupret, D.; Koehl, M.; Funk-Reiter, C.; Grosjean, N.; Piazza, P-V.; Abrous, D.N. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol. Psychiatry, 2009, 14(10), 959-967. doi: 10.1038/mp.2009.15 PMID: 19255582
  436. Yun, S.; Donovan, M.H.; Ross, M.N.; Richardson, D.R.; Reister, R.; Farnbauch, L.A.; Fischer, S.J.; Riethmacher, D.; Gershenfeld, H.K.; Lagace, D.C.; Eisch, A.J. Stress-induced anxiety- and depressive-like phenotype associated with transient reduction in neurogenesis in adult nestin-CreERT2/diphtheria toxin fragment A transgenic mice. PLoS One, 2016, 11(1), e0147256. doi: 10.1371/journal.pone.0147256 PMID: 26795203
  437. Vila, M.; Jackson-Lewis, V.; Vukosavic, S.; Djaldetti, R.; Liberatore, G.; Offen, D.; Korsmeyer, S.J.; Przedborski, S. Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 2001, 98(5), 2837-2842. doi: 10.1073/pnas.051633998 PMID: 11226327
  438. Hill, A.S.; Sahay, A.; Hen, R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology, 2015, 40(10), 2368-2378. doi: 10.1038/npp.2015.85 PMID: 25833129
  439. Huckans, M.; Wilhelm, C.J.; Phillips, T.J.; Huang, E.T.; Hudson, R.; Loftis, J.M. Parallel effects of methamphetamine on anxiety and CCL3 in humans and a genetic mouse model of high methamphetamine intake. Neuropsychobiology, 2017, 75(4), 169-177. doi: 10.1159/000485129 PMID: 29402784
  440. Chetsawang, J.; Suwanjang, W.; Pirompul, N.; Govitrapong, P.; Chetsawang, B. Calpastatin reduces methamphetamine-induced induction in c-Jun phosphorylation, Bax and cell death in neuroblastoma SH-SY5Y cells. Neurosci. Lett., 2012, 506(1), 7-11. doi: 10.1016/j.neulet.2011.10.021 PMID: 22027180
  441. Kabaria, S.; Choi, D.C.; Chaudhuri, A.D.; Jain, M.R.; Li, H.; Junn, E. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression. Free Radic. Biol. Med., 2015, 89, 548-556. doi: 10.1016/j.freeradbiomed.2015.09.010 PMID: 26453926
  442. Kahroba, H.; Ramezani, B.; Maadi, H.; Sadeghi, M.R.; Jaberie, H.; Ramezani, F. The role of Nrf2 in neural stem/progenitors cells: From maintaining stemness and self-renewal to promoting differentiation capability and facilitating therapeutic application in neurodegenerative disease. Ageing Res. Rev., 2021, 65, 101211. doi: 10.1016/j.arr.2020.101211 PMID: 33186670
  443. Meng, X.; Zhang, C.; Guo, Y.; Han, Y.; Wang, C.; Chu, H.; Kong, L.; Ma, H. TBHQ attenuates neurotoxicity induced by methamphetamine in the VTA through the Nrf2/HO-1 and PI3K/AKT signaling pathways. Oxid. Med. Cell. Longev., 2020, 2020, 1-13. doi: 10.1155/2020/8787156 PMID: 32351675
  444. Ekthuwapranee, K.; Sotthibundhu, A.; Govitrapong, P. Melatonin attenuates methamphetamine-induced inhibition of proliferation of adult rat hippocampal progenitor cells in vitro. J. Pineal Res., 2015, 58(4), 418-428. doi: 10.1111/jpi.12225 PMID: 25752339
  445. Ho, D.H.; Seol, W.; Son, I. Upregulation of the p53-p21 pathway by G2019S LRRK2 contributes to the cellular senescence and accumulation of α-synuclein. Cell Cycle, 2019, 18(4), 467-475. doi: 10.1080/15384101.2019.1577666 PMID: 30712480
  446. Baptista, S.; Lasgi, C.; Benstaali, C.; Milhazes, N.; Borges, F.; Fontes-Ribeiro, C.; Agasse, F.; Silva, A.P. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate. Stem Cell Res. (Amst.), 2014, 13(2), 329-341. doi: 10.1016/j.scr.2014.08.003 PMID: 25201326
  447. Rutsch, A.; Kantsjö, J.B.; Ronchi, F. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol., 2020, 11, 604179. doi: 10.3389/fimmu.2020.604179 PMID: 33362788
  448. Góralczyk-Bińkowska, A.; Szmajda-Krygier, D.; Kozłowska, E. The microbiota-gut-brain axis in psychiatric disorders. Int. J. Mol. Sci., 2022, 23(19), 11245. doi: 10.3390/ijms231911245 PMID: 36232548
  449. Socała, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Włodarczyk, M.; Zielińska, A.; Poleszak, E.; Fichna, J.; Wlaź, P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res., 2021, 172, 105840. doi: 10.1016/j.phrs.2021.105840 PMID: 34450312
  450. Mayer, E.A.; Nance, K.; Chen, S. The gut-brain axis. Annu. Rev. Med., 2022, 73(1), 439-453. doi: 10.1146/annurev-med-042320-014032 PMID: 34669431
  451. Wang, Q.; Luo, Y.; Ray Chaudhuri, K.; Reynolds, R.; Tan, E.K.; Pettersson, S. The role of gut dysbiosis in Parkinson’s disease: mechanistic insights and therapeutic options. Brain, 2021, 144(9), 2571-2593. doi: 10.1093/brain/awab156 PMID: 33856024
  452. Tan, A.H.; Lim, S.Y.; Lang, A.E. The microbiome–gut–brain axis in Parkinson disease — from basic research to the clinic. Nat. Rev. Neurol., 2022, 18(8), 476-495. doi: 10.1038/s41582-022-00681-2 PMID: 35750883
  453. Dogra, N.; Mani, R.J.; Katare, D.P. The gut-brain axis: Two ways signaling in Parkinson’s disease. Cell. Mol. Neurobiol., 2022, 42(2), 315-332. doi: 10.1007/s10571-021-01066-7 PMID: 33649989
  454. Kim, S.; Kwon, S.H.; Kam, T.I.; Panicker, N.; Karuppagounder, S.S.; Lee, S.; Lee, J.H.; Kim, W.R.; Kook, M.; Foss, C.A.; Shen, C.; Lee, H.; Kulkarni, S.; Pasricha, P.J.; Lee, G.; Pomper, M.G.; Dawson, V.L.; Dawson, T.M.; Ko, H.S. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron, 2019, 103(4), 627-641.e7. doi: 10.1016/j.neuron.2019.05.035 PMID: 31255487
  455. Kakoty, V. K C, S.; Dubey, S.K.; Yang, C.H.; Kesharwani, P.; Taliyan, R. The gut-brain connection in the pathogenicity of Parkinson disease: Putative role of autophagy. Neurosci. Lett., 2021, 753, 135865. doi: 10.1016/j.neulet.2021.135865 PMID: 33812929
  456. Klann, E.M.; Dissanayake, U.; Gurrala, A.; Farrer, M.; Shukla, A.W.; Ramirez-Zamora, A.; Mai, V.; Vedam-Mai, V. The gut-brain axis and its relation to Parkinson’s disease: A review. Front. Aging Neurosci., 2022, 13, 782082. doi: 10.3389/fnagi.2021.782082 PMID: 35069178
  457. Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; Chesselet, M.F.; Keshavarzian, A.; Shannon, K.M.; Krajmalnik-Brown, R.; Wittung-Stafshede, P.; Knight, R.; Mazmanian, S.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 2016, 167(6), 1469-1480.e12. doi: 10.1016/j.cell.2016.11.018 PMID: 27912057
  458. Sun, M.F.; Zhu, Y.L.; Zhou, Z.L.; Jia, X.B.; Xu, Y.D.; Yang, Q.; Cui, C.; Shen, Y.Q. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: Gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav. Immun., 2018, 70, 48-60. doi: 10.1016/j.bbi.2018.02.005 PMID: 29471030
  459. Hamamah, S.; Aghazarian, A.; Nazaryan, A.; Hajnal, A.; Covasa, M. Role of microbiota-gut-brain axis in regulating dopaminergic signaling. Biomedicines, 2022, 10(2), 436. doi: 10.3390/biomedicines10020436 PMID: 35203645
  460. Qin, C.; Hu, J.; Wan, Y.; Cai, M.; Wang, Z.; Peng, Z.; Liao, Y.; Li, D.; Yao, P.; Liu, L.; Rong, S.; Bao, W.; Xu, G.; Yang, W. Narrative review on potential role of gut microbiota in certain substance addiction. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 106, 110093. doi: 10.1016/j.pnpbp.2020.110093 PMID: 32898589
  461. Simpson, S.; Mclellan, R.; Wellmeyer, E.; Matalon, F.; George, O. Drugs and bugs: The gut-brain axis and substance use disorders. J. Neuroimmune Pharmacol., 2022, 17(1-2), 33-61. doi: 10.1007/s11481-021-10022-7 PMID: 34694571
  462. Wang, Z.; Hou, C.; Chen, L.; Zhang, M.; Luo, W. Potential roles of the gut microbiota in the manifestations of drug use disorders. Front. Psychiatry, 2022, 13, 1046804. doi: 10.3389/fpsyt.2022.1046804 PMID: 36590616
  463. Angoa-Pérez, M.; Zagorac, B.; Winters, A.D.; Greenberg, J.M.; Ahmad, M.; Theis, K.R.; Kuhn, D.M. Differential effects of synthetic psychoactive cathinones and amphetamine stimulants on the gut microbiome in mice. PLoS One, 2020, 15(1), e0227774. doi: 10.1371/journal.pone.0227774 PMID: 31978078
  464. Forouzan, S.; Hoffman, K.L.; Kosten, T.A. Methamphetamine exposure and its cessation alter gut microbiota and induce depressive-like behavioral effects on rats. Psychopharmacology (Berl.), 2021, 238(1), 281-292. doi: 10.1007/s00213-020-05681-y PMID: 33097978
  465. Chen, L.J.; Zhi, X.; Zhang, K.K.; Wang, L.B.; Li, J.H.; Liu, J.L.; Xu, L.L.; Yoshida, J.S.; Xie, X.L.; Wang, Q. Escalating dose-multiple binge methamphetamine treatment elicits neurotoxicity, altering gut microbiota and fecal metabolites in mice. Food Chem. Toxicol., 2021, 148, 111946. doi: 10.1016/j.fct.2020.111946 PMID: 33359793
  466. Li, Y.; Kong, D.; Bi, K.; Luo, H. Related effects of methamphetamine on the intestinal barrier via cytokines, and potential mechanisms by which methamphetamine may occur on the brain-gut axis. Front. Med. (Lausanne), 2022, 9, 783121. doi: 10.3389/fmed.2022.783121 PMID: 35620725
  467. Flack, A.; Persons, A.L.; Kousik, S.M.; Celeste Napier, T.; Moszczynska, A. Self-administration of methamphetamine alters gut biomarkers of toxicity. Eur. J. Neurosci., 2017, 46(3), 1918-1932. doi: 10.1111/ejn.13630 PMID: 28661099
  468. Shen, T.; Yue, Y.; He, T.; Huang, C.; Qu, B.; Lv, W.; Lai, H.Y. The association between the gut microbiota and Parkinson’s disease, a meta-analysis. Front. Aging Neurosci., 2021, 13, 636545. doi: 10.3389/fnagi.2021.636545 PMID: 33643026
  469. Davidson, M.; Mayer, M.; Habib, A.; Rashidi, N.; Filippone, R.T.; Fraser, S.; Prakash, M.D.; Sinnayah, P.; Tangalakis, K.; Mathai, M.L.; Nurgali, K.; Apostolopoulos, V. Methamphetamine induces systemic inflammation and anxiety: The role of the gut-immune-brain axis. Int. J. Mol. Sci., 2022, 23(19), 11224. doi: 10.3390/ijms231911224 PMID: 36232524
  470. Caputi, V.; Giron, M. Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int. J. Mol. Sci., 2018, 19(6), 1689. doi: 10.3390/ijms19061689 PMID: 29882798
  471. Vargas, A.M.; Rivera-Rodriguez, D.E.; Martinez, L.R. Methamphetamine alters the TLR4 signaling pathway, NF-κB activation, and pro-inflammatory cytokine production in LPS-challenged NR-9460 microglia-like cells. Mol. Immunol., 2020, 121, 159-166. doi: 10.1016/j.molimm.2020.03.013 PMID: 32222586
  472. Pellegrini, C.; Antonioli, L.; Calderone, V.; Colucci, R.; Fornai, M.; Blandizzi, C. Microbiota-gut-brain axis in health and disease: Is NLRP3 inflammasome at the crossroads of microbiota-gut-brain communications? Prog. Neurobiol., 2020, 191, 101806. doi: 10.1016/j.pneurobio.2020.101806 PMID: 32473843
  473. Su, Q.; Ng, W.L.; Goh, S.Y.; Gulam, M.Y.; Wang, L.F.; Tan, E.K.; Ahn, M.; Chao, Y.X. Targeting the inflammasome in Parkinson’s disease. Front. Aging Neurosci., 2022, 14, 957705. doi: 10.3389/fnagi.2022.957705 PMID: 36313019
  474. Xu, E.; Liu, J.; Liu, H.; Wang, X.; Xiong, H. Inflammasome activation by methamphetamine potentiates lipopolysaccharide stimulation of IL-1β production in microglia. J. Neuroimmune Pharmacol., 2018, 13(2), 237-253. doi: 10.1007/s11481-018-9780-y PMID: 29492824
  475. Zhao, J.; Shen, S.; Dai, Y.; Chen, F.; Wang, K. Methamphetamine induces intestinal inflammatory injury via nod-like receptor 3 protein (NLRP3) inflammasome overexpression in vitro and in vivo. Med. Sci. Monit., 2019, 25, 8515-8526. doi: 10.12659/MSM.920190 PMID: 31712546
  476. Sun, J.; Chen, F.; Chen, C.; Zhang, Z.; Zhang, Z.; Tian, W.; Yu, J.; Wang, K. Intestinal mRNA expression profile and bioinformatics analysis in a methamphetamine-induced mouse model of inflammatory bowel disease. Ann. Transl. Med., 2020, 8(24), 1669. doi: 10.21037/atm-20-7741 PMID: 33490181
  477. Loosen, S.H.; Yaqubi, K.; May, P.; Konrad, M.; Gollop, C.; Luedde, T.; Kostev, K.; Roderburg, C. Association between inflammatory bowel disease and subsequent development of restless legs syndrome and Parkinson’s disease: A retrospective cohort study of 35,988 primary care patients in Germany. Life (Basel), 2023, 13(4), 897. doi: 10.3390/life13040897 PMID: 37109426
  478. Guilarte, T.R. Is methamphetamine abuse a risk factor in parkinsonism? Neurotoxicology, 2001, 22(6), 725-731. doi: 10.1016/S0161-813X(01)00046-8 PMID: 11829406
  479. Wilson, J.M.; Kalasinsky, K.S.; Levey, A.I.; Bergeron, C.; Reiber, G.; Anthony, R.M.; Schmunk, G.A.; Shannak, K.; Haycock, J.W.; Kish, S.J. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat. Med., 1996, 2(6), 699-703. doi: 10.1038/nm0696-699 PMID: 8640565
  480. Volkow, N.D.; Chang, L.; Wang, G.J.; Fowler, J.S.; Leonido-Yee, M.; Franceschi, D.; Sedler, M.J.; Gatley, S.J.; Hitzemann, R.; Ding, Y.S.; Logan, J.; Wong, C.; Miller, E.N. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am. J. Psychiatry, 2001, 158(3), 377-382. doi: 10.1176/appi.ajp.158.3.377 PMID: 11229977
  481. Jan, R.K.; Kydd, R.R.; Russell, B.R. Functional and structural brain changes associated with methamphetamine abuse. Brain Sci., 2012, 2(4), 434-482. doi: 10.3390/brainsci2040434 PMID: 24961256
  482. Granado, N.; Ares-Santos, S.; Moratalla, R. Methamphetamine and Parkinson’s disease. Parkinsons Dis., 2013, 2013, 1-10. doi: 10.1155/2013/308052 PMID: 23476887
  483. Callaghan, R.C.; Cunningham, J.K.; Sajeev, G.; Kish, S.J. Incidence of Parkinson’s disease among hospital patients with methamphetamine-use disorders. Mov. Disord., 2010, 25(14), 2333-2339. doi: 10.1002/mds.23263 PMID: 20737543
  484. Callaghan, R.C.; Cunningham, J.K.; Sykes, J.; Kish, S.J. Increased risk of Parkinson’s disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs. Drug Alcohol Depend., 2012, 120(1-3), 35-40. doi: 10.1016/j.drugalcdep.2011.06.013 PMID: 21794992
  485. Curtin, K.; Fleckenstein, A.E.; Robison, R.J.; Crookston, M.J.; Smith, K.R.; Hanson, G.R. Methamphetamine/amphetamine abuse and risk of Parkinson’s disease in Utah: A population-based assessment. Drug Alcohol Depend., 2015, 146, 30-38. doi: 10.1016/j.drugalcdep.2014.10.027 PMID: 25479916
  486. Rumpf, J.J.; Albers, J.; Fricke, C.; Mueller, W.; Classen, J. Structural abnormality of substantia nigra induced by methamphetamine abuse. Mov. Disord., 2017, 32(12), 1784-1788. doi: 10.1002/mds.27205 PMID: 29082542
  487. Tang, K.A.; Liang, H.; Lin, Y.; Zhang, C.; Tang, W.K.; Chu, W.C.; Ungvari, G.S. Persistent parkinsonism after high dose intravenous methamphetamine: A case report. Neurol. Asia, 2017, 22(1), 77-80.
  488. Matthew, B.J.; Gedzior, J.S. Drug-induced parkinsonism following chronic methamphetamine use by a patient on haloperidol decanoate. Int. J. Psychiatry Med., 2015, 50(4), 405-411. doi: 10.1177/0091217415612736 PMID: 26526398
  489. Yancey, J. Drug-induced Parkinsonism in a Patient with methamphetamine abuse. Neurology, 2016, 86(16 Supplement), P4.317..
  490. Fabbrini, G.; Abbruzzese, G.; Marconi, S.; Zappia, M. Selegiline. Clin. Neuropharmacol., 2012, 35(3), 134-140. doi: 10.1097/WNF.0b013e318255838b PMID: 22592509
  491. Tulloch, I.K.; Afanador, L.; Baker, L.; Ordonez, D.; Payne, H.; Mexhitaj, I.; Olivares, E.; Chowdhury, A.; Angulo, J.A. Methamphetamine induces low levels of neurogenesis in striatal neuron subpopulations and differential motor performance. Neurotox. Res., 2014, 26(2), 115-129. doi: 10.1007/s12640-014-9456-1 PMID: 24549503

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers