The Role of Induced Pluripotent Stem Cells in the Treatment of Stroke


Cite item

Full Text

Abstract

:Stroke is a neurological disorder with high disability and mortality rates. Almost 80% of stroke cases are ischemic stroke, and the remaining are hemorrhagic stroke. The only approved treatment for ischemic stroke is thrombolysis and/or thrombectomy. However, these treatments cannot sufficiently relieve the disease outcome, and many patients remain disabled even after effective thrombolysis. Therefore, rehabilitative therapies are necessary to induce remodeling in the brain. Currently, stem cell transplantation, especially via the use of induced pluripotent stem cells (iPSCs), is considered a promising alternative therapy for stimulating neurogenesis and brain remodeling. iPSCs are generated from somatic cells by specific transcription factors. The biological functions of iPSCs are similar to those of embryonic stem cells (ESCs), including immunomodulation, reduced cerebral blood flow, cerebral edema, and autophagy. Although iPSC therapy plays a promising role in both hemorrhagic and ischemic stroke, its application is associated with certain limitations. Tumor formation, immune rejection, stem cell survival, and migration are some concerns associated with stem cell therapy. Therefore, cell-free therapy as an alternative method can overcome these limitations. This study reviews the therapeutic application of iPSCs in stroke models and the underlying mechanisms and constraints of these cells. Moreover, cell-free therapy using exosomes, apoptotic bodies, and microvesicles as alternative treatments is discussed.

About the authors

Yasaman Darban

Student Research Committee, Babol University of Medical Sciences

Email: info@benthamscience.net

Hamid Askari

Student Research Committee, Babol University of Medical Sciences

Email: info@benthamscience.net

Maryam Ghasemi-Kasman

Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Hanie Yavarpour-Bali

Student Research Committee, Babol University of Medical Sciences

Email: info@benthamscience.net

Amirabbas Dehpanah

Student Research Committee, Babol University of Medical Sciences

Email: info@benthamscience.net

Parnia Gholizade

Student Research Committee, Babol University of Medical Sciences

Email: info@benthamscience.net

Nasrin Nosratiyan

Student Research Committee, Babol University of Medical Sciences

Email: info@benthamscience.net

References

  1. Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; Fullerton, H.J.; Gillespie, C.; Hailpern, S.M.; Heit, J.A.; Howard, V.J.; Kissela, B.M.; Kittner, S.J.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Makuc, D.M.; Marcus, G.M.; Marelli, A.; Matchar, D.B.; Moy, C.S.; Mozaffarian, D.; Mussolino, M.E.; Nichol, G.; Paynter, N.P.; Soliman, E.Z.; Sorlie, P.D.; Sotoodehnia, N.; Turan, T.N.; Virani, S.S.; Wong, N.D.; Woo, D.; Turner, M.B. Heart disease and stroke statistics-2012 update: A report from the American Heart Association. Circulation, 2012, 125(1), e2-e220. PMID: 22179539
  2. Hinkle, J.L.; Guanci, M.M. Acute ischemic stroke review. J. Neurosci. Nurs., 2007, 39(5), 285-310. doi: 10.1097/01376517-200710000-00005 PMID: 17966295
  3. World Health OrganizationNeurological disorders: Public health challenges 2006. Available from: https://www.who.int/publications/i/item/9789241563369
  4. Amarenco, P.; Bogousslavsky, J.; Caplan, L.R.; Donnan, G.A.; Hennerici, M.G. New approach to stroke subtyping: The A-S-C-O (phenotypic) classification of stroke. Cerebrovasc. Dis., 2009, 27(5), 502-508. doi: 10.1159/000210433 PMID: 19342826
  5. Abbott, N.J. Röِnnbäck, L.; Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53. doi: 10.1038/nrn1824 PMID: 16371949
  6. del Zoppo, G.J.; Saver, J.L.; Jauch, E.C.; Adams, H.P., Jr Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: A science advisory from the American Heart Association/American Stroke Association. Stroke, 2009, 40(8), 2945-2948. doi: 10.1161/STROKEAHA.109.192535 PMID: 19478221
  7. Saver, J.L.; Goyal, M.; van der Lugt, A.; Menon, B.K.; Majoie, C.B.L.M.; Dippel, D.W.; Campbell, B.C.; Nogueira, R.G.; Demchuk, A.M.; Tomasello, A.; Cardona, P.; Devlin, T.G.; Frei, D.F.; du Mesnil de Rochemont, R.; Berkhemer, O.A.; Jovin, T.G.; Siddiqui, A.H.; van Zwam, W.H.; Davis, S.M. Castañٌo, C.; Sapkota, B.L.; Fransen, P.S.; Molina, C.; van Oostenbrugge, R.J.; Chamorro, Á; Lingsma, H.; Silver, F.L.; Donnan, G.A.; Shuaib, A.; Brown, S.; Stouch, B.; Mitchell, P.J.; Davalos, A.; Roos, Y.B.W.E.M.; Hill, M.D. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: A meta-analysis. JAMA, 2016, 316(12), 1279-1288. doi: 10.1001/jama.2016.13647 PMID: 27673305
  8. Gervois, P.; Wolfs, E.; Ratajczak, J.; Dillen, Y.; Vangansewinkel, T.; Hilkens, P.; Bronckaers, A.; Lambrichts, I.; Struys, T. Stem cell-based therapies for ischemic stroke: Preclinical results and the potential of imaging-assisted evaluation of donor cell fate and mechanisms of brain regeneration. Med. Res. Rev., 2016, 36(6), 1080-1126. doi: 10.1002/med.21400 PMID: 27439773
  9. Li, Y.; Yu, S.P.; Mohamad, O.; Genetta, T.; Wei, L. Sublethal transient global ischemia stimulates migration of neuroblasts and neurogenesis in mice. Transl. Stroke Res., 2010, 1(3), 184-196. doi: 10.1007/s12975-010-0016-6 PMID: 21792374
  10. Li, W.L.; Yu, S.P.; Ogle, M.E.; Ding, X.S.; Wei, L. Enhanced neurogenesis and cell migration following focal ischemia and peripheral stimulation in mice. Dev. Neurobiol., 2008, 68(13), 1474-1486. doi: 10.1002/dneu.20674 PMID: 18777565
  11. Kornack, D.R.; Rakic, P. The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc. Natl. Acad. Sci. USA, 2001, 98(8), 4752-4757. doi: 10.1073/pnas.081074998 PMID: 11296302
  12. Menezes, J.R.L.; Smith, C.M.; Nelson, K.C.; Luskin, M.B. The division of neuronal progenitor cells during migration in the neonatal mammalian forebrain. Mol. Cell. Neurosci., 1995, 6(6), 496-508. doi: 10.1006/mcne.1995.0002 PMID: 8742267
  13. Smith, C.M.; Luskin, M.B. Cell cycle length of olfactory bulb neuronal progenitors in the rostral migratory stream. Dev. Dyn., 1998, 213(2), 220-227. doi: 10.1002/(SICI)1097-0177(199810)213:23.0.CO;2-I PMID: 9786422
  14. Kokaia, Z.; Thored, P.; Arvidsson, A.; Lindvall, O. Regulation of stroke-induced neurogenesis in adult brain--recent scientific progress. Cereb. Cortex, 2006, 16(Suppl. 1), i162-i167. doi: 10.1093/cercor/bhj174 PMID: 16766702
  15. Wu, Q.; Yang, B.; Hu, K.; Cao, C.; Man, Y.; Wang, P. Deriving osteogenic cells from induced pluripotent stem cells for bone tissue engineering. Tissue Eng. Part B Rev., 2017, 23(1), 1-8. doi: 10.1089/ten.teb.2015.0559 PMID: 27392674
  16. Mohamad, O.; Drury-Stewart, D.; Song, M.; Faulkner, B.; Chen, D.; Yu, S.P.; Wei, L. Vector-free and transgene-free human iPS cells differentiate into functional neurons and enhance functional recovery after ischemic stroke in mice. PLoS One, 2013, 8(5), e64160. doi: 10.1371/journal.pone.0064160 PMID: 23717557
  17. Yuan, T.; Liao, W.; Feng, N.H.; Lou, Y.L.; Niu, X.; Zhang, A.J.; Wang, Y.; Deng, Z.F. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion. Stem Cell Res. Ther., 2013, 4(3), 73. doi: 10.1186/scrt224 PMID: 23769173
  18. Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4), 663-676. doi: 10.1016/j.cell.2006.07.024 PMID: 16904174
  19. Yu, F.; Li, Y.; Morshead, C. Induced pluripotent stem cells for the treatment of stroke: The potential and the pitfalls. Curr. Stem Cell Res. Ther., 2013, 8(5), 407-414. doi: 10.2174/1574888X113089990052 PMID: 23895059
  20. Gurdon, J.B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol., 1962, 10(5), 622-640. doi: 10.1242/dev.10.4.622
  21. Wilmut, I.; Schnieke, AE.; McWhir, J.; Kind, AJ.; Campbell, KHS. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619), 810.
  22. Abe, K.; Yamashita, T.; Takizawa, S.; Kuroda, S.; Kinouchi, H.; Kawahara, N. Stem cell therapy for cerebral ischemia: From basic science to clinical applications. J. Cereb. Blood Flow Metab., 2012, 32(7), 1317-1331. doi: 10.1038/jcbfm.2011.187 PMID: 22252239
  23. Mandai, M.; Watanabe, A.; Kurimoto, Y.; Hirami, Y.; Morinaga, C.; Daimon, T.; Fujihara, M.; Akimaru, H.; Sakai, N.; Shibata, Y.; Terada, M.; Nomiya, Y.; Tanishima, S.; Nakamura, M.; Kamao, H.; Sugita, S.; Onishi, A.; Ito, T.; Fujita, K.; Kawamata, S.; Go, M.J.; Shinohara, C.; Hata, K.; Sawada, M.; Yamamoto, M.; Ohta, S.; Ohara, Y.; Yoshida, K.; Kuwahara, J.; Kitano, Y.; Amano, N.; Umekage, M.; Kitaoka, F.; Tanaka, A.; Okada, C.; Takasu, N.; Ogawa, S.; Yamanaka, S.; Takahashi, M. Autologous induced stem-cell–derived retinal cells for macular degeneration. N. Engl. J. Med., 2017, 376(11), 1038-1046. doi: 10.1056/NEJMoa1608368 PMID: 28296613
  24. Okita, K.; Yamanaka, S. Induced pluripotent stem cells: Opportunities and challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2011, 366(1575), 2198-2207. doi: 10.1098/rstb.2011.0016 PMID: 21727125
  25. Kajikawa, K.; Imaizumi, K.; Shinozaki, M.; Shibata, S.; Shindo, T.; Kitagawa, T.; Shibata, R.; Kamata, Y.; Kojima, K.; Nagoshi, N.; Matsumoto, M.; Nakamura, M.; Okano, H. Cell therapy for spinal cord injury by using human iPSC-derived region-specific neural progenitor cells. Mol. Brain, 2020, 13(1), 120. doi: 10.1186/s13041-020-00662-w PMID: 32883317
  26. Mathur, A.; Loskill, P.; Shao, K.; Huebsch, N.; Hong, S.; Marcus, S.G.; Marks, N.; Mandegar, M.; Conklin, B.R.; Lee, L.P.; Healy, K.E. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci. Rep., 2015, 5(1), 8883. doi: 10.1038/srep08883 PMID: 25748532
  27. Gutbier, S.; Wanke, F.; Dahm, N.; Rümmelin, A.; Zimmermann, S.; Christensen, K. Köِchl, F.; Rautanen, A.; Hatje, K.; Geering, B.; Zhang, J.D.; Britschgi, M.; Cowley, S.A.; Patsch, C. Large-scale production of human iPSC-derived macrophages for drug screening. Int. J. Mol. Sci., 2020, 21(13), 4808. doi: 10.3390/ijms21134808 PMID: 32645954
  28. Feng, L.; Chao, J.; Tian, E.; Li, L.; Ye, P.; Zhang, M.; Chen, X.; Cui, Q.; Sun, G.; Zhou, T.; Felix, G.; Qin, Y.; Li, W.; Meza, E.D.; Klein, J.; Ghoda, L.; Hu, W.; Luo, Y.; Dang, W.; Hsu, D.; Gold, J.; Goldman, S.A.; Matalon, R.; Shi, Y. Cell-based therapy for canavan disease using human iPSC-derived NPCs and OPCs. Adv. Sci. (Weinh.), 2020, 7(23), 2002155. doi: 10.1002/advs.202002155 PMID: 33304759
  29. Sugai, K.; Sumida, M.; Shofuda, T.; Yamaguchi, R.; Tamura, T.; Kohzuki, T.; Abe, T.; Shibata, R.; Kamata, Y.; Ito, S.; Okubo, T.; Tsuji, O.; Nori, S.; Nagoshi, N.; Yamanaka, S.; Kawamata, S.; Kanemura, Y.; Nakamura, M.; Okano, H. First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: Study protocol. Regen. Ther., 2021, 18, 321-333. doi: 10.1016/j.reth.2021.08.005 PMID: 34522725
  30. Choi, D.W.; Rothman, S.M. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci., 1990, 13(1), 171-182. doi: 10.1146/annurev.ne.13.030190.001131 PMID: 1970230
  31. Deleglise, B.; Lassus, B.; Soubeyre, V.; Doulazmi, M.; Brugg, B.; Vanhoutte, P.; Peyrin, J.M. Dysregulated neurotransmission induces trans-synaptic degeneration in reconstructed neuronal networks. Sci. Rep., 2018, 8(1), 11596. doi: 10.1038/s41598-018-29918-1 PMID: 30072750
  32. Qin, J.; Ma, X.; Qi, H.; Song, B.; Wang, Y.; Wen, X.; Wang, Q.M.; Sun, S.; Li, Y.; Zhang, R.; Liu, X.; Hou, H.; Gong, G.; Xu, Y. Transplantation of induced pluripotent stem cells alleviates cerebral inflammation and neural damage in hemorrhagic stroke. PLoS One, 2015, 10(6), e0129881. doi: 10.1371/journal.pone.0129881 PMID: 26086994
  33. Lee, I.H.; Huang, S.S.; Chuang, C.Y.; Liao, K.H.; Chang, L.H.; Chuang, C.C.; Su, Y.S.; Lin, H.J.; Hsieh, J.Y.; Su, S.H.; Lee, O.K.S.; Kuo, H.C. Delayed epidural transplantation of human induced pluripotent stem cell-derived neural progenitors enhances functional recovery after stroke. Sci. Rep., 2017, 7(1), 1943. doi: 10.1038/s41598-017-02137-w PMID: 28512358
  34. Huang, J.Y.; Hong, Y.T.; Chuang, J.I. Fibroblast growth factor 9 prevents MPP+-induced death of dopaminergic neurons and is involved in melatonin neuroprotection in vivo and in vitro. J. Neurochem., 2009, 109(5), 1400-1412. doi: 10.1111/j.1471-4159.2009.06061.x PMID: 19476551
  35. Shurin, G.V.; Ferris, R.; Tourkova, I.L.; Perez, L.; Lokshin, A.; Balkir, L.; Collins, B.; Chatta, G.S.; Shurin, M.R. Loss of new chemokine CXCL14 in tumor tissue is associated with low infiltration by dendritic cells (DC), while restoration of human CXCL14 expression in tumor cells causes attraction of DC both in vitro and in vivo. J. Immunol., 2005, 174(9), 5490-5498. doi: 10.4049/jimmunol.174.9.5490 PMID: 15843547
  36. Banisadr, G.; Bhattacharyya, B.J.; Belmadani, A.; Izen, S.C.; Ren, D.; Tran, P.B.; Miller, R.J. The chemokine BRAK/CXCL14 regulates synaptic transmission in the adult mouse dentate gyrus stem cell niche. J. Neurochem., 2011, 119(6), 1173-1182. doi: 10.1111/j.1471-4159.2011.07509.x PMID: 21955359
  37. Zhang, J.; Moats-Staats, B.M.; Ye, P.; D’Ercole, A.J. Expression of insulin-like growth factor system genes during the early postnatal neurogenesis in the mouse hippocampus. J. Neurosci. Res., 2007, 85(8), 1618-1627. doi: 10.1002/jnr.21289 PMID: 17455296
  38. Jin, K.; Mao, X.O.; Eshoo, M.W.; Nagayama, T.; Minami, M.; Simon, R.P.; Greenberg, D.A. Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann. Neurol., 2001, 50(1), 93-103. doi: 10.1002/ana.1073 PMID: 11456315
  39. Mehrian-Shai, R.; Chen, C.D.; Shi, T.; Horvath, S.; Nelson, S.F.; Reichardt, J.K.V.; Sawyers, C.L. Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status and PI3K/Akt pathway activation in glioblastoma and prostate cancer. Proc. Natl. Acad. Sci. USA, 2007, 104(13), 5563-5568. doi: 10.1073/pnas.0609139104 PMID: 17372210
  40. Tatarishvili, J.; Oki, K.; Monni, E.; Koch, P.; Memanishvili, T.; Buga, A.M.; Verma, V.; Popa-Wagner, A.; Brüstle, O.; Lindvall, O.; Kokaia, Z. Human induced pluripotent stem cells improve recovery in stroke-injured aged rats. Restor. Neurol. Neurosci., 2014, 32(4), 547-558. doi: 10.3233/RNN-140404 PMID: 24916776
  41. Lau, V.W.; Platt, S.R.; Stice, S.L.; West, F.D. Induced pluripotent stem-cell-derived neural cell types in treatment of stroke. Cell Therapy For Brain Injury; Springer: Berlin, Heidelberg, 2015, pp. 147-172.
  42. Chen, S.J.; Chang, C.M.; Tsai, S.K.; Chang, Y.L.; Chou, S.J.; Huang, S.S.; Tai, L.K.; Chen, Y.C.; Ku, H.H.; Li, H.Y.; Chiou, S.H. Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev., 2010, 19(11), 1757-1767. doi: 10.1089/scd.2009.0452 PMID: 20192839
  43. Grøّnning Hansen, M.; Laterza, C.; Palma-Tortosa, S.; Kvist, G.; Monni, E.; Tsupykov, O.; Tornero, D.; Uoshima, N.; Soriano, J.; Bengzon, J.; Martino, G.; Skibo, G.; Lindvall, O.; Kokaia, Z. Grafted human pluripotent stem cell-derived cortical neurons integrate into adult human cortical neural circuitry. Stem Cells Transl. Med., 2020, 9(11), 1365-1377. doi: 10.1002/sctm.20-0134 PMID: 32602201
  44. Baker, E.W.; Platt, S.R.; Lau, V.W.; Grace, H.E.; Holmes, S.P.; Wang, L.; Duberstein, K.J.; Howerth, E.W.; Kinder, H.A.; Stice, S.L.; Hess, D.C.; Mao, H.; West, F.D. Induced pluripotent stem cell-derived neural stem cell therapy enhances recovery in an ischemic stroke pig model. Sci. Rep., 2017, 7(1), 10075. doi: 10.1038/s41598-017-10406-x PMID: 28855627
  45. Arai, K.; Jin, G.; Navaratna, D.; Lo, E.H. Brain angiogenesis in developmental and pathological processes: Neurovascular injury and angiogenic recovery after stroke. FEBS J., 2009, 276(17), 4644-4652. doi: 10.1111/j.1742-4658.2009.07176.x PMID: 19664070
  46. Brumm, A.J.; Carmichael, S.T. Not just a rush of blood to the head. Nat. Med., 2012, 18(11), 1609-1610. doi: 10.1038/nm.2990 PMID: 23135507
  47. Cai, M.; Zhang, W.; Weng, Z.; Stetler, R.A.; Jiang, X.; Shi, Y.; Gao, Y.; Chen, J. Promoting neurovascular recovery in aged mice after ischemic stroke - prophylactic effect of omega-3 polyunsaturated fatty acids. Aging Dis., 2017, 8(5), 531-545. doi: 10.14336/AD.2017.0520 PMID: 28966799
  48. Jiang, X.; Suenaga, J.; Pu, H.; Wei, Z.; Smith, A.D.; Hu, X.; Shi, Y.; Chen, J. Post-stroke administration of omega-3 polyunsaturated fatty acids promotes neurovascular restoration after ischemic stroke in mice: Efficacy declines with aging. Neurobiol. Dis., 2019, 126, 62-75. doi: 10.1016/j.nbd.2018.09.012 PMID: 30218758
  49. Oki, K.; Tatarishvili, J.; Wood, J.; Koch, P.; Wattananit, S.; Mine, Y.; Monni, E.; Tornero, D.; Ahlenius, H.; Ladewig, J.; Brüstle, O.; Lindvall, O.; Kokaia, Z. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells, 2012, 30(6), 1120-1133. doi: 10.1002/stem.1104 PMID: 22495829
  50. Chan, S.J.; Esposito, E.; Hayakawa, K.; Mandaville, E.; Smith, R.A.A.; Guo, S.; Niu, W.; Wong, P.T.H.; Cool, S.M.; Lo, E.H.; Nurcombe, V. Vascular endothelial growth factor 165-binding heparan sulfate promotes functional recovery from cerebral ischemia. Stroke, 2020, 51(9), 2844-2853. doi: 10.1161/STROKEAHA.119.025304 PMID: 32772683
  51. Kelleher, J.; Dickinson, A.; Cain, S.; Hu, Y.; Bates, N.; Harvey, A.; Ren, J.; Zhang, W.; Moreton, F.C.; Muir, K.W.; Ward, C.; Touyz, R.M.; Sharma, P.; Xu, Q.; Kimber, S.J.; Wang, T. Patient-specific iPSC Model of a genetic vascular dementia syndrome reveals failure of mural cells to stabilize capillary structures. Stem Cell Rep, 2019, 13(5), 817-831. doi: 10.1016/j.stemcr.2019.10.004 PMID: 31680059
  52. Xia, Y.; Ling, X.; Hu, G.; Zhu, Q.; Zhang, J.; Li, Q.; Zhao, B.; Wang, Y.; Deng, Z. Small extracellular vesicles secreted by human iPSC-derived MSC enhance angiogenesis through inhibiting STAT3-dependent autophagy in ischemic stroke. Stem Cell Res. Ther., 2020, 11(1), 313. doi: 10.1186/s13287-020-01834-0 PMID: 32698909
  53. Ceradini, D.J.; Kulkarni, A.R.; Callaghan, M.J.; Tepper, O.M.; Bastidas, N.; Kleinman, M.E.; Capla, J.M.; Galiano, R.D.; Levine, J.P.; Gurtner, G.C. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med., 2004, 10(8), 858-864. doi: 10.1038/nm1075 PMID: 15235597
  54. Suzuki, Y.; Rahman, M.; Mitsuya, H. Diverse transcriptional response of CD4+ T cells to stromal cell-derived factor SDF-1: Cell survival promotion and priming effects of SDF-1 on CD4+ T cells. J. Immunol., 2001, 167(6), 3064-3073. doi: 10.4049/jimmunol.167.6.3064 PMID: 11544290
  55. Shyu, W.C.; Lin, S.Z.; Yen, P.S.; Su, C.Y.; Chen, D.C.; Wang, H.J.; Li, H. Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. J. Pharmacol. Exp. Ther., 2008, 324(2), 834-849. doi: 10.1124/jpet.107.127746 PMID: 18029549
  56. Ziai, W.C. Hematology and inflammatory signaling of intracerebral hemorrhage. Stroke, 2013, 44(6)(1), S74, S78. doi: 10.1161/STROKEAHA.111.000662 PMID: 23709738
  57. Eckert, A.; Huang, L.; Gonzalez, R.; Kim, H.S.; Hamblin, M.H.; Lee, J.P. Bystander effect fuels human induced pluripotent stem cell-derived neural stem cells to quickly attenuate early stage neurological deficits after stroke. Stem Cells Transl. Med., 2015, 4(7), 841-851. doi: 10.5966/sctm.2014-0184 PMID: 26025980
  58. Li, H.; Wu, J.; Shen, H.; Yao, X.; Liu, C.; Pianta, S.; Han, J.; Borlongan, C.V.; Chen, G. Autophagy in hemorrhagic stroke: Mechanisms and clinical implications. Prog. Neurobiol., 2018, 163-164, 79-97. doi: 10.1016/j.pneurobio.2017.04.002 PMID: 28414101
  59. Thiebaut, A.M.; Hedou, E.; Marciniak, S.J.; Vivien, D.; Roussel, B.D. Proteostasis during cerebral ischemia. Front. Neurosci., 2019, 13, 637. doi: 10.3389/fnins.2019.00637 PMID: 31275110
  60. Buckley, K.M.; Hess, D.L.; Sazonova, I.Y.; Periyasamy-Thandavan, S.; Barrett, J.R.; Kirks, R.; Grace, H.; Kondrikova, G.; Johnson, M.H.; Hess, D.C.; Schoenlein, P.V.; Hoda, M.N.; Hill, W.D. Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke. Exp. Transl. Stroke Med., 2014, 6(1), 8. doi: 10.1186/2040-7378-6-8 PMID: 24991402
  61. Shi, R.; Weng, J.; Zhao, L.; Li, X.M.; Gao, T.M.; Kong, J. Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci. Ther., 2012, 18(3), 250-260. doi: 10.1111/j.1755-5949.2012.00295.x PMID: 22449108
  62. Ryan, F.; Khodagholi, F.; Dargahi, L.; Minai-Tehrani, D.; Ahmadiani, A. Temporal pattern and crosstalk of necroptosis markers with autophagy and apoptosis associated proteins in ischemic hippocampus. Neurotox. Res., 2018, 34(1), 79-92. doi: 10.1007/s12640-017-9861-3 PMID: 29313217
  63. Cui, D.R.; Wang, L.; Jiang, W.; Qi, A.H.; Zhou, Q.H.; Zhang, X.L. Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-κB/p53 signaling pathway. Neuroscience, 2013, 246, 117-132. doi: 10.1016/j.neuroscience.2013.04.054 PMID: 23644056
  64. Al-Ahmad, A.J.; Pervaiz, I.; Karamyan, V.T. Neurolysin substrates bradykinin, neurotensin and substance P enhance brain microvascular permeability in a human in vitro model. J. Neuroendocrinol., 2021, 33(2), e12931. doi: 10.1111/jne.12931 PMID: 33506602
  65. Wu, Y.; Wu, J.; Ju, R.; Chen, Z.; Xu, Q. Comparison of intracerebral transplantation effects of different stem cells on rodent stroke models. Cell Biochem. Funct., 2015, 33(4), 174-182. doi: 10.1002/cbf.3083 PMID: 25914321
  66. Tornero, D.; Tsupykov, O.; Granmo, M.; Rodriguez, C. Grøّnning-Hansen, M.; Thelin, J.; Smozhanik, E.; Laterza, C.; Wattananit, S.; Ge, R.; Tatarishvili, J.; Grealish, S.; Brüstle, O.; Skibo, G.; Parmar, M.; Schouenborg, J.; Lindvall, O.; Kokaia, Z. Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. Brain, 2017, 140(3), aww347. doi: 10.1093/brain/aww347 PMID: 28115364
  67. Jensen, M.B.; Yan, H.; Krishnaney-Davison, R.; Al Sawaf, A.; Zhang, S.C. Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model. J. Stroke Cerebrovasc. Dis., 2013, 22(4), 304-308. doi: 10.1016/j.jstrokecerebrovasdis.2011.09.008 PMID: 22078778
  68. Chang, D.J.; Lee, N.; Park, I.H.; Choi, C.; Jeon, I.; Kwon, J.; Oh, S.H.; Shin, D.A.; Do, J.T.; Lee, D.R.; Lee, H.; Hong, K.S.; Daley, G.Q.; Song, J.; Moon, H. Therapeutic potential of human induced pluripotent stem cells in experimental stroke. Cell Transplant., 2013, 22(8), 1427-1440. doi: 10.3727/096368912X657314 PMID: 23044029
  69. Oh, S.H.; Jeong, Y.W.; Choi, W.; Noh, J.E.; Lee, S.; Kim, H.S. Multimodal therapeutic effects of neural precursor cells derived from human-induced pluripotent stem cells through episomal plasmid-based reprogramming in a rodent model of ischemic stroke. Stem Cells Int., 2020, 2020, 4061516. doi: 10.1155/2020/4061516
  70. Liu, S.P.; Fu, R.H.; Wu, D.C.; Hsu, C.Y.; Chang, C.H.; Lee, W.; Lee, Y.D.; Liu, C.H.; Chien, Y.J.; Lin, S.Z.; Shyu, W.C. Mouse-induced pluripotent stem cells generated under hypoxic conditions in the absence of viral infection and oncogenic factors and used for ischemic stroke therapy. Stem Cells Dev., 2014, 23(4), 421-433. doi: 10.1089/scd.2013.0182 PMID: 24266622
  71. Kawai, H.; Yamashita, T.; Ohta, Y.; Deguchi, K.; Nagotani, S.; Zhang, X.; Ikeda, Y.; Matsuura, T.; Abe, K. Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J. Cereb. Blood Flow Metab., 2010, 30(8), 1487-1493. doi: 10.1038/jcbfm.2010.32 PMID: 20216552
  72. Zong, Y.; Xin, L.; Goldstein, A.S.; Lawson, D.A.; Teitell, M.A.; Witte, O.N. ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc. Natl. Acad. Sci. USA, 2009, 106(30), 12465-12470. doi: 10.1073/pnas.0905931106 PMID: 19592505
  73. Huang, C.Y.; Fujimura, M.; Noshita, N.; Chang, Y.Y.; Chan, P.H. SOD1 down-regulates NF-kappaB and c-Myc expression in mice after transient focal cerebral ischemia. J. Cereb. Blood Flow Metab., 2001, 21(2), 163-173. doi: 10.1097/00004647-200102000-00008 PMID: 11176282
  74. Baudino, T.A.; McKay, C.; Pendeville-Samain, H.; Nilsson, J.A.; Maclean, K.H.; White, E.L.; Davis, A.C.; Ihle, J.N.; Cleveland, J.L. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev., 2002, 16(19), 2530-2543. doi: 10.1101/gad.1024602 PMID: 12368264
  75. Miljan, E.A.; Sinden, J.D. Stem cell treatment of ischemic brain injury. Curr. Opin. Mol. Ther., 2009, 11(4), 394-403. PMID: 19649984
  76. Albekairi, T.H.; Vaidya, B.; Patel, R.; Nozohouri, S.; Villalba, H.; Zhang, Y.; Lee, Y.S.; Al-Ahmad, A.; Abbruscato, T.J. Brain delivery of a potent opioid receptor agonist, biphalin during ischemic stroke: Role of organic anion transporting polypeptide (OATP). Pharmaceutics, 2019, 11(9), 467. doi: 10.3390/pharmaceutics11090467 PMID: 31509975
  77. Payne, S.L.; Anandakumaran, P.N.; Varga, B.V.; Morshead, C.M.; Nagy, A.; Shoichet, M.S. In vitro maturation of human iPSC-derived neuroepithelial cells influences transplant survival in the stroke-injured rat brain. Tissue Eng. Part A, 2018, 24(3-4), 351-360. doi: 10.1089/ten.tea.2016.0515 PMID: 28594288
  78. Benoit, J.P.; Faisant, N.; Venier-Julienne, M.C.; Menei, P. Development of microspheres for neurological disorders: From basics to clinical applications. J. Control. Release, 2000, 65(1-2), 285-296. doi: 10.1016/S0168-3659(99)00250-3 PMID: 10699288
  79. Nicholas, A.P.; McInnis, C.; Gupta, K.B.; Snow, W.W.; Love, D.F.; Mason, D.W.; Ferrell, T.M.; Staas, J.K.; Tice, T.R. The fate of biodegradable microspheres injected into rat brain. Neurosci. Lett., 2002, 323(2), 85-88. doi: 10.1016/S0304-3940(01)02534-4 PMID: 11950499
  80. Bible, E.; Chau, D.Y.S.; Alexander, M.R.; Price, J.; Shakesheff, K.M.; Modo, M. Attachment of stem cells to scaffold particles for intra-cerebral transplantation. Nat. Protoc., 2009, 4(10), 1440-1453. doi: 10.1038/nprot.2009.156 PMID: 19798079
  81. Tornero, D.; Wattananit, S. Grøّnning Madsen, M.; Koch, P.; Wood, J.; Tatarishvili, J.; Mine, Y.; Ge, R.; Monni, E.; Devaraju, K.; Hevner, R.F.; Brüstle, O.; Lindvall, O.; Kokaia, Z. Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain, 2013, 136(12), 3561-3577. doi: 10.1093/brain/awt278 PMID: 24148272
  82. Knight, D.K.; Gillies, E.R.; Mequanint, K. Strategies in functional poly(ester amide) syntheses to study human coronary artery smooth muscle cell interactions. Biomacromolecules, 2011, 12(7), 2475-2487. doi: 10.1021/bm200149k PMID: 21619072
  83. Huang, Y.; Wang, L.; Li, S.; Liu, X.; Lee, K.; Verbeken, E.; van de Werf, F.; de Scheerder, I. Stent-based tempamine delivery on neointimal formation in a porcine coronary model. Acute Card. Care, 2006, 8(4), 210-216. doi: 10.1080/17482940600949661 PMID: 17162547
  84. Kropp, M.; Morawa, K.M.; Mihov, G.; Salz, A.; Harmening, N.; Franken, A.; Kemp, A.; Dias, A.; Thies, J.; Johnen, S.; Thumann, G. Biocompatibility of poly(ester amide) (PEA) microfibrils in ocular tissues. Polymers (Basel), 2014, 6(1), 243-260. doi: 10.3390/polym6010243
  85. Darsalia, V.; Allison, S.J.; Cusulin, C.; Monni, E.; Kuzdas, D.; Kallur, T.; Lindvall, O.; Kokaia, Z. Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. J. Cereb. Blood Flow Metab., 2011, 31(1), 235-242. doi: 10.1038/jcbfm.2010.81 PMID: 20531461
  86. Memanishvili, T.; Kupatadze, N.; Tugushi, D.; Katsarava, R.; Wattananit, S.; Hara, N.; Tornero, D.; Kokaia, Z. Generation of cortical neurons from human induced-pluripotent stem cells by biodegradable polymeric microspheres loaded with priming factors. Biomed. Mater., 2016, 11(2), 025011. doi: 10.1088/1748-6041/11/2/025011 PMID: 27007569
  87. Wu, R.; Luo, S.; Yang, H.; Hu, X.; Lin, A.; Pan, G.; Zhong, X.; Li, Z. Transplantation of neural progenitor cells generated from human urine epithelial cell-derived induced pluripotent stem cells improves neurological functions in rats with stroke. Discov. Med., 2020, 29(156), 53-64. PMID: 32598863
  88. Ould-Brahim, F.; Sarma, S.N.; Syal, C.; Lu, K.J.; Seegobin, M.; Carter, A.; Jeffers, M.S.; Doré, C.; Stanford, W.L.; Corbett, D.; Wang, J. Metformin preconditioning of human induced pluripotent stem cell-derived neural stem cells promotes their engraftment and improves post-stroke regeneration and recovery. Stem Cells Dev., 2018, 27(16), 1085-1096. doi: 10.1089/scd.2018.0055 PMID: 29893190
  89. Chau, M.J.; Deveau, T.C.; Song, M.; Gu, X.; Chen, D.; Wei, L. iPSC transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats. Stem Cells, 2014, 32(12), 3075-3087. doi: 10.1002/stem.1802 PMID: 25132189
  90. McCrary, M.R.; Jesson, K.; Wei, Z.Z.; Logun, M.; Lenear, C.; Tan, S.; Gu, X.; Jiang, M.Q.; Karumbaiah, L.; Yu, S.P.; Wei, L. Cortical transplantation of brain-mimetic glycosaminoglycan scaffolds and neural progenitor cells promotes vascular regeneration and functional recovery after ischemic stroke in mice. Adv. Healthc. Mater., 2020, 9(5), 1900285. doi: 10.1002/adhm.201900285 PMID: 31977165
  91. Wang, Z.; Zheng, D.; Tan, Y.S.; Yuan, Q.; Yuan, F.; Zhang, S.C. Enabling survival of transplanted neural precursor cells in the ischemic brain. Adv. Sci. (Weinh.), 2023, 10(33), 2302527. doi: 10.1002/advs.202302527 PMID: 37867250
  92. Yu, S.P.; Tung, J.K.; Wei, Z.Z.; Chen, D.; Berglund, K.; Zhong, W.; Zhang, J.Y.; Gu, X.; Song, M.; Gross, R.E.; Lin, S.Z.; Wei, L. Optochemogenetic stimulation of transplanted iPS-NPCs enhances neuronal repair and functional recovery after ischemic stroke. J. Neurosci., 2019, 39(33), 6571-6594. doi: 10.1523/JNEUROSCI.2010-18.2019 PMID: 31263065
  93. Nih, L.R.; Moshayedi, P.; Llorente, I.L.; Berg, A.R.; Cinkornpumin, J.; Lowry, W.E.; Segura, T.; Carmichael, S.T. Engineered HA hydrogel for stem cell transplantation in the brain: Biocompatibility data using a design of experiment approach. Data Brief, 2017, 10, 202-209. doi: 10.1016/j.dib.2016.11.069 PMID: 27995155
  94. Chau, M.; Deveau, T.C.; Song, M.; Wei, Z.Z.; Gu, X.; Yu, S.P.; Wei, L. Transplantation of iPS cell-derived neural progenitors overexpressing SDF-1α increases regeneration and functional recovery after ischemic stroke. Oncotarget, 2017, 8(57), 97537-97553. doi: 10.18632/oncotarget.22180 PMID: 29228630
  95. Zhao, T.; Zhang, Z.N.; Rong, Z.; Xu, Y. Immunogenicity of induced pluripotent stem cells. Nature, 2011, 474(7350), 212-215. doi: 10.1038/nature10135 PMID: 21572395
  96. Bang, O.Y.; Kim, E.H.; Cha, J.M.; Moon, G.J. Adult stem cell therapy for stroke: Challenges and progress. J. Stroke, 2016, 18(3), 256-266. doi: 10.5853/jos.2016.01263 PMID: 27733032
  97. Schenke-Layland, K.; Rhodes, K.E.; Angelis, E.; Butylkova, Y.; Heydarkhan-Hagvall, S.; Gekas, C.; Zhang, R.; Goldhaber, J.I.; Mikkola, H.K.; Plath, K.; MacLellan, W.R. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells, 2008, 26(6), 1537-1546. doi: 10.1634/stemcells.2008-0033 PMID: 18450826
  98. Hanna, J.; Markoulaki, S.; Schorderet, P.; Carey, B.W.; Beard, C.; Wernig, M.; Creyghton, M.P.; Steine, E.J.; Cassady, J.P.; Foreman, R.; Lengner, C.J.; Dausman, J.A.; Jaenisch, R. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell, 2008, 133(2), 250-264. doi: 10.1016/j.cell.2008.03.028 PMID: 18423197
  99. Lee, M.O.; Moon, S.H.; Jeong, H.C.; Yi, J.Y.; Lee, T.H.; Shim, S.H.; Rhee, Y.H.; Lee, S.H.; Oh, S.J.; Lee, M.Y.; Han, M.J.; Cho, Y.S.; Chung, H.M.; Kim, K.S.; Cha, H.J. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc. Natl. Acad. Sci. USA, 2013, 110(35), E3281-E3290. doi: 10.1073/pnas.1303669110 PMID: 23918355
  100. Zhu, Y.; Wan, S.; Zhan, R. Inducible pluripotent stem cells for the treatment of ischemic stroke: Current status and problems. Rev. Neurosci., 2012, 23(4), 393-402. doi: 10.1515/revneuro-2012-0042 PMID: 23089605
  101. Amabile, G.; Meissner, A. Induced pluripotent stem cells: Current progress and potential for regenerative medicine. Trends Mol. Med., 2009, 15(2), 59-68. doi: 10.1016/j.molmed.2008.12.003 PMID: 19162546
  102. Cai, J.; Li, W.; Su, H.; Qin, D.; Yang, J.; Zhu, F.; Xu, J.; He, W.; Guo, X.; Labuda, K.; Peterbauer, A.; Wolbank, S.; Zhong, M.; Li, Z.; Wu, W.; So, K.F.; Redl, H.; Zeng, L.; Esteban, M.A.; Pei, D. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J. Biol. Chem., 2010, 285(15), 11227-11234. doi: 10.1074/jbc.M109.086389 PMID: 20139068
  103. Lister, R.; Pelizzola, M.; Kida, Y.S.; Hawkins, R.D.; Nery, J.R.; Hon, G.; Antosiewicz-Bourget, J.; O’Malley, R.; Castanon, R.; Klugman, S.; Downes, M.; Yu, R.; Stewart, R.; Ren, B.; Thomson, J.A.; Evans, R.M.; Ecker, J.R. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 2011, 471(7336), 68-73. doi: 10.1038/nature09798 PMID: 21289626
  104. Wakabayashi, K.; Nagai, A.; Sheikh, A.M.; Shiota, Y.; Narantuya, D.; Watanabe, T.; Masuda, J.; Kobayashi, S.; Kim, S.U.; Yamaguchi, S. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J. Neurosci. Res., 2010, 88(5), 1017-1025. doi: 10.1002/jnr.22279 PMID: 19885863
  105. Chen, J.; Li, Y.; Katakowski, M.; Chen, X.; Wang, L.; Lu, D.; Lu, M.; Gautam, S.C.; Chopp, M. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J. Neurosci. Res., 2003, 73(6), 778-786. doi: 10.1002/jnr.10691 PMID: 12949903
  106. Cui, J.; Cui, C.; Cui, Y.; Li, R.; Sheng, H.; Jiang, X.; Tian, Y.; Wang, K.; Gao, J. Bone marrow mesenchymal stem cell transplantation increases GAP-43 expression via ERK1/2 and PI3K/Akt pathways in intracerebral hemorrhage. Cell. Physiol. Biochem., 2017, 42(1), 137-144. doi: 10.1159/000477122 PMID: 28505619
  107. Azevedo-Pereira, RL.; Daadi, MM. Isolation and purification of self-renewable human neural stem cells for cell therapy in experimental model of ischemic stroke. Methods Mol. Biol., 2013, 1059, 157-167. doi: 10.1007/978-1-62703-574-3_14
  108. Gao, L.; Xu, W.; Li, T.; Chen, J.; Shao, A.; Yan, F.; Chen, G. Stem cell therapy: A promising therapeutic method for intracerebral hemorrhage. Cell Transplant., 2018, 27(12), 1809-1824. doi: 10.1177/0963689718773363 PMID: 29871521
  109. Hu, C.; Zhao, L.; Zhang, L.; Bao, Q.; Li, L. Mesenchymal stem cell-based cell-free strategies: Safe and effective treatments for liver injury. Stem Cell Res. Ther., 2020, 11(1), 377. doi: 10.1186/s13287-020-01895-1 PMID: 32883343
  110. Villarreal, C.F.; Evangelista, A.F.; Soares, M.B.P. Cell-free therapy: A neuroregenerative approach to sensory neuropathy? Neural Regen. Res., 2019, 14(8), 1383-1384. doi: 10.4103/1673-5374.253522 PMID: 30964062
  111. Singh, A.B.; Harris, R.C. Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell. Signal., 2005, 17(10), 1183-1193. doi: 10.1016/j.cellsig.2005.03.026 PMID: 15982853
  112. Budnik, V. Ruiz-Cañٌada, C.; Wendler, F. Extracellular vesicles round off communication in the nervous system. Nat. Rev. Neurosci., 2016, 17(3), 160-172. doi: 10.1038/nrn.2015.29 PMID: 26891626
  113. Castellana, D.; Toti, F.; Freyssinet, J.M. Membrane microvesicles: Macromessengers in cancer disease and progression. Thromb. Res., 2010, 125(Suppl. 2), S84-S88. doi: 10.1016/S0049-3848(10)70021-9 PMID: 20434014
  114. Castellana, D.; Zobairi, F.; Martinez, M.C.; Panaro, M.A.; Mitolo, V.; Freyssinet, J.M.; Kunzelmann, C. Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: A role for activated fibroblasts and CX3CL1-CX3CR1 axis. Cancer Res., 2009, 69(3), 785-793. doi: 10.1158/0008-5472.CAN-08-1946 PMID: 19155311
  115. Maas, S.L.N.; Breakefield, X.O.; Weaver, A.M. Extracellular vesicles: Unique intercellular delivery vehicles. Trends Cell Biol., 2017, 27(3), 172-188. doi: 10.1016/j.tcb.2016.11.003 PMID: 27979573
  116. Hur, Y.H.; Cerione, R.A.; Antonyak, M.A. Extracellular vesicles and their roles in stem cell biology. Stem Cells, 2020, 38(4), 469-476. doi: 10.1002/stem.3140 PMID: 31828924
  117. Reclusa, P.; Taverna, S.; Pucci, M.; Durendez, E.; Calabuig, S.; Manca, P.; Serrano, M.J.; Sober, L.; Pauwels, P.; Russo, A.; Rolfo, C. Exosomes as diagnostic and predictive biomarkers in lung cancer. J. Thorac. Dis., 2017, 9(S13), S1373-S1382. doi: 10.21037/jtd.2017.10.67 PMID: 29184676
  118. Peng, G.; Yuan, Y.; Wu, S.; He, F.; Hu, Y.; Luo, B. MicroRNA let-7e is a potential circulating biomarker of acute stage ischemic stroke. Transl. Stroke Res., 2015, 6(6), 437-445. doi: 10.1007/s12975-015-0422-x PMID: 26415639
  119. Frühbeis, C. Fröِhlich, D.; Krämer-Albers, E.M. Emerging roles of exosomes in neuron-glia communication. Front. Physiol., 2012, 3, 119. doi: 10.3389/fphys.2012.00119 PMID: 22557979
  120. Aryani, A.; Denecke, B. Exosomes as a nanodelivery system: A key to the future of neuromedicine? Mol. Neurobiol., 2016, 53(2), 818-834. doi: 10.1007/s12035-014-9054-5 PMID: 25502465
  121. Fröِhlich, D.; Kuo, W.P.; Frühbeis, C.; Sun, J.J.; Zehendner, C.M.; Luhmann, H.J.; Pinto, S.; Toedling, J.; Trotter, J.; Krämer-Albers, E.M. Multifaceted effects of oligodendroglial exosomes on neurons: Impact on neuronal firing rate, signal transduction and gene regulation. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1652), 20130510. doi: 10.1098/rstb.2013.0510 PMID: 25135971
  122. Krämer-Albers, E.M.; Bretz, N.; Tenzer, S.; Winterstein, C.; Möِbius, W.; Berger, H.; Nave, K.A.; Schild, H.; Trotter, J. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin. Appl., 2007, 1(11), 1446-1461. doi: 10.1002/prca.200700522 PMID: 21136642
  123. You, L.; Wang, Z.; Li, H.; Shou, J.; Jing, Z.; Xie, J.; Sui, X.; Pan, H.; Han, W. The role of STAT3 in autophagy. Autophagy, 2015, 11(5), 729-739. doi: 10.1080/15548627.2015.1017192 PMID: 25951043
  124. Oh, M.; Lee, J.; Kim, Y.; Rhee, W.; Park, J. Exosomes derived from human induced pluripotent stem cells ameliorate the aging of skin fibroblasts. Int. J. Mol. Sci., 2018, 19(6), 1715. doi: 10.3390/ijms19061715 PMID: 29890746
  125. Ye, M.; Ni, Q.; Qi, H.; Qian, X.; Chen, J.; Guo, X.; Li, M.; Zhao, Y.; Xue, G.; Deng, H.; Zhang, L. Exosomes derived from human induced pluripotent stem cells-endothelia cells promotes postnatal angiogenesis in mice bearing ischemic limbs. Int. J. Biol. Sci., 2019, 15(1), 158-168. doi: 10.7150/ijbs.28392 PMID: 30662356
  126. Tian, T.; Zhang, H.X.; He, C.P.; Fan, S.; Zhu, Y.L.; Qi, C.; Huang, N.P.; Xiao, Z.D.; Lu, Z.H.; Tannous, B.A.; Gao, J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials, 2018, 150, 137-149. doi: 10.1016/j.biomaterials.2017.10.012 PMID: 29040874
  127. Joladarashi, D.; Garikipati, V.N.S.; Thandavarayan, R.A.; Verma, S.K.; Mackie, A.R.; Khan, M.; Gumpert, A.M.; Bhimaraj, A.; Youker, K.A.; Uribe, C.; Suresh Babu, S.; Jeyabal, P.; Kishore, R.; Krishnamurthy, P. Enhanced cardiac regenerative ability of stem cells after ischemia-reperfusion injury. J. Am. Coll. Cardiol., 2015, 66(20), 2214-2226. doi: 10.1016/j.jacc.2015.09.009 PMID: 26564600
  128. Santoso, M.R.; Ikeda, G.; Tada, Y.; Jung, J.H.; Vaskova, E.; Sierra, R.G.; Gati, C.; Goldstone, A.B.; von Bornstaedt, D.; Shukla, P.; Wu, J.C.; Wakatsuki, S.; Woo, Y.J.; Yang, P.C. Exosomes from induced pluripotent stem cell-derived cardiomyocytes promote autophagy for myocardial repair. J. Am. Heart Assoc., 2020, 9(6), e014345. doi: 10.1161/JAHA.119.014345 PMID: 32131688
  129. Nong, K.; Wang, W.; Niu, X.; Hu, B.; Ma, C.; Bai, Y.; Wu, B.; Wang, Y.; Ai, K. Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats. Cytotherapy, 2016, 18(12), 1548-1559. doi: 10.1016/j.jcyt.2016.08.002 PMID: 27592404
  130. Hettiarachchi, NT.; Boyle, JP.; Dallas, ML.; Al-Owais, MM.; Scragg, JL. Peers, C Heme oxygenase-1 derived carbon monoxide suppresses Aβ1-42 toxicity in astrocytes. Cell Death Dis., 2017, 8(6), e2884. doi: 10.1038/cddis.2017.276
  131. Carmichael, S.T. Rodent models of focal stroke: Size, mechanism, and purpose. NeuroRx, 2005, 2(3), 396-409. doi: 10.1602/neurorx.2.3.396 PMID: 16389304
  132. Krencik, R.; Weick, J.P.; Liu, Y.; Zhang, Z.J.; Zhang, S.C. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat. Biotechnol., 2011, 29(6), 528-534. doi: 10.1038/nbt.1877 PMID: 21602806
  133. Li, X.; Tao, Y.; Bradley, R.; Du, Z.; Tao, Y.; Kong, L.; Dong, Y.; Jones, J.; Yan, Y.; Harder, C.R.K.; Friedman, L.M.; Bilal, M.; Hoffmann, B.; Zhang, S.C. Fast generation of functional subtype astrocytes from human pluripotent stem cells. Stem Cell Rep, 2018, 11(4), 998-1008. doi: 10.1016/j.stemcr.2018.08.019 PMID: 30269954
  134. Llorente, I.L.; Xie, Y.; Mazzitelli, J.A.; Hatanaka, E.A.; Cinkornpumin, J.; Miller, D.R.; Lin, Y.; Lowry, W.E.; Carmichael, S.T. Patient-derived glial enriched progenitors repair functional deficits due to white matter stroke and vascular dementia in rodents. Sci. Transl. Med., 2021, 13(590), eaaz6747. doi: 10.1126/scitranslmed.aaz6747 PMID: 33883275
  135. Ma, D.K.; Ming, G.; Song, H. Glial influences on neural stem cell development: Cellular niches for adult neurogenesis. Curr. Opin. Neurobiol., 2005, 15(5), 514-520. doi: 10.1016/j.conb.2005.08.003 PMID: 16144763
  136. Curtis, MA.; Kam, M.; Nannmark, U.; Anderson, MF.; Axell, MZ.; Wikkelso, C. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science, 2007, 315(5816), 1243-1249.
  137. Gage, F.H. Mammalian neural stem cells. Science, 2000, 287(5457), 1433-1438. doi: 10.1126/science.287.5457.1433 PMID: 10688783
  138. Chen, K-H.; Lin, K-C.; Wallace, C.G.; Li, Y-C.; Shao, P-L.; Chiang, J.Y.; Sung, P.H.; Yip, H.K. Human induced pluripotent stem cell-derived mesenchymal stem cell therapy effectively reduced brain infarct volume and preserved neurological function in rat after acute intracranial hemorrhage. Am. J. Transl. Res., 2019, 11(9), 6232-6248. PMID: 31632590
  139. Chen, L.; Zhang, G.; Khan, A.A.; Guo, X.; Gu, Y. Clinical efficacy and meta-analysis of stem cell therapies for patients with brain ischemia. Stem Cells Int., 2016, 2016, 1-8. doi: 10.1155/2016/6129579 PMID: 27656217
  140. Detante, O.; Moisan, A.; Hommel, M.; Jaillard, A. Controlled clinical trials of cell therapy in stroke: Meta-analysis at six months after treatment. Int. J. Stroke, 2017, 12(7), 748-751. doi: 10.1177/1747493017696098 PMID: 28884654
  141. Díez-Tejedor, E.; Gutiérrez-Fernández, M.; Martínez-Sánchez, P.; Rodríguez-Frutos, B. Ruiz-Ares, G.; Lara, M.L.; Gimeno, B.F. Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: A safety assessment: A phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J. Stroke Cerebrovasc. Dis., 2014, 23(10), 2694-2700. doi: 10.1016/j.jstrokecerebrovasdis.2014.06.011 PMID: 25304723
  142. Liu, X; Jia, X. RNeuroprotection of stem cells against ischemic brain injury: From bench to clinic. Transl. Stroke Res 2027, 10, 01163.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers