CREB: A Promising Therapeutic Target for Treating Psychiatric Disorders


Cite item

Full Text

Abstract

:Psychiatric disorders are complex, multifactorial illnesses. It is challenging for us to understand the underlying mechanism of psychiatric disorders. In recent years, the morbidity of psychiatric disorders has increased yearly, causing huge economic losses to the society. Although some progress, such as psychotherapy drugs and electroconvulsive therapy, has been made in the treatment of psychiatric disorders, including depression, anxiety, bipolar disorder, obsessive-compulsive and autism spectrum disorders, antidepressants and psychotropic drugs have the characteristics of negative effects and high rate of relapse. Therefore, researchers continue to seek suitable interventions. cAMP response element binding protein (CREB) belongs to a protein family and is widely distributed in the majority of brain cells that function as a transcription factor. It has been demonstrated that CREB plays an important role in neurogenesis, synaptic plasticity, and neuronal growth. This review provides a 10-year update of the 2013 systematic review on the multidimensional roles of CREB-mediated transcriptional signaling in psychiatric disorders. We also summarize the classification of psychiatric disorders and elucidate the involvement of CREB and related downstream signalling pathways in psychiatric disorders. Importantly, we analyse the CREB-related signal pathways involving antidepressants and antipsychotics to relieve the pathological process of psychiatric disorders. This review emphasizes that CREB signalling may have a vast potential to treat psychiatric disorders like depression. Furthermore, it would be helpful for the development of potential medicine to make up for the imperfection of current antidepressants and antipsychotics.

About the authors

Wei Guan

Department of Pharmacology, Pharmacy College, Nantong University

Email: info@benthamscience.net

Mei-Xin Ni

Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital

Email: info@benthamscience.net

Hai-Juan Gu

Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital

Email: info@benthamscience.net

Yang Yang

Department of Pharmacy, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Barlattani, T.D.A. Autism spectrum disorders and psychiatric comorbidities: A narrative review. J. Psychopathol., 2023, 29(1-2)
  2. Hossain, M.M.; Khan, N.; Sultana, A.; Ma, P.; McKyer, E.L.J.; Ahmed, H.U.; Purohit, N. Prevalence of comorbid psychiatric disorders among people with autism spectrum disorder: An umbrella review of systematic reviews and meta-analyses. Psychiatry Res., 2020, 287, 112922. doi: 10.1016/j.psychres.2020.112922 PMID: 32203749
  3. Fang, Y.; Mao, R. Depressive disorders: Mechanisms, measurement and menagement. Adv. Exp. Med. Biol., 2019, 1180, 179-191.
  4. Barlattani, T.; D’Amelio, C.; Capelli, F.; Mantenuto, S.; Rossi, R.; Socci, V.; Stratta, P.; Di Stefano, R.; Rossi, A.; Pacitti, F. Suicide and COVID-19: A rapid scoping review. Ann. Gen. Psychiatry, 2023, 22(1), 10. doi: 10.1186/s12991-023-00441-6 PMID: 36932453
  5. Betcher, H.K.; Wisner, K.L. Psychotropic treatment during pregnancy: Research synthesis and clinical care principles. J. Womens Health , 2020, 29(3), 310-318. doi: 10.1089/jwh.2019.7781 PMID: 31800350
  6. Miyamoto, S.; Miyake, N.; Jarskog, L.F.; Fleischhacker, W.W.; Lieberman, J.A. Pharmacological treatment of schizophrenia: A critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol. Psychiatry, 2012, 17(12), 1206-1227. doi: 10.1038/mp.2012.47 PMID: 22584864
  7. Miyamoto, S.; Duncan, G.E.; Marx, C.E.; Lieberman, J.A. Treatments for schizophrenia: A critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol. Psychiatry, 2005, 10(1), 79-104. doi: 10.1038/sj.mp.4001556 PMID: 15289815
  8. Carlsson, A.; Lindqvist, M. Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol. Toxicol. , 1963, 20(2), 140-144. doi: 10.1111/j.1600-0773.1963.tb01730.x PMID: 14060771
  9. van Rossum, J.M. The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch. Int. Pharmacodyn. Ther., 1966, 160(2), 492-494. PMID: 5954044
  10. Zamponi, G.W. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov., 2016, 15(1), 19-34. doi: 10.1038/nrd.2015.5 PMID: 26542451
  11. Kesselheim, A.S.; Hwang, T.J.; Franklin, J.M. Two decades of new drug development for central nervous system disorders. Nat. Rev. Drug Discov., 2015, 14(12), 815-816. doi: 10.1038/nrd4793 PMID: 26585536
  12. Kaar, S.J.; Natesan, S.; McCutcheon, R.; Howes, O.D. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology, 2020, 172, 107704. doi: 10.1016/j.neuropharm.2019.107704 PMID: 31299229
  13. Jiang, Y.; Wang, X.; Li, X.; Liu, A.; Fan, Q.; Yang, L.; Feng, B.; Zhang, K.; Lu, L.; Qi, J.; Yang, F.; Song, D.; Wu, Y.; Zhao, M.; Liu, S. Tanshinone IIA improves contextual fear‐ and anxiety‐like behaviors in mice via the CREB/BDNF/TRKB signaling pathway. Phytother. Res., 2022, 36(10), 3932-3948. doi: 10.1002/ptr.7540 PMID: 35801985
  14. Keshavarzi, S.; Kermanshahi, S.; Karami, L.; Motaghinejad, M.; Motevalian, M.; Sadr, S. Protective role of metformin against methamphetamine induced anxiety, depression, cognition impairment and neurodegeneration in rat: The role of CREB/BDNF and Akt/GSK3 signaling pathways. Neurotoxicology, 2019, 72, 74-84. doi: 10.1016/j.neuro.2019.02.004 PMID: 30742852
  15. Sharma, P.; Kumar, A.; Singh, D. Dietary flavonoids interaction with CREB-BDNF pathway: An unconventional approach for comprehensive management of epilepsy. Curr. Neuropharmacol., 2019, 17(12), 1158-1175. doi: 10.2174/1570159X17666190809165549 PMID: 31400269
  16. Pandey, G.N.; Dwivedi, Y.; Ren, X.; Rizavi, H.S.; Roberts, R.C.; Conley, R.R. Cyclic AMP response element-binding protein in post-mortem brain of teenage suicide victims: Specific decrease in the prefrontal cortex but not the hippocampus. Int. J. Neuropsychopharmacol., 2007, 10(5), 621-629. doi: 10.1017/S1461145706007231 PMID: 16978443
  17. Aguiar, A.S., Jr; Castro, A.A.; Moreira, E.L.; Glaser, V.; Santos, A.R.S.; Tasca, C.I.; Latini, A.; Prediger, R.D.S. Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: Involvement of hippocampal plasticity via AKT, CREB and BDNF signaling. Mech. Ageing Dev., 2011, 132(11-12), 560-567. doi: 10.1016/j.mad.2011.09.005 PMID: 21983475
  18. Réus, G.Z.; Stringari, R.B.; Ribeiro, K.F.; Ferraro, A.K.; Vitto, M.F.; Cesconetto, P.; Souza, C.T.; Quevedo, J. Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain. Behav. Brain Res., 2011, 221(1), 166-171. doi: 10.1016/j.bbr.2011.02.024 PMID: 21397634
  19. Liu, J.; Liu, B.; Yuan, P.; Cheng, L.; Sun, H.; Gui, J.; Pan, Y.; Huang, D.; Chen, H.; Jiang, L. Role of PKA/CREB/BDNF signaling in PM2.5-induced neurodevelopmental damage to the hippocampal neurons of rats. Ecotoxicol. Environ. Saf., 2021, 214, 112005. doi: 10.1016/j.ecoenv.2021.112005 PMID: 33640725
  20. Tan, P.; Xue, T.; Wang, Y.; Hu, Z.; Su, J.; Yang, R.; Ji, J.; Ye, M.; Chen, Z.; Huang, C.; Lu, X. Hippocampal NR6A1 impairs CREB-BDNF signaling and leads to the development of depression-like behaviors in mice. Neuropharmacology, 2022, 209, 108990. doi: 10.1016/j.neuropharm.2022.108990 PMID: 35183538
  21. Jiang, N.; Wang, H.; Lv, J.; Wang, Q.; Lu, C.; Li, Y.; Liu, X. Dammarane sapogenins attenuates stress‐induced anxiety‐like behaviors by upregulating ERK/CREB/BDNF pathways. Phytother. Res., 2020, 34(10), 2721-2729. doi: 10.1002/ptr.6713 PMID: 32431006
  22. Jagannath, A.; Foster, R.G. CREB signalling in bipolar disease (commentary on Gaspar et al.): commentary on Gaspar et al. 2014. Eur. J. Neurosci., 2014, 40(1), 2205. doi: 10.1111/ejn.12649 PMID: 25040051
  23. Broderick, D.F. Neuroimaging in neuropsychiatry.Psychiatr. Clin. North Am., , 2005, 28(3), 549-566, 64.. doi: 10.1016/j.psc.2005.05.007 PMID: 16122566
  24. Zhang, Y.; Long, Y.; Yu, S.; Li, D.; Yang, M.; Guan, Y.; Zhang, D.; Wan, J.; Liu, S.; Shi, A.; Li, N.; Peng, W. Natural volatile oils derived from herbal medicines: A promising therapy way for treating depressive disorder. Pharmacol. Res., 2021, 164, 105376. doi: 10.1016/j.phrs.2020.105376 PMID: 33316383
  25. Penninx, B.W.J.H.; Pine, D.S.; Holmes, E.A.; Reif, A. Benzodiazepines for the long-term treatment of anxiety disorders? – Authors’ reply. Lancet, 2021, 398(10295), 120. doi: 10.1016/S0140-6736(21)00931-4 PMID: 34246346
  26. Simpson, C.A.; Diaz-Arteche, C.; Eliby, D.; Schwartz, O.S.; Simmons, J.G.; Cowan, C.S.M. The gut microbiota in anxiety and depression – A systematic review. Clin. Psychol. Rev., 2021, 83, 101943. doi: 10.1016/j.cpr.2020.101943 PMID: 33271426
  27. Stein, D.J.; Costa, D.L.C.; Lochner, C.; Miguel, E.C.; Reddy, Y.C.J.; Shavitt, R.G.; van den Heuvel, O.A.; Simpson, H.B. Obsessive–compulsive disorder. Nat. Rev. Dis. Primers, 2019, 5(1), 52. doi: 10.1038/s41572-019-0102-3 PMID: 31371720
  28. Stępnicki, P.; Kondej, M.; Kaczor, A.A. Current concepts and treatments of schizophrenia. Molecules, 2018, 23(8), 2087. doi: 10.3390/molecules23082087 PMID: 30127324
  29. McIntyre, R.S.; Berk, M.; Brietzke, E.; Goldstein, B.I.; López-Jaramillo, C.; Kessing, L.V.; Malhi, G.S.; Nierenberg, A.A.; Rosenblat, J.D.; Majeed, A.; Vieta, E.; Vinberg, M.; Young, A.H.; Mansur, R.B. Bipolar disorders. Lancet, 2020, 396(10265), 1841-1856. doi: 10.1016/S0140-6736(20)31544-0 PMID: 33278937
  30. Xu, W.; Kasper, L.H.; Lerach, S.; Jeevan, T.; Brindle, P.K. Individual CREB-target genes dictate usage of distinct cAMP-responsive coactivation mechanisms. EMBO J., 2007, 26(12), 2890-2903. doi: 10.1038/sj.emboj.7601734 PMID: 17525731
  31. Ichiki, T. Role of cAMP response element binding protein in cardiovascular remodeling: good, bad, or both? Arterioscler. Thromb. Vasc. Biol., 2006, 26(3), 449-455. doi: 10.1161/01.ATV.0000196747.79349.d1 PMID: 16293792
  32. Wang, H.; Xu, J.; Lazarovici, P.; Quirion, R.; Zheng, W. cAMP response element-binding protein (CREB): A possible signaling molecule link in the pathophysiology of schizophrenia. Front. Mol. Neurosci., 2018, 11, 255. doi: 10.3389/fnmol.2018.00255 PMID: 30214393
  33. Wang, G.; Zhu, Z.; Xu, D.; Sun, L. Advances in understanding CREB signaling-mediated regulation of the pathogenesis and progression of epilepsy. Clin. Neurol. Neurosurg., 2020, 196, 106018. doi: 10.1016/j.clineuro.2020.106018 PMID: 32574967
  34. Steven, A.; Seliger, B. Control of CREB expression in tumors: From molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget, 2016, 7(23), 35454-35465. doi: 10.18632/oncotarget.7721 PMID: 26934558
  35. Irwin, M.R.; Carrillo, C.; Sadeghi, N.; Bjurstrom, M.F.; Breen, E.C.; Olmstead, R. Prevention of incident and recurrent major depression in older adults with insomnia. JAMA Psychiatry, 2022, 79(1), 33-41. doi: 10.1001/jamapsychiatry.2021.3422 PMID: 34817561
  36. National Center for Health. Health, United States, 2016: With Chartbook on Long-term Trends in Health; National Center for Health Statistics (US): Hyattsville (MD), , 2017.
  37. StatPearls; StatPearls Publishing LLC.: Treasure Island (FL) ineligible companies , 2023.
  38. Figueroa-Hall, L.K.; Paulus, M.P.; Savitz, J. Toll-like receptor signaling in depression. Psychoneuroendocrinology, 2020, 121, 104843. doi: 10.1016/j.psyneuen.2020.104843 PMID: 32911436
  39. Cuijpers, P.; van Straten, A.; Andersson, G.; van Oppen, P. Psychotherapy for depression in adults: A meta-analysis of comparative outcome studies. J. Consult. Clin. Psychol., 2008, 76(6), 909-922. doi: 10.1037/a0013075 PMID: 19045960
  40. Marwaha, S.; Palmer, E.; Suppes, T.; Cons, E.; Young, A.H.; Upthegrove, R. Novel and emerging treatments for major depression. Lancet, 2023, 401(10371), 141-153. doi: 10.1016/S0140-6736(22)02080-3 PMID: 36535295
  41. Yao, W.; Cao, Q.; Luo, S.; He, L.; Yang, C.; Chen, J.; Qi, Q.; Hashimoto, K.; Zhang, J. Microglial ERK-NRBP1-CREB-BDNF signaling in sustained antidepressant actions of (R)-ketamine. Mol. Psychiatry, 2022, 27(3), 1618-1629. doi: 10.1038/s41380-021-01377-7 PMID: 34819637
  42. Shi, L.S.; Ji, C.H.; Liu, Y.; Gu, J.H.; Tang, W.Q.; Zhang, W.; Guan, W. Ginsenoside Rh2 administration produces crucial antidepressant‐like effects in a CUMS‐induced mice model of depression. Brain Behav., 2022, 12(8), e2705. doi: 10.1002/brb3.2705 PMID: 35848938
  43. Manners, M.T.; Brynildsen, J.K.; Schechter, M.; Liu, X.; Eacret, D.; Blendy, J.A. CREB deletion increases resilience to stress and downregulates inflammatory gene expression in the hippocampus. Brain Behav. Immun., 2019, 81, 388-398. doi: 10.1016/j.bbi.2019.06.035 PMID: 31255680
  44. Mo, F.; Tang, Y.; Du, P.; Shen, Z.; Yang, J.; Cai, M.; Zhang, Y.; Li, H.; Shen, H. GPR39 protects against corticosterone-induced neuronal injury in hippocampal cells through the CREB-BDNF signaling pathway. J. Affect. Disord., 2020, 272, 474-484. doi: 10.1016/j.jad.2020.03.137 PMID: 32553391
  45. Zhang, T.; Wang, Y.; Yao, W.; Chen, Y.; Zhang, D.; Gao, Y.; Jin, S.; Li, L.; Yang, S.; Wu, Y. Metformin antagonizes nickel-refining fumes-induced cell pyroptosis via Nrf2/GOLPH3 pathway in vitro and in vivo. Ecotoxicol. Environ. Saf., 2022, 247, 114233. doi: 10.1016/j.ecoenv.2022.114233 PMID: 36334342
  46. Ströhle, A.; Gensichen, J.; Domschke, K. The diagnosis and treatment of anxiety disorders. Dtsch. Arztebl. Int., 2018, 155(37), 611-620. doi: 10.3238/arztebl.2018.0611 PMID: 30282583
  47. Narasimhamurthy, R.K.; Andrade, D.; Mumbrekar, K.D. Modulation of CREB and its associated upstream signaling pathways in pesticide-induced neurotoxicity. Mol. Cell. Biochem., 2022, 477(11), 2581-2593. doi: 10.1007/s11010-022-04472-7 PMID: 35596844
  48. Wang, X.; Guan, S.; Liu, A.; Yue, J.; Hu, L.; Zhang, K.; Yang, L.; Lu, L.; Tian, Z.; Zhao, M.; Liu, S. Anxiolytic effects of Formononetin in an inflammatory pain mouse model. Mol. Brain, 2019, 12(1), 36. doi: 10.1186/s13041-019-0453-4 PMID: 30961625
  49. Yang, J.; Li, S.; Lv, H.; Wang, W.; Zhang, J.; Chu, L.; Zhang, Y. CREB1 and BDNF gene polymorphisms are associated with early treatment response to escitalopram in panic disorder. J. Affect. Disord., 2021, 278, 536-541. doi: 10.1016/j.jad.2020.09.076 PMID: 33017682
  50. Lally, J.; Maloudi, S.; Krivoy, A.; Murphy, K.C. Simple schizophrenia. J. Nerv. Ment. Dis., 2019, 207(9), 721-725. doi: 10.1097/NMD.0000000000000936 PMID: 31082962
  51. Prata, D.P.; Costa-Neves, B.; Cosme, G.; Vassos, E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J. Psychiatr. Res., 2019, 114, 178-207. doi: 10.1016/j.jpsychires.2019.04.007 PMID: 31096178
  52. Millan, M.J.; Andrieux, A.; Bartzokis, G.; Cadenhead, K.; Dazzan, P.; Fusar-Poli, P.; Gallinat, J.; Giedd, J.; Grayson, D.R.; Heinrichs, M.; Kahn, R.; Krebs, M.O.; Leboyer, M.; Lewis, D.; Marin, O.; Marin, P.; Meyer-Lindenberg, A.; McGorry, P.; McGuire, P.; Owen, M.J.; Patterson, P.; Sawa, A.; Spedding, M.; Uhlhaas, P.; Vaccarino, F.; Wahlestedt, C.; Weinberger, D. Altering the course of schizophrenia: Progress and perspectives. Nat. Rev. Drug Discov., 2016, 15(7), 485-515. doi: 10.1038/nrd.2016.28 PMID: 26939910
  53. Maric, N.P.; Jovicic, M.J.; Mihaljevic, M.; Miljevic, C. Improving current treatments for schizophrenia. Drug Dev. Res., 2016, 77(7), 357-367. doi: 10.1002/ddr.21337 PMID: 27633376
  54. Sharma, V.K.; Singh, T.G. CREB: A multifaceted target for Alzheimer’s disease. Curr. Alzheimer Res., 2021, 17(14), 1280-1293. doi: 10.2174/1567205018666210218152253 PMID: 33602089
  55. D’Amico, A.G.; Scuderi, S.; Leggio, G.M.; Castorina, A.; Drago, F.; D’Agata, V. Increased hippocampal CREB phosphorylation in dopamine D3 receptor knockout mice following passive avoidance conditioning. Neurochem. Res., 2013, 38(12), 2516-2523. doi: 10.1007/s11064-013-1164-3 PMID: 24100927
  56. Abiero, A.; Botanas, C.J.; Custodio, R.J.; Sayson, L.V.; Kim, M.; Lee, H.J.; Kim, H.J.; Lee, K.W.; Jeong, Y.; Seo, J.W.; Ryu, I.S.; Lee, Y.S.; Cheong, J.H. 4-MeO-PCP and 3-MeO-PCMo, new dissociative drugs, produce rewarding and reinforcing effects through activation of mesolimbic dopamine pathway and alteration of accumbal CREB, deltaFosB, and BDNF levels. Psychopharmacology , 2020, 237(3), 757-772. doi: 10.1007/s00213-019-05412-y PMID: 31828394
  57. Li, S.; Lu, C.; Kang, L.; Li, Q.; Chen, H.; Zhang, H.; Tang, Z.; Lin, Y.; Bai, M.; Xiong, P. Study on correlations of BDNF, PI3K, AKT and CREB levels with depressive emotion and impulsive behaviors in drug-naïve patients with first-episode schizophrenia. BMC Psychiatry, 2023, 23(1), 225. doi: 10.1186/s12888-023-04718-8 PMID: 37013544
  58. Guo, C.; Liu, Y.; Fang, M.; Li, Y.; Li, W.; Mahaman, Y.A.R.; Zeng, K.; Xia, Y.; Ke, D.; Liu, R.; Wang, J.Z.; Shen, H.; Shu, X.; Wang, X. ω-3PUFAs improve cognitive impairments through Ser133 phosphorylation of CREB upregulating BDNF/TrkB signal in schizophrenia. Neurotherapeutics, 2020, 17(3), 1271-1286. doi: 10.1007/s13311-020-00859-w PMID: 32367475
  59. Einoch, R.; Weinreb, O.; Mandiuk, N.; Youdim, M.B.H.; Bilker, W.; Silver, H. The involvement of BDNF-CREB signaling pathways in the pharmacological mechanism of combined SSRI- antipsychotic treatment in schizophrenia. Eur. Neuropsychopharmacol., 2017, 27(5), 470-483. doi: 10.1016/j.euroneuro.2017.03.005 PMID: 28410959
  60. Schuyler, M.; Geller, D.A. Childhood obsessive-compulsive disorder. Psychiatr. Clin. North Am., 2023, 46(1), 89-106. doi: 10.1016/j.psc.2022.10.002 PMID: 36740357
  61. Stein, D.J. Obsessive-compulsive disorder. Lancet, 2002, 360(9330), 397-405. doi: 10.1016/S0140-6736(02)09620-4 PMID: 12241794
  62. Grünblatt, E.; Marinova, Z.; Roth, A.; Gardini, E.; Ball, J.; Geissler, J.; Wojdacz, T.K.; Romanos, M.; Walitza, S. Combining genetic and epigenetic parameters of the serotonin transporter gene in obsessive-compulsive disorder. J. Psychiatr. Res., 2018, 96, 209-217. doi: 10.1016/j.jpsychires.2017.10.010 PMID: 29102815
  63. Fluitman, S.B.A.H.A.; Denys, D.A.J.P.; Heijnen, C.J.; Westenberg, H.G.M. Disgust affects TNF-α, IL-6 and noradrenalin levels in patients with obsessive–compulsive disorder. Psychoneuroendocrinology, 2010, 35(6), 906-911. doi: 10.1016/j.psyneuen.2009.12.005 PMID: 20044210
  64. Hazari, N.; Narayanaswamy, J.C.; Arumugham, S.S. Predictors of response to serotonin reuptake inhibitors in obsessive-compulsive disorder. Expert Rev. Neurother., 2016, 16(10), 1175-1191. doi: 10.1080/14737175.2016.1199960 PMID: 27282021
  65. Goodman, W.K.; Storch, E.A.; Sheth, S.A. Harmonizing the neurobiology and treatment of obsessive-compulsive disorder. Am. J. Psychiatry, 2021, 178(1), 17-29. doi: 10.1176/appi.ajp.2020.20111601 PMID: 33384007
  66. Grados, M.; Atkins, E.; Kovacikova, G.I.; McVicar, E. A selective review of glutamate pharmacological therapy in obsessive–compulsive and related disorders. Psychol. Res. Behav. Manag., 2015, 8, 115-131. doi: 10.2147/PRBM.S58601 PMID: 25995654
  67. Pittenger, C.; Bloch, M.H. Pharmacological treatment of obsessive-compulsive disorder. Psychiatr. Clin. North Am., 2014, 37(3), 375-391. doi: 10.1016/j.psc.2014.05.006 PMID: 25150568
  68. Walton, M.R.; Dragunow, M. Is CREB a key to neuronal survival? Trends Neurosci., 2000, 23(2), 48-53. doi: 10.1016/S0166-2236(99)01500-3 PMID: 10652539
  69. Arora, T.; Bhowmik, M.; Khanam, R.; Vohora, D. Oxcarbazepine and fluoxetine protect against mouse models of obsessive compulsive disorder through modulation of cortical serotonin and creb pathway. Behav. Brain Res., 2013, 247, 146-152. doi: 10.1016/j.bbr.2013.02.038 PMID: 23473877
  70. Rohbani, K.; Sabzevari, S.; Sadat-Shirazi, M.S.; Nouri Zadeh-Tehrani, S.; Ashabi, G.; Khalifeh, S.; Ale-Ebrahim, M.; Zarrindast, M.R. Parental morphine exposure affects repetitive grooming actions and marble burying behavior in the offspring: Potential relevance for obsessive-compulsive like behavior. Eur. J. Pharmacol., 2019, 865, 172757. doi: 10.1016/j.ejphar.2019.172757 PMID: 31693870
  71. Grande, I.; Berk, M.; Birmaher, B.; Vieta, E. Bipolar disorder. Lancet, 2016, 387(10027), 1561-1572. doi: 10.1016/S0140-6736(15)00241-X PMID: 26388529
  72. Rybakowski, J. Etiopathogenesis of bipolar affective disorder – the state of the art for 2021. Psychiatr. Pol., 2021, 55(3), 481-496. doi: 10.12740/PP/132961 PMID: 34460876
  73. Kato, T. Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry Clin. Neurosci., 2019, 73(9), 526-540. doi: 10.1111/pcn.12852 PMID: 31021488
  74. Haggarty, S.J.; Karmacharya, R.; Perlis, R.H. Advances toward precision medicine for bipolar disorder: Mechanisms & molecules. Mol. Psychiatry, 2021, 26(1), 168-185. doi: 10.1038/s41380-020-0831-4 PMID: 32636474
  75. Dubovsky, S.L.; Ghosh, B.M.; Serotte, J.C.; Cranwell, V. Psychotic depression: Diagnosis, differential diagnosis, and treatment. Psychother. Psychosom., 2021, 90(3), 160-177. doi: 10.1159/000511348 PMID: 33166960
  76. Kerner, B.; Rao, A.R.; Christensen, B.; Dandekar, S.; Yourshaw, M.; Nelson, S.F. Rare genomic variants link bipolar disorder with anxiety disorders to creb-regulated intracellular signaling pathways. Front. Psychiatry, 2013, 4, 154. doi: 10.3389/fpsyt.2013.00154 PMID: 24348429
  77. Ozaki, N.; Chuang, D.M. Lithium increases transcription factor binding to AP-1 and cyclic AMP-responsive element in cultured neurons and rat brain. J. Neurochem., 1997, 69(6), 2336-2344. doi: 10.1046/j.1471-4159.1997.69062336.x PMID: 9375664
  78. Chen, B.; Wang, J.F.; Hill, B.C.; Young, L.T. Lithium and valproate differentially regulate brain regional expression of phosphorylated CREB and c-Fos. Brain Res. Mol. Brain Res., 1999, 70(1), 45-53. doi: 10.1016/S0169-328X(99)00125-4 PMID: 10381542
  79. Tang, Q.; Ke, H.; Wu, C.; Zeng, J.; Li, Z.; Liu, Y.; Feng, S.; Xue, Q.; Xu, X. Aqueous extract from You-Gui-Yin ameliorates cognitive impairment of chronic renal failure mice through targeting hippocampal CaMKIIα/CREB/BDNF and EPO/EPOR pathways. J. Ethnopharmacol., 2019, 239, 111925. doi: 10.1016/j.jep.2019.111925 PMID: 31055001
  80. Li, D.; Liao, Q.; Tao, Y.; Ni, S.; Wang, C.; Xu, D.; Zhou, D.; Li, X.; Jin, X.; Chen, X.; Cui, W.; Zhang, J. Downregulation of CRTC1 is involved in CUMS-induced depression-like behavior in the hippocampus and its RNA sequencing analysis. Mol. Neurobiol., 2022, 59(7), 4405-4418. doi: 10.1007/s12035-022-02787-6 PMID: 35556215
  81. Alda, M.; Shao, L.; Wang, J.F.; de Lara, C.L.; Jaitovich-Groisman, I.; Lebel, V.; Sun, X.; Duffy, A.; Grof, P.; Rouleau, G.A.; Turecki, G.; Young, L.T. Alterations in phosphorylated cAMP response element-binding protein (pCREB) signaling: An endophenotype of lithium-responsive bipolar disorder? Bipolar Disord., 2013, 15(8), 824-831. doi: 10.1111/bdi.12131 PMID: 24238631
  82. Odagaki, Y.; García-Sevilla, J.A.; Huguelet, P.; La Harpe, R.; Koyama, T.; Guimón, J. Cyclic AMP-mediated signaling components are upregulated in the prefrontal cortex of depressed suicide victims. Brain Res., 2001, 898(2), 224-231. doi: 10.1016/S0006-8993(01)02188-6 PMID: 11306008
  83. Gaspar, L.; van de Werken, M.; Johansson, A.S.; Moriggi, E.; Owe-Larsson, B.; Kocks, J.W.H.; Lundkvist, G.B.; Gordijn, M.C.M.; Brown, S.A. Human cellular differences in CAMP ‐ CREB signaling correlate with light‐dependent melatonin suppression and bipolar disorder. Eur. J. Neurosci., 2014, 40(1), 2206-2215. doi: 10.1111/ejn.12602 PMID: 24898566
  84. Ren, X.; Rizavi, H.S.; Khan, M.A.; Bhaumik, R.; Dwivedi, Y.; Pandey, G.N. Alteration of cyclic-AMP response element binding protein in the postmortem brain of subjects with bipolar disorder and schizophrenia. J. Affect. Disord., 2014, 152-154, 326-333. doi: 10.1016/j.jad.2013.09.033 PMID: 24148789
  85. Morozova, A.; Zorkina, Y.; Abramova, O.; Pavlova, O.; Pavlov, K.; Soloveva, K.; Volkova, M.; Alekseeva, P.; Andryshchenko, A.; Kostyuk, G.; Gurina, O.; Chekhonin, V. Neurobiological highlights of cognitive impairment in psychiatric disorders. Int. J. Mol. Sci., 2022, 23(3), 1217. doi: 10.3390/ijms23031217 PMID: 35163141
  86. Zheng, W.; Wang, H.; Zeng, Z.; Lin, J.; Little, P.J.; Srivastava, L.K.; Quirion, R. The possible role of the Akt signaling pathway in schizophrenia. Brain Res., 2012, 1470, 145-158. doi: 10.1016/j.brainres.2012.06.032 PMID: 22771711
  87. Wang, C.S.; Kavalali, E.T.; Monteggia, L.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell, 2022, 185(1), 62-76. doi: 10.1016/j.cell.2021.12.003 PMID: 34963057
  88. Sun, Y.; Zhang, H.; Wu, Z.; Yu, X.; Yin, Y.; Qian, S.; Wang, Z.; Huang, J.; Wang, W.; Liu, T.; Xue, W.; Chen, G. Quercitrin rapidly alleviated depression-like behaviors in lipopolysaccharide-treated mice: The involvement of PI3K/AKT/NF-κB signaling suppression and CREB/BDNF signaling restoration in the hippocampus. ACS Chem. Neurosci., 2021, 12(18), 3387-3396. doi: 10.1021/acschemneuro.1c00371 PMID: 34469122
  89. Williams, C.M.; El Mohsen, M.A.; Vauzour, D.; Rendeiro, C.; Butler, L.T.; Ellis, J.A.; Whiteman, M.; Spencer, J.P.E. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic. Biol. Med., 2008, 45(3), 295-305. doi: 10.1016/j.freeradbiomed.2008.04.008 PMID: 18457678
  90. Lian, W.; Zhou, W.; Zhang, B.; Jia, H.; Xu, L.; Liu, A.; Du, G. DL0410 ameliorates cognitive disorder in SAMP8 mice by promoting mitochondrial dynamics and the NMDAR-CREB-BDNF pathway. Acta Pharmacol. Sin., 2021, 42(7), 1055-1068. doi: 10.1038/s41401-020-00506-2 PMID: 32868905
  91. Colasanto, M.; Madigan, S.; Korczak, D.J. Depression and inflammation among children and adolescents: A meta-analysis. J. Affect. Disord., 2020, 277, 940-948. doi: 10.1016/j.jad.2020.09.025 PMID: 33065836
  92. Jia, Z.; Yang, J.; Cao, Z.; Zhao, J.; Zhang, J.; Lu, Y.; Chu, L.; Zhang, S.; Chen, Y.; Pei, L. Baicalin ameliorates chronic unpredictable mild stress-induced depression through the BDNF/ERK/CREB signaling pathway. Behav. Brain Res., 2021, 414, 113463. doi: 10.1016/j.bbr.2021.113463 PMID: 34280458
  93. Zhao, X.; Kong, D.; Zhou, Q.; Wei, G.; Song, J.; Liang, Y.; Du, G. Baicalein alleviates depression-like behavior in rotenone- induced Parkinson’s disease model in mice through activating the BDNF/TrkB/CREB pathway. Biomed. Pharmacother., 2021, 140, 111556. doi: 10.1016/j.biopha.2021.111556 PMID: 34087694
  94. Wang, A.; Mi, L.; Zhang, Z.; Hu, M.; Zhao, Z.; Liu, B.; Li, Y.; Zheng, S. Saikosaponin A improved depression-like behavior and inhibited hippocampal neuronal apoptosis after cerebral ischemia through p-CREB/BDNF pathway. Behav. Brain Res., 2021, 403, 113138. doi: 10.1016/j.bbr.2021.113138 PMID: 33493495
  95. Fang, W.; Zhang, J.; Hong, L.; Huang, W.; Dai, X.; Ye, Q.; Chen, X. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. J. Affect. Disord., 2020, 260, 302-313. doi: 10.1016/j.jad.2019.09.013 PMID: 31521867
  96. Xie, L.L.; Rui, C.; Li, Z.Z.; Li, S.S.; Fan, Y.J.; Qi, M.M. Melatonin mitigates traumatic brain injury-induced depression-like behaviors through HO-1/CREB signal in rats. Neurosci. Lett., 2022, 784, 136754. doi: 10.1016/j.neulet.2022.136754 PMID: 35753614
  97. Liu, Z.; Yang, J.; Fang, Q.; Shao, H.; Yang, D.; Sun, J.; Gao, L. MiRNA‐199a‐5p targets WNT2 to regulate depression through the CREB/BDNF signaling in hippocampal neuron. Brain Behav., 2021, 11(8), e02107. doi: 10.1002/brb3.2107 PMID: 34333859
  98. Qiao, X.; Gai, H.; Su, R.; Deji, C.; Cui, J.; Lai, J.; Zhu, Y. PI3K-AKT-GSK3β-CREB signaling pathway regulates anxiety-like behavior in rats following alcohol withdrawal. J. Affect. Disord., 2018, 235, 96-104. doi: 10.1016/j.jad.2018.04.039 PMID: 29655081
  99. Abdo Qaid, E.Y.; Abdullah, Z.; Zakaria, R.; Long, I. Minocycline attenuates lipopolysaccharide-induced locomotor deficit and anxiety-like behavior and related expression of the BDNF/CREB protein in the rat medial prefrontal cortex (mPFC). Int. J. Mol. Sci., 2022, 23(21), 13474. doi: 10.3390/ijms232113474 PMID: 36362262
  100. Geng, X.; Wu, H.; Li, Z.; Li, C.; Chen, D.; Zong, J.; Liu, Z.; Wei, S.; Peng, W. Jie-yu-he-huan capsule ameliorates anxiety-like behaviours in rats exposed to chronic restraint stress via the cAMP/PKA/CREB/BDNF signalling pathway. Oxid. Med. Cell. Longev., 2021, 2021, 1-19. doi: 10.1155/2021/1703981 PMID: 34646421
  101. Borgonetti, V.; Les, F.; López, V.; Galeotti, N. Attenuation of anxiety-like behavior by Helichrysum stoechas (L.) moench methanolic extract through up-regulation of ERK signaling pathways in noradrenergic neurons. Pharmaceuticals, 2020, 13(12), 472. doi: 10.3390/ph13120472 PMID: 33348565
  102. Li, M.; Peng, Y.; An, Y.; Li, G.; Lan, Y. LY395756 promotes NR2B expression via activation of AKT/CREB signaling in the juvenile methylazoxymethanol mice model of schizophrenia. Brain Behav., 2022, 12(2), e2466. doi: 10.1002/brb3.2466 PMID: 35025141
  103. Kutlu, M.D.; Kose, S.; Akillioglu, K. GLP-1 agonist Liraglutide prevents MK 801-induced schizophrenia like behaviors and BDNF, CREB, p-CREB, Trk-B expressions in the hippocampus and prefrontal cortex in Balb/c mice. Behav. Brain Res., 2023, 445, 114386. doi: 10.1016/j.bbr.2023.114386 PMID: 36948022
  104. Balu, D.T.; Coyle, J.T. Altered CREB binding to activity-dependent genes in serine racemase deficient mice, a mouse model of schizophrenia. ACS Chem. Neurosci., 2018, 9(9), 2205-2209. doi: 10.1021/acschemneuro.7b00404 PMID: 29172439
  105. Guo, C.; Li, W.; Liu, Y.; Mahaman, Y.A.R.; Zhang, B.; Wang, J.; Liu, R.; Li, H.; Wang, X.; Gao, X. Inactivation of ERK1/2-CREB pathway is implicated in MK801-induced cognitive impairment. Curr. Med. Sci., 2023, 43(1), 13-21. doi: 10.1007/s11596-022-2690-5 PMID: 36867359
  106. Rodríguez-Seoane, C.; Ramos, A.; Korth, C.; Requena, J.R. DISC 1 regulates expression of the neurotrophin VGF through the PI 3K/AKT/CREB pathway. J. Neurochem., 2015, 135(3), 598-605. doi: 10.1111/jnc.13258 PMID: 26212236
  107. Tardito, D.; Tiraboschi, E.; Kasahara, J.; Racagni, G.; Popoli, M. Reduced CREB phosphorylation after chronic lithium treatment is associated with down-regulation of CaM kinase IV in rat hippocampus. Int. J. Neuropsychopharmacol., 2007, 10(4), 491-496. doi: 10.1017/S1461145706007140 PMID: 16923323
  108. Valvassori, S.S.; Dal-Pont, G.C.; Varela, R.B.; Resende, W.R.; Gava, F.F.; Mina, F.G.; Budni, J.; Quevedo, J. Ouabain induces memory impairment and alter the BDNF signaling pathway in an animal model of bipolar disorder. J. Affect. Disord., 2021, 282, 1195-1202. doi: 10.1016/j.jad.2020.12.190 PMID: 33601696
  109. Heinrich, A.; der Heyde, A.S.; Böer, U.; Phu, D.T.; Tzvetkov, M.; Oetjen, E. Lithium enhances CRTC oligomer formation and the interaction between the CREB coactivators CRTC and CBP — Implications for CREB-dependent gene transcription. Cell. Signal., 2013, 25(1), 113-125. doi: 10.1016/j.cellsig.2012.09.016 PMID: 23000340

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers