Interleukin-17: A Putative Novel Pharmacological Target for Pathological Pain


Cite item

Full Text

Abstract

Pathological pain imposes a huge burden on the economy and the lives of patients. At present, drugs used for the treatment of pathological pain have only modest efficacy and are also plagued by adverse effects and risk for misuse and abuse. Therefore, understanding the mechanisms of pathological pain is essential for the development of novel analgesics. Several lines of evidence indicate that interleukin-17 (IL-17) is upregulated in rodent models of pathological pain in the periphery and central nervous system. Besides, the administration of IL-17 antibody alleviated pathological pain. Moreover, IL-17 administration led to mechanical allodynia which was alleviated by the IL-17 antibody. In this review, we summarized and discussed the therapeutic potential of targeting IL-17 for pathological pain. The upregulation of IL-17 promoted the development of pathological pain by promoting neuroinflammation, enhancing the excitability of dorsal root ganglion neurons, and promoting the communication of glial cells and neurons in the spinal cord. In general, the existing research shows that IL-17 is an attractive therapeutic target for pathologic pain, but the underlying mechanisms still need to be investigated.

About the authors

Shao-Jie Gao

Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Lin Liu

Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Dan-Yang Li

Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Dai-Qiang Liu

Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Long-Qing Zhang

Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Jia-Yi Wu

Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Fan-He Song

Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

Email: info@benthamscience.net

Ya-Qun Zhou

Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

Wei Mei

Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Goldberg, D.S.; McGee, S.J. Pain as a global public health priority. BMC Public Health, 2011, 11(1), 770. doi: 10.1186/1471-2458-11-770 PMID: 21978149
  2. Zhou, Y.Q.; Liu, D.Q.; Chen, S.P.; Sun, J.; Zhou, X.R.; Luo, F.; Tian, Y.K.; Ye, D.W. Cellular and molecular mechanisms of calcium/calmodulin-dependent protein kinase ii in chronic pain. J. Pharmacol. Exp. Ther., 2017, 363(2), 176-183. doi: 10.1124/jpet.117.243048 PMID: 28855373
  3. Ge, M.M.; Zhou, Y.Q.; Tian, X.B.; Manyande, A.; Tian, Y.K.; Ye, D.W.; Yang, H. Src-family protein tyrosine kinases: A promising target for treating chronic pain. Biomed. Pharmacother., 2020, 125, 110017. doi: 10.1016/j.biopha.2020.110017 PMID: 32106384
  4. Liu, D.Q.; Zhou, Y.Q.; Gao, F. Targeting cytokines for morphine tolerance: A narrative review. Curr. Neuropharmacol., 2019, 17(4), 366-376. doi: 10.2174/1570159X15666171128144441 PMID: 29189168
  5. Fossiez, F.; Djossou, O.; Chomarat, P.; Flores-Romo, L.; Ait-Yahia, S.; Maat, C.; Pin, J.J.; Garrone, P.; Garcia, E.; Saeland, S.; Blanchard, D.; Gaillard, C.; Das Mahapatra, B.; Rouvier, E.; Golstein, P.; Banchereau, J.; Lebecque, S. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med., 1996, 183(6), 2593-2603. doi: 10.1084/jem.183.6.2593 PMID: 8676080
  6. Yao, Z.; Painter, S.L.; Fanslow, W.C.; Ulrich, D.; Macduff, B.M.; Spriggs, M.K.; Armitage, R.J. Human IL-17: A novel cytokine derived from T cells. J. Immunol., 1995, 155(12), 5483-5486. doi: 10.4049/jimmunol.155.12.5483 PMID: 7499828
  7. Ruiz de Morales, J.M.G.; Puig, L.; Daudén, E.; Cañete, J.D.; Pablos, J.L.; Martín, A.O.; Juanatey, C.G.; Adán, A.; Montalbán, X.; Borruel, N.; Ortí, G.; Holgado-Martín, E.; García-Vidal, C.; Vizcaya-Morales, C.; Martín-Vázquez, V.; González-Gay, M.Á. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: An updated review of the evidence focusing in controversies. Autoimmun. Rev., 2020, 19(1), 102429. doi: 10.1016/j.autrev.2019.102429 PMID: 31734402
  8. Harrington, L.E.; Hatton, R.D.; Mangan, P.R.; Turner, H.; Murphy, T.L.; Murphy, K.M.; Weaver, C.T. Interleukin 17–producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol., 2005, 6(11), 1123-1132. doi: 10.1038/ni1254 PMID: 16200070
  9. Milpied, P.; Massot, B.; Renand, A.; Diem, S.; Herbelin, A.; Leite-de-Moraes, M.; Rubio, M.T.; Hermine, O. IL-17–producing invariant NKT cells in lymphoid organs are recent thymic emigrants identified by neuropilin-1 expression. Blood, 2011, 118(11), 2993-3002. doi: 10.1182/blood-2011-01-329268 PMID: 21653940
  10. Moran, E.M.; Heydrich, R.; Ng, C.T.; Saber, T.P.; McCormick, J.; Sieper, J.; Appel, H.; Fearon, U.; Veale, D.J. IL-17A expression is localised to both mononuclear and polymorphonuclear synovial cell infiltrates. PLoS One, 2011, 6(8), e24048. doi: 10.1371/journal.pone.0024048 PMID: 21887369
  11. Mangan, P.R.; Harrington, L.E.; O’Quinn, D.B.; Helms, W.S.; Bullard, D.C.; Elson, C.O.; Hatton, R.D.; Wahl, S.M.; Schoeb, T.R.; Weaver, C.T. Transforming growth factor-β induces development of the TH17 lineage. Nature, 2006, 441(7090), 231-234. doi: 10.1038/nature04754 PMID: 16648837
  12. Chung, Y.; Chang, S.H.; Martinez, G.J.; Yang, X.O.; Nurieva, R.; Kang, H.S.; Ma, L.; Watowich, S.S.; Jetten, A.M.; Tian, Q.; Dong, C. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity, 2009, 30(4), 576-587. doi: 10.1016/j.immuni.2009.02.007 PMID: 19362022
  13. Awasthi, A.; Carrier, Y.; Peron, J.P.S.; Bettelli, E.; Kamanaka, M.; Flavell, R.A.; Kuchroo, V.K.; Oukka, M.; Weiner, H.L. A dominant function for interleukin 27 in generating interleukin 10–producing anti-inflammatory T cells. Nat. Immunol., 2007, 8(12), 1380-1389. doi: 10.1038/ni1541 PMID: 17994022
  14. Toy, D.; Kugler, D.; Wolfson, M.; Bos, T.V.; Gurgel, J.; Derry, J.; Tocker, J.; Peschon, J. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J. Immunol., 2006, 177(1), 36-39. doi: 10.4049/jimmunol.177.1.36 PMID: 16785495
  15. Ely, L.K.; Fischer, S.; Garcia, K.C. Structural basis of receptor sharing by interleukin 17 cytokines. Nat. Immunol., 2009, 10(12), 1245-1251. doi: 10.1038/ni.1813 PMID: 19838198
  16. Rong, Z.; Wang, A.; Li, Z.; Ren, Y.; Cheng, L.; Li, Y.; Wang, Y.; Ren, F.; Zhang, X.; Hu, J.; Chang, Z. IL-17RD (Sef or IL-17RLM) interacts with IL-17 receptor and mediates IL-17 signaling. Cell Res., 2009, 19(2), 208-215. doi: 10.1038/cr.2008.320 PMID: 19079364
  17. Song, X.; Zhu, S.; Shi, P.; Liu, Y.; Shi, Y.; Levin, S.D.; Qian, Y. IL-17RE is the functional receptor for IL-17C and mediates mucosal immunity to infection with intestinal pathogens. Nat. Immunol., 2011, 12(12), 1151-1158. doi: 10.1038/ni.2155 PMID: 21993849
  18. Ramirez-Carrozzi, V.; Sambandam, A.; Luis, E.; Lin, Z.; Jeet, S.; Lesch, J.; Hackney, J.; Kim, J.; Zhou, M.; Lai, J.; Modrusan, Z.; Sai, T.; Lee, W.; Xu, M.; Caplazi, P.; Diehl, L.; de Voss, J.; Balazs, M.; Gonzalez, L., Jr; Singh, H.; Ouyang, W.; Pappu, R. IL-17C regulates the innate immune function of epithelial cells in an autocrine manner. Nat. Immunol., 2011, 12(12), 1159-1166. doi: 10.1038/ni.2156 PMID: 21993848
  19. Amatya, N.; Garg, A.V.; Gaffen, S.L. Il-17 signaling: The yin and the yang. Trends Immunol., 2017, 38(5), 310-322. doi: 10.1016/j.it.2017.01.006 PMID: 28254169
  20. Veldhoen, M. Interleukin 17 is a chief orchestrator of immunity. Nat. Immunol., 2017, 18(6), 612-621. doi: 10.1038/ni.3742 PMID: 28518156
  21. Onishi, R.M.; Gaffen, S.L. Interleukin-17 and its target genes: Mechanisms of interleukin-17 function in disease. Immunology, 2010, 129(3), 311-321. doi: 10.1111/j.1365-2567.2009.03240.x PMID: 20409152
  22. Chen, C.; Chen, F.; Yao, C.; Shu, S.; Feng, J.; Hu, X.; Hai, Q.; Yao, S.; Chen, X. Intrathecal injection of human umbilical cord-derived mesenchymal stem cells ameliorates neuropathic pain in rats. Neurochem. Res., 2016, 41(12), 3250-3260. doi: 10.1007/s11064-016-2051-5 PMID: 27655256
  23. Giardini, A.C.; Evangelista, B.G.; Sant’Anna, M.B.; Martins, B.B.; Lancellotti, C.L.P.; Ciena, A.P.; Chacur, M.; Pagano, R.L.; Ribeiro, O.G.; Zambelli, V.O.; Picolo, G. Crotalphine attenuates pain and neuroinflammation induced by experimental autoimmune encephalomyelitis in mice. Toxins, 2021, 13(11), 827. doi: 10.3390/toxins13110827 PMID: 34822611
  24. Yao, C.; Weng, Z.; Zhang, J.; Feng, T.; Lin, Y.; Yao, S. Interleukin-17a acts to maintain neuropathic pain through activation of camkii/creb signaling in spinal neurons. Mol. Neurobiol., 2016, 53(6), 3914-3926. doi: 10.1007/s12035-015-9322-z PMID: 26166359
  25. Richter, F.; Natura, G.; Ebbinghaus, M.; von Banchet, G.S.; Hensellek, S.; König, C.; Bräuer, R.; Schaible, H.G. Interleukin-17 sensitizes joint nociceptors to mechanical stimuli and contributes to arthritic pain through neuronal interleukin-17 receptors in rodents. Arthritis Rheum., 2012, 64(12), 4125-4134. doi: 10.1002/art.37695 PMID: 23192794
  26. Ni, H.; Xu, M.; Xie, K.; Fei, Y.; Deng, H.; He, Q.; Wang, T.; Liu, S.; Zhu, J.; Xu, L.; Yao, M. Liquiritin alleviates pain through inhibiting cxcl1/cxcr2 signaling pathway in bone cancer pain rat. Front. Pharmacol., 2020, 11, 436. doi: 10.3389/fphar.2020.00436 PMID: 32390832
  27. Huo, W.; Liu, Y.; Lei, Y.; Zhang, Y.; Huang, Y.; Mao, Y.; Wang, C.; Sun, Y.; Zhang, W.; Ma, Z.; Gu, X. Imbalanced spinal infiltration of Th17/Treg cells contributes to bone cancer pain via promoting microglial activation. Brain Behav. Immun., 2019, 79, 139-151. doi: 10.1016/j.bbi.2019.01.024 PMID: 30685532
  28. Luo, H.; Liu, H.Z.; Zhang, W.W.; Matsuda, M.; Lv, N.; Chen, G.; Xu, Z.Z.; Zhang, Y.Q. Interleukin-17 regulates neuron-glial communications, synaptic transmission, and neuropathic pain after chemotherapy. Cell Rep., 2019, 29(8), 2384-2397.e5. doi: 10.1016/j.celrep.2019.10.085 PMID: 31747607
  29. Xu, D.; Robinson, A.P.; Ishii, T.; Duncan, D.A.S.; Alden, T.D.; Goings, G.E.; Ifergan, I.; Podojil, J.R.; Penaloza-MacMaster, P.; Kearney, J.A.; Swanson, G.T.; Miller, S.D.; Koh, S. Peripherally derived T regulatory and γδ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J. Exp. Med., 2018, 215(4), 1169-1186. doi: 10.1084/jem.20171285 PMID: 29487082
  30. Kebir, H.; Kreymborg, K.; Ifergan, I.; Dodelet-Devillers, A.; Cayrol, R.; Bernard, M.; Giuliani, F.; Arbour, N.; Becher, B.; Prat, A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med., 2007, 13(10), 1173-1175. doi: 10.1038/nm1651 PMID: 17828272
  31. Kostic, M.; Dzopalic, T.; Zivanovic, S.; Zivkovic, N.; Cvetanovic, A.; Stojanovic, I.; Vojinovic, S.; Marjanovic, G.; Savic, V.; Colic, M. IL-17 and glutamate excitotoxicity in the pathogenesis of multiple sclerosis. Scand. J. Immunol., 2014, 79(3), 181-186. doi: 10.1111/sji.12147 PMID: 24383677
  32. Gelderblom, M.; Weymar, A.; Bernreuther, C.; Velden, J.; Arunachalam, P.; Steinbach, K.; Orthey, E.; Arumugam, T.V.; Leypoldt, F.; Simova, O.; Thom, V.; Friese, M.A.; Prinz, I.; Hölscher, C.; Glatzel, M.; Korn, T.; Gerloff, C.; Tolosa, E.; Magnus, T. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood, 2012, 120(18), 3793-3802. doi: 10.1182/blood-2012-02-412726 PMID: 22976954
  33. Aronica, E.; Crino, P.B. Inflammation in epilepsy: Clinical observations. Epilepsia, 2011, 52(Suppl. 3), 26-32. doi: 10.1111/j.1528-1167.2011.03033.x PMID: 21542843
  34. He, J.J.; Li, S.; Shu, H.F.; Yu, S.X.; Liu, S.Y.; Yin, Q.; Yang, H. The interleukin 17 system in cortical lesions in focal cortical dysplasias. J. Neuropathol. Exp. Neurol., 2013, 72(2), 152-163. doi: 10.1097/NEN.0b013e318281262e PMID: 23334598
  35. He, J.J.; Sun, F.J.; Wang, Y.; Luo, X.Q.; Lei, P.; Zhou, J.; Zhu, D.; Li, Z.Y.; Yang, H. Increased expression of interleukin 17 in the cortex and hippocampus from patients with mesial temporal lobe epilepsy. J. Neuroimmunol., 2016, 298, 153-159. doi: 10.1016/j.jneuroim.2016.07.017 PMID: 27609289
  36. Krakowski and M.L.; Owens, T. Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation. Eur. J. Immunol., 2000, 30(4), 1002-1009. doi: 10.1002/(SICI)1521-4141(200004)30:43.0.CO;2-2 PMID: 10760787
  37. Liu, G.; Guo, J.; Liu, J.; Wang, Z.; Liang, D. Toll-like receptor signaling directly increases functional IL-17RA expression in neuroglial cells. Clin. Immunol., 2014, 154(2), 127-140. doi: 10.1016/j.clim.2014.07.006 PMID: 25076485
  38. Barone, F.C.; Feuerstein, G.Z. Inflammatory mediators and stroke: New opportunities for novel therapeutics. J. Cereb. Blood Flow Metab., 1999, 19(8), 819-834. doi: 10.1097/00004647-199908000-00001 PMID: 10458589
  39. Wang, D.; Zhao, Y.; Wang, G.; Sun, B.; Kong, Q.; Zhao, K.; Zhang, Y.; Wang, J.; Liu, Y.; Mu, L.; Wang, D.; Li, H. IL-17 potentiates neuronal injury induced by oxygen–glucose deprivation and affects neuronal IL-17 receptor expression. J. Neuroimmunol., 2009, 212(1-2), 17-25. doi: 10.1016/j.jneuroim.2009.04.007 PMID: 19457561
  40. Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science, 2016, 353(6301), 777-783. doi: 10.1126/science.aag2590 PMID: 27540165
  41. Sommer, A.; Marxreiter, F.; Krach, F.; Fadler, T.; Grosch, J.; Maroni, M.; Graef, D.; Eberhardt, E.; Riemenschneider, M.J.; Yeo, G.W.; Kohl, Z.; Xiang, W.; Gage, F.H.; Winkler, J.; Prots, I.; Winner, B. Th17 lymphocytes induce neuronal cell death in a human ipsc-based model of parkinson’s disease. Cell Stem Cell, 2018, 23(1), 123-131.e6. doi: 10.1016/j.stem.2018.06.015 PMID: 29979986
  42. Nerurkar, P.V.; Johns, L.M.; Buesa, L.M.; Kipyakwai, G.; Volper, E.; Sato, R.; Shah, P.; Feher, D.; Williams, P.G.; Nerurkar, V.R. Momordica charantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation. J. Neuroinflammation, 2011, 8(1), 64. doi: 10.1186/1742-2094-8-64 PMID: 21639917
  43. Noma, N.; Khan, J.; Chen, I.F.; Markman, S.; Benoliel, R.; Hadlaq, E.; Imamura, Y.; Eliav, E. Interleukin-17 levels in rat models of nerve damage and neuropathic pain. Neurosci. Lett., 2011, 493(3), 86-91. doi: 10.1016/j.neulet.2011.01.079 PMID: 21316418
  44. Li, J.; Wei, G.H.; Huang, H.; Lan, Y.P.; Liu, B.; Liu, H.; Zhang, W.; Zuo, Y.X. Nerve injury-related autoimmunity activation leads to chronic inflammation and chronic neuropathic pain. Anesthesiology, 2013, 118(2), 416-429. doi: 10.1097/ALN.0b013e31827d4b82 PMID: 23340353
  45. Chen, H.; Tang, X.; Li, J.; Hu, B.; Yang, W.; Zhan, M.; Ma, T.; Xu, S. IL-17 crosses the blood–brain barrier to trigger neuroinflammation: A novel mechanism in nitroglycerin-induced chronic migraine. J. Headache Pain, 2022, 23(1), 1. doi: 10.1186/s10194-021-01374-9 PMID: 34979902
  46. Liu, H.; Dolkas, J.; Hoang, K.; Angert, M.; Chernov, A.V.; Remacle, A.G.; Shiryaev, S.A.; Strongin, A.Y.; Nishihara, T.; Shubayev, V.I. The alternatively spliced fibronectin CS1 isoform regulates IL-17A levels and mechanical allodynia after peripheral nerve injury. J. Neuroinflammation, 2015, 12(1), 158. doi: 10.1186/s12974-015-0377-6 PMID: 26337825
  47. Day, Y.J.; Liou, J.T.; Lee, C.M.; Lin, Y.C.; Mao, C.C.; Chou, A.H.; Liao, C.C.; Lee, H.C. Lack of interleukin-17 leads to a modulated micro-environment and amelioration of mechanical hypersensitivity after peripheral nerve injury in mice. Pain, 2014, 155(7), 1293-1302. doi: 10.1016/j.pain.2014.04.004 PMID: 24721689
  48. Stettner, M.; Lohmann, B.; Wolffram, K.; Weinberger, J.P.; Dehmel, T.; Hartung, H.P.; Mausberg, A.K.; Kieseier, B.C. Interleukin-17 impedes Schwann cell-mediated myelination. J. Neuroinflammation, 2014, 11(1), 63. doi: 10.1186/1742-2094-11-63 PMID: 24678820
  49. Fattori, V.; Amaral, F.A.; Verri, W.A., Jr Neutrophils and arthritis: Role in disease and pharmacological perspectives. Pharmacol. Res., 2016, 112, 84-98. doi: 10.1016/j.phrs.2016.01.027 PMID: 26826283
  50. Vestweber, D. How leukocytes cross the vascular endothelium. Nat. Rev. Immunol., 2015, 15(11), 692-704. doi: 10.1038/nri3908 PMID: 26471775
  51. Sadik, C.D.; Kim, N.D.; Luster, A.D. Neutrophils cascading their way to inflammation. Trends Immunol., 2011, 32(10), 452-460. doi: 10.1016/j.it.2011.06.008 PMID: 21839682
  52. Sarma, J.V.; Ward, P.A. New developments in C5a receptor signaling. Cell Health Cytoskelet., 2012, 4, 73-82. PMID: 23576881
  53. Pinto, L.G.; Cunha, T.M.; Vieira, S.M.; Lemos, H.P.; Verri, W.A., Jr; Cunha, F.Q.; Ferreira, S.H. IL-17 mediates articular hypernociception in antigen-induced arthritis in mice. Pain, 2010, 148(2), 247-256. doi: 10.1016/j.pain.2009.11.006 PMID: 19969421
  54. Ritter, A.M.V.; Domiciano, T.P.; Verri, W.A., Jr; Zarpelon, A.C.; da Silva, L.G.; Barbosa, C.P.; Natali, M.R.M.; Cuman, R.K.N.; Bersani-Amado, C.A. Antihypernociceptive activity of anethole in experimental inflammatory pain. Inflammopharmacology, 2013, 21(2), 187-197. doi: 10.1007/s10787-012-0152-6 PMID: 23054333
  55. Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science, 2004, 303(5663), 1532-1535. doi: 10.1126/science.1092385 PMID: 15001782
  56. Urban, C.F.; Reichard, U.; Brinkmann, V.; Zychlinsky, A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol., 2006, 8(4), 668-676. doi: 10.1111/j.1462-5822.2005.00659.x PMID: 16548892
  57. Saitoh, T.; Komano, J.; Saitoh, Y.; Misawa, T.; Takahama, M.; Kozaki, T.; Uehata, T.; Iwasaki, H.; Omori, H.; Yamaoka, S.; Yamamoto, N.; Akira, S. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe, 2012, 12(1), 109-116. doi: 10.1016/j.chom.2012.05.015 PMID: 22817992
  58. Abi Abdallah, D.S.; Lin, C.; Ball, C.J.; King, M.R.; Duhamel, G.E.; Denkers, E.Y. Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect. Immun., 2012, 80(2), 768-777. doi: 10.1128/IAI.05730-11 PMID: 22104111
  59. Zhang, Y.; Chandra, V.; Riquelme Sanchez, E.; Dutta, P.; Quesada, P.R.; Rakoski, A.; Zoltan, M.; Arora, N.; Baydogan, S.; Horne, W.; Burks, J.; Xu, H.; Hussain, P.; Wang, H.; Gupta, S.; Maitra, A.; Bailey, J.M.; Moghaddam, S.J.; Banerjee, S.; Sahin, I.; Bhattacharya, P.; McAllister, F. Interleukin-17–induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J. Exp. Med., 2020, 217(12), e20190354. doi: 10.1084/jem.20190354 PMID: 32860704
  60. Papagoras, C.; Chrysanthopoulou, A.; Mitsios, A.; Ntinopoulou, M.; Tsironidou, V.; Batsali, A.K.; Papadaki, H.A.; Skendros, P.; Ritis, K. IL‐17A expressed on neutrophil extracellular traps promotes mesenchymal stem cell differentiation toward bone‐forming cells in ankylosing spondylitis. Eur. J. Immunol., 2021, 51(4), 930-942. doi: 10.1002/eji.202048878 PMID: 33340091
  61. Michel-Flutot, P.; Bourcier, C.H.; Emam, L.; Gasser, A.; Glatigny, S.; Vinit, S.; Mansart, A. Extracellular traps formation following cervical spinal cord injury. Eur. J. Neurosci., 2022, ejn.15902. doi: 10.1111/ejn.15902 PMID: 36537022
  62. Suzuki, K.; Tsuchiya, M.; Yoshida, S.; Ogawa, K.; Chen, W.; Kanzaki, M.; Takahashi, T.; Fujita, R.; Li, Y.; Yabe, Y.; Aizawa, T.; Hagiwara, Y. Tissue accumulation of neutrophil extracellular traps mediates muscle hyperalgesia in a mouse model. Sci. Rep., 2022, 12(1), 4136. doi: 10.1038/s41598-022-07916-8 PMID: 35264677
  63. Schneider, A.H.; Machado, C.C.; Veras, F.P.; Maganin, A.G.M.; de Souza, F.F.L.; Barroso, L.C.; de Oliveira, R.D.R.; Alves-Filho, J.C.; Cunha, T.M.; Fukada, S.Y.; Louzada-Júnior, P.; da Silva, T.A.; Cunha, F.Q. Neutrophil extracellular traps mediate joint hyperalgesia induced by immune inflammation. Rheumatology, 2021, 60(7), 3461-3473. doi: 10.1093/rheumatology/keaa794 PMID: 33367912
  64. Lin, T.; Hu, L.; Hu, F.; Li, K.; Wang, C.Y.; Zong, L.J.; Zhao, Y.Q.; Zhang, X.; Li, Y.; Yang, Y.; Wang, Y.; Jiang, C.Y.; Wu, X.; Liu, W.T. Net-triggered nlrp3 activation and il18 release drive oxaliplatin-induced peripheral neuropathy. Cancer Immunol. Res., 2022, 10(12), 1542-1558. doi: 10.1158/2326-6066.CIR-22-0197 PMID: 36255412
  65. Hamilton, J.A.; Tak, P.P. The dynamics of macrophage lineage populations in inflammatory and autoimmune diseases. Arthritis Rheum., 2009, 60(5), 1210-1221. doi: 10.1002/art.24505 PMID: 19404968
  66. Kleinschnitz, C.; Hofstetter, H.H.; Meuth, S.G.; Braeuninger, S.; Sommer, C.; Stoll, G. T cell infiltration after chronic constriction injury of mouse sciatic nerve is associated with interleukin-17 expression. Exp. Neurol., 2006, 200(2), 480-485. doi: 10.1016/j.expneurol.2006.03.014 PMID: 16674943
  67. Luo, X.; Chen, O.; Wang, Z.; Bang, S.; Ji, J.; Lee, S.H.; Huh, Y.; Furutani, K.; He, Q.; Tao, X.; Ko, M.C.; Bortsov, A.; Donnelly, C.R.; Chen, Y.; Nackley, A.; Berta, T.; Ji, R.R. IL-23/IL-17A/ TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron, 2021, 109(17), 2691-2706.e5. doi: 10.1016/j.neuron.2021.06.015 PMID: 34473953
  68. Motrich, R.D.; Breser, M.L.; Sánchez, L.R.; Godoy, G.J.; Prinz, I.; Rivero, V.E. IL-17 is not essential for inflammation and chronic pelvic pain development in an experimental model of chronic prostatitis/chronic pelvic pain syndrome. Pain, 2016, 157(3), 585-597. doi: 10.1097/j.pain.0000000000000405 PMID: 26882345
  69. Hogan, Q.H. Labat lecture: The primary sensory neuron: where it is, what it does, and why it matters. Reg. Anesth. Pain Med., 2010, 35(3), 306-311. doi: 10.1097/AAP.0b013e3181d2375e PMID: 20460965
  70. Esposito, M.F.; Malayil, R.; Hanes, M.; Deer, T. Unique characteristics of the dorsal root ganglion as a target for neuromodulation. Pain Med., 2019, 20(Suppl. 1), S23-S30. doi: 10.1093/pm/pnz012 PMID: 31152179
  71. Wu, Z.; Li, L.; Xie, F.; Du, J.; Zuo, Y.; Frost, J.A.; Carlton, S.M.; Walters, E.T.; Yang, Q. Activation of kcnq channels suppresses spontaneous activity in dorsal root ganglion neurons and reduces chronic pain after spinal cord injury. J. Neurotrauma, 2017, 34(6), 1260-1270. doi: 10.1089/neu.2016.4789 PMID: 28073317
  72. Segond von Banchet, G.; Boettger, M.K.; König, C.; Iwakura, Y.; Bräuer, R.; Schaible, H.G. Neuronal IL-17 receptor upregulates TRPV4 but not TRPV1 receptors in DRG neurons and mediates mechanical but not thermal hyperalgesia. Mol. Cell. Neurosci., 2013, 52, 152-160. doi: 10.1016/j.mcn.2012.11.006 PMID: 23147107
  73. Ebbinghaus, M.; Natura, G.; Segond von Banchet, G.; Hensellek, S.; Böttcher, M.; Hoffmann, B.; Salah, F.S.; Gajda, M.; Kamradt, T.; Schaible, H.G. Interleukin-17A is involved in mechanical hyperalgesia but not in the severity of murine antigen-induced arthritis. Sci. Rep., 2017, 7(1), 10334. doi: 10.1038/s41598-017-10509-5 PMID: 28871176
  74. Pinho-Ribeiro, F.A.; Verri, W.A., Jr; Chiu, I.M. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol., 2017, 38(1), 5-19. doi: 10.1016/j.it.2016.10.001 PMID: 27793571
  75. Ji, R.R.; Chamessian, A.; Zhang, Y.Q. Pain regulation by non-neuronal cells and inflammation. Science, 2016, 354(6312), 572-577. doi: 10.1126/science.aaf8924 PMID: 27811267
  76. Zong, S.; Zeng, G.; Fang, Y.; Peng, J.; Tao, Y.; Li, K.; Zhao, J. The role of IL-17 promotes spinal cord neuroinflammation via activation of the transcription factor STAT3 after spinal cord injury in the rat. Mediators Inflamm., 2014, 2014, 1-10. doi: 10.1155/2014/786947 PMID: 24914249
  77. You, T.; Bi, Y. li, J.; Zhang, M.; Chen, X.; Zhang, K.; Li, J. IL-17 induces reactive astrocytes and up-regulation of vascular endothelial growth factor (VEGF) through JAK/STAT signaling. Sci. Rep., 2017, 7(1), 41779. doi: 10.1038/srep41779 PMID: 28281545
  78. Hu, J.; Yang, Z.; Li, X.; Lu, H. C-C motif chemokine ligand 20 regulates neuroinflammation following spinal cord injury via Th17 cell recruitment. J. Neuroinflammation, 2016, 13(1), 162. doi: 10.1186/s12974-016-0630-7 PMID: 27334337
  79. Sun, C.; Zhang, J.; Chen, L.; Liu, T.; Xu, G.; Li, C.; Yuan, W.; Xu, H.; Su, Z. IL-17 contributed to the neuropathic pain following peripheral nerve injury by promoting astrocyte proliferation and secretion of proinflammatory cytokines. Mol. Med. Rep., 2017, 15(1), 89-96. doi: 10.3892/mmr.2016.6018 PMID: 27959414
  80. Wang, J.; Zhang, R.; Dong, C.; Jiao, L.; Xu, L.; Liu, J.; Wang, Z.; Lao, L. Transient receptor potential channel and interleukin-17a involvement in lttl gel inhibition of bone cancer pain in a rat model. Integr. Cancer Ther., 2015, 14(4), 381-393. doi: 10.1177/1534735415580677 PMID: 26100378
  81. Dutra, R.C.; Bento, A.F.; Leite, D.F.P.; Manjavachi, M.N.; Marcon, R.; Bicca, M.A.; Pesquero, J.B.; Calixto, J.B. The role of kinin B1 and B2 receptors in the persistent pain induced by experimental autoimmune encephalomyelitis (EAE) in mice: Evidence for the involvement of astrocytes. Neurobiol. Dis., 2013, 54, 82-93. doi: 10.1016/j.nbd.2013.02.007 PMID: 23454198
  82. Liu, X.J.; Gingrich, J.R.; Vargas-Caballero, M.; Dong, Y.N.; Sengar, A.; Beggs, S.; Wang, S.H.; Ding, H.K.; Frankland, P.W.; Salter, M.W. Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nat. Med., 2008, 14(12), 1325-1332. doi: 10.1038/nm.1883 PMID: 19011637
  83. Meng, X.; Zhang, Y.; Lao, L.; Saito, R.; Li, A.; Bäckman, C.M.; Berman, B.M.; Ren, K.; Wei, P.K.; Zhang, R.X. Spinal interleukin-17 promotes thermal hyperalgesia and NMDA NR1 phosphorylation in an inflammatory pain rat model. Pain, 2013, 154(2), 294-305. doi: 10.1016/j.pain.2012.10.022 PMID: 23246025
  84. Zhu, M.; Yuan, S.T.; Yu, W.L.; Jia, L.L.; Sun, Y. CXCL13 regulates the trafficking of GluN2B-containing NMDA receptor via IL-17 in the development of remifentanil-induced hyperalgesia in rats. Neurosci. Lett., 2017, 648, 26-33. doi: 10.1016/j.neulet.2017.03.044 PMID: 28359934
  85. Duan, B.; Cheng, L.; Bourane, S.; Britz, O.; Padilla, C.; Garcia-Campmany, L.; Krashes, M.; Knowlton, W.; Velasquez, T.; Ren, X.; Ross, S.E.; Lowell, B.B.; Wang, Y.; Goulding, M.; Ma, Q. Identification of spinal circuits transmitting and gating mechanical pain. Cell, 2014, 159(6), 1417-1432. doi: 10.1016/j.cell.2014.11.003 PMID: 25467445
  86. Le, Y.; Chen, X.; Wang, L.; He, W.; He, J.; Xiong, Q.; Wang, Y.; Zhang, L.; Zheng, X.; Wang, H. Chemotherapy-induced peripheral neuropathy is promoted by enhanced spinal insulin-like growth factor-1 levels via astrocyte-dependent mechanisms. Brain Res. Bull., 2021, 175, 205-212. doi: 10.1016/j.brainresbull.2021.07.026 PMID: 34333050
  87. Zhang, L.; Lu, C.; Kang, L.; Li, Y.; Tang, W.; Zhao, D.; Yu, S.; Liu, R. Temporal characteristics of astrocytic activation in the TNC in a mice model of pain induced by recurrent dural infusion of inflammatory soup. J. Headache Pain, 2022, 23(1), 8. doi: 10.1186/s10194-021-01382-9 PMID: 35033010
  88. Kim, C.F.; Moalem-Taylor, G. Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice. J. Pain, 2011, 12(3), 370-383. doi: 10.1016/j.jpain.2010.08.003 PMID: 20889388
  89. Reich, K.; Papp, K.A.; Blauvelt, A.; Tyring, S.K.; Sinclair, R.; Thaçi, D.; Nograles, K.; Mehta, A.; Cichanowitz, N.; Li, Q.; Liu, K.; La Rosa, C.; Green, S.; Kimball, A.B. Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): results from two randomised controlled, phase 3 trials. Lancet, 2017, 390(10091), 276-288. doi: 10.1016/S0140-6736(17)31279-5 PMID: 28596043
  90. Tahir, H.; Deodhar, A.; Genovese, M.; Takeuchi, T.; Aelion, J.; Van den Bosch, F.; Haemmerle, S.; Richards, H.B. Secukinumab in active rheumatoid arthritis after anti-tnfalpha therapy: A randomized, double-blind placebo-controlled phase 3 study. Rheumatol. Ther., 2017, 4(2), 475-488. doi: 10.1007/s40744-017-0086-y PMID: 29138986
  91. Genovese, M.C.; Greenwald, M.; Cho, C.S.; Berman, A.; Jin, L.; Cameron, G.S.; Benichou, O.; Xie, L.; Braun, D.; Berclaz, P.Y.; Banerjee, S. A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheumatol., 2014, 66(7), 1693-1704. doi: 10.1002/art.38617 PMID: 24623718
  92. Mease, P.J.; Asahina, A.; Gladman, D.D.; Tanaka, Y.; Tillett, W.; Ink, B.; Assudani, D.; de la Loge, C.; Coarse, J.; Eells, J.; Gossec, L. Effect of bimekizumab on symptoms and impact of disease in patients with psoriatic arthritis over 3 years: Results from be active. Rheumatology, 2022, 62(2), 617-628.
  93. Pavelka, K.; Chon, Y.; Newmark, R.; Lin, S.L.; Baumgartner, S.; Erondu, N. A study to evaluate the safety, tolerability, and efficacy of brodalumab in subjects with rheumatoid arthritis and an inadequate response to methotrexate. J. Rheumatol., 2015, 42(6), 912-919. doi: 10.3899/jrheum.141271 PMID: 25877498
  94. Jin, Y.; Meng, Q.; Mei, L.; Zhou, W.; Zhu, X.; Mao, Y.; Xie, W.; Zhang, X.; Luo, M.H.; Tao, W.; Wang, H.; Li, J.; Li, J.; Li, X.; Zhang, Z. A somatosensory cortex input to the caudal dorsolateral striatum controls comorbid anxiety in persistent pain. Pain, 2020, 161(2), 416-428. doi: 10.1097/j.pain.0000000000001724 PMID: 31651582
  95. Liang, S.H.; Zhao, W.J.; Yin, J.B.; Chen, Y.B.; Li, J.N.; Feng, B.; Lu, Y.C.; Wang, J.; Dong, Y.L.; Li, Y.Q. A neural circuit from thalamic paraventricular nucleus to central amygdala for the facilitation of neuropathic pain. J. Neurosci., 2020, 40(41), 7837-7854. doi: 10.1523/JNEUROSCI.2487-19.2020 PMID: 32958568
  96. Berkley, K.J. Sex differences in pain. Behav. Brain Sci., 1997, 20(3), 371-380. doi: 10.1017/S0140525X97221485 PMID: 10097000
  97. Unruh, A.M. Gender variations in clinical pain experience. Pain, 1996, 65(2), 123-167. doi: 10.1016/0304-3959(95)00214-6 PMID: 8826503
  98. Fillingim, R.B.; King, C.D.; Ribeiro-Dasilva, M.C.; Rahim-Williams, B.; Riley, J.L. III Sex, gender, and pain: A review of recent clinical and experimental findings. J. Pain, 2009, 10(5), 447-485. doi: 10.1016/j.jpain.2008.12.001 PMID: 19411059
  99. Mogil, J.S. Sex differences in pain and pain inhibition: Multiple explanations of a controversial phenomenon. Nat. Rev. Neurosci., 2012, 13(12), 859-866. doi: 10.1038/nrn3360 PMID: 23165262
  100. El-Darouti, M.A.; Hegazy, R.A.; Abdel Hay, R.M.; Rashed, L.A. Study of T helper (17) and T regulatory cells in psoriatic patients receiving live attenuated varicella vaccine therapy in a randomized controlled trial. Eur. J. Dermatol., 2014, 24(4), 464-469. doi: 10.1684/ejd.2014.2377 PMID: 25119950
  101. Hendrawan, K.; Khoo, M.L.M.; Visweswaran, M.; Massey, J.C.; Withers, B.; Sutton, I.; Ma, D.D.F.; Moore, J.J. Long-term suppression of circulating proinflammatory cytokines in multiple sclerosis patients following autologous haematopoietic stem cell transplantation. Front. Immunol., 2022, 12, 782935. doi: 10.3389/fimmu.2021.782935 PMID: 35126353
  102. Khadem Azarian, S.; Jafarnezhad-Ansariha, F.; Nazeri, S.; Azizi, G.; Aghazadeh, Z.; Hosseinzadeh, E.; Mirshafiey, A. Effects of guluronic acid, as a new NSAID with immunomodulatory properties on IL-17, RORγt, IL-4 and GATA-3 gene expression in rheumatoid arthritis patients. Immunopharmacol. Immunotoxicol., 2020, 42(1), 22-27. doi: 10.1080/08923973.2019.1702053 PMID: 31856612
  103. Mostafa, T.M.; Hegazy, S.K.; El-Ghany, S.E.A.; Kotkata, F.A.E.M. Comparative study evaluating antihistamine versus leukotriene receptor antagonist as adjuvant therapy for rheumatoid arthritis. Eur. J. Clin. Pharmacol., 2021, 77(12), 1825-1834. doi: 10.1007/s00228-021-03181-2 PMID: 34218304
  104. Pidala, J.; Beato, F.; Kim, J.; Betts, B.; Jim, H.; Sagatys, E.; Levine, J.E.; Ferrara, J.L.M.; Ozbek, U.; Ayala, E.; Davila, M.; Fernandez, H.F.; Field, T.; Kharfan-Dabaja, M.A.; Khaira, D.; Khimani, F.; Locke, F.L.; Mishra, A.; Nieder, M.; Nishihori, T.; Perez, L.; Riches, M.; Anasetti, C. In vivo IL-12/IL-23p40 neutralization blocks Th1/Th17 response after allogeneic hematopoietic cell transplantation. Haematologica, 2018, 103(3), 531-539. doi: 10.3324/haematol.2017.171199 PMID: 29242294
  105. Shi, Y.; Ullrich, S.J.; Zhang, J.; Connolly, K.; Grzegorzewski, K.J.; Barber, M.C.; Wang, W.; Wathen, K.; Hodge, V.; Fisher, C.L.; Olsen, H.; Ruben, S.M.; Knyazev, I.; Cho, Y.H.; Kao, V.; Wilkinson, K.A.; Carrell, J.A.; Ebner, R. A novel cytokine receptor-ligand pair. Identification, molecular characterization, and in vivo immunomodulatory activity. J. Biol. Chem., 2000, 275(25), 19167-19176. doi: 10.1074/jbc.M910228199 PMID: 10749887
  106. Ramirez-Carrozzi, V.; Ota, N.; Sambandam, A.; Wong, K.; Hackney, J.; Martinez-Martin, N.; Ouyang, W.; Pappu, R. Cutting edge: Il-17b uses il-17ra and il-17rb to induce type 2 inflammation from human lymphocytes. J. Immunol., 2019, 202(7), 1935-1941. doi: 10.4049/jimmunol.1800696 PMID: 30770417
  107. Létuvé, S.; Lajoie-Kadoch, S.; Audusseau, S.; Rothenberg, M.E.; Fiset, P.O.; Ludwig, M.S.; Hamid, Q. IL-17E upregulates the expression of proinflammatory cytokines in lung fibroblasts. J. Allergy Clin. Immunol., 2006, 117(3), 590-596. doi: 10.1016/j.jaci.2005.10.025 PMID: 16522458
  108. Ferreira, N.; Mesquita, I.; Baltazar, F.; Silvestre, R.; Granja, S. IL-17A and IL-17F orchestrate macrophages to promote lung cancer. Cell. Oncol., 2020, 43(4), 643-654. doi: 10.1007/s13402-020-00510-y PMID: 32227296
  109. Pavlov, O.; Selutin, A.; Pavlova, O.; Selkov, S. Macrophages are a source of IL-17 in the human placenta. Am. J. Reprod. Immunol., 2018, 80(4), e13016. doi: 10.1111/aji.13016 PMID: 29956865
  110. Senra, L.; Stalder, R.; Alvarez Martinez, D.; Chizzolini, C.; Boehncke, W.H.; Brembilla, N.C. Keratinocyte-derived il-17e contributes to inflammation in psoriasis. J. Invest. Dermatol., 2016, 136(10), 1970-1980. doi: 10.1016/j.jid.2016.06.009 PMID: 27329229
  111. Senra, L.; Mylonas, A.; Kavanagh, R.D.; Fallon, P.G.; Conrad, C.; Borowczyk-Michalowska, J.; Wrobel, L.J.; Kaya, G.; Yawalkar, N.; Boehncke, W.H.; Brembilla, N.C.N.C. Il-17e (il-25) enhances innate immune responses during skin inflammation. J. Invest. Dermatol., 2019, 139(8), 1732-1742.
  112. Yan, Y.; Ding, X.; Li, K.; Ciric, B.; Wu, S.; Xu, H.; Gran, B.; Rostami, A.; Zhang, G.X. CNS-specific therapy for ongoing EAE by silencing IL-17 pathway in astrocytes. Mol. Ther., 2012, 20(7), 1338-1348. doi: 10.1038/mt.2012.12 PMID: 22434134

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers