The Modulation by Anesthetics and Analgesics of Respiratory Rhythm in the Nervous System
- Authors: Hao X.1, Yang Y.1, Liu J.1, Zhang D.1, Ou M.1, Ke B.2, Zhu T.1, Zhou C.2
-
Affiliations:
- Department of Anesthesiology, West China Hospital of Sichuan University
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University
- Issue: Vol 22, No 2 (2024)
- Pages: 217-240
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644617
- DOI: https://doi.org/10.2174/1570159X21666230810110901
- ID: 644617
Cite item
Full Text
Abstract
Rhythmic eupneic breathing in mammals depends on the coordinated activities of the neural system that sends cranial and spinal motor outputs to respiratory muscles. These outputs modulate lung ventilation and adjust respiratory airflow, which depends on the upper airway patency and ventilatory musculature. Anesthetics are widely used in clinical practice worldwide. In addition to clinically necessary pharmacological effects, respiratory depression is a critical side effect induced by most general anesthetics. Therefore, understanding how general anesthetics modulate the respiratory system is important for the development of safer general anesthetics. Currently used volatile anesthetics and most intravenous anesthetics induce inhibitory effects on respiratory outputs. Various general anesthetics produce differential effects on respiratory characteristics, including the respiratory rate, tidal volume, airway resistance, and ventilatory response. At the cellular and molecular levels, the mechanisms underlying anesthetic-induced breathing depression mainly include modulation of synaptic transmission of ligand-gated ionotropic receptors (e.g., γ-aminobutyric acid, N-methyl-D-aspartate, and nicotinic acetylcholine receptors) and ion channels (e.g., voltage-gated sodium, calcium, and potassium channels, two-pore domain potassium channels, and sodium leak channels), which affect neuronal firing in brainstem respiratory and peripheral chemoreceptor areas. The present review comprehensively summarizes the modulation of the respiratory system by clinically used general anesthetics, including the effects at the molecular, cellular, anatomic, and behavioral levels. Specifically, analgesics, such as opioids, which cause respiratory depression and the "opioid crisis", are discussed. Finally, underlying strategies of respiratory stimulation that target general anesthetics and/or analgesics are summarized.
About the authors
Xuechao Hao
Department of Anesthesiology, West China Hospital of Sichuan University
Email: info@benthamscience.net
Yaoxin Yang
Department of Anesthesiology, West China Hospital of Sichuan University
Email: info@benthamscience.net
Jin Liu
Department of Anesthesiology, West China Hospital of Sichuan University
Email: info@benthamscience.net
Donghang Zhang
Department of Anesthesiology, West China Hospital of Sichuan University
Email: info@benthamscience.net
Mengchan Ou
Department of Anesthesiology, West China Hospital of Sichuan University
Email: info@benthamscience.net
Bowen Ke
Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University
Email: info@benthamscience.net
Tao Zhu
Department of Anesthesiology, West China Hospital of Sichuan University
Author for correspondence.
Email: info@benthamscience.net
Cheng Zhou
Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University
Author for correspondence.
Email: info@benthamscience.net
References
- Rosenbloom, J.M.; Schonberger, R.B. The outlook of physician histories: J. Marion Sims and The Discovery of Anaesthesia. Med. Humanit., 2015, 41(2), 102-106. doi: 10.1136/medhum-2015-010680 PMID: 26048369
- Hulsman, N.; Hollmann, M.W.; Preckel, B. Newer propofol, ketamine, and etomidate derivatives and delivery systems relevant to anesthesia practice. Baillieres. Best Pract. Res. Clin. Anaesthesiol., 2018, 32(2), 213-221. doi: 10.1016/j.bpa.2018.08.002 PMID: 30322461
- Stuth, E.A.; Stucke, A.G.; Brandes, I.F.; Zuperku, E.J. Anesthetic effects on synaptic transmission and gain control in respiratory control. Respir. Physiol. Neurobiol., 2008, 164(1-2), 151-159. doi: 10.1016/j.resp.2008.05.007 PMID: 18583201
- Teppema, L.J.; Baby, S. Anesthetics and control of breathing. Respir. Physiol. Neurobiol., 2011, 177(2), 80-92. doi: 10.1016/j.resp.2011.04.006 PMID: 21514403
- Hales, T.G.; Lambert, J.J. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br. J. Pharmacol., 1991, 104(3), 619-628. doi: 10.1111/j.1476-5381.1991.tb12479.x PMID: 1665745
- Orser, B.A.; Wang, L.Y.; Pennefather, P.S.; MacDonald, J.F. Propofol modulates activation and desensitization of GABAA receptors in cultured murine hippocampal neurons. J. Neurosci., 1994, 14(12), 7747-7760. doi: 10.1523/JNEUROSCI.14-12-07747.1994 PMID: 7996209
- Buggy, D.J.; Nicol, B.; Rowbotham, D.J.; Lambert, D.G. Effects of intravenous anesthetic agents on glutamate release: A role for GABAA receptor-mediated inhibition. Anesthesiology, 2000, 92(4), 1067-1073. doi: 10.1097/00000542-200004000-00025 PMID: 10754627
- Ponte, J.; Sadler, C.L. Effect of thiopentone, etomidate and propofol on carotid body chemoreceptor activity in the rabbit and the cat. Br. J. Anaesth., 1989, 62(1), 41-45. doi: 10.1093/bja/62.1.41 PMID: 2492814
- Akada, S.; Fagerlund, M.J.; Lindahl, S.G.E.; Sakamoto, A.; Prabhakar, N.R.; Eriksson, L.I. Pronounced depression by propofol on carotid body response to CO2 and K+-induced carotid body activation. Respir. Physiol. Neurobiol., 2008, 160(3), 284-288. doi: 10.1016/j.resp.2007.10.011 PMID: 18054527
- Yang, J.; Uchida, I. Mechanisms of etomidate potentiation of GABAA receptor-gated currents in cultured postnatal hippocampal neurons. Neuroscience, 1996, 73(1), 69-78. doi: 10.1016/0306-4522(96)00018-8 PMID: 8783230
- Zhong, H.; Rüsch, D.; Forman, S.A. Photo-activated azi-etomidate, a general anesthetic photolabel, irreversibly enhances gating and desensitization of gamma-aminobutyric acid type A receptors. Anesthesiology, 2008, 108(1), 103-112. doi: 10.1097/01.anes.0000296074.33999.52 PMID: 18156888
- Latson, T.W.; Maire McCarroll, S.; Andrew Mirhej, M.; Hyndman, V.A.; Whitten, C.W.; Lipton, J.M. Effects of three anesthetic induction techniques on heart rate variability. J. Clin. Anesth., 1992, 4(4), 265-276. doi: 10.1016/0952-8180(92)90127-M PMID: 1419006
- Gelissen, H.P.M.M.; Epema, A.H.; Henning, R.H.; Krijnen, H.J.; Hennis, P.J.; den Hertog, A. Inotropic effects of propofol, thiopental, midazolam, etomidate, and ketamine on isolated human atrial muscle. Anesthesiology, 1996, 84(2), 397-403. doi: 10.1097/00000542-199602000-00019 PMID: 8602672
- Godwin, S.A.; Burton, J.H.; Gerardo, C.J.; Hatten, B.W.; Mace, S.E.; Silvers, S.M.; Fesmire, F.M. Clinical policy: Procedural sedation and analgesia in the emergency department. Ann. Emerg. Med., 2014, 63(2), 247-258.e18. doi: 10.1016/j.annemergmed.2013.10.015 PMID: 24438649
- Yang, Y.; Ou, M.; Liu, J.; Zhao, W.; Zhuoma, L.; Liang, Y.; Zhu, T.; Mulkey, D.K.; Zhou, C. Volatile anesthetics activate a leak sodium conductance in retrotrapezoid nucleus neurons to maintain breathing during anesthesia in mice. Anesthesiology, 2020, 133(4), 824-838. doi: 10.1097/ALN.0000000000003493 PMID: 32773689
- Pattinson, K.T.S. Opioids and the control of respiration. Br. J. Anaesth., 2008, 100(6), 747-758. doi: 10.1093/bja/aen094 PMID: 18456641
- Bachmutsky, I.; Wei, X.P.; Kish, E.; Yackle, K. Opioids depress breathing through two small brainstem sites. eLife, 2020, 9, e52694. doi: 10.7554/eLife.52694 PMID: 32073401
- Baby, S.M.; Gruber, R.B.; Young, A.P.; MacFarlane, P.M.; Teppema, L.J.; Lewis, S.J. Bilateral carotid sinus nerve transection exacerbates morphine-induced respiratory depression. Eur. J. Pharmacol., 2018, 834, 17-29. doi: 10.1016/j.ejphar.2018.07.018 PMID: 30012498
- Bianchi, A.L.; Denavit-Saubié, M.; Champagnat, J. Central control of breathing in mammals: Neuronal circuitry, membrane properties, and neurotransmitters. Physiol. Rev., 1995, 75(1), 1-45. doi: 10.1152/physrev.1995.75.1.1 PMID: 7831394
- Richter, D.W.; Lalley, P.M.; Pierrefiche, O.; Haji, A.; Bischoff, A.M.; Wilken, B.; Hanefeld, F. Intracellular signal pathways controlling respiratory neurons. Respir. Physiol., 1997, 110(2-3), 113-123. doi: 10.1016/S0034-5687(97)00077-7 PMID: 9407605
- Ghali, M.G.Z. Respiratory rhythm generation and pattern formation: Oscillators and network mechanisms. J. Integr. Neurosci., 2019, 18(4), 481-517. doi: 10.31083/j.jin.2019.04.188 PMID: 31912709
- Morgado-Valle, C.; Beltran-Parrazal, L. Respiratory rhythm generation: The whole is greater than the sum of the parts. Adv. Exp. Med. Biol., 2017, 1015, 147-161. doi: 10.1007/978-3-319-62817-2_9 PMID: 29080026
- Molkov, Y.I.; Rubin, J.E.; Rybak, I.A.; Smith, J.C. Computational models of the neural control of breathing. Wiley Interdiscip. Rev. Syst. Biol. Med., 2017, 9(2), 10.1002/wsbm.1371.. doi: 10.1002/wsbm.1371 PMID: 28009109
- Yang, C.F.; Feldman, J.L. Efferent projections of excitatory and inhibitory preBötzinger Complex neurons. J. Comp. Neurol., 2018, 526(8), 1389-1402. doi: 10.1002/cne.24415 PMID: 29473167
- Bautista, T.G.; Burke, P.G.R.; Sun, Q.J.; Berkowitz, R.G.; Pilowsky, P.M. The generation of post-inspiratory activity in laryngeal motoneurons: A review. Adv. Exp. Med. Biol., 2010, 669, 143-149. doi: 10.1007/978-1-4419-5692-7_29 PMID: 20217338
- Umezaki, T.; Shiba, K.; Sugiyama, Y. Intracellular activity of pharyngeal motoneurons during breathing, swallowing, and coughing. J. Neurophysiol., 2020, 124(3), 750-762. doi: 10.1152/jn.00093.2020 PMID: 32727254
- van Lunteren, E.; Dick, T.E. Intrinsic properties of pharyngeal and diaphragmatic respiratory motoneurons and muscles. J. Appl. Physiol., 1992, 733, 787-800.
- Ramirez, J.M.; Baertsch, N.A. The dynamic basis of respiratory rhythm generation: One breath at a time. Annu. Rev. Neurosci., 2018, 41(1), 475-499. doi: 10.1146/annurev-neuro-080317-061756 PMID: 29709210
- Mulkey, D.K.; Stornetta, R.L.; Weston, M.C.; Simmons, J.R.; Parker, A.; Bayliss, D.A.; Guyenet, P.G. Respiratory control by ventral surface chemoreceptor neurons in rats. Nat. Neurosci., 2004, 7(12), 1360-1369. doi: 10.1038/nn1357 PMID: 15558061
- Guyenet, P.G.; Mulkey, D.K. Retrotrapezoid nucleus and parafacial respiratory group. Respir. Physiol. Neurobiol., 2010, 173(3), 244-255. doi: 10.1016/j.resp.2010.02.005 PMID: 20188865
- Guyenet, P.G.; Stornetta, R.L.; Souza, G.M.P.R.; Abbott, S.B.G.; Shi, Y.; Bayliss, D.A. The retrotrapezoid nucleus: Central chemoreceptor and regulator of breathing automaticity. Trends Neurosci., 2019, 42(11), 807-824. doi: 10.1016/j.tins.2019.09.002 PMID: 31635852
- Dutschmann, M.; Paton, J.F.R. Glycinergic inhibition is essential for co-ordinating cranial and spinal respiratory motor outputs in the neonatal rat. J. Physiol., 2002, 543(2), 643-653. doi: 10.1113/jphysiol.2001.013466 PMID: 12205196
- Onimaru, H.; Dutschmann, M. Calcium imaging of neuronal activity in the most rostral parafacial respiratory group of the newborn rat. J. Physiol. Sci., 2012, 62(1), 71-77. doi: 10.1007/s12576-011-0179-2 PMID: 22052247
- Anderson, T.M.; Garcia, A.J., III; Baertsch, N.A.; Pollak, J.; Bloom, J.C.; Wei, A.D.; Rai, K.G.; Ramirez, J.M. A novel excitatory network for the control of breathing. Nature, 2016, 536(7614), 76-80. doi: 10.1038/nature18944 PMID: 27462817
- Haji, A.; Takeda, R.; Okazaki, M. Neuropharmacology of control of respiratory rhythm and pattern in mature mammals. Pharmacol. Ther., 2000, 86(3), 277-304. doi: 10.1016/S0163-7258(00)00059-0 PMID: 10882812
- Paydarfar, D.; Eldridge, F.L. Phase resetting and dysrhythmic responses of the respiratory oscillator. Am. J. Physiol., 1987, 252(1 Pt 2), R55-R62. PMID: 3812730
- Meza, R.; Huidobro, N.; Moreno-Castillo, M.; Mendez-Fernandez, A.; Flores-Hernandez, J.; Flores, A.; Manjarrez, E. Resetting the respiratory rhythm with a spinal central pattern generator. eNeuro, 2019, 6(2), ENEURO.0116-19.2019.. doi: 10.1523/ENEURO.0116-19.2019 PMID: 31043462
- Haji, A.; Ohi, Y.; Kimura, S. Cough-related neurons in the nucleus tractus solitarius of decerebrate cats. Neuroscience, 2012, 218, 100-109. doi: 10.1016/j.neuroscience.2012.05.053 PMID: 22659014
- Tian, G.F.; Peever, J.H.; Duffin, J. Bötzinger-complex expiratory neurons monosynaptically inhibit phrenic motoneurons in the decerebrate rat. Exp. Brain Res., 1998, 122(2), 149-156. doi: 10.1007/s002210050502 PMID: 9776513
- Haji, A.; Okazaki, M.; Takeda, R. Synaptic interactions between respiratory neurons during inspiratory on-switching evoked by vagal stimulation in decerebrate cats. Neurosci. Res., 1999, 35(2), 85-93. doi: 10.1016/S0168-0102(99)00072-3 PMID: 10616912
- Potts, J.T.; Rybak, I.A.; Paton, J.F.R. Respiratory rhythm entrainment by somatic afferent stimulation. J. Neurosci., 2005, 25(8), 1965-1978. doi: 10.1523/JNEUROSCI.3881-04.2005 PMID: 15728836
- Ezure, K. Synaptic connections between medullary respiratory neurons and considerations on the genesis of respiratory rhythm. Prog. Neurobiol., 1990, 35(6), 429-450. doi: 10.1016/0301-0082(90)90030-K PMID: 2175923
- Richter, D.W. Generation and maintenance of the respiratory rhythm. J. Exp. Biol., 1982, 100(1), 93-107. doi: 10.1242/jeb.100.1.93 PMID: 6757372
- Marchenko, V.; Koizumi, H.; Mosher, B.; Koshiya, N.; Tariq, M.F.; Bezdudnaya, T.G.; Zhang, R.; Molkov, Y.I.; Rybak, I.A.; Smith, J.C. Perturbations of respiratory rhythm and pattern by disrupting synaptic inhibition within Pre-Bötzinger and Bötzinger complexes. eNeuro, 2016, 3(2), ENEURO.0011-16.2016.. doi: 10.1523/ENEURO.0011-16.2016 PMID: 27200412
- McCrimmon, D.R.; Zuperku, E.J.; Hayashi, F.; Dogas, Z.; Hinrichsen, C.F.L.; Stuth, E.A.; Tonkovic-Capin, M.; Krolo, M.; Hopp, F.A. Modulation of the synaptic drive to respiratory premotor and motor neurons. Respir. Physiol., 1997, 110(2-3), 161-176. doi: 10.1016/S0034-5687(97)00081-9 PMID: 9407609
- Souza, G.M.P.R.; Stornetta, R.L.; Stornetta, D.S.; Abbott, S.B.G.; Guyenet, P.G. Contribution of the retrotrapezoid nucleus and carotid bodies to hypercapnia- and hypoxia-induced arousal from sleep. J. Neurosci., 2019, 39(49), 9725-9737. doi: 10.1523/JNEUROSCI.1268-19.2019 PMID: 31641048
- Czeisler, C.M.; Silva, T.M.; Fair, S.R.; Liu, J.; Tupal, S.; Kaya, B.; Cowgill, A.; Mahajan, S.; Silva, P.E.; Wang, Y.; Blissett, A.R.; Göksel, M.; Borniger, J.C.; Zhang, N.; Fernandes-Junior, S.A.; Catacutan, F.; Alves, M.J.; Nelson, R.J.; Sundaresean, V.; Rekling, J.; Takakura, A.C.; Moreira, T.S.; Otero, J.J. The role of PHOX2B-derived astrocytes in chemosensory control of breathing and sleep homeostasis. J. Physiol., 2019, 597(8), 2225-2251. doi: 10.1113/JP277082 PMID: 30707772
- Mulkey, D.K.; Wenker, I.C. Astrocyte chemoreceptors: mechanisms of H + sensing by astrocytes in the retrotrapezoid nucleus and their possible contribution to respiratory drive. Exp. Physiol., 2011, 96(4), 400-406. doi: 10.1113/expphysiol.2010.053140 PMID: 21169332
- Guyenet, P.G. Regulation of breathing and autonomic outflows by chemoreceptors. Compr. Physiol., 2014, 4(4), 1511-1562. doi: 10.1002/cphy.c140004 PMID: 25428853
- Dahan, A.; Ward, D.; van den Elsen, M.; Temp, J.; Berkenbosch, A. Influence of reduced carotid body drive during sustained hypoxia on hypoxic depression of ventilation in humans. J. Appl. Physiol., 1996, 81(2), 565-572.
- Pijacka, W.; Katayama, P.L.; Salgado, H.C.; Lincevicius, G.S.; Campos, R.R.; McBryde, F.D.; Paton, J.F.R. Variable role of carotid bodies in cardiovascular responses to exercise, hypoxia and hypercapnia in spontaneously hypertensive rats. J. Physiol., 2018, 596(15), 3201-3216. doi: 10.1113/JP275487 PMID: 29313987
- Busch, S.A.; Bruce, C.D.; Skow, R.J.; Pfoh, J.R.; Day, T.A.; Davenport, M.H.; Steinback, C.D. Mechanisms of sympathetic regulation during Apnea. Physiol. Rep., 2019, 7(2), e13991. doi: 10.14814/phy2.13991 PMID: 30693670
- Steinback, C.D.; Breskovic, T.; Banic, I.; Dujic, Z.; Shoemaker, J.K. Autonomic and cardiovascular responses to chemoreflex stress in apnoea divers. Auton. Neurosci., 2010, 156(1-2), 138-143. doi: 10.1016/j.autneu.2010.05.002 PMID: 20627720
- Ghali, M.G.Z.; Beshay, S. Role of fast inhibitory synaptic transmission in neonatal respiratory rhythmogenesis and pattern formation. Mol. Cell. Neurosci., 2019, 100, 103400. doi: 10.1016/j.mcn.2019.103400 PMID: 31472222
- Bancalari, E.; Clausen, J. Pathophysiology of changes in absolute lung volumes. Eur. Respir. J., 1998, 12(1), 248-258. doi: 10.1183/09031936.98.12010248 PMID: 9701447
- Guyenet, P.G. The 2008 Carl Ludwig Lecture: Retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity. J. Appl. Physiol. (1985), 2008, 105(2), 404-416.
- Pagliardini, S.; Greer, J.J.; Funk, G.D.; Dickson, C.T. State-dependent modulation of breathing in urethane-anesthetized rats. J. Neurosci., 2012, 32(33), 11259-11270. doi: 10.1523/JNEUROSCI.0948-12.2012 PMID: 22895710
- Hunter, J.D.; McLeod, J.Z.; Milsom, W.K. Cortical activation states in sleep and anesthesia. II: Respiratory reflexes. Respir. Physiol., 1998, 112(1), 83-94. doi: 10.1016/S0034-5687(98)00020-6 PMID: 9696285
- Pagliardini, S.; Funk, G.D.; Dickson, C.T. Breathing and brain state: Urethane anesthesia as a model for natural sleep. Respir. Physiol. Neurobiol., 2013, 188(3), 324-332. doi: 10.1016/j.resp.2013.05.035 PMID: 23751523
- Cravero, J.P.; Beach, M.L.; Blike, G.T.; Gallagher, S.M.; Hertzog, J.H. The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the Pediatric Sedation Research Consortium. Anesth. Analg., 2009, 108(3), 795-804. doi: 10.1213/ane.0b013e31818fc334 PMID: 19224786
- Muir, W.W., III; Gadawski, J.E. Respiratory depression and apnea induced by propofol in dogs. Am. J. Vet. Res., 1998, 59(2), 157-161. PMID: 9492929
- Blouin, R.T.; Conard, P.F.; Gross, J.B. Time course of ventilatory depression following induction doses of propofol and thiopental. Anesthesiology, 1991, 75(6), 940-944. doi: 10.1097/00000542-199112000-00003 PMID: 1741514
- Sarton, E.; Teppema, L.J.; Olievier, C.; Nieuwenhuijs, D.; Matthes, H.W.D.; Kieffer, B.L.; Dahan, A. The involvement of the mu-opioid receptor in ketamine-induced respiratory depression and antinociception. Anesth. Analg., 2001, 93(6), 1495-1500. doi: 10.1097/00000539-200112000-00031 PMID: 11726430
- Shulman, D.; Bar-Yishay, E.; Godfrey, S. Drive and timing components of respiration in young children following induction of anaesthesia with halo-thane or ketamine. Can. J. Anaesth., 1988, 35(4), 368-374. doi: 10.1007/BF03010858 PMID: 3402014
- Yan, J.W.; McLeod, S.L.; Iansavitchene, A. Ketamine-propofol versus propofol alone for procedural sedation in the emergency department: A systematic review and meta-analysis. Acad. Emerg. Med., 2015, 22(9), 1003-1013. doi: 10.1111/acem.12737 PMID: 26292077
- Dosani, M. McCORMACK, J.O.N.; Reimer, E.; Brant, R.; Dumont, G.; Lim, J.; Ansermino, J. Slower administration of propofol preserves adequate respiration in children. Paediatr. Anaesth., 2010, 20(11), 1001-1008. doi: 10.1111/j.1460-9592.2010.03398.x PMID: 20880151
- Masuda, A.; Ito, Y.; Haji, A.; Takeda, R. The influence of halothane and thiopental on respiratory-related nerve activities in decerebrate cats. Acta Anaesthesiol. Scand., 1989, 33(8), 660-665. doi: 10.1111/j.1399-6576.1989.tb02987.x PMID: 2511728
- Forman, S.A.; Warner, D.S. Clinical and molecular pharmacology of etomidate. Anesthesiology, 2011, 114(3), 695-707. doi: 10.1097/ALN.0b013e3181ff72b5 PMID: 21263301
- Morgan, M.; Lumley, J.; Whitwam, J.G. Respiratory effects of etomidate. Br. J. Anaesth., 1977, 49(3), 233-236. doi: 10.1093/bja/49.3.233 PMID: 20912
- Kim, M.G.; Park, S.W.; Kim, J.H.; Lee, J.; Kae, S.H.; Jang, H.J.; Koh, D.H.; Choi, M.H. Etomidate versus propofol sedation for complex upper endoscopic procedures: A prospective double-blinded randomized controlled trial. Gastrointest. Endosc., 2017, 86(3), 452-461. doi: 10.1016/j.gie.2017.02.033 PMID: 28284883
- Prachanpanich, N.; Apinyachon, W.; Ittichaikulthol, W.; Moontripakdi, O.; Jitaree, A. A comparison of dexmedetomidine and propofol in Patients undergoing electrophysiology study. J. Med. Assoc. Thai., 2013, 96(3), 307-311. PMID: 23539933
- Bhana, N.; Goa, K.L.; McClellan, K.J. Dexmedetomidine. Drugs, 2000, 59(2), 263-268. doi: 10.2165/00003495-200059020-00012 PMID: 10730549
- Furst, S.R.; Weinger, M.B. Dexmedetomidine, a selective alpha 2-agonist, does not potentiate the cardiorespiratory depression of alfentanil in the rat. Anesthesiology, 1990, 72(5), 882-888. doi: 10.1097/00000542-199005000-00019 PMID: 1971163
- Steffey, M.A.; Brosnan, R.J.; Steffey, E.P. Assessment of halothane and sevoflurane anesthesia in spontaneously breathing rats. Am. J. Vet. Res., 2003, 64(4), 470-474. doi: 10.2460/ajvr.2003.64.470 PMID: 12693538
- Groeben, H.; Meier, S.; Tankersley, C.G.; Mitzner, W.; Brown, R.H. Heritable differences in respiratory drive and breathing pattern in mice during anaesthesia and emergence. Br. J. Anaesth., 2003, 91(4), 541-545. doi: 10.1093/bja/aeg222 PMID: 14504157
- Groeben, H.; Meier, S.; Tankersley, C.G.; Mitzner, W.; Brown, R.H. Influence of volatile anaesthetics on hypercapnoeic ventilatory responses in mice with blunted respiratory drive. Br. J. Anaesth., 2004, 92(5), 697-703. doi: 10.1093/bja/aeh124 PMID: 15003977
- Hikasa, Y.; Okuyama, K.; Kakuta, T.; Takase, K.; Ogasawara, S. Anesthetic potency and cardiopulmonary effects of sevoflurane in goats: comparison with isoflurane and halothane. Can. J. Vet. Res., 1998, 62(4), 299-306. PMID: 9798097
- Lazarenko, R.M.; Fortuna, M.G.; Shi, Y.; Mulkey, D.K.; Takakura, A.C.; Moreira, T.S.; Guyenet, P.G.; Bayliss, D.A. Anesthetic activation of central respiratory chemoreceptor neurons involves inhibition of a THIK-1-like background K(+) current. J. Neurosci., 2010, 30(27), 9324-9334. doi: 10.1523/JNEUROSCI.1956-10.2010 PMID: 20610767
- Olofsen, E.; Boom, M.; Nieuwenhuijs, D.; Sarton, E.; Teppema, L.; Aarts, L.; Dahan, A. Modeling the non-steady state respiratory effects of remifentanil in awake and propofol-sedated healthy volunteers. Anesthesiology, 2010, 112(6), 1382-1395. doi: 10.1097/ALN.0b013e3181d69087 PMID: 20461001
- Berkenbosch, A.; Bovill, J.G.; Dahan, A.; DeGoede, J.; Olievier, I.C. The ventilatory CO2 sensitivities from Reads rebreathing method and the steady-state method are not equal in man. J. Physiol., 1989, 411(1), 367-377. doi: 10.1113/jphysiol.1989.sp017578 PMID: 2515274
- Read, D.J.; Leigh, J. Blood-brain tissue Pco2 relationships and ventilation during rebreathing. J. Appl. Physiol., 1967, 23(1), 53-70. doi: 10.1152/jappl.1967.23.1.53 PMID: 6028163
- Read, D.C. A clinical method for assessing the ventilatory response to carbon dioxide. Australas. Ann. Med., 1967, 16(1), 20-32. doi: 10.1111/imj.1967.16.1.20 PMID: 6032026
- Bouillon, T.; Bruhn, J.; Radu-Radulescu, L.; Andresen, C.; Cohane, C.; Shafer, S.L. Mixed-effects modeling of the intrinsic ventilatory depressant potency of propofol in the non-steady state. Anesthesiology, 2004, 100(2), 240-250. doi: 10.1097/00000542-200402000-00010 PMID: 14739795
- Pandit, J.J. Effect of low dose inhaled anaesthetic agents on the ventilatory response to carbon dioxide in humans: A quantitative review. Anaesthesia, 2005, 60(5), 461-469. doi: 10.1111/j.1365-2044.2004.04088.x PMID: 15819767
- Choi, S.D.; Spaulding, B.C.; Gross, J.B.; Apfelbaum, J.L. Comparison of the ventilatory effects of etomidate and methohexital. Anesthesiology, 1985, 62(4), 442-447. doi: 10.1097/00000542-198504000-00012 PMID: 3920932
- Bourke, D.L.; Malit, L.A.; Smith, T.C. Respiratory interactions of ketamine and morphine. Anesthesiology, 1987, 66(2), 153-156. doi: 10.1097/00000542-198702000-00008 PMID: 3101549
- Tankersley, C.G.; Elston, R.C.; Schnell, A.H. Genetic determinants of acute hypoxic ventilation: Patterns of inheritance in mice. J. Appl. Physiol. (1985), 2000, 88(6), 2310-2318.
- Nishida, T.; Nishimura, M.; Kagawa, K.; Hayashi, Y.; Mashimo, T. The effects of dexmedetomidine on the ventilatory response to hypercapnia in rabbits. Intensive Care Med., 2002, 28(7), 969-975. doi: 10.1007/s00134-002-1338-y PMID: 12122538
- Weingarten, T.N.; Sprung, J. Review of postoperative respiratory depression: From recovery room to general care unit. Anesthesiology, 2022, 137(6), 735-741. doi: 10.1097/ALN.0000000000004391 PMID: 36413782
- Pandit, J.J. The variable effect of low-dose volatile anaesthetics on the acute ventilatory response to hypoxia in humans: A quantitative review. Anaesthesia, 2002, 57(7), 632-643. doi: 10.1046/j.1365-2044.2002.02604.x PMID: 12059820
- Tankersley, C.G.; Fitzgerald, R.S.; Kleeberger, S.R. Differential control of ventilation among inbred strains of mice. Am. J. Physiol., 1994, 267(5 Pt 2), R1371-R1377. PMID: 7977867
- Koh, S.O.; Severinghaus, J.W. Effect of halothane on hypoxic and hypercapnic ventilatory responses of goats. Br. J. Anaesth., 1990, 65(5), 713-717. doi: 10.1093/bja/65.5.713 PMID: 2123397
- Easton, P.A.; Slykerman, L.J.; Anthonisen, N.R. Ventilatory response to sustained hypoxia in normal adults. J. Appl. Physiol., 1986, 61(3), 906-911.
- Teppema, L.J.; Dahan, A. The ventilatory response to hypoxia in mammals: Mechanisms, measurement, and analysis. Physiol. Rev., 2010, 90(2), 675-754. doi: 10.1152/physrev.00012.2009 PMID: 20393196
- Gautier, H. Pattern of breathing during hypoxia or hypercapnia of the awake or anesthetized cat. Respir. Physiol., 1976, 27(2), 193-206. doi: 10.1016/0034-5687(76)90074-8 PMID: 959676
- ODonohoe, P.B.; Turner, P.J.; Huskens, N.; Buckler, K.J.; Pandit, J.J. Influence of propofol on isolated neonatal rat carotid body glomus cell response to hypoxia and hypercapnia. Respir. Physiol. Neurobiol., 2019, 260, 17-27. doi: 10.1016/j.resp.2018.10.007 PMID: 30389452
- Davies, R.O.; Edwards, M.W., Jr; Lahiri, S. Halothane depresses the response of carotid body chemoreceptors to hypoxia and hypercapnia in the cat. Anesthesiology, 1982, 57(3), 153-159. doi: 10.1097/00000542-198209000-00002 PMID: 7114537
- Karanovic, N.; Pecotic, R.; Valic, M.; Jeroncic, A.; Carev, M.; Karanovic, S.; Ujevic, A.; Dogas, Z. The acute hypoxic ventilatory response under halothane, isoflurane, and sevoflurane anaesthesia in rats. Anaesthesia, 2010, 65(3), 227-234. doi: 10.1111/j.1365-2044.2009.06194.x PMID: 20003117
- Knill, R.L.; Gelb, A.W. Ventilatory responses to hypoxia and hypercapnia during halothane sedation and anesthesia in man. Anesthesiology, 1978, 49(4), 244-251. doi: 10.1097/00000542-197810000-00004 PMID: 697078
- Pandit, J.J. Volatile anaesthetic depression of the carotid body chemoreflex-mediated ventilatory response to hypoxia: Directions for future research. Scientifica, 2014, 2014, 1-15. doi: 10.1155/2014/394270 PMID: 24808974
- Weiskopf, R.B.; Raymond, L.W.; Severinghaus, J.W. Effects of halothane on canine respiratory responses to hypoxia with and without hypercarbia. Anesthesiology, 1974, 41(4), 350-359. doi: 10.1097/00000542-197410000-00008 PMID: 4413139
- Stuth, E.A.E.; Dogas, Z.; Krolo, M.; Kampine, J.P.; Hopp, F.A.; Zuperku, E.J. Dose-dependent effects of halothane on the phrenic nerve responses to acute hypoxia in vagotomized dogs. Anesthesiology, 1997, 87(6), 1428-1439. doi: 10.1097/00000542-199712000-00022 PMID: 9416728
- Knill, R.L.; Clement, J.L. Site of selective action of halothane on the peripheral chemoreflex pathway in humans. Anesthesiology, 1984, 61(2), 121-126. doi: 10.1097/00000542-198408000-00002 PMID: 6465595
- Pandit, J.J.; Huskens, N.; ODonohoe, P.B.; Turner, P.J.; Buckler, K.J. Competitive interactions between halothane and isoflurane at the carotid body and TASK channels. Anesthesiology, 2020, 133(5), 1046-1059. doi: 10.1097/ALN.0000000000003520 PMID: 32826405
- Pandit, J.J.; OGallagher, K. Effects of volatile anesthetics on carotid body response to hypoxia in animals. Adv. Exp. Med. Biol., 2008, 605, 46-50. doi: 10.1007/978-0-387-73693-8_8 PMID: 18085245
- Pandit, J.J.; Winter, V.; Bayliss, R.; Buckler, K.J. Differential effects of halothane and isoflurane on carotid body glomus cell intracellular Ca2+ and background K+ channel responses to hypoxia. Adv. Exp. Med. Biol., 2010, 669, 205-208. doi: 10.1007/978-1-4419-5692-7_41 PMID: 20217350
- Pandit, J.J.; Buckler, K.J. Halothane and sevoflurane exert different degrees of inhibition on carotid body glomus cell intracellular Ca2+ response to hypoxia. Adv. Exp. Med. Biol., 2010, 669, 201-204. doi: 10.1007/978-1-4419-5692-7_40 PMID: 20217349
- Kubin, L. Neural control of the upper airway: Respiratory and state-dependent mechanisms. Compr. Physiol., 2016, 6(4), 1801-1850. doi: 10.1002/cphy.c160002 PMID: 27783860
- Hillman, D.R.; Platt, P.R.; Eastwood, P.R. The upper airway during anaesthesia. Br. J. Anaesth., 2003, 91(1), 31-39. doi: 10.1093/bja/aeg126 PMID: 12821563
- Shin, H.J.; Kim, E.Y.; Hwang, J.W.; Do, S.H.; Na, H.S. Comparison of upper airway patency in patients with mild obstructive sleep apnea during dexmedetomidine or propofol sedation: A prospective, randomized, controlled trial. BMC Anesthesiol., 2018, 18(1), 120. doi: 10.1186/s12871-018-0586-5 PMID: 30185146
- Del Olmo-Arroyo, F.; Hernandez-Castillo, R.; Soto, A.; Martínez, J.; Rodríguez-Cintrón, W. Perioperative management of obstructive sleep apnea: A survey of Puerto Rico anesthesia providers. Sleep Breath., 2015, 19(4), 1141-1146. doi: 10.1007/s11325-015-1124-z PMID: 25643763
- Eikermann, M.; Grosse-Sundrup, M.; Zaremba, S.; Henry, M.E.; Bittner, E.A.; Hoffmann, U.; Chamberlin, N.L. Ketamine activates breathing and abolishes the coupling between loss of consciousness and upper airway dilator muscle dysfunction. Anesthesiology, 2012, 116(1), 35-46. doi: 10.1097/ALN.0b013e31823d010a PMID: 22108392
- Eikermann, M.; Fassbender, P.; Zaremba, S.; Jordan, A.S.; Rosow, C.; Malhotra, A.; Chamberlin, N.L. Pentobarbital dose-dependently increases respiratory genioglossus muscle activity while impairing diaphragmatic function in anesthetized rats. Anesthesiology, 2009, 110(6), 1327-1334. doi: 10.1097/ALN.0b013e3181a16337 PMID: 19417601
- Park, E.; Younes, M.; Liu, H.; Liu, X.; Horner, R.L. Systemic vs. central administration of common hypnotics reveals opposing effects on genioglossus muscle activity in rats. Sleep, 2008, 31(3), 355-365. doi: 10.1093/sleep/31.3.355 PMID: 18363312
- Younes, M.; Park, E.; Horner, R.L. Pentobarbital sedation increases genioglossus respiratory activity in sleeping rats. Sleep, 2007, 30(4), 478-488. doi: 10.1093/sleep/30.4.478 PMID: 17520792
- Drummond, G.B. Influence of thiopentone on upper airway muscles. Br. J. Anaesth., 1989, 63(1), 12-21. doi: 10.1093/bja/63.1.12 PMID: 2765337
- Mishima, G.; Sanuki, T.; Sato, S.; Kobayashi, M.; Kurata, S.; Ayuse, T. Upper-airway collapsibility and compensatory responses under moderate sedation with ketamine, dexmedetomidine, and propofol in healthy volunteers. Physiol. Rep., 2020, 8(10), e14439. doi: 10.14814/phy2.14439 PMID: 32441458
- Lodenius, Å.; Maddison, K.J.; Lawther, B.K.; Scheinin, M.; Eriksson, L.I.; Eastwood, P.R.; Hillman, D.R.; Fagerlund, M.J.; Walsh, J.H. Upper airway collapsibility during dexmedetomidine and propofol sedation in healthy volunteers. Anesthesiology, 2019, 131(5), 962-973. doi: 10.1097/ALN.0000000000002883 PMID: 31403974
- Berger, A.J.; Sebe, J. Developmental effects of ketamine on inspiratory hypoglossal nerve activity studied in vivo and in vitro. Respir. Physiol. Neurobiol., 2007, 157(2-3), 206-214. doi: 10.1016/j.resp.2007.01.001 PMID: 17267296
- Eikermann, M.; Malhotra, A.; Fassbender, P.; Zaremba, S.; Jordan, A.S.; Gautam, S.; White, D.P.; Chamberlin, N.L. Differential effects of isoflurane and propofol on upper airway dilator muscle activity and breathing. Anesthesiology, 2008, 108(5), 897-906. doi: 10.1097/ALN.0b013e31816c8a60 PMID: 18431126
- Nishino, T.; Honda, Y.; Kohchi, T.; Shirahata, M.; Yonezawa, T. Effects of increasing depth of anaesthesia on phrenic nerve and hypoglossal nerve activity during the swallowing reflex in cats. Br. J. Anaesth., 1985, 57(2), 208-213. doi: 10.1093/bja/57.2.208 PMID: 3970801
- Ochiai, R.; Guthrie, R.D.; Motoyama, E.K. Effects of varying concentrations of halothane on the activity of the genioglossus, intercostals, and diaphragm in cats: An electromyographic study. Anesthesiology, 1989, 70(5), 812-816. doi: 10.1097/00000542-198905000-00018 PMID: 2719316
- Steenland, H.W.; Liu, H.; Horner, R.L. Endogenous glutamatergic control of rhythmically active mammalian respiratory motoneurons in vivo. J. Neurosci., 2008, 28(27), 6826-6835. doi: 10.1523/JNEUROSCI.1019-08.2008 PMID: 18596158
- Nandi, P.R.; Charlesworth, C.H.; Taylor, S.J.; Nunn, J.F.; Doré, C.J. Effect of general anaesthesia on the pharynx. Br. J. Anaesth., 1991, 66(2), 157-162. doi: 10.1093/bja/66.2.157 PMID: 1817614
- Ouedraogo, N.; Roux, E.; Forestier, F.; Rossetti, M.; Savineau, J.P.; Marthan, R. Effects of intravenous anesthetics on normal and passively sensitized human isolated airway smooth muscle. Anesthesiology, 1998, 88(2), 317-326. doi: 10.1097/00000542-199802000-00008 PMID: 9477050
- Cheng, E.Y.; Mazzeo, A.J.; Bosnjak, Z.J.; Coon, R.L.; Kampine, J.P. Direct relaxant effects of intravenous anesthetics on airway smooth muscle. Anesth. Analg., 1996, 83(1), 162-168. doi: 10.1213/00000539-199607000-00028 PMID: 8659728
- Zhi, J.; Duan, Q.; Wang, Q.; Du, X.; Yang, D. Dexmedetomidine reduces IL-4 and IgE expression through downregulation of theTLR4/NF-κB signaling pathway to alleviate airway hyperresponsiveness in OVA mice. Pulm. Pharmacol. Ther., 2022, 75, 102147. doi: 10.1016/j.pupt.2022.102147 PMID: 35863724
- Eilers, H.; Cattaruzza, F.; Nassini, R.; Materazzi, S.; Andre, E.; Chu, C.; Cottrell, G.S.; Schumacher, M.; Geppetti, P.; Bunnett, N.W. Pungent general anesthetics activate transient receptor potential-A1 to produce hyperalgesia and neurogenic bronchoconstriction. Anesthesiology, 2010, 112(6), 1452-1463. doi: 10.1097/ALN.0b013e3181d94e00 PMID: 20463581
- Habre, W.; Peták, F.; Sly, P.D.; Hantos, Z.; Morel, D.R. Protective effects of volatile agents against methacholine-induced bronchoconstriction in rats. Anesthesiology, 2001, 94(2), 348-353. doi: 10.1097/00000542-200102000-00026 PMID: 11176101
- Pabelick, C.M.; Ay, B.; Prakash, Y.S.; Sieck, G.C. Effects of volatile anesthetics on store-operated Ca(2+) influx in airway smooth muscle. Anesthesiology, 2004, 101(2), 373-380. doi: 10.1097/00000542-200408000-00018 PMID: 15277920
- Hirshman, C.A.; Bergman, N.A. Halothane and enflurane protect against bronchospasm in an asthma dog model. Anesth. Analg., 1978, 57(6), 629-633. doi: 10.1213/00000539-197811000-00009 PMID: 569987
- Kong, C.F.; Chew, S.T.H.; Ip-Yam, P.C. Intravenous opioids reduce airway irritation during induction of anaesthesia with desflurane in adults. Br. J. Anaesth., 2000, 85(3), 364-367. doi: 10.1093/bja/85.3.364 PMID: 11103175
- Nordmann, G.R.; Read, J.A.; Sale, S.M.; Stoddart, P.A.; Wolf, A.R. Emergence and recovery in children after desflurane and isoflurane anaesthesia: Effect of anaesthetic duration. Br. J. Anaesth., 2006, 96(6), 779-785. doi: 10.1093/bja/ael092 PMID: 16613927
- Lerman, J.; Hammer, G.B.; Verghese, S.; Ehlers, M.; Khalil, S.N.; Betts, E.; Trillo, R.; Deutsch, J. Airway responses to desflurane during maintenance of anesthesia and recovery in children with laryngeal mask airways. Paediatr. Anaesth., 2010, 20(6), 495-505. doi: 10.1111/j.1460-9592.2010.03305.x PMID: 20456065
- Johnson, S.M.; Koshiya, N.; Smith, J.C. Isolation of the kernel for respiratory rhythm generation in a novel preparation: The pre-Bötzinger complex "island". J. Neurophysiol., 2001, 85(4), 1772-1776. doi: 10.1152/jn.2001.85.4.1772 PMID: 11287498
- Kuribayashi, J.; Sakuraba, S.; Kashiwagi, M.; Hatori, E.; Tsujita, M.; Hosokawa, Y.; Takeda, J.; Kuwana, S. Neural mechanisms of sevoflurane-induced respiratory depression in newborn rats. Anesthesiology, 2008, 109(2), 233-242. doi: 10.1097/ALN.0b013e31817f5baf PMID: 18648232
- Koizumi, H.; Smerin, S.E.; Yamanishi, T.; Moorjani, B.R.; Zhang, R.; Smith, J.C. TASK channels contribute to the K+-dominated leak current regulating respiratory rhythm generation in vitro. J. Neurosci., 2010, 30(12), 4273-4284. doi: 10.1523/JNEUROSCI.4017-09.2010 PMID: 20335463
- Talley, E.M.; Bayliss, D.A. Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: Volatile anesthetics and neurotransmitters share a molecular site of action. J. Biol. Chem., 2002, 277(20), 17733-17742. doi: 10.1074/jbc.M200502200 PMID: 11886861
- Bayliss, D.A.; Sirois, J.E.; Talley, E.M. The TASK family: two-pore domain background K+ channels. Mol. Interv., 2003, 3(4), 205-219. doi: 10.1124/mi.3.4.205 PMID: 14993448
- Carlà, V.; Moroni, F. General anaesthetics inhibit the responses induced by glutamate receptor agonists in the mouse cortex. Neurosci. Lett., 1992, 146(1), 21-24. doi: 10.1016/0304-3940(92)90162-Z PMID: 1282227
- Pace, R.W.; Del Negro, C.A. AMPA and metabotropic glutamate receptors cooperatively generate inspiratory-like depolarization in mouse respiratory neurons in vitro. Eur. J. Neurosci., 2008, 28(12), 2434-2442. doi: 10.1111/j.1460-9568.2008.06540.x PMID: 19032588
- Ge, Q.; Feldman, J.L. AMPA receptor activation and phosphatase inhibition affect neonatal rat respiratory rhythm generation. J. Physiol., 1998, 509(Pt 1), 255-266. doi: 10.1111/j.1469-7793.1998.255bo.x
- Martel, B.; Guimond, J.C.; Gariépy, J.F.; Gravel, J.; Auclair, F.; Kolta, A.; Lund, J.P.; Dubuc, R. Respiratory rhythms generated in the lamprey rhombencephalon. Neuroscience, 2007, 148(1), 279-293. doi: 10.1016/j.neuroscience.2007.05.023 PMID: 17618060
- Dogas, Z.; Stuth, E.A.; Hopp, F.A.; McCrimmon, D.R.; Zuperku, E.J. NMDA receptor-mediated transmission of carotid body chemoreceptor input to expiratory bulbospinal neurones in dogs. J. Physiol., 1995, 487(Pt 3), 639-651. doi: 10.1113/jphysiol.1995.sp020906
- Krolo, M.; Stuth, E.A.; Tonkovic-Capin, M.; Hopp, F.A.; McCrimmon, D.R.; Zuperku, E.J. Relative magnitude of tonic and phasic synaptic excitation of medullary inspiratory neurons in dogs. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2000, 279(2), R639-R649. doi: 10.1152/ajpregu.2000.279.2.R639 PMID: 10938255
- Shimazu, Y.; Umemura, K.; Kawano, K.; Hokamura, K.; Kawazura, H.; Nakashima, M. Respiratory effects of halothane and AMPA receptor antagonist synergy in rats. Eur. J. Pharmacol., 1998, 342(2-3), 261-265. doi: 10.1016/S0014-2999(97)01484-2 PMID: 9548395
- Hoffmann, V.L.H.; Vermeyen, K.M.; Adriaensen, H.F.; Meert, T.F. Effects of NMDA receptor antagonists on opioid-induced respiratory depression and acute antinociception in rats. Pharmacol. Biochem. Behav., 2003, 74(4), 933-941. doi: 10.1016/S0091-3057(03)00020-0 PMID: 12667908
- Sears, T.A.; Berger, A.J.; Phillipson, E.A. Reciprocal tonic activation of inspiratory and expiratory motoneurones by chemical drives. Nature, 1982, 299(5885), 728-730. doi: 10.1038/299728a0 PMID: 6811952
- Dogas, Z.; Krolo, M.; Stuth, E.A.; Tonkovic-Capin, M.; Hopp, F.A.; McCrimmon, D.R.; Zuperku, E.J. Differential effects of GABAA receptor antagonists in the control of respiratory neuronal discharge patterns. J. Neurophysiol., 1998, 80(5), 2368-2377. doi: 10.1152/jn.1998.80.5.2368 PMID: 9819249
- Takita, K.; Morimoto, Y. Effects of sevoflurane on respiratory rhythm oscillators in the medulla oblongata. Respir. Physiol. Neurobiol., 2010, 173(1), 86-94. doi: 10.1016/j.resp.2010.06.016 PMID: 20603230
- Doi, M.; Ikeda, K. Postanesthetic respiratory depression in humans: A comparison of sevoflurane, isoflurane and halothane. J. Anesth., 1987, 1(2), 137-142. doi: 10.1007/s0054070010137 PMID: 15235849
- Masuda, A.; Haji, A.; Kiriyama, M.; Ito, Y.; Takeda, R. Effects of sevoflurane on respiratory activities in the phrenic nerve of decerebrate cats. Acta Anaesthesiol. Scand., 1995, 39(6), 774-781. doi: 10.1111/j.1399-6576.1995.tb04169.x PMID: 7484033
- Stucke, A.G.; Stuth, E.A.E.; Tonkovic-Capin, V.; Tonkovic-Capin, M.; Hopp, F.A.; Kampine, J.P.; Zuperku, E.J. Effects of sevoflurane on excitatory neurotransmission to medullary expiratory neurons and on phrenic nerve activity in a decerebrate dog model. Anesthesiology, 2001, 95(2), 485-491. doi: 10.1097/00000542-200108000-00034 PMID: 11506124
- Dahan, A.; Sarton, E.; Teppema, L.; Olievier, C.; Nieuwenhuijs, D.; Matthes, H.W.D.; Kieffer, B.L. Anesthetic potency and influence of morphine and sevoflurane on respiration in mu-opioid receptor knockout mice. Anesthesiology, 2001, 94(5), 824-832. doi: 10.1097/00000542-200105000-00021 PMID: 11388534
- Freye, E.; Latasch, L.; Schmidhammer, H.; Portoghese, P. Interaction of S-(+)-ketamine with opiate receptors. Effects on EEG, evoked potentials and respiration in awake dogs. Anaesthesist, 1994, 43(Suppl. 2), S52-S58. PMID: 7840415
- Cochet-Bissuel, M.; Lory, P.; Monteil, A. The sodium leak channel, NALCN, in health and disease. Front. Cell. Neurosci., 2014, 8, 132. doi: 10.3389/fncel.2014.00132 PMID: 24904279
- Lozic, B.; Johansson, S.; Lovric Kojundzic, S.; Markic, J.; Knappskog, P.M.; Hahn, A.F.; Boman, H. Novel NALCN variant: Altered respiratory and circadian rhythm, anesthetic sensitivity. Ann. Clin. Transl. Neurol., 2016, 3(11), 876-883. doi: 10.1002/acn3.362 PMID: 27844033
- Chong, J.X.; McMillin, M.J.; Shively, K.M.; Beck, A.E.; Marvin, C.T.; Armenteros, J.R.; Buckingham, K.J.; Nkinsi, N.T.; Boyle, E.A.; Berry, M.N.; Bocian, M.; Foulds, N.; Uzielli, M.L.G.; Haldeman-Englert, C.; Hennekam, R.C.M.; Kaplan, P.; Kline, A.D.; Mercer, C.L.; Nowaczyk, M.J.M.; Klein Wassink-Ruiter, J.S.; McPherson, E.W.; Moreno, R.A.; Scheuerle, A.E.; Shashi, V.; Stevens, C.A.; Carey, J.C.; Monteil, A.; Lory, P.; Tabor, H.K.; Smith, J.D.; Shendure, J.; Nickerson, D.A.; Bamshad, M.J.; Bamshad, M.J.; Shendure, J.; Nickerson, D.A.; Abecasis, G.R.; Anderson, P.; Blue, E.M.; Annable, M.; Browning, B.L.; Buckingham, K.J.; Chen, C.; Chin, J.; Chong, J.X.; Cooper, G.M.; Davis, C.P.; Frazar, C.; Harrell, T.M.; He, Z.; Jain, P.; Jarvik, G.P.; Jimenez, G.; Johanson, E.; Jun, G.; Kircher, M.; Kolar, T.; Krauter, S.A.; Krumm, N.; Leal, S.M.; Luksic, D.; Marvin, C.T.; McMillin, M.J.; McGee, S.; OReilly, P.; Paeper, B.; Patterson, K.; Perez, M.; Phillips, S.W.; Pijoan, J.; Poel, C.; Reinier, F.; Robertson, P.D.; Santos-Cortez, R.; Shaffer, T.; Shephard, C.; Shively, K.M.; Siegel, D.L.; Smith, J.D.; Staples, J.C.; Tabor, H.K.; Tackett, M.; Underwood, J.G.; Wegener, M.; Wang, G.; Wheeler, M.M.; Yi, Q. De novo mutations in NALCN cause a syndrome characterized by congenital contractures of the limbs and face, hypotonia, and developmental delay. Am. J. Hum. Genet., 2015, 96(3), 462-473. doi: 10.1016/j.ajhg.2015.01.003 PMID: 25683120
- Oonuma, H.; Iwasawa, K.; Iida, H.; Nagata, T.; Imuta, H.; Morita, Y.; Yamamoto, K.; Nagai, R.; Omata, M.; Nakajima, T. Inward rectifier K(+) current in human bronchial smooth muscle cells: Inhibition with antisense oligonucleotides targeted to Kir2.1 mRNA. Am. J. Respir. Cell Mol. Biol., 2002, 26(3), 371-379. doi: 10.1165/ajrcmb.26.3.4542 PMID: 11867346
- Jiang, C.; Xu, H.; Cui, N.; Wu, J. An alternative approach to the identification of respiratory central chemoreceptors in the brainstem. Respir. Physiol., 2001, 129(1-2), 141-157. doi: 10.1016/S0034-5687(01)00301-2 PMID: 11738651
- Trapp, S.; Tucker, S.J.; Gourine, A.V. Respiratory responses to hypercapnia and hypoxia in mice with genetic ablation of Kir5.1 (Kcnj16). Exp. Physiol., 2011, 96(4), 451-459. doi: 10.1113/expphysiol.2010.055848 PMID: 21239463
- Ou, M.; Kuo, F.S.; Chen, X.; Kahanovitch, U.; Olsen, M.L.; Du, G.; Mulkey, D.K. Isoflurane inhibits a Kir4.1/5.1-like conductance in neonatal rat brainstem astrocytes and recombinant Kir4.1/5.1 channels in a heterologous expression system. J. Neurophysiol., 2020, 124(3), 740-749. doi: 10.1152/jn.00358.2020 PMID: 32727273
- Sirois, J.E.; Lei, Q.; Talley, E.M.; Lynch, C., III; Bayliss, D.A. The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J. Neurosci., 2000, 20(17), 6347-6354. doi: 10.1523/JNEUROSCI.20-17-06347.2000 PMID: 10964940
- Washburn, C.P.; Sirois, J.E.; Talley, E.M.; Guyenet, P.G.; Bayliss, D.A. Serotonergic raphe neurons express TASK channel transcripts and a TASK-like pH- and halothane-sensitive K+ conductance. J. Neurosci., 2002, 22(4), 1256-1265. doi: 10.1523/JNEUROSCI.22-04-01256.2002 PMID: 11850453
- Jin, Z.; Choi, M.J.; Park, C.S.; Park, Y.S.; Jin, Y.H. Propofol facilitated excitatory postsynaptic currents frequency on nucleus tractus solitarii (NTS) neurons. Brain Res., 2012, 1432, 1-6. doi: 10.1016/j.brainres.2011.11.018 PMID: 22119393
- McDougall, S.J.; Bailey, T.W.; Mendelowitz, D.; Andresen, M.C. Propofol enhances both tonic and phasic inhibitory currents in second-order neurons of the solitary tract nucleus (NTS). Neuropharmacology, 2008, 54(3), 552-563. doi: 10.1016/j.neuropharm.2007.11.001 PMID: 18082229
- Fagerlund, M.J.; Kåhlin, J.; Ebberyd, A.; Schulte, G.; Mkrtchian, S.; Eriksson, L.I. The human carotid body: Expression of oxygen sensing and signaling genes of relevance for anesthesia. Anesthesiology, 2010, 113(6), 1270-1279. doi: 10.1097/ALN.0b013e3181fac061 PMID: 20980909
- Pandit, J.J.; Buckler, K.J. Differential effects of halothane and sevoflurane on hypoxia-induced intracellular calcium transients of neonatal rat carotid body type I cells. Br. J. Anaesth., 2009, 103(5), 701-710. doi: 10.1093/bja/aep223 PMID: 19700444
- Patel, A.J.; Honoré, E. Anesthetic-sensitive 2P domain K+ channels. Anesthesiology, 2001, 95(4), 1013-1021. doi: 10.1097/00000542-200110000-00034 PMID: 11605899
- Wu, X.S.; Sun, J.Y.; Evers, A.S.; Crowder, M.; Wu, L.G. Isoflurane inhibits transmitter release and the presynaptic action potential. Anesthesiology, 2004, 100(3), 663-670. doi: 10.1097/00000542-200403000-00029 PMID: 15108983
- Speigel, I.A.; Hemmings, H.C., Jr Selective inhibition of gamma aminobutyric acid release from mouse hippocampal interneurone subtypes by the volatile anaesthetic isoflurane. Br. J. Anaesth., 2021, 127(4), 587-599. doi: 10.1016/j.bja.2021.06.042 PMID: 34384592
- Stock, L.; Hosoume, J.; Treptow, W. Concentration-dependent binding of small ligands to multiple saturable sites in membrane proteins. Sci. Rep., 2017, 7(1), 5734. doi: 10.1038/s41598-017-05896-8 PMID: 28720769
- Stock, L.; Hosoume, J.; Cirqueira, L.; Treptow, W. Binding of the general anesthetic sevoflurane to ion channels. PLOS Comput. Biol., 2018, 14(11), e1006605. doi: 10.1371/journal.pcbi.1006605 PMID: 30475796
- Conforti, L.; Bodi, I.; Nisbet, J.W.; Millhorn, D.E. O2-sensitive K+ channels: Role of the Kv1.2 -subunit in mediating the hypoxic response. J. Physiol., 2000, 524(Pt 3), 783-793.
- Patel, A.J.; Honoré, E. Molecular physiology of oxygen-sensitive potassium channels. Eur. Respir. J., 2001, 18(1), 221-227. doi: 10.1183/09031936.01.00204001 PMID: 11510795
- Marina, N.; Turovsky, E.; Christie, I.N.; Hosford, P.S.; Hadjihambi, A.; Korsak, A.; Ang, R.; Mastitskaya, S.; Sheikhbahaei, S.; Theparambil, S.M.; Gourine, A.V. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia, 2018, 66(6), 1185-1199. doi: 10.1002/glia.23283 PMID: 29274121
- Guyenet, P.G.; Bayliss, D.A. Neural control of breathing and CO2 homeostasis. Neuron, 2015, 87(5), 946-961. doi: 10.1016/j.neuron.2015.08.001 PMID: 26335642
- Erlichman, J.S.; Leiter, J.C.; Gourine, A.V. ATP, glia and central respiratory control. Respir. Physiol. Neurobiol., 2010, 173(3), 305-311. doi: 10.1016/j.resp.2010.06.009 PMID: 20601205
- Kasymov, V.; Larina, O.; Castaldo, C.; Marina, N.; Patrushev, M.; Kasparov, S.; Gourine, A.V. Differential sensitivity of brainstem versus cortical astrocytes to changes in pH reveals functional regional specialization of astroglia. J. Neurosci., 2013, 33(2), 435-441. doi: 10.1523/JNEUROSCI.2813-12.2013 PMID: 23303924
- Sheikhbahaei, S.; Turovsky, E.A.; Hosford, P.S.; Hadjihambi, A.; Theparambil, S.M.; Liu, B.; Marina, N.; Teschemacher, A.G.; Kasparov, S.; Smith, J.C.; Gourine, A.V. Astrocytes modulate brainstem respiratory rhythm-generating circuits and determine exercise capacity. Nat. Commun., 2018, 9(1), 370. doi: 10.1038/s41467-017-02723-6 PMID: 29371650
- Gourine, A.V.; Kasymov, V.; Marina, N.; Tang, F.; Figueiredo, M.F.; Lane, S.; Teschemacher, A.G.; Spyer, K.M.; Deisseroth, K.; Kasparov, S. Astrocytes control breathing through pH-dependent release of ATP. Science, 2010, 329(5991), 571-575. doi: 10.1126/science.1190721 PMID: 20647426
- Turovsky, E.; Theparambil, S.M.; Kasymov, V.; Deitmer, J.W.; del Arroyo, A.G.; Ackland, G.L.; Corneveaux, J.J.; Allen, A.N.; Huentelman, M.J.; Kasparov, S.; Marina, N.; Gourine, A.V. Mechanisms of CO2/H+ sensitivity of astrocytes. J. Neurosci., 2016, 36(42), 10750-10758. doi: 10.1523/JNEUROSCI.1281-16.2016 PMID: 27798130
- Zuperku, E.J.; McCrimmon, D.R. Gain modulation of respiratory neurons. Respir. Physiol. Neurobiol., 2002, 131(1-2), 121-133. doi: 10.1016/S1569-9048(02)00042-3 PMID: 12107000
- Tonkovic-Capin, V.; Stucke, A.G.; Stuth, E.A.; Tonkovic-Capin, M.; Hopp, F.A.; McCrimmon, D.R.; Zuperku, E.J. Differential processing of excitation by GABAergic gain modulation in canine caudal ventral respiratory group neurons. J. Neurophysiol., 2003, 89(2), 862-870. doi: 10.1152/jn.00761.2002 PMID: 12574464
- Stucke, A.G.; Zuperku, E.J.; Tonkovic-Capin, V.; Tonkovic-Capin, M.; Hopp, F.A.; Kampine, J.P.; Stuth, E.A.E. Halothane depresses glutamatergic neurotransmission to brain stem inspiratory premotor neurons in a decerebrate dog model. Anesthesiology, 2003, 98(4), 897-905. doi: 10.1097/00000542-200304000-00016 PMID: 12657851
- Stucke, A.G.; Zuperku, E.J.; Tonkovic-Capin, V.; Krolo, M.; Hopp, F.A.; Kampine, J.P.; Stuth, E.A.E. Sevoflurane depresses glutamatergic neurotransmission to brainstem inspiratory premotor neurons but not postsynaptic receptor function in a decerebrate dog model. Anesthesiology, 2005, 103(1), 50-56. doi: 10.1097/00000542-200507000-00011 PMID: 15983456
- Stucke, A.G.; Zuperku, E.J.; Tonkovic-Capin, V.; Krolo, M.; Hopp, F.A.; Kampine, J.P.; Stuth, E.A.E. Halothane enhances gamma-aminobutyric acid receptor type A function but does not change overall inhibition in inspiratory premotor neurons in a decerebrate dog model. Anesthesiology, 2003, 99(6), 1303-1312. doi: 10.1097/00000542-200312000-00011 PMID: 14639142
- Stucke, A.G.; Stuth, E.A.E.; Tonkovic-Capin, V.; Tonkovic-Capin, M.; Hopp, F.A.; Kampine, J.P.; Zuperku, E.J. Effects of halothane and sevoflurane on inhibitory neurotransmission to medullary expiratory neurons in a decerebrate dog model. Anesthesiology, 2002, 96(4), 955-962. doi: 10.1097/00000542-200204000-00025 PMID: 11964605
- Ireland, M.F.; Lenal, F.C.; Lorier, A.R.; Loomes, D.E.; Adachi, T.; Alvares, T.S.; Greer, J.J.; Funk, G.D. Distinct receptors underlie glutamatergic signalling in inspiratory rhythm-generating networks and motor output pathways in neonatal rat. J. Physiol., 2008, 586(9), 2357-2370. doi: 10.1113/jphysiol.2007.150532 PMID: 18339693
- Robinson, D.; Ellenberger, H. Distribution of N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate receptor subunits on respiratory motor and premotor neurons in the rat. J. Comp. Neurol., 1997, 389(1), 94-116. doi: 10.1002/(SICI)1096-9861(19971208)389:13.0.CO;2-9 PMID: 9390762
- Dildy-Mayfield, J.E.; Eger, E.I., II; Harris, R.A. Anesthetics produce subunit-selective actions on glutamate receptors. J. Pharmacol. Exp. Ther., 1996, 276(3), 1058-1065. PMID: 8786535
- Joo, D.T.; Gong, D.; Sonner, J.M.; Jia, Z.; MacDonald, J.F.; Eger, E.I., II; Orser, B.A. Blockade of AMPA receptors and volatile anesthetics: reduced anesthetic requirements in GluR2 null mutant mice for loss of the righting reflex and antinociception but not minimum alveolar concentration. Anesthesiology, 2001, 94(3), 478-488. doi: 10.1097/00000542-200103000-00020 PMID: 11374610
- Mody, I. Distinguishing between GABA(A) receptors responsible for tonic and phasic conductances. Neurochem. Res., 2001, 26(8/9), 907-913. doi: 10.1023/A:1012376215967 PMID: 11699942
- Stórustovu, S.; Ebert, B. Pharmacological characterization of agonists at delta-containing GABAA receptors: Functional selectivity for extrasynaptic receptors is dependent on the absence of gamma2. J. Pharmacol. Exp. Ther., 2006, 316(3), 1351-1359. doi: 10.1124/jpet.105.092403 PMID: 16272218
- Stuth, E.A.E.; Krolo, M.; Tonkovic-Capin, M.; Hopp, F.A.; Kampine, J.P.; Zuperku, E.J. Effects of halothane on synaptic neurotransmission to medullary expiratory neurons in the ventral respiratory group of dogs. Anesthesiology, 1999, 91(3), 804-814. doi: 10.1097/00000542-199909000-00033 PMID: 10485792
- Ou, M.; Zhao, W.; Liu, J.; Liang, P.; Huang, H.; Yu, H.; Zhu, T.; Zhou, C. The general anesthetic isoflurane bilaterally modulates neuronal excitability. iScience, 2020, 23(1), 100760. doi: 10.1016/j.isci.2019.100760 PMID: 31926429
- Banks, M.I.; Pearce, R.A. Dual actions of volatile anesthetics on GABA(A) IPSCs: Dissociation of blocking and prolonging effects. Anesthesiology, 1999, 90(1), 120-134. doi: 10.1097/00000542-199901000-00018 PMID: 9915321
- Stuth, E.A.E.; Krolo, M.; Stucke, A.G.; Tonkovic-Capin, M.; Tonkovic-Capin, V.; Hopp, F.A.; Kampine, J.P.; Zuperku, E.J. Effects of halothane on excitatory neurotransmission to medullary expiratory neurons in a decerebrate dog model. Anesthesiology, 2000, 93(6), 1474-1481. doi: 10.1097/00000542-200012000-00020 PMID: 11149443
- Vanini, G.; Watson, C.J.; Lydic, R.; Baghdoyan, H.A. Gamma-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia. Anesthesiology, 2008, 109(6), 978-988. doi: 10.1097/ALN.0b013e31818e3b1b PMID: 19034094
- Westphalen, R.I.; Hemmings, H.C. Jr Selective depression by general anesthetics of glutamate versus GABA release from isolated cortical nerve terminals. J. Pharmacol. Exp. Ther., 2003, 304(3), 1188-1196. doi: 10.1124/jpet.102.044685 PMID: 12604696
- Housley, G.D.; Sinclair, J.D. Localization by kainic acid lesions of neurones transmitting the carotid chemoreceptor stimulus for respiration in rat. J. Physiol., 1988, 406(1), 99-114. doi: 10.1113/jphysiol.1988.sp017371 PMID: 3254424
- Burton, M.D.; Kazemi, H. Neurotransmitters in central respiratory control. Respir. Physiol., 2000, 122(2-3), 111-121. doi: 10.1016/S0034-5687(00)00153-5 PMID: 10967338
- Sirois, J.E.; Lynch, C., III; Bayliss, D.A. Convergent and reciprocal modulation of a leak K + current and Ih by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones. J. Physiol., 2002, 541(3), 717-729. doi: 10.1113/jphysiol.2002.018119 PMID: 12068035
- Sirois, J.E.; Pancrazio, J.J.; Lynch, C.3rd; Bayliss, D.A. Multiple ionic mechanisms mediate inhibition of rat motoneurones by inhalation anaesthetics. J. Physiol., 1998, 512(Pt 3), 851-862. doi: 10.1111/j.1469-7793.1998.851bd.x
- Washburn, C.P.; Bayliss, D.A.; Guyenet, P.G. Cardiorespiratory neurons of the rat ventrolateral medulla contain TASK-1 and TASK-3 channel mRNA. Respir. Physiol. Neurobiol., 2003, 138(1), 19-35. doi: 10.1016/S1569-9048(03)00185-X PMID: 14519375
- Brandes, I.F.; Zuperku, E.J.; Stucke, A.G.; Hopp, F.A.; Jakovcevic, D.; Stuth, E.A.E. Isoflurane depresses the response of inspiratory hypoglossal motoneurons to serotonin in vivo. Anesthesiology, 2007, 106(4), 736-745. doi: 10.1097/01.anes.0000264750.93769.99 PMID: 17413911
- Montaño, L.M.; Bazán-Perkins, B. Resting calcium influx in airway smooth muscle. Can. J. Physiol. Pharmacol., 2005, 83(8-9), 717-723. doi: 10.1139/y05-063 PMID: 16333373
- Perez-Zoghbi, J.F.; Karner, C.; Ito, S.; Shepherd, M.; Alrashdan, Y.; Sanderson, M.J. Ion channel regulation of intracellular calcium and airway smooth muscle function. Pulm. Pharmacol. Ther., 2009, 22(5), 388-397. doi: 10.1016/j.pupt.2008.09.006 PMID: 19007899
- Hall, A.C.; Lieb, W.R.; Franks, N.P. Insensitivity of P-type calcium channels to inhalational and intravenous general anesthetics. Anesthesiology, 1994, 81(1), 117-123. doi: 10.1097/00000542-199407000-00017 PMID: 8042779
- Reyes-García, J.; Flores-Soto, E.; Carbajal-García, A.; Sommer, B.; Montaño, L.M. Maintenance of intracellular Ca2+ basal concentration in airway smooth muscle (Review). Int. J. Mol. Med. , 2018, 42(6), 2998-3008. PMID: 30280184
- Yamakage, M.; Hirshman, C.A.; Croxton, T.L. Volatile anesthetics inhibit voltage-dependent Ca2+ channels in porcine tracheal smooth muscle cells. Am. J. Physiol., 1995, 268(2 Pt 1), L187-L191. PMID: 7864139
- Study, R.E. Isoflurane inhibits multiple voltage-gated calcium currents in hippocampal pyramidal neurons. Anesthesiology, 1994, 81(1), 104-116. doi: 10.1097/00000542-199407000-00016 PMID: 8042778
- Hemmings, H.C., Jr Sodium channels and the synaptic mechanisms of inhaled anaesthetics. Br. J. Anaesth., 2009, 103(1), 61-69. doi: 10.1093/bja/aep144 PMID: 19508978
- Cannon, S.C. Sodium channelopathies of skeletal muscle. Handb. Exp. Pharmacol., 2017, 246, 309-330. doi: 10.1007/164_2017_52 PMID: 28939973
- Pechmann, A.; Eckenweiler, M.; Schorling, D.; Stavropoulou, D.; Lochmüller, H.; Kirschner, J. De novo variant in SCN4A causes neonatal sodium channel myotonia with general muscle stiffness and respiratory failure. Neuromuscul. Disord., 2019, 29(11), 907-909. doi: 10.1016/j.nmd.2019.09.001 PMID: 31732390
- Ouyang, W.; Wang, G.; Hemmings, H.C., Jr Isoflurane and propofol inhibit voltage-gated sodium channels in isolated rat neurohypophysial nerve terminals. Mol. Pharmacol., 2003, 64(2), 373-381. doi: 10.1124/mol.64.2.373 PMID: 12869642
- Bardou, O.; Trinh, N.T.N.; Brochiero, E. Molecular diversity and function of K + channels in airway and alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2009, 296(2), L145-L155. doi: 10.1152/ajplung.90525.2008 PMID: 19060226
- Miller, J.R.; Zuperku, E.J.; Stuth, E.A.E.; Banerjee, A.; Hopp, F.A.; Stucke, A.G. A subregion of the parabrachial nucleus partially mediates respiratory rate depression from intravenous remifentanil in young and adult rabbits. Anesthesiology, 2017, 127(3), 502-514. doi: 10.1097/ALN.0000000000001719 PMID: 28590302
- Montandon, G.; Qin, W.; Liu, H.; Ren, J.; Greer, J.J.; Horner, R.L. PreBotzinger complex neurokinin-1 receptor-expressing neurons mediate opioid-induced respiratory depression. J. Neurosci., 2011, 31(4), 1292-1301. doi: 10.1523/JNEUROSCI.4611-10.2011 PMID: 21273414
- Montandon, G.; Horner, R. Crosstalk proposal: The preBötzinger complex is essential for the respiratory depression following systemic administration of opioid analgesics. J. Physiol., 2014, 592(6), 1159-1162. doi: 10.1113/jphysiol.2013.261974 PMID: 24634011
- Prkic, I.; Mustapic, S.; Radocaj, T.; Stucke, A.G.; Stuth, E.A.E.; Hopp, F.A.; Dean, C.; Zuperku, E.J. Pontine µ-opioid receptors mediate bradypnea caused by intravenous remifentanil infusions at clinically relevant concentrations in dogs. J. Neurophysiol., 2012, 108(9), 2430-2441. doi: 10.1152/jn.00185.2012 PMID: 22875901
- Liu, S.; Kim, D.I.; Oh, T.G.; Pao, G.M.; Kim, J.H.; Palmiter, R.D.; Banghart, M.R.; Lee, K.F.; Evans, R.M.; Han, S. Neural basis of opioid-induced respiratory depression and its rescue. Proc. Natl. Acad. Sci. USA, 2021, 118(23), e2022134118. doi: 10.1073/pnas.2022134118 PMID: 34074761
- Varga, A.G.; Reid, B.T.; Kieffer, B.L.; Levitt, E.S. Differential impact of two critical respiratory centres in opioid-induced respiratory depression in awake mice. J. Physiol., 2020, 598(1), 189-205. doi: 10.1113/JP278612 PMID: 31589332
- Manzke, T.; Guenther, U.; Ponimaskin, E.G.; Haller, M.; Dutschmann, M.; Schwarzacher, S.; Richter, D.W. 5-HT4(a) receptors avert opioid-induced breathing depression without loss of analgesia. Science, 2003, 301(5630), 226-229. doi: 10.1126/science.1084674 PMID: 12855812
- Gray, P.A.; Janczewski, W.A.; Mellen, N.; McCrimmon, D.R.; Feldman, J.L. Normal breathing requires preBötzinger complex neurokinin-1 receptor-expressing neurons. Nat. Neurosci., 2001, 4(9), 927-930. doi: 10.1038/nn0901-927 PMID: 11528424
- McKay, L.C.; Feldman, J.L. Unilateral ablation of pre-Botzinger complex disrupts breathing during sleep but not wakefulness. Am. J. Respir. Crit. Care Med., 2008, 178(1), 89-95. doi: 10.1164/rccm.200712-1901OC PMID: 18420958
- Kim, D.W.; Joo, J.D.; In, J.H.; Jeon, Y.S.; Jung, H.S.; Jeon, K.B.; Park, J.S.; Choi, J.W. Comparison of the recovery and respiratory effects of aminophylline and doxapram following total intravenous anesthesia with propofol and remifentanil. J. Clin. Anesth., 2013, 25(3), 173-176. doi: 10.1016/j.jclinane.2012.07.005 PMID: 23583458
- Roozekrans, M.; van der Schrier, R.; Okkerse, P.; Hay, J.; McLeod, J.F.; Dahan, A. Two studies on reversal of opioid-induced respiratory depression by BK-channel blocker GAL021 in human volunteers. Anesthesiology, 2014, 121(3), 459-468. doi: 10.1097/ALN.0000000000000367 PMID: 25222672
- Dahan, A.; van der Schrier, R.; Smith, T.; Aarts, L.; van Velzen, M.; Niesters, M. Averting opioid-induced respiratory depression without affecting analgesia. Anesthesiology, 2018, 128(5), 1027-1037. doi: 10.1097/ALN.0000000000002184 PMID: 29553984
- Algera, M.H.; Kamp, J.; van der Schrier, R.; van Velzen, M.; Niesters, M.; Aarts, L.; Dahan, A.; Olofsen, E. Opioid-induced respiratory depression in humans: A review of pharmacokineticpharmacodynamic modelling of reversal. Br. J. Anaesth., 2019, 122(6), e168-e179. doi: 10.1016/j.bja.2018.12.023 PMID: 30915997
- Ren, J.; Ding, X.; Greer, J.J. 5-HT1A receptor agonist Befiradol reduces fentanyl-induced respiratory depression, analgesia, and sedation in rats. Anesthesiology, 2015, 122(2), 424-434. doi: 10.1097/ALN.0000000000000490 PMID: 25313880
- Guenther, U.; Wrigge, H.; Theuerkauf, N.; Boettcher, M.F.; Wensing, G.; Zinserling, J.; Putensen, C.; Hoeft, A. Repinotan, a selective 5-HT1A-R-agonist, antagonizes morphine-induced ventilatory depression in anesthetized rats. Anesth. Analg., 2010, 111(4), 901-907. doi: 10.1213/ANE.0b013e3181eac011 PMID: 20802053
- Guenther, U.; Theuerkauf, N.U.; Huse, D.; Boettcher, M.F.; Wensing, G.; Putensen, C.; Hoeft, A. Selective 5-HT(1A)-R-agonist repinotan prevents remifentanil-induced ventilatory depression and prolongs antinociception. Anesthesiology, 2012, 116(1), 56-64. doi: 10.1097/ALN.0b013e31823d08fa PMID: 22082683
- Buckler, K.J. Background leak K+-currents and oxygen sensing in carotid body type 1 cells. Respir. Physiol., 1999, 115(2), 179-187. doi: 10.1016/S0034-5687(99)00015-8 PMID: 10385032
- Funk, G.D.; Smith, J.C.; Feldman, J.L. Generation and transmission of respiratory oscillations in medullary slices: Role of excitatory amino acids. J. Neurophysiol., 1993, 70(4), 1497-1515. doi: 10.1152/jn.1993.70.4.1497 PMID: 8283211
- Lee, K.; Goodman, L.; Fourie, C.; Schenk, S.; Leitch, B.; Montgomery, J.M. AMPA receptors as therapeutic targets for neurological disorders. Adv. Protein Chem. Struct. Biol., 2016, 103, 203-261. doi: 10.1016/bs.apcsb.2015.10.004 PMID: 26920691
- ElMallah, M.K.; Pagliardini, S.; Turner, S.M.; Cerreta, A.J.; Falk, D.J.; Byrne, B.J.; Greer, J.J.; Fuller, D.D. Stimulation of respiratory motor output and ventilation in a murine model of Pompe disease by Ampakines. Am. J. Respir. Cell Mol. Biol., 2015, 53(3), 326-335. doi: 10.1165/rcmb.2014-0374OC PMID: 25569118
Supplementary files
