Inflammation in Posttraumatic Stress Disorder: Dysregulation or Recalibration?
- Authors: Patas K.1, Baker D.2, Chrousos G.3, Agorastos A.4
-
Affiliations:
- Department of Biopathology and Laboratory Medicine, Eginition University Hospital
- Department of Psychiatry, University of California
- Medical School, Aghia Sophia Children's Hospital, University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System
- Issue: Vol 22, No 4 (2024)
- Pages: 524-542
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644719
- DOI: https://doi.org/10.2174/1570159X21666230807152051
- ID: 644719
Cite item
Full Text
Abstract
Despite ample experimental data indicating a role of inflammatory mediators in the behavioral and neurobiological manifestations elicited by exposure to physical and psychologic stressors, causative associations between systemic low-grade inflammation and central nervous system inflammatory processes in posttraumatic stress disorder (PTSD) patients remain largely conceptual. As in other stress-related disorders, pro-inflammatory activity may play an equivocal role in PTSD pathophysiology, one that renders indiscriminate employment of anti-inflammatory agents of questionable relevance. In fact, as several pieces of preclinical and clinical research convergingly suggest, timely and targeted potentiation rather than inhibition of inflammatory responses may actually be beneficial in patients who are characterized by suppressed microglia function in the face of systemic low-grade inflammation. The deleterious impact of chronic stress-associated inflammation on the systemic level may, thus, need to be held in context with the - often not readily apparent - adaptive payoffs of low-grade inflammation at the tissue level.
About the authors
Kostas Patas
Department of Biopathology and Laboratory Medicine, Eginition University Hospital
Email: info@benthamscience.net
Dewleen Baker
Department of Psychiatry, University of California
Email: info@benthamscience.net
George Chrousos
Medical School, Aghia Sophia Children's Hospital, University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens
Email: info@benthamscience.net
Agorastos Agorastos
VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System
Author for correspondence.
Email: info@benthamscience.net
References
- Benjet, C.; Bromet, E.; Karam, E.G.; Kessler, R.C.; McLaughlin, K.A.; Ruscio, A.M.; Shahly, V.; Stein, D.J.; Petukhova, M.; Hill, E.; Alonso, J.; Atwoli, L.; Bunting, B.; Bruffaerts, R.; Caldas-de-Almeida, J.M.; de Girolamo, G.; Florescu, S.; Gureje, O.; Huang, Y.; Lepine, J.P.; Kawakami, N.; Kovess-Masfety, V.; Medina-Mora, M.E.; Navarro-Mateu, F.; Piazza, M.; Posada-Villa, J.; Scott, K.M.; Shalev, A.; Slade, T.; ten Have, M.; Torres, Y.; Viana, M.C.; Zarkov, Z.; Koenen, K.C. The epidemiology of traumatic event exposure worldwide: Results from the World Mental Health Survey Consortium. Psychol. Med., 2016, 46(2), 327-343. doi: 10.1017/S0033291715001981 PMID: 26511595
- Koenen, K.C.; Ratanatharathorn, A.; Ng, L.; McLaughlin, K.A.; Bromet, E.J.; Stein, D.J.; Karam, E.G.; Meron Ruscio, A.; Benjet, C.; Scott, K.; Atwoli, L.; Petukhova, M.; Lim, C.C.W.; Aguilar-Gaxiola, S.; Al-Hamzawi, A.; Alonso, J.; Bunting, B.; Ciutan, M.; de Girolamo, G.; Degenhardt, L.; Gureje, O.; Haro, J.M.; Huang, Y.; Kawakami, N.; Lee, S.; Navarro-Mateu, F.; Pennell, B.E.; Piazza, M.; Sampson, N.; ten Have, M.; Torres, Y.; Viana, M.C.; Williams, D.; Xavier, M.; Kessler, R.C. Posttraumatic stress disorder in the World Mental Health Surveys. Psychol. Med., 2017, 47(13), 2260-2274. doi: 10.1017/S0033291717000708 PMID: 28385165
- Murrough, J.W.; Russo, S.J. The neurobiology of resilience: Complexity and hope. Biol. Psychiatry, 2019, 86(6), 406-409. doi: 10.1016/j.biopsych.2019.07.016 PMID: 31466560
- Hodes, G.E.; Epperson, C.N. Sex differences in vulnerability and resilience to stress across the life span. Biol. Psychiatry, 2019, 86(6), 421-432. doi: 10.1016/j.biopsych.2019.04.028 PMID: 31221426
- Agorastos, A.; Pervanidou, P.; Chrousos, G.P.; Baker, D.G. Developmental trajectories of early life stress and trauma: A narrative review on neurobiological aspects beyond stress system dysregulation. Front. Psychiatry, 2019, 10, 118. doi: 10.3389/fpsyt.2019.00118 PMID: 30914979
- Peruzzolo, T.L.; Pinto, J.V.; Roza, T.H.; Shintani, A.O.; Anzolin, A.P.; Gnielka, V.; Kohmann, A.M.; Marin, A.S.; Lorenzon, V.R.; Brunoni, A.R.; Kapczinski, F.; Passos, I.C. Inflammatory and oxidative stress markers in post-traumatic stress disorder: A systematic review and meta-analysis. Mol. Psychiatry, 2022, 27(8), 3150-3163. doi: 10.1038/s41380-022-01564-0 PMID: 35477973
- Katrinli, S.; Oliveira, N.C.S.; Felger, J.C.; Michopoulos, V.; Smith, A.K. The role of the immune system in posttraumatic stress disorder. Transl. Psychiatry, 2022, 12(1), 313. doi: 10.1038/s41398-022-02094-7 PMID: 35927237
- Sun, Y.; Qu, Y.; Zhu, J. The relationship between inflammation and post-traumatic stress disorder. Front. Psychiatry, 2021, 12, 707543. doi: 10.3389/fpsyt.2021.707543 PMID: 34456764
- Núñez-Rios, D.L.; Martínez-Magaña, J.J.; Nagamatsu, S.T.; Andrade-Brito, D.E.; Forero, D.A.; Orozco-Castaño, C.A.; Montalvo-Ortiz, J.L. Central and peripheral immune dysregulation in posttraumatic stress disorder: Convergent multi-omics evidence. Biomedicines, 2022, 10(5), 1107. doi: 10.3390/biomedicines10051107 PMID: 35625844
- ODonnell, C.J.; Schwartz Longacre, L.; Cohen, B.E.; Fayad, Z.A.; Gillespie, C.F.; Liberzon, I.; Pathak, G.A.; Polimanti, R.; Risbrough, V.; Ursano, R.J.; Vander Heide, R.S.; Yancy, C.W.; Vaccarino, V.; Sopko, G.; Stein, M.B. Posttraumatic stress disorder and cardiovascular disease. JAMA Cardiol., 2021, 6(10), 1207-1216. doi: 10.1001/jamacardio.2021.2530 PMID: 34259831
- Mellon, S.H.; Gautam, A.; Hammamieh, R.; Jett, M.; Wolkowitz, O.M. Metabolism, metabolomics, and inflammation in posttraumatic stress disorder. Biol. Psychiatry, 2018, 83(10), 866-875. doi: 10.1016/j.biopsych.2018.02.007 PMID: 29628193
- Wolf, E.J.; Maniates, H.; Nugent, N.; Maihofer, A.X.; Armstrong, D.; Ratanatharathorn, A.; Ashley-Koch, A.E.; Garrett, M.; Kimbrel, N.A.; Lori, A.; Aiello, A.E.; Baker, D.G.; Beckham, J.C.; Boks, M.P.; Galea, S.; Geuze, E.; Hauser, M.A.; Kessler, R.C.; Koenen, K.C.; Miller, M.W.; Ressler, K.J.; Risbrough, V.; Rutten, B.P.F.; Stein, M.B.; Ursano, R.J.; Vermetten, E.; Vinkers, C.H.; Uddin, M.; Smith, A.K.; Nievergelt, C.M.; Logue, M.W. Traumatic stress and accelerated DNA methylation age: A meta-analysis. Psychoneuroendocrinology, 2018, 92, 123-134. doi: 10.1016/j.psyneuen.2017.12.007 PMID: 29452766
- Yang, R.; Wu, G.W.Y.; Verhoeven, J.E.; Gautam, A.; Reus, V.I.; Kang, J.I.; Flory, J.D.; Abu-Amara, D.; Hood, L.; Doyle, F.J., III; Yehuda, R.; Marmar, C.R.; Jett, M.; Hammamieh, R.; Mellon, S.H.; Wolkowitz, O.M. A DNA methylation clock associated with age-related illnesses and mortality is accelerated in men with combat PTSD. Mol. Psychiatry, 2021, 26(9), 4999-5009. doi: 10.1038/s41380-020-0755-z PMID: 32382136
- Salvador, A.F.; de Lima, K.A.; Kipnis, J. Neuromodulation by the immune system: A focus on cytokines. Nat. Rev. Immunol., 2021, 21(8), 526-541. doi: 10.1038/s41577-021-00508-z PMID: 33649606
- Ménard, C.; Pfau, M.L.; Hodes, G.E.; Russo, S.J. Immune and neuroendocrine mechanisms of stress vulnerability and resilience. Neuropsychopharmacology, 2017, 42(1), 62-80. doi: 10.1038/npp.2016.90 PMID: 27291462
- Dantzer, R.; Cohen, S.; Russo, S.J.; Dinan, T.G. Resilience and immunity. Brain Behav. Immun., 2018, 74, 28-42. doi: 10.1016/j.bbi.2018.08.010 PMID: 30102966
- Cathomas, F.; Murrough, J.W.; Nestler, E.J.; Han, M.H.; Russo, S.J. Neurobiology of resilience: Interface between mind and body. Biol. Psychiatry, 2019, 86(6), 410-420. doi: 10.1016/j.biopsych.2019.04.011 PMID: 31178098
- Rankin, L.C.; Artis, D. Beyond Host Defense: Emerging functions of the immune system in regulating complex tissue physiology. Cell, 2018, 173(3), 554-567. doi: 10.1016/j.cell.2018.03.013 PMID: 29677509
- Meizlish, M.L.; Franklin, R.A.; Zhou, X.; Medzhitov, R. Tissue homeostasis and inflammation. Annu. Rev. Immunol., 2021, 39(1), 557-581. doi: 10.1146/annurev-immunol-061020-053734 PMID: 33651964
- Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435. doi: 10.1038/nature07201 PMID: 18650913
- Chovatiya, R.; Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell, 2014, 54(2), 281-288. doi: 10.1016/j.molcel.2014.03.030 PMID: 24766892
- Agorastos, A.; Chrousos, G.P. The neuroendocrinology of stress: The stress-related continuum of chronic disease development. Mol. Psychiatry, 2022, 27(1), 502-513. doi: 10.1038/s41380-021-01224-9 PMID: 34290370
- Haykin, H.; Rolls, A. The neuroimmune response during stress: A physiological perspective. Immunity, 2021, 54(9), 1933-1947. doi: 10.1016/j.immuni.2021.08.023 PMID: 34525336
- Webster, J.I.; Tonelli, L.; Sternberg, E.M. Neuroendocrine regulation of immunity. Annu. Rev. Immunol., 2002, 20(1), 125-163. doi: 10.1146/annurev.immunol.20.082401.104914 PMID: 11861600
- Padro, C.J.; Sanders, V.M. Neuroendocrine regulation of inflammation. Semin. Immunol., 2014, 26(5), 357-368. doi: 10.1016/j.smim.2014.01.003 PMID: 24486056
- Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882. doi: 10.1016/j.cell.2010.02.029 PMID: 20303877
- Rohleder, N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom. Med., 2014, 76(3), 181-189. doi: 10.1097/PSY.0000000000000049 PMID: 24608036
- Marsland, A.L.; Walsh, C.; Lockwood, K.; John-Henderson, N.A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: A systematic review and meta-analysis. Brain Behav. Immun., 2017, 64, 208-219. doi: 10.1016/j.bbi.2017.01.011 PMID: 28089638
- Gold, P.W.; Licinio, J.; Pavlatou, M.G. Pathological parainflammation and endoplasmic reticulum stress in depression: Potential translational targets through the CNS insulin, klotho and PPAR-γ systems. Mol. Psychiatry, 2013, 18(2), 154-165. doi: 10.1038/mp.2012.167 PMID: 23183489
- Speer, K.; Upton, D.; Semple, S.; McKune, A. Systemic low-grade inflammation in post-traumatic stress disorder: A systematic review. J. Inflamm. Res., 2018, 11, 111-121. doi: 10.2147/JIR.S155903 PMID: 29606885
- Osimo, E.F.; Baxter, L.J.; Lewis, G.; Jones, P.B.; Khandaker, G.M. Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychol. Med., 2019, 49(12), 1958-1970. doi: 10.1017/S0033291719001454 PMID: 31258105
- Del Giudice, M.; Gangestad, S.W. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav. Immun., 2018, 70, 61-75. doi: 10.1016/j.bbi.2018.02.013 PMID: 29499302
- Glaser, R.; Kiecolt-Glaser, J.K. Stress-induced immune dysfunction: Implications for health. Nat. Rev. Immunol., 2005, 5(3), 243-251. doi: 10.1038/nri1571 PMID: 15738954
- Dhabhar, F.S. Enhancing versus suppressive effects of stress on immune function: Implications for immunoprotection and immunopathology. Neuroimmunomodulation, 2009, 16(5), 300-317. doi: 10.1159/000216188 PMID: 19571591
- Rubinow, K.B.; Rubinow, D.R. In immune defense: Redefining the role of the immune system in chronic disease. Dialogues Clin. Neurosci., 2017, 19(1), 19-26. doi: 10.31887/DCNS.2017.19.1/drubinow PMID: 28566944
- Estes, M.L.; McAllister, A.K. Alterations in immune cells and mediators in the brain: Its not always neuroinflammation! Brain Pathol., 2014, 24(6), 623-630. doi: 10.1111/bpa.12198 PMID: 25345893
- DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem., 2016, 139(Suppl. 2), 136-153. doi: 10.1111/jnc.13607 PMID: 26990767
- Wohleb, E.S. Neuronmicroglia interactions in mental health disorders: "For better, and for worse". Front. Immunol., 2016, 7, 544. doi: 10.3389/fimmu.2016.00544 PMID: 27965671
- Woodburn, S.C.; Bollinger, J.L.; Wohleb, E.S. The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. J. Neuroinflammation, 2021, 18(1), 258. doi: 10.1186/s12974-021-02309-6 PMID: 34742308
- Shulman, L.M. Emotional traumatic brain injury. Cogn. Behav. Neurol., 2020, 33(4), 301-303. doi: 10.1097/WNN.0000000000000243 PMID: 32947370
- Wager-Smith, K.; Markou, A. Depression: A repair response to stress-induced neuronal microdamage that can grade into a chronic neuroinflammatory condition? Neurosci. Biobehav. Rev., 2011, 35(3), 742-764. doi: 10.1016/j.neubiorev.2010.09.010 PMID: 20883718
- Kreisel, T.; Frank, M.G.; Licht, T.; Reshef, R.; Ben-Menachem-Zidon, O.; Baratta, M.V.; Maier, S.F.; Yirmiya, R. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol. Psychiatry, 2014, 19(6), 699-709. doi: 10.1038/mp.2013.155 PMID: 24342992
- Tong, L.; Gong, Y.; Wang, P.; Hu, W.; Wang, J.; Chen, Z.; Zhang, W.; Huang, C. Microglia loss contributes to the development of major depression induced by different types of chronic stresses. Neurochem. Res., 2017, 42(10), 2698-2711. doi: 10.1007/s11064-017-2270-4 PMID: 28434164
- Hori, H.; Kim, Y. Inflammation and post‐traumatic stress disorder. Psychiatry Clin. Neurosci., 2019, 73(4), 143-153. doi: 10.1111/pcn.12820 PMID: 30653780
- Passos, I.C.; Vasconcelos-Moreno, M.P.; Costa, L.G.; Kunz, M.; Brietzke, E.; Quevedo, J.; Salum, G.; Magalhães, P.V.; Kapczinski, F.; Kauer-SantAnna, M. Inflammatory markers in post-traumatic stress disorder: A systematic review, meta-analysis, and meta-regression. Lancet Psychiatry, 2015, 2(11), 1002-1012. doi: 10.1016/S2215-0366(15)00309-0 PMID: 26544749
- Pan, X.; Kaminga, A.C.; Wu Wen, S.; Liu, A. Chemokines in post-traumatic stress disorder: A network meta-analysis. Brain Behav. Immun., 2021, 92, 115-126. doi: 10.1016/j.bbi.2020.11.033 PMID: 33242653
- Spitzer, C.; Barnow, S.; Völzke, H.; Wallaschofski, H.; John, U.; Freyberger, H.J.; Löwe, B.; Grabe, H.J. Association of posttraumatic stress disorder with low-grade elevation of C-reactive protein: Evidence from the general population. J. Psychiatr. Res., 2010, 44(1), 15-21. doi: 10.1016/j.jpsychires.2009.06.002 PMID: 19628221
- Michopoulos, V.; Rothbaum, A.O.; Jovanovic, T.; Almli, L.M.; Bradley, B.; Rothbaum, B.O.; Gillespie, C.F.; Ressler, K.J. Association of CRP genetic variation and CRP level with elevated PTSD symptoms and physiological responses in a civilian population with high levels of trauma. Am. J. Psychiatry, 2015, 172(4), 353-362. doi: 10.1176/appi.ajp.2014.14020263 PMID: 25827033
- Tursich, M.; Neufeld, R.W.J.; Frewen, P.A.; Harricharan, S.; Kibler, J.L.; Rhind, S.G.; Lanius, R.A. Association of trauma exposure with proinflammatory activity: A transdiagnostic meta-analysis. Transl. Psychiatry, 2014, 4(7), e413. doi: 10.1038/tp.2014.56 PMID: 25050993
- Breen, M.S.; Maihofer, A.X.; Glatt, S.J.; Tylee, D.S.; Chandler, S.D.; Tsuang, M.T.; Risbrough, V.B.; Baker, D.G.; OConnor, D.T.; Nievergelt, C.M.; Woelk, C.H. Gene networks specific for innate immunity define post-traumatic stress disorder. Mol. Psychiatry, 2015, 20(12), 1538-1545. doi: 10.1038/mp.2015.9 PMID: 25754082
- Breen, M.S.; Tylee, D.S.; Maihofer, A.X.; Neylan, T.C.; Mehta, D.; Binder, E.B.; Chandler, S.D.; Hess, J.L.; Kremen, W.S.; Risbrough, V.B.; Woelk, C.H.; Baker, D.G.; Nievergelt, C.M.; Tsuang, M.T.; Buxbaum, J.D.; Glatt, S.J. PTSD blood transcriptome mega-analysis: Shared inflammatory pathways across biological sex and modes of trauma. Neuropsychopharmacology, 2018, 43(3), 469-481. doi: 10.1038/npp.2017.220 PMID: 28925389
- Uddin, M.; Aiello, A.E.; Wildman, D.E.; Koenen, K.C.; Pawelec, G.; de los Santos, R.; Goldmann, E.; Galea, S. Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc. Natl. Acad. Sci. USA, 2010, 107(20), 9470-9475. doi: 10.1073/pnas.0910794107 PMID: 20439746
- Katrinli, S.; Maihofer, A.X.; Wani, A.H.; Pfeiffer, J.R.; Ketema, E.; Ratanatharathorn, A.; Baker, D.G.; Boks, M.P.; Geuze, E.; Kessler, R.C.; Risbrough, V.B.; Rutten, B.P.F.; Stein, M.B.; Ursano, R.J.; Vermetten, E.; Logue, M.W.; Nievergelt, C.M.; Smith, A.K.; Uddin, M. Epigenome-wide meta-analysis of PTSD symptom severity in three military cohorts implicates DNA methylation changes in genes involved in immune system and oxidative stress. Mol. Psychiatry, 2022, 27(3), 1720-1728. doi: 10.1038/s41380-021-01398-2 PMID: 34992238
- Zhou, J.; Nagarkatti, P.; Zhong, Y.; Ginsberg, J.P.; Singh, N.P.; Zhang, J.; Nagarkatti, M. Dysregulation in microRNA expression is associated with alterations in immune functions in combat veterans with post-traumatic stress disorder. PLoS One, 2014, 9(4), e94075. doi: 10.1371/journal.pone.0094075 PMID: 24759737
- Bam, M.; Yang, X.; Zumbrun, E.E.; Ginsberg, J.P.; Leyden, Q.; Zhang, J.; Nagarkatti, P.S.; Nagarkatti, M. Decreased AGO2 and DCR1 in PBMCs from War Veterans with PTSD leads to diminished miRNA resulting in elevated inflammation. Transl. Psychiatry, 2017, 7(8), e1222. doi: 10.1038/tp.2017.185 PMID: 28850112
- Sommershof, A.; Aichinger, H.; Engler, H.; Adenauer, H.; Catani, C.; Boneberg, E.M.; Elbert, T.; Groettrup, M.; Kolassa, I.T. Substantial reduction of naïve and regulatory T cells following traumatic stress. Brain Behav. Immun., 2009, 23(8), 1117-1124. doi: 10.1016/j.bbi.2009.07.003 PMID: 19619638
- Jergović, M.; Bendelja, K.; Vidović, A.; Savić, A.; Vojvoda, V.; Aberle, N.; Rabatić, S.; Jovanovic, T.; Sabioncello, A. Patients with post-traumatic stress disorder exhibit an altered phenotype of regulatory T cells. Allergy Asthma Clin. Immunol., 2014, 10(1), 43. doi: 10.1186/1710-1492-10-43 PMID: 25670936
- Edmondson, D.; Kronish, I.M.; Shaffer, J.A.; Falzon, L.; Burg, M.M. Posttraumatic stress disorder and risk for coronary heart disease: A meta-analytic review. Am. Heart J., 2013, 166(5), 806-814. doi: 10.1016/j.ahj.2013.07.031 PMID: 24176435
- ODonovan, A.; Cohen, B.E.; Seal, K.H.; Bertenthal, D.; Margaretten, M.; Nishimi, K.; Neylan, T.C. Elevated risk for autoimmune disorders in iraq and afghanistan veterans with posttraumatic stress disorder. Biol. Psychiatry, 2015, 77(4), 365-374. doi: 10.1016/j.biopsych.2014.06.015 PMID: 25104173
- Song, H.; Fang, F.; Tomasson, G.; Arnberg, F.K.; Mataix-Cols, D.; Fernández de la Cruz, L.; Almqvist, C.; Fall, K.; Valdimarsdóttir, U.A. Association of stress-related disorders with subsequent autoimmune disease. JAMA, 2018, 319(23), 2388-2400. doi: 10.1001/jama.2018.7028 PMID: 29922828
- Eraly, S.A.; Nievergelt, C.M.; Maihofer, A.X.; Barkauskas, D.A.; Biswas, N.; Agorastos, A.; OConnor, D.T.; Baker, D.G. Assessment of plasma C-reactive protein as a biomarker of posttraumatic stress disorder risk. JAMA Psychiatry, 2014, 71(4), 423-431. doi: 10.1001/jamapsychiatry.2013.4374 PMID: 24576974
- Pervanidou, P.; Kolaitis, G.; Charitaki, S.; Margeli, A.; Ferentinos, S.; Bakoula, C.; Lazaropoulou, C.; Papassotiriou, I.; Tsiantis, J.; Chrousos, G.P. Elevated morning serum interleukin (IL)-6 or evening salivary cortisol concentrations predict posttraumatic stress disorder in children and adolescents six months after a motor vehicle accident. Psychoneuroendocrinology, 2007, 32(8-10), 991-999. doi: 10.1016/j.psyneuen.2007.07.001 PMID: 17825995
- Smid, G.E.; van Zuiden, M.; Geuze, E.; Kavelaars, A.; Heijnen, C.J.; Vermetten, E. Cytokine production as a putative biological mechanism underlying stress sensitization in high combat exposed soldiers. Psychoneuroendocrinology, 2015, 51, 534-546. doi: 10.1016/j.psyneuen.2014.07.010 PMID: 25106657
- Michopoulos, V.; Beurel, E.; Gould, F.; Dhabhar, F.S.; Schultebraucks, K.; Galatzer-Levy, I.; Rothbaum, B.O.; Ressler, K.J.; Nemeroff, C.B. Association of prospective risk for chronic PTSD symptoms with low TNFα and IFNγ concentrations in the immediate aftermath of trauma exposure. Am. J. Psychiatry, 2020, 177(1), 58-65. doi: 10.1176/appi.ajp.2019.19010039 PMID: 31352811
- Lalonde, C.S.; Mekawi, Y.; Ethun, K.F.; Beurel, E.; Gould, F.; Dhabhar, F.S.; Schultebraucks, K.; Galatzer-Levy, I.; Maples-Keller, J.L.; Rothbaum, B.O.; Ressler, K.J.; Nemeroff, C.B.; Stevens, J.S.; Michopoulos, V. Sex differences in peritraumatic inflammatory cytokines and steroid hormones contribute to prospective risk for nonremitting posttraumatic stress disorder. Chronic Stress, 2021, 5, 24705470211032208. doi: 10.1177/24705470211032208 PMID: 34595364
- Sumner, J.A.; Nishimi, K.M.; Koenen, K.C.; Roberts, A.L.; Kubzansky, L.D. Posttraumatic stress disorder and inflammation: untangling issues of bidirectionality. Biol. Psychiatry, 2020, 87(10), 885-897. doi: 10.1016/j.biopsych.2019.11.005 PMID: 31932029
- Bektas, A.; Schurman, S.H.; Sen, R.; Ferrucci, L. Human T cell immunosenescence and inflammation in aging. J. Leukoc. Biol., 2017, 102(4), 977-988. doi: 10.1189/jlb.3RI0716-335R PMID: 28733462
- Fulop, T.; Larbi, A.; Dupuis, G.; Le Page, A.; Frost, E.H.; Cohen, A.A.; Witkowski, J.M.; Franceschi, C. Immunosenescence and inflamm-aging as two sides of the same coin: Friends or foes? Front. Immunol., 2018, 8, 1960. doi: 10.3389/fimmu.2017.01960 PMID: 29375577
- Solana, C.; Tarazona, R.; Solana, R. Immunosenescence of natural killer cells, inflammation, and Alzheimers Disease. Int. J. Alzheimers Dis., 2018, 2018, 1-9. doi: 10.1155/2018/3128758 PMID: 30515321
- de Punder, K.; Heim, C.; Wadhwa, P.D.; Entringer, S. Stress and immunosenescence: The role of telomerase. Psychoneuroendocrinology, 2019, 101, 87-100. doi: 10.1016/j.psyneuen.2018.10.019 PMID: 30445409
- Patas, K.; Willing, A.; Demiralay, C.; Engler, J.B.; Lupu, A.; Ramien, C.; Schäfer, T.; Gach, C.; Stumm, L.; Chan, K.; Vignali, M.; Arck, P.C.; Friese, M.A.; Pless, O.; Wiedemann, K.; Agorastos, A.; Gold, S.M. T Cell Phenotype and T cell receptor repertoire in patients with major depressive disorder. Front. Immunol., 2018, 9, 291. doi: 10.3389/fimmu.2018.00291 PMID: 29515587
- Miller, M.W.; Sadeh, N. Traumatic stress, oxidative stress and post-traumatic stress disorder: Neurodegeneration and the accelerated-aging hypothesis. Mol. Psychiatry, 2014, 19(11), 1156-1162. doi: 10.1038/mp.2014.111 PMID: 25245500
- Bersani, F.S.; Wolkowitz, O.M.; Milush, J.M.; Sinclair, E.; Eppling, L.; Aschbacher, K.; Lindqvist, D.; Yehuda, R.; Flory, J.; Bierer, L.M.; Matokine, I.; Abu-Amara, D.; Reus, V.I.; Coy, M.; Hough, C.M.; Marmar, C.R.; Mellon, S.H. A population of atypical CD56-CD16+ natural killer cells is expanded in PTSD and is associated with symptom severity. Brain Behav. Immun., 2016, 56, 264-270. doi: 10.1016/j.bbi.2016.03.021 PMID: 27025668
- Aiello, A.E.; Dowd, J.B.; Jayabalasingham, B.; Feinstein, L.; Uddin, M.; Simanek, A.M.; Cheng, C.K.; Galea, S.; Wildman, D.E.; Koenen, K.; Pawelec, G. PTSD is associated with an increase in aged T cell phenotypes in adults living in Detroit. Psychoneuroendocrinology, 2016, 67, 133-141. doi: 10.1016/j.psyneuen.2016.01.024 PMID: 26894484
- Xiong, Y.; Wang, Z.; Young, M.R.I. Reduced expression of immune mediators by T-Cell subpopulations of combat-exposed veterans with post-traumatic stress disorder. Front. Psychiatry, 2019, 10, 693. doi: 10.3389/fpsyt.2019.00693 PMID: 31620037
- Bellon, M.; Nicot, C. Telomere dynamics in immune senescence and exhaustion triggered by chronic viral infection. Viruses, 2017, 9(10), 289. doi: 10.3390/v9100289 PMID: 28981470
- Reed, R.G. Stress and immunological aging. Curr. Opin. Behav. Sci., 2019, 28, 38-43. doi: 10.1016/j.cobeha.2019.01.012 PMID: 31179376
- Song, H.; Fall, K.; Fang, F.; Erlendsdóttir, H.; Lu, D.; Mataix-Cols, D.; Fernández de la Cruz, L.; DOnofrio, B.M.; Lichtenstein, P.; Gottfreðsson, M.; Almqvist, C.; Valdimarsdóttir, U.A. Stress related disorders and subsequent risk of life threatening infections: Population based sibling controlled cohort study. BMJ, 2019, 367, l5784. doi: 10.1136/bmj.l5784 PMID: 31645334
- Jiang, T.; Farkas, D.K.; Ahern, T.P.; Lash, T.L.; Sørensen, H.T.; Gradus, J.L. Posttraumatic stress disorder and incident infections. Epidemiology, 2019, 30(6), 911-917. doi: 10.1097/EDE.0000000000001071 PMID: 31584893
- Kanterman, J.; Sade-Feldman, M.; Baniyash, M. New insights into chronic inflammation-induced immunosuppression. Semin. Cancer Biol., 2012, 22(4), 307-318. doi: 10.1016/j.semcancer.2012.02.008 PMID: 22387003
- Behl, T.; Upadhyay, T.; Singh, S.; Chigurupati, S.; Alsubayiel, A.M.; Mani, V.; Vargas-De-La-Cruz, C.; Uivarosan, D.; Bustea, C.; Sava, C.; Stoicescu, M.; Radu, A.F.; Bungau, S.G. Polyphenols targeting MAPK mediated oxidative stress and inflammation in rheumatoid arthritis. Molecules, 2021, 26(21), 6570. doi: 10.3390/molecules26216570 PMID: 34770980
- Bhattacharyya, S.; Saha, J. Tumour, oxidative stress and Host T cell response: Cementing the dominance. Scand. J. Immunol., 2015, 82(6), 477-488. doi: 10.1111/sji.12350 PMID: 26286126
- Zhang, R.; Becnel, L.; Li, M.; Chen, C.; Yao, Q. C-reactive protein impairs human CD14+ monocyte-derived dendritic cell differentiation, maturation and function. Eur. J. Immunol., 2006, 36(11), 2993-3006. doi: 10.1002/eji.200635207 PMID: 17051617
- Yoshida, T.; Ichikawa, J.; Giuroiu, I.; Laino, A.S.; Hao, Y.; Krogsgaard, M.; Vassallo, M.; Woods, D.M.; Stephen Hodi, F.; Weber, J. C reactive protein impairs adaptive immunity in immune cells of patients with melanoma. J. Immunother. Cancer, 2020, 8(1), e000234. doi: 10.1136/jitc-2019-000234 PMID: 32303612
- Fulop, T.; Larbi, A.; Hirokawa, K.; Cohen, A.A.; Witkowski, J.M. Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin. Immunopathol., 2020, 42(5), 521-536. doi: 10.1007/s00281-020-00818-9 PMID: 32930852
- Schwartz, M.; Kipnis, J.; Rivest, S.; Prat, A. How do immune cells support and shape the brain in health, disease, and aging? J. Neurosci., 2013, 33(45), 17587-17596. doi: 10.1523/JNEUROSCI.3241-13.2013 PMID: 24198349
- Schwartz, M.; Shechter, R. Protective autoimmunity functions by intracranial immunosurveillance to support the mind: The missing link between health and disease. Mol. Psychiatry, 2010, 15(4), 342-354. doi: 10.1038/mp.2010.31 PMID: 20332793
- Filiano, A.J.; Gadani, S.P.; Kipnis, J. How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat. Rev. Neurosci., 2017, 18(6), 375-384. doi: 10.1038/nrn.2017.39 PMID: 28446786
- Lewitus, G.M.; Cohen, H.; Schwartz, M. Reducing post-traumatic anxiety by immunization. Brain Behav. Immun., 2008, 22(7), 1108-1114. doi: 10.1016/j.bbi.2008.05.002 PMID: 18562161
- Lewitus, G.M.; Schwartz, M. Behavioral immunization: Immunity to self-antigens contributes to psychological stress resilience. Mol. Psychiatry, 2009, 14(5), 532-536. doi: 10.1038/mp.2008.103 PMID: 18779818
- Scheinert, R.B.; Haeri, M.H.; Lehmann, M.L.; Herkenham, M. Therapeutic effects of stress-programmed lymphocytes transferred to chronically stressed mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 70, 1-7. doi: 10.1016/j.pnpbp.2016.04.010 PMID: 27109071
- Kertser, A.; Baruch, K.; Deczkowska, A.; Weiner, A.; Croese, T.; Kenigsbuch, M.; Cooper, I.; Tsoory, M.; Ben-Hamo, S.; Amit, I.; Schwartz, M. Corticosteroid signaling at the brain-immune interface impedes coping with severe psychological stress. Sci. Adv., 2019, 5(5), eaav4111. doi: 10.1126/sciadv.aav4111 PMID: 31149632
- Cohen, H.; Ziv, Y.; Cardon, M.; Kaplan, Z.; Matar, M.A.; Gidron, Y.; Schwartz, M.; Kipnis, J. Maladaptation to mental stress mitigated by the adaptive immune system via depletion of naturally occurring regulatory CD4+CD25+ cells. J. Neurobiol., 2006, 66(6), 552-563. doi: 10.1002/neu.20249 PMID: 16555237
- Brachman, R.A.; Lehmann, M.L.; Maric, D.; Herkenham, M. Lymphocytes from chronically stressed mice confer antidepressant-like effects to naive mice. J. Neurosci., 2015, 35(4), 1530-1538. doi: 10.1523/JNEUROSCI.2278-14.2015 PMID: 25632130
- Bam, M.; Yang, X.; Zhou, J.; Ginsberg, J.P.; Leyden, Q.; Nagarkatti, P.S.; Nagarkatti, M. Evidence for epigenetic regulation of pro-inflammatory cytokines, interleukin-12 and interferon gamma, in peripheral blood mononuclear cells from PTSD patients. J. Neuroimmune Pharmacol., 2016, 11(1), 168-181. doi: 10.1007/s11481-015-9643-8 PMID: 26589234
- Kipnis, J.; Yoles, E.; Mizrahi, T.; Ben-Nur, A.; Schwartz, M. Myelin specific Th1 cells are necessary for post-traumatic protective auto-immunity. J. Neuroimmunol., 2002, 130(1-2), 78-85. doi: 10.1016/S0165-5728(02)00219-9 PMID: 12225890
- Kunis, G.; Baruch, K.; Rosenzweig, N.; Kertser, A.; Miller, O.; Berkutzki, T.; Schwartz, M. IFN-γ-dependent activation of the brains choroid plexus for CNS immune surveillance and repair. Brain, 2013, 136(11), 3427-3440. doi: 10.1093/brain/awt259 PMID: 24088808
- Fisher, Y.; Strominger, I.; Biton, S.; Nemirovsky, A.; Baron, R.; Monsonego, A. Th1 polarization of T cells injected into the cerebrospinal fluid induces brain immunosurveillance. J. Immunol., 2014, 192(1), 92-102. doi: 10.4049/jimmunol.1301707 PMID: 24307730
- Reber, S.O.; Siebler, P.H.; Donner, N.C.; Morton, J.T.; Smith, D.G.; Kopelman, J.M.; Lowe, K.R.; Wheeler, K.J.; Fox, J.H.; Hassell, J.E., Jr; Greenwood, B.N.; Jansch, C.; Lechner, A.; Schmidt, D.; Uschold-Schmidt, N.; Füchsl, A.M.; Langgartner, D.; Walker, F.R.; Hale, M.W.; Lopez Perez, G.; Van Treuren, W.; González, A.; Halweg-Edwards, A.L.; Fleshner, M.; Raison, C.L.; Rook, G.A.; Peddada, S.D.; Knight, R.; Lowry, C.A. Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. Proc. Natl. Acad. Sci. USA, 2016, 113(22), E3130-E3139. doi: 10.1073/pnas.1600324113 PMID: 27185913
- Fox, J.H.; Hassell, J.E., Jr; Siebler, P.H.; Arnold, M.R.; Lamb, A.K.; Smith, D.G.; Day, H.E.W.; Smith, T.M.; Simmerman, E.M.; Outzen, A.A.; Holmes, K.S.; Brazell, C.J.; Lowry, C.A. Preimmunization with a heat-killed preparation of Mycobacterium vaccae enhances fear extinction in the fear-potentiated startle paradigm. Brain Behav. Immun., 2017, 66, 70-84. doi: 10.1016/j.bbi.2017.08.014 PMID: 28888667
- Amoroso, M.; Böttcher, A.; Lowry, C.A.; Langgartner, D.; Reber, S.O. Subcutaneous Mycobacterium vaccae promotes resilience in a mouse model of chronic psychosocial stress when administered prior to or during psychosocial stress. Brain Behav. Immun., 2020, 87, 309-317. doi: 10.1016/j.bbi.2019.12.018 PMID: 31887415
- Bowers, S.J.; Lambert, S.; He, S.; Lowry, C.A.; Fleshner, M.; Wright, K.P., Jr; Turek, F.W.; Vitaterna, M.H. Immunization with a heat-killed bacterium, Mycobacterium vaccae NCTC 11659, prevents the development of cortical hyperarousal and a PTSD-like sleep phenotype after sleep disruption and acute stress in mice. Sleep, 2021, 44(6), zsaa271. doi: 10.1093/sleep/zsaa271 PMID: 33283862
- Bazzi, S.; Modjtahedi, H.; Mudan, S.; Akle, C.; Bahr, G.M. Analysis of the immunomodulatory properties of two heat-killed mycobacterial preparations in a human whole blood model. Immunobiology, 2015, 220(12), 1293-1304. doi: 10.1016/j.imbio.2015.07.015 PMID: 26253276
- Schittenhelm, L.; Hilkens, C.M.; Morrison, V.L. β2 integrins as regulators of dendritic cell, monocyte, and macrophage function. Front. Immunol., 2017, 8, 1866. doi: 10.3389/fimmu.2017.01866 PMID: 29326724
- Zhang, Y.; Liu, Q.; Yang, S.; Liao, Q. CD58 immunobiology at a glance. Front. Immunol., 2021, 12, 705260. doi: 10.3389/fimmu.2021.705260 PMID: 34168659
- Katrinli, S.; Smith, A.K. Immune system regulation and role of the human leukocyte antigen in posttraumatic stress disorder. Neurobiol. Stress, 2021, 15, 100366. doi: 10.1016/j.ynstr.2021.100366 PMID: 34355049
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol., 2016, 16(10), 626-638. doi: 10.1038/nri.2016.90 PMID: 27546235
- Fonkoue, I.T.; Michopoulos, V.; Park, J. Sex differences in post-traumatic stress disorder risk: Autonomic control and inflammation. Clin. Auton. Res., 2020, 30(5), 409-421. doi: 10.1007/s10286-020-00729-7 PMID: 33021709
- Nusslock, R.; Miller, G.E. Early-life adversity and physical and emotional health across the lifespan: A neuroimmune network hypothesis. Biol. Psychiatry, 2016, 80(1), 23-32. doi: 10.1016/j.biopsych.2015.05.017 PMID: 26166230
- Danese, A.; J Lewis, S. Psychoneuroimmunology of early-life stress: The hidden wounds of childhood trauma? Neuropsychopharmacology, 2017, 42(1), 99-114. doi: 10.1038/npp.2016.198 PMID: 27629365
- Zen, A.L.; Whooley, M.A.; Zhao, S.; Cohen, B.E. Post-traumatic stress disorder is associated with poor health behaviors: Findings from the Heart and Soul Study. Health Psychol., 2012, 31(2), 194-201. doi: 10.1037/a0025989 PMID: 22023435
- Dennis, P.A.; Weinberg, J.B.; Calhoun, P.S.; Watkins, L.L.; Sherwood, A.; Dennis, M.F.; Beckham, J.C. An investigation of vago-regulatory and health-behavior accounts for increased inflammation in posttraumatic stress disorder. J. Psychosom. Res., 2016, 83, 33-39. doi: 10.1016/j.jpsychores.2016.02.008 PMID: 27020074
- Pace, T.W.W.; Heim, C.M. A short review on the psychoneuroimmunology of posttraumatic stress disorder: From risk factors to medical comorbidities. Brain Behav. Immun., 2011, 25(1), 6-13. doi: 10.1016/j.bbi.2010.10.003 PMID: 20934505
- Cain, D.W.; Cidlowski, J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol., 2017, 17(4), 233-247. doi: 10.1038/nri.2017.1 PMID: 28192415
- Chrousos, G.P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N. Engl. J. Med., 1995, 332(20), 1351-1363. doi: 10.1056/NEJM199505183322008 PMID: 7715646
- Daskalakis, N.P. New translational perspectives for blood-based biomarkers of PTSD: From glucocorticoid to immune mediators of stress susceptibility. Exp. Neurol., 2016, 284(Pt B), 133-140. doi: 10.1016/j.expneurol.2016.07.024
- Michopoulos, V.; Powers, A.; Gillespie, C.F.; Ressler, K.J.; Jovanovic, T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology, 2017, 42(1), 254-270. doi: 10.1038/npp.2016.146 PMID: 27510423
- Agorastos, A.; Boel, J.A.; Heppner, P.S.; Hager, T.; Moeller-Bertram, T.; Haji, U.; Motazedi, A.; Yanagi, M.A.; Baker, D.G.; Stiedl, O. Diminished vagal activity and blunted diurnal variation of heart rate dynamics in posttraumatic stress disorder. Stress, 2013, 16(3), 300-310. doi: 10.3109/10253890.2012.751369 PMID: 23167763
- Matteoli, G.; Boeckxstaens, G.E. The vagal innervation of the gut and immune homeostasis. Gut, 2013, 62(8), 1214-1222. doi: 10.1136/gutjnl-2012-302550 PMID: 23023166
- Steptoe, A.; Hamer, M.; Chida, Y. The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis. Brain Behav. Immun., 2007, 21(7), 901-912. doi: 10.1016/j.bbi.2007.03.011 PMID: 17475444
- Bierhaus, A.; Wolf, J.; Andrassy, M.; Rohleder, N.; Humpert, P.M.; Petrov, D.; Ferstl, R.; von Eynatten, M.; Wendt, T.; Rudofsky, G.; Joswig, M.; Morcos, M.; Schwaninger, M.; McEwen, B.; Kirschbaum, C.; Nawroth, P.P. A mechanism converting psychosocial stress into mononuclear cell activation. Proc. Natl. Acad. Sci. USA, 2003, 100(4), 1920-1925. doi: 10.1073/pnas.0438019100 PMID: 12578963
- Meduri, G.U.; Chrousos, G.P. General Adaptation in Critical Illness: Glucocorticoid receptor-alpha master regulator of homeostatic corrections. Front. Endocrinol., 2020, 11, 161. doi: 10.3389/fendo.2020.00161 PMID: 32390938
- Meewisse, M.L.; Reitsma, J.B.; De Vries, G.J.; Gersons, B.P.R.; Olff, M. Cortisol and post-traumatic stress disorder in adults. Br. J. Psychiatry, 2007, 191(5), 387-392. doi: 10.1192/bjp.bp.106.024877 PMID: 17978317
- Chrousos, G.P.; Kaltsas, G. Post-SARS sickness syndrome manifestations and endocrinopathy: How, why, and so what? Clin. Endocrinol. (Oxf.), 2005, 63(4), 363-365. doi: 10.1111/j.1365-2265.2005.02361.x PMID: 16181227
- van Zuiden, M.; Heijnen, C.J.; Maas, M.; Amarouchi, K.; Vermetten, E.; Geuze, E.; Kavelaars, A. Glucocorticoid sensitivity of leukocytes predicts PTSD, depressive and fatigue symptoms after military deployment: A prospective study. Psychoneuroendocrinology, 2012, 37(11), 1822-1836. doi: 10.1016/j.psyneuen.2012.03.018 PMID: 22503138
- Elenkov, I.J.; Chrousos, G.P. Stress Hormones, Th1/Th2 patterns, Pro/Anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol. Metab., 1999, 10(9), 359-368. doi: 10.1016/S1043-2760(99)00188-5 PMID: 10511695
- Capelle, C.M.; Chen, A.; Zeng, N.; Baron, A.; Grzyb, K.; Arns, T.; Skupin, A.; Ollert, M.; Hefeng, F.Q. Stress hormone signalling inhibits Th1 polarization in a CD4 T‐cell‐intrinsic manner via mTORC1 and the circadian gene PER1. Immunology, 2022, 165(4), 428-444. doi: 10.1111/imm.13448 PMID: 35143696
- Elenkov, I.J.; Iezzoni, D.G.; Daly, A.; Harris, A.G.; Chrousos, G.P. Cytokine dysregulation, inflammation and well-being. Neuroimmunomodulation, 2005, 12(5), 255-269. doi: 10.1159/000087104 PMID: 16166805
- Miller, M.W.; Maniates, H.; Wolf, E.J.; Logue, M.W.; Schichman, S.A.; Stone, A.; Milberg, W.; McGlinchey, R. CRP polymorphisms and DNA methylation of the AIM2 gene influence associations between trauma exposure, PTSD, and C-reactive protein. Brain Behav. Immun., 2018, 67, 194-202. doi: 10.1016/j.bbi.2017.08.022 PMID: 28867284
- Muniz Carvalho, C.; Wendt, F.R.; Maihofer, A.X.; Stein, D.J.; Stein, M.B.; Sumner, J.A.; Hemmings, S.M.J.; Nievergelt, C.M.; Koenen, K.C.; Gelernter, J.; Belangero, S.I.; Polimanti, R. Dissecting the genetic association of C-reactive protein with PTSD, traumatic events, and social support. Neuropsychopharmacology, 2021, 46(6), 1071-1077. doi: 10.1038/s41386-020-0655-6 PMID: 32179874
- Stein, M.B.; Chen, C.Y.; Ursano, R.J.; Cai, T.; Gelernter, J.; Heeringa, S.G.; Jain, S.; Jensen, K.P.; Maihofer, A.X.; Mitchell, C.; Nievergelt, C.M.; Nock, M.K.; Neale, B.M.; Polimanti, R.; Ripke, S.; Sun, X.; Thomas, M.L.; Wang, Q.; Ware, E.B.; Borja, S.; Kessler, R.C.; Smoller, J.W. Genome-wide Association Studies of Posttraumatic Stress Disorder in 2 Cohorts of US Army Soldiers. JAMA Psychiatry, 2016, 73(7), 695-704. doi: 10.1001/jamapsychiatry.2016.0350 PMID: 27167565
- Katrinli, S.; Lori, A.; Kilaru, V.; Carter, S.; Powers, A.; Gillespie, C.F.; Wingo, A.P.; Michopoulos, V.; Jovanovic, T.; Ressler, K.J.; Smith, A.K. Association of HLA locus alleles with posttraumatic stress disorder. Brain Behav. Immun., 2019, 81, 655-658. doi: 10.1016/j.bbi.2019.07.016 PMID: 31310798
- Nievergelt, C.M.; Maihofer, A.X.; Klengel, T.; Atkinson, E.G.; Chen, C.Y.; Choi, K.W.; Coleman, J.R.I.; Dalvie, S.; Duncan, L.E.; Gelernter, J.; Levey, D.F.; Logue, M.W.; Polimanti, R.; Provost, A.C.; Ratanatharathorn, A.; Stein, M.B.; Torres, K.; Aiello, A.E.; Almli, L.M.; Amstadter, A.B.; Andersen, S.B.; Andreassen, O.A.; Arbisi, P.A.; Ashley-Koch, A.E.; Austin, S.B.; Avdibegovic, E.; Babić, D.; Bækvad-Hansen, M.; Baker, D.G.; Beckham, J.C.; Bierut, L.J.; Bisson, J.I.; Boks, M.P.; Bolger, E.A.; Børglum, A.D.; Bradley, B.; Brashear, M.; Breen, G.; Bryant, R.A.; Bustamante, A.C.; Bybjerg-Grauholm, J.; Calabrese, J.R. Caldas- de- Almeida, J.M.; Dale, A.M.; Daly, M.J.; Daskalakis, N.P.; Deckert, J.; Delahanty, D.L.; Dennis, M.F.; Disner, S.G.; Domschke, K.; Dzubur-Kulenovic, A.; Erbes, C.R.; Evans, A.; Farrer, L.A.; Feeny, N.C.; Flory, J.D.; Forbes, D.; Franz, C.E.; Galea, S.; Garrett, M.E.; Gelaye, B.; Geuze, E.; Gillespie, C.; Uka, A.G.; Gordon, S.D.; Guffanti, G.; Hammamieh, R.; Harnal, S.; Hauser, M.A.; Heath, A.C.; Hemmings, S.M.J.; Hougaard, D.M.; Jakovljevic, M.; Jett, M.; Johnson, E.O.; Jones, I.; Jovanovic, T.; Qin, X.J.; Junglen, A.G.; Karstoft, K.I.; Kaufman, M.L.; Kessler, R.C.; Khan, A.; Kimbrel, N.A.; King, A.P.; Koen, N.; Kranzler, H.R.; Kremen, W.S.; Lawford, B.R.; Lebois, L.A.M.; Lewis, C.E.; Linnstaedt, S.D.; Lori, A.; Lugonja, B.; Luykx, J.J.; Lyons, M.J.; Maples-Keller, J.; Marmar, C.; Martin, A.R.; Martin, N.G.; Maurer, D.; Mavissakalian, M.R.; McFarlane, A.; McGlinchey, R.E.; McLaughlin, K.A.; McLean, S.A.; McLeay, S.; Mehta, D.; Milberg, W.P.; Miller, M.W.; Morey, R.A.; Morris, C.P.; Mors, O.; Mortensen, P.B.; Neale, B.M.; Nelson, E.C.; Nordentoft, M.; Norman, S.B.; ODonnell, M.; Orcutt, H.K.; Panizzon, M.S.; Peters, E.S.; Peterson, A.L.; Peverill, M.; Pietrzak, R.H.; Polusny, M.A.; Rice, J.P.; Ripke, S.; Risbrough, V.B.; Roberts, A.L.; Rothbaum, A.O.; Rothbaum, B.O.; Roy-Byrne, P.; Ruggiero, K.; Rung, A.; Rutten, B.P.F.; Saccone, N.L.; Sanchez, S.E.; Schijven, D.; Seedat, S.; Seligowski, A.V.; Seng, J.S.; Sheerin, C.M.; Silove, D.; Smith, A.K.; Smoller, J.W.; Sponheim, S.R.; Stein, D.J.; Stevens, J.S.; Sumner, J.A.; Teicher, M.H.; Thompson, W.K.; Trapido, E.; Uddin, M.; Ursano, R.J.; van den Heuvel, L.L.; Van Hooff, M.; Vermetten, E.; Vinkers, C.H.; Voisey, J.; Wang, Y.; Wang, Z.; Werge, T.; Williams, M.A.; Williamson, D.E.; Winternitz, S.; Wolf, C.; Wolf, E.J.; Wolff, J.D.; Yehuda, R.; Young, R.M.; Young, K.A.; Zhao, H.; Zoellner, L.A.; Liberzon, I.; Ressler, K.J.; Haas, M.; Koenen, K.C. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat. Commun., 2019, 10(1), 4558. doi: 10.1038/s41467-019-12576-w PMID: 31594949
- Daskalakis, N.P.; Xu, C.; Bader, H.N.; Chatzinakos, C.; Weber, P.; Makotkine, I.; Lehrner, A.; Bierer, L.M.; Binder, E.B.; Yehuda, R. Intergenerational trauma is associated with expression alterations in glucocorticoid- and immune-related genes. Neuropsychopharmacology, 2021, 46(4), 763-773. doi: 10.1038/s41386-020-00900-8 PMID: 33173192
- Snijders, C.; Maihofer, A.X.; Ratanatharathorn, A.; Baker, D.G.; Boks, M.P.; Geuze, E.; Jain, S.; Kessler, R.C.; Pishva, E.; Risbrough, V.B.; Stein, M.B.; Ursano, R.J.; Vermetten, E.; Vinkers, C.H.; Smith, A.K.; Uddin, M.; Rutten, B.P.F.; Nievergelt, C.M. Longitudinal epigenome-wide association studies of three male military cohorts reveal multiple CpG sites associated with post-traumatic stress disorder. Clin. Epigenetics, 2020, 12(1), 11. doi: 10.1186/s13148-019-0798-7 PMID: 31931860
- Smith, A.K.; Ratanatharathorn, A.; Maihofer, A.X.; Naviaux, R.K.; Aiello, A.E.; Amstadter, A.B.; Ashley-Koch, A.E.; Baker, D.G.; Beckham, J.C.; Boks, M.P.; Bromet, E.; Dennis, M.; Galea, S.; Garrett, M.E.; Geuze, E.; Guffanti, G.; Hauser, M.A.; Katrinli, S.; Kilaru, V.; Kessler, R.C.; Kimbrel, N.A.; Koenen, K.C.; Kuan, P.F.; Li, K.; Logue, M.W.; Lori, A.; Luft, B.J.; Miller, M.W.; Naviaux, J.C.; Nugent, N.R.; Qin, X.; Ressler, K.J.; Risbrough, V.B.; Rutten, B.P.F.; Stein, M.B.; Ursano, R.J.; Vermetten, E.; Vinkers, C.H.; Wang, L.; Youssef, N.A.; Marx, C.; Grant, G.; Stein, M.; Qin, X-J.; Jain, S.; McAllister, T.W.; Zafonte, R.; Lang, A.; Coimbra, R.; Andaluz, N.; Shutter, L.; George, M.S.; Brancu, M.; Calhoun, P.S.; Dedert, E.; Elbogen, E.B.; Fairbank, J.A.; Hurley, R.A.; Kilts, J.D.; Kirby, A.; Marx, C.E.; McDonald, S.D.; Moore, S.D.; Morey, R.A.; Naylor, J.C.; Rowland, J.A.; Swinkels, C.; Szabo, S.T.; Taber, K.H.; Tupler, L.A.; Van Voorhees, E.E.; Yoash-Gantz, R.E.; Basu, A.; Brick, L.A.; Dalvie, S.; Daskalakis, N.P.; Ensink, J.B.M.; Hemmings, S.M.J.; Herringa, R.; Ikiyo, S.; Koen, N.; Kuan, P.F.; Montalvo-Ortiz, J.; Nispeling, D.; Pfeiffer, J.; Qin, X.J.; Ressler, K.J.; Schijven, D.; Seedat, S.; Shinozaki, G.; Sumner, J.A.; Swart, P.; Tyrka, A.; Van Zuiden, M.; Wani, A.; Wolf, E.J.; Zannas, A.; Uddin, M.; Nievergelt, C.M. Epigenome-wide meta-analysis of PTSD across 10 military and civilian cohorts identifies methylation changes in AHRR. Nat. Commun., 2020, 11(1), 5965. doi: 10.1038/s41467-020-19615-x PMID: 33235198
- Katrinli, S.; Zheng, Y.; Gautam, A.; Hammamieh, R.; Yang, R.; Venkateswaran, S.; Kilaru, V.; Lori, A.; Hinrichs, R.; Powers, A.; Gillespie, C.F.; Wingo, A.P.; Michopoulos, V.; Jovanovic, T.; Wolf, E.J.; McGlinchey, R.E.; Milberg, W.P.; Miller, M.W.; Kugathasan, S.; Jett, M.; Logue, M.W.; Ressler, K.J.; Smith, A.K. PTSD is associated with increased DNA methylation across regions of HLA-DPB1 and SPATC1L. Brain Behav. Immun., 2021, 91, 429-436. doi: 10.1016/j.bbi.2020.10.023 PMID: 33152445
- Rutten, B.P.F.; Vermetten, E.; Vinkers, C.H.; Ursini, G.; Daskalakis, N.P.; Pishva, E.; de Nijs, L.; Houtepen, L.C.; Eijssen, L.; Jaffe, A.E.; Kenis, G.; Viechtbauer, W.; van den Hove, D.; Schraut, K.G.; Lesch, K-P.; Kleinman, J.E.; Hyde, T.M.; Weinberger, D.R.; Schalkwyk, L.; Lunnon, K.; Mill, J.; Cohen, H.; Yehuda, R.; Baker, D.G.; Maihofer, A.X.; Nievergelt, C.M.; Geuze, E.; Boks, M.P.M. Longitudinal analyses of the DNA methylome in deployed military servicemen identify susceptibility loci for post-traumatic stress disorder. Mol. Psychiatry, 2018, 23(5), 1145-1156. doi: 10.1038/mp.2017.120 PMID: 28630453
- Logue, M.W.; Miller, M.W.; Wolf, E.J.; Huber, B.R.; Morrison, F.G.; Zhou, Z.; Zheng, Y.; Smith, A.K.; Daskalakis, N.P.; Ratanatharathorn, A.; Uddin, M.; Nievergelt, C.M.; Ashley-Koch, A.E.; Baker, D.G.; Beckham, J.C.; Garrett, M.E.; Boks, M.P.; Geuze, E.; Grant, G.A.; Hauser, M.A.; Kessler, R.C.; Kimbrel, N.A.; Maihofer, A.X.; Marx, C.E.; Qin, X.J.; Risbrough, V.B.; Rutten, B.P.F.; Stein, M.B.; Ursano, R.J.; Vermetten, E.; Vinkers, C.H.; Ware, E.B.; Stone, A.; Schichman, S.A.; McGlinchey, R.E.; Milberg, W.P.; Hayes, J.P.; Verfaellie, M. An epigenome-wide association study of posttraumatic stress disorder in US veterans implicates several new DNA methylation loci. Clin. Epigenetics, 2020, 12(1), 46. doi: 10.1186/s13148-020-0820-0 PMID: 32171335
- Dendrou, C.A.; Petersen, J.; Rossjohn, J.; Fugger, L. HLA variation and disease. Nat. Rev. Immunol., 2018, 18(5), 325-339. doi: 10.1038/nri.2017.143 PMID: 29292391
- Shatz, C.J. MHC class I: An unexpected role in neuronal plasticity. Neuron, 2009, 64(1), 40-45. doi: 10.1016/j.neuron.2009.09.044 PMID: 19840547
- Sankar, A.; MacKenzie, R.N.; Foster, J.A. Loss of class I MHC function alters behavior and stress reactivity. J. Neuroimmunol., 2012, 244(1-2), 8-15. doi: 10.1016/j.jneuroim.2011.12.025 PMID: 22245287
- Pasciuto, E.; Burton, O.T.; Roca, C.P.; Lagou, V.; Rajan, W.D.; Theys, T.; Mancuso, R.; Tito, R.Y.; Kouser, L.; Callaerts-Vegh, Z.; de la Fuente, A.G.; Prezzemolo, T.; Mascali, L.G.; Brajic, A.; Whyte, C.E.; Yshii, L.; Martinez-Muriana, A.; Naughton, M.; Young, A.; Moudra, A.; Lemaitre, P.; Poovathingal, S.; Raes, J.; De Strooper, B.; Fitzgerald, D.C.; Dooley, J.; Liston, A. Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell, 2020, 182(3), 625-640.e24. doi: 10.1016/j.cell.2020.06.026 PMID: 32702313
- Schetters, S.T.T.; Gomez-Nicola, D.; Garcia-Vallejo, J.J.; Van Kooyk, Y. Neuroinflammation: Microglia and T cells get ready to tango. Front. Immunol., 2018, 8, 1905. doi: 10.3389/fimmu.2017.01905 PMID: 29422891
- Byram, S.C.; Carson, M.J.; DeBoy, C.A.; Serpe, C.J.; Sanders, V.M.; Jones, K.J. CD4-positive T cell-mediated neuroprotection requires dual compartment antigen presentation. J. Neurosci., 2004, 24(18), 4333-4339. doi: 10.1523/JNEUROSCI.5276-03.2004 PMID: 15128847
- Mittal, K.; Eremenko, E.; Berner, O.; Elyahu, Y.; Strominger, I.; Apelblat, D.; Nemirovsky, A.; Spiegel, I.; Monsonego, A. CD4 T cells induce a subset of MHCII-expressing microglia that attenuates alzheimer pathology. iScience, 2019, 16, 298-311. doi: 10.1016/j.isci.2019.05.039 PMID: 31203186
- Baker, D.G.; Nievergelt, C.M.; OConnor, D.T. Biomarkers of PTSD: Neuropeptides and immune signaling. Neuropharmacology, 2012, 62(2), 663-673. doi: 10.1016/j.neuropharm.2011.02.027 PMID: 21392516
- Karanikas, E.; Daskalakis, N.P.; Agorastos, A. Oxidative dysregulation in early life stress and posttraumatic stress disorder: A comprehensive review. Brain Sci., 2021, 11(6), 723. doi: 10.3390/brainsci11060723 PMID: 34072322
- Câmara, A.B.; Brandão, I.A. Behavioral and neurochemical effects of nociceptin/orphanin FQ receptor activation in the social defeat protocol. Behav. Neurosci., 2022, 137(1), 52-66. doi: 10.1037/bne0000539 PMID: 36326637
- Behl, T.; Makkar, R.; Sehgal, A.; Singh, S.; Sharma, N.; Zengin, G.; Bungau, S.; Andronie-Cioara, F.L.; Munteanu, M.A.; Brisc, M.C.; Uivarosan, D.; Brisc, C. Current trends in neurodegeneration: Cross talks between oxidative stress, cell death, and inflammation. Int. J. Mol. Sci., 2021, 22(14), 7432. doi: 10.3390/ijms22147432 PMID: 34299052
- Rana, T.; Behl, T.; Mehta, V.; Uddin, M.S.; Bungau, S. Molecular insights into the therapeutic promise of targeting HMGB1 in depression. Pharmacol. Rep., 2021, 73(1), 31-42. doi: 10.1007/s43440-020-00163-6 PMID: 33015736
- Dantzer, R.; Kelley, K.W. Twenty years of research on cytokine-induced sickness behavior. Brain Behav. Immun., 2007, 21(2), 153-160. doi: 10.1016/j.bbi.2006.09.006 PMID: 17088043
- Dooley, L.N.; Kuhlman, K.R.; Robles, T.F.; Eisenberger, N.I.; Craske, M.G.; Bower, J.E. The role of inflammation in core features of depression: Insights from paradigms using exogenously-induced inflammation. Neurosci. Biobehav. Rev., 2018, 94, 219-237. doi: 10.1016/j.neubiorev.2018.09.006 PMID: 30201219
- Dunn, A.J.; Swiergiel, A.H.; Beaurepaire, R. Cytokines as mediators of depression: What can we learn from animal studies? Neurosci. Biobehav. Rev., 2005, 29(4-5), 891-909. doi: 10.1016/j.neubiorev.2005.03.023 PMID: 15885777
- Raison, C.L.; Rutherford, R.E.; Woolwine, B.J.; Shuo, C.; Schettler, P.; Drake, D.F.; Haroon, E.; Miller, A.H. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry, 2013, 70(1), 31-41. doi: 10.1001/2013.jamapsychiatry.4 PMID: 22945416
- McIntyre, R.S.; Subramaniapillai, M.; Lee, Y.; Pan, Z.; Carmona, N.E.; Shekotikhina, M.; Rosenblat, J.D.; Brietzke, E.; Soczynska, J.K.; Cosgrove, V.E.; Miller, S.; Fischer, E.G.; Kramer, N.E.; Dunlap, K.; Suppes, T.; Mansur, R.B. Efficacy of adjunctive infliximab vs. placebo in the treatment of adults with bipolar I/II depression. JAMA Psychiatry, 2019, 76(8), 783-790. doi: 10.1001/jamapsychiatry.2019.0779 PMID: 31066887
- Knight, J.M.; Costanzo, E.S.; Singh, S.; Yin, Z.; Szabo, A.; Pawar, D.S.; Hillard, C.J.; Rizzo, J.D.; DSouza, A.; Pasquini, M.; Coe, C.L.; Irwin, M.R.; Raison, C.L.; Drobyski, W.R. The IL-6 antagonist tocilizumab is associated with worse depression and related symptoms in the medically ill. Transl. Psychiatry, 2021, 11(1), 58. doi: 10.1038/s41398-020-01164-y PMID: 33462203
- Husain, M.I.; Chaudhry, I.B.; Khoso, A.B.; Husain, M.O.; Hodsoll, J.; Ansari, M.A.; Naqvi, H.A.; Minhas, F.A.; Carvalho, A.F.; Meyer, J.H.; Deakin, B.; Mulsant, B.H.; Husain, N.; Young, A.H. Minocycline and celecoxib as adjunctive treatments for bipolar depression: A multicentre, factorial design randomised controlled trial. Lancet Psychiatry, 2020, 7(6), 515-527. doi: 10.1016/S2215-0366(20)30138-3 PMID: 32445690
- Berk, M.; Agustini, B.; Woods, R.L.; Nelson, M.R.; Shah, R.C.; Reid, C.M.; Storey, E.; Fitzgerald, S.M.; Lockery, J.E.; Wolfe, R.; Mohebbi, M.; Dodd, S.; Murray, A.M.; Stocks, N.; Fitzgerald, P.B.; Mazza, C.; McNeil, J.J. Effects of aspirin on the long-term management of depression in older people: A double-blind randomised placebo-controlled trial. Mol. Psychiatry, 2021, 26(9), 5161-5170. doi: 10.1038/s41380-021-01020-5 PMID: 33504953
- Berk, M.; Mohebbi, M.; Dean, O.M.; Cotton, S.M.; Chanen, A.M.; Dodd, S.; Ratheesh, A.; Amminger, G.P.; Phelan, M.; Weller, A.; Mackinnon, A.; Giorlando, F.; Baird, S.; Incerti, L.; Brodie, R.E.; Ferguson, N.O.; Rice, S.; Schäfer, M.R.; Mullen, E.; Hetrick, S.; Kerr, M.; Harrigan, S.M.; Quinn, A.L.; Mazza, C.; McGorry, P.; Davey, C.G. Youth depression alleviation with anti-inflammatory agents (YoDA-A): A randomised clinical trial of rosuvastatin and aspirin. BMC Med., 2020, 18(1), 16. doi: 10.1186/s12916-019-1475-6 PMID: 31948461
- Verbitsky, A.; Dopfel, D.; Zhang, N. Rodent models of post-traumatic stress disorder: Behavioral assessment. Transl. Psychiatry, 2020, 10(1), 132. doi: 10.1038/s41398-020-0806-x PMID: 32376819
- Johnson, J.D.; Barnard, D.F.; Kulp, A.C.; Mehta, D.M. Neuroendocrine regulation of brain cytokines after psychological stress. J. Endocr. Soc., 2019, 3(7), 1302-1320. doi: 10.1210/js.2019-00053 PMID: 31259292
- Goshen, I.; Kreisel, T.; Ben-Menachem-Zidon, O.; Licht, T.; Weidenfeld, J.; Ben-Hur, T.; Yirmiya, R. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry, 2008, 13(7), 717-728. doi: 10.1038/sj.mp.4002055 PMID: 17700577
- Koo, J.W.; Duman, R.S. IL-1β is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl. Acad. Sci. USA, 2008, 105(2), 751-756. doi: 10.1073/pnas.0708092105 PMID: 18178625
- Muhie, S.; Gautam, A.; Chakraborty, N.; Hoke, A.; Meyerhoff, J.; Hammamieh, R.; Jett, M. Molecular indicators of stress-induced neuroinflammation in a mouse model simulating features of post-traumatic stress disorder. Transl. Psychiatry, 2017, 7(5), e1135. doi: 10.1038/tp.2017.91 PMID: 28534873
- Kim, J.; Yoon, S.; Lee, S.; Hong, H.; Ha, E.; Joo, Y.; Lee, E.H.; Lyoo, I.K. A double-hit of stress and low-grade inflammation on functional brain network mediates posttraumatic stress symptoms. Nat. Commun., 2020, 11(1), 1898. doi: 10.1038/s41467-020-15655-5 PMID: 32313055
- Ganguly, P.; Brenhouse, H.C. Broken or maladaptive? Altered trajectories in neuroinflammation and behavior after early life adversity. Dev. Cogn. Neurosci., 2015, 11, 18-30. doi: 10.1016/j.dcn.2014.07.001 PMID: 25081071
- Ferle, V.; Repouskou, A.; Aspiotis, G.; Raftogianni, A.; Chrousos, G.; Stylianopoulou, F.; Stamatakis, A. Synergistic effects of early life mild adversity and chronic social defeat on rat brain microglia and cytokines. Physiol. Behav., 2020, 215, 112791. doi: 10.1016/j.physbeh.2019.112791 PMID: 31870943
- Cai, Z.; Ye, T.; Xu, X.; Gao, M.; Zhang, Y.; Wang, D.; Gu, Y.; Zhu, H.; Tong, L.; Lu, J.; Chen, Z.; Huang, C. Antidepressive properties of microglial stimulation in a mouse model of depression induced by chronic unpredictable stress. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 101, 109931. doi: 10.1016/j.pnpbp.2020.109931 PMID: 32201112
- Rimmerman, N.; Verdiger, H.; Goldenberg, H.; Naggan, L.; Robinson, E.; Kozela, E.; Gelb, S.; Reshef, R.; Ryan, K.M.; Ayoun, L.; Refaeli, R.; Ashkenazi, E.; Schottlender, N.; Ben Hemo-Cohen, L.; Pienica, C.; Aharonian, M.; Dinur, E.; Lazar, K.; McLoughlin, D.M.; Zvi, A.B.; Yirmiya, R. Microglia and their LAG3 checkpoint underlie the antidepressant and neurogenesis-enhancing effects of electroconvulsive stimulation. Mol. Psychiatry, 2022, 27(2), 1120-1135. doi: 10.1038/s41380-021-01338-0 PMID: 34650207
- Yirmiya, R.; Rimmerman, N.; Reshef, R. Depression as a microglial disease. Trends Neurosci., 2015, 38(10), 637-658. doi: 10.1016/j.tins.2015.08.001 PMID: 26442697
- DellaGioia, N.; Hannestad, J. A critical review of human endotoxin administration as an experimental paradigm of depression. Neurosci. Biobehav. Rev., 2010, 34(1), 130-143. doi: 10.1016/j.neubiorev.2009.07.014 PMID: 19666048
- Bauer, J.; Hohagen, F.; Gimmel, E.; Bruns, F.; Lis, S.; Krieger, S.; Ambach, W.; Guthmann, A.; Grunze, H.; Fritsch-Montero, R.; Weissbach, A.; Ganter, U.; Frommberger, U.; Riemann, D.; Berger, M. Induction of cytokine synthesis and fever suppresses REM sleep and improves mood in patients with major depression. Biol. Psychiatry, 1995, 38(9), 611-621. doi: 10.1016/0006-3223(95)00374-X PMID: 8573663
- Lu, X.; Liu, H.; Cai, Z.; Hu, Z.; Ye, M.; Gu, Y.; Wang, Y.; Wang, D.; Lu, Q.; Shen, Z.; Shen, X.; Huang, C. ERK1/2-dependent BDNF synthesis and signaling is required for the antidepressant effect of microglia stimulation. Brain Behav. Immun., 2022, 106, 147-160. doi: 10.1016/j.bbi.2022.08.005 PMID: 35995236
- Frank, M.G.; Baratta, M.V.; Sprunger, D.B.; Watkins, L.R.; Maier, S.F. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav. Immun., 2007, 21(1), 47-59. doi: 10.1016/j.bbi.2006.03.005 PMID: 16647243
- Gu, Y.; Ye, T.; Tan, P.; Tong, L.; Ji, J.; Gu, Y.; Shen, Z.; Shen, X.; Lu, X.; Huang, C. Tolerance-inducing effect and properties of innate immune stimulation on chronic stress-induced behavioral abnormalities in mice. Brain Behav. Immun., 2021, 91, 451-471. doi: 10.1016/j.bbi.2020.11.002 PMID: 33157258
- Lu, Q.; Xiang, H.; Zhu, H.; Chen, Y.; Lu, X.; Huang, C. Intranasal lipopolysaccharide administration prevents chronic stress-induced depression- and anxiety-like behaviors in mice. Neuropharmacology, 2021, 200, 108816. doi: 10.1016/j.neuropharm.2021.108816 PMID: 34599975
- Shi, R.; Liu, H.; Tan, P.; Hu, Z.; Ma, Y.; Ye, M.; Gu, Y.; Wang, Y.; Ye, T.; Gu, Y.; Lu, X.; Huang, C. Innate immune stimulation prevents the development of anxiety-like behaviors in chronically stressed mice. Neuropharmacology, 2022, 207, 108950. doi: 10.1016/j.neuropharm.2022.108950 PMID: 35074304
- Wang, Y.; Hu, Z.; Liu, H.; Gu, Y.; Ye, M.; Lu, Q.; Lu, X.; Huang, C. Adolescent microglia stimulation produces long-lasting protection against chronic stress-induced behavioral abnormalities in adult male mice. Brain Behav. Immun., 2022, 105, 44-66. doi: 10.1016/j.bbi.2022.06.015 PMID: 35781008
- Mondelli, V.; Vernon, A.C.; Turkheimer, F.; Dazzan, P.; Pariante, C.M. Brain microglia in psychiatric disorders. Lancet Psychiatry, 2017, 4(7), 563-572. doi: 10.1016/S2215-0366(17)30101-3 PMID: 28454915
- Baker, D.G.; Ekhator, N.N.; Kasckow, J.W.; Hill, K.K.; Zoumakis, E.; Dashevsky, B.A.; Chrousos, G.P.; Geracioti, T.D. Jr Plasma and cerebrospinal fluid interleukin-6 concentrations in posttraumatic stress disorder. Neuroimmunomodulation, 2001, 9(4), 209-217. doi: 10.1159/000049028 PMID: 11847483
- Bonne, O.; Gill, J.M.; Luckenbaugh, D.A.; Collins, C.; Owens, M.J.; Alesci, S.; Neumeister, A.; Yuan, P.; Kinkead, B.; Manji, H.K.; Charney, D.S.; Vythilingam, M. Corticotropin-releasing factor, interleukin-6, brain-derived neurotrophic factor, insulin-like growth factor-1, and substance P in the cerebrospinal fluid of civilians with posttraumatic stress disorder before and after treatment with paroxetine. J. Clin. Psychiatry, 2011, 72(8), 1124-1128. doi: 10.4088/JCP.09m05106blu PMID: 21208596
- Agorastos, A.; Hauger, R.L.; Barkauskas, D.A.; Lerman, I.R.; Moeller-Bertram, T.; Snijders, C.; Haji, U.; Patel, P.M.; Geracioti, T.D.; Chrousos, G.P.; Baker, D.G. Relations of combat stress and posttraumatic stress disorder to 24-h plasma and cerebrospinal fluid interleukin-6 levels and circadian rhythmicity. Psychoneuroendocrinology, 2019, 100, 237-245. doi: 10.1016/j.psyneuen.2018.09.009 PMID: 30390522
- Lerman, I.; Davis, B.A.; Bertram, T.M.; Proudfoot, J.; Hauger, R.L.; Coe, C.L.; Patel, P.M.; Baker, D.G. Posttraumatic stress disorder influences the nociceptive and intrathecal cytokine response to a painful stimulus in combat veterans. Psychoneuroendocrinology, 2016, 73, 99-108. doi: 10.1016/j.psyneuen.2016.07.202 PMID: 27490714
- Morrison, F.G.; Miller, M.W.; Wolf, E.J.; Logue, M.W.; Maniates, H.; Kwasnik, D.; Cherry, J.D.; Svirsky, S.; Restaino, A.; Hildebrandt, A.; Aytan, N.; Stein, T.D.; Alvarez, V.E.; McKee, A.C.; Huber, B.R. Reduced interleukin 1A gene expression in the dorsolateral prefrontal cortex of individuals with PTSD and depression. Neurosci. Lett., 2019, 692, 204-209. doi: 10.1016/j.neulet.2018.10.027 PMID: 30366016
- Bhatt, S.; Hillmer, A.T.; Girgenti, M.J.; Rusowicz, A.; Kapinos, M.; Nabulsi, N.; Huang, Y.; Matuskey, D.; Angarita, G.A.; Esterlis, I.; Davis, M.T.; Southwick, S.M.; Friedman, M.J.; Girgenti, M.J.; Friedman, M.J.; Duman, R.S.; Krystal, J.H.; Duman, R.S.; Carson, R.E.; Krystal, J.H.; Pietrzak, R.H.; Cosgrove, K.P. PTSD is associated with neuroimmune suppression: Evidence from PET imaging and postmortem transcriptomic studies. Nat. Commun., 2020, 11(1), 2360. doi: 10.1038/s41467-020-15930-5 PMID: 32398677
- Jaffe, A.E.; Tao, R.; Page, S.C.; Maynard, K.R.; Pattie, E.A.; Nguyen, C.V.; Deep-Soboslay, A.; Bharadwaj, R.; Young, K.A.; Friedman, M.J.; Williamson, D.E.; Shin, J.H.; Hyde, T.M.; Martinowich, K.; Kleinman, J.E. Decoding shared versus divergent transcriptomic signatures across cortico-amygdala circuitry in PTSD and depressive disorders. Am. J. Psychiatry, 2022, 179(9), 673-686. doi: 10.1176/appi.ajp.21020162 PMID: 35791611
- Fenster, R.J.; Lebois, L.A.M.; Ressler, K.J.; Suh, J. Brain circuit dysfunction in post-traumatic stress disorder: From mouse to man. Nat. Rev. Neurosci., 2018, 19(9), 535-551. doi: 10.1038/s41583-018-0039-7 PMID: 30054570
- Girgenti, M.J.; Wang, J.; Ji, D.; Cruz, D.A.; Stein, M.B.; Gelernter, J.; Young, K.A.; Huber, B.R.; Williamson, D.E.; Friedman, M.J.; Krystal, J.H.; Zhao, H.; Duman, R.S. Transcriptomic organization of the human brain in post-traumatic stress disorder. Nat. Neurosci., 2021, 24(1), 24-33. doi: 10.1038/s41593-020-00748-7 PMID: 33349712
- Logue, M.W.; Zhou, Z.; Morrison, F.G.; Wolf, E.J.; Daskalakis, N.P.; Chatzinakos, C.; Georgiadis, F.; Labadorf, A.T.; Girgenti, M.J.; Young, K.A.; Williamson, D.E.; Zhao, X.; Grenier, J.G.; Huber, B.R.; Miller, M.W. Gene expression in the dorsolateral and ventromedial prefrontal cortices implicates immune-related gene networks in PTSD. Neurobiol. Stress, 2021, 15, 100398. doi: 10.1016/j.ynstr.2021.100398 PMID: 34646915
- Sandiego, C.M.; Gallezot, J.D.; Pittman, B.; Nabulsi, N.; Lim, K.; Lin, S.F.; Matuskey, D.; Lee, J.Y.; OConnor, K.C.; Huang, Y.; Carson, R.E.; Hannestad, J.; Cosgrove, K.P. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc. Natl. Acad. Sci. USA, 2015, 112(40), 12468-12473. doi: 10.1073/pnas.1511003112 PMID: 26385967
- Holmes, S.E.; Girgenti, M.J.; Davis, M.T.; Pietrzak, R.H.; DellaGioia, N.; Nabulsi, N.; Matuskey, D.; Southwick, S.; Duman, R.S.; Carson, R.E.; Krystal, J.H.; Esterlis, I.; Friedman, M.; Kowall, N.; Brady, C.; McKee, A.; Stein, T.; Huber, B.; Kaloupek, D.; Alvarez, V.; Benedek, D.; Ursano, R.; Williamson, D.; Cruz, D.; Young, K.; Duman, R.; Krystal, J.; Mash, D.; Hardegree, M.; Serlin, G. Altered metabotropic glutamate receptor 5 markers in PTSD: In vivo and postmortem evidence. Proc. Natl. Acad. Sci. USA, 2017, 114(31), 8390-8395. doi: 10.1073/pnas.1701749114 PMID: 28716937
- Byrnes, K.R.; Stoica, B.; Loane, D.J.; Riccio, A.; Davis, M.I.; Faden, A.I. Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia, 2009, 57(5), 550-560. doi: 10.1002/glia.20783 PMID: 18816644
- Gill, T.; Watling, S.E.; Richardson, J.D.; McCluskey, T.; Tong, J.; Meyer, J.H.; Warsh, J.; Jetly, R.; Hutchison, M.G.; Rhind, S.G.; Houle, S.; Vasdev, N.; Kish, S.J.; Boileau, I. Imaging of astrocytes in posttraumatic stress disorder: A PET study with the monoamine oxidase B radioligand 11CSL25.1188. Eur. Neuropsychopharmacol., 2022, 54, 54-61. doi: 10.1016/j.euroneuro.2021.10.006 PMID: 34773851
- Reid, J.K.; Kuipers, H.F. She Doesnt Even Go Here: The role of inflammatory astrocytes in CNS disorders. Front. Cell. Neurosci., 2021, 15, 704884. doi: 10.3389/fncel.2021.704884 PMID: 34539348
- Wingo, T.S.; Gerasimov, E.S.; Liu, Y.; Duong, D.M.; Vattathil, S.M.; Lori, A.; Gockley, J.; Breen, M.S.; Maihofer, A.X.; Nievergelt, C.M.; Koenen, K.C.; Levey, D.F.; Gelernter, J.; Stein, M.B.; Ressler, K.J.; Bennett, D.A.; Levey, A.I.; Seyfried, N.T.; Wingo, A.P. Integrating human brain proteomes with genome-wide association data implicates novel proteins in post-traumatic stress disorder. Mol. Psychiatry, 2022, 27(7), 3075-3084. doi: 10.1038/s41380-022-01544-4 PMID: 35449297
- Friend, S.F. C-Reactive Protein: Marker of risk for post-traumatic stress disorder and its potential for a mechanistic role in trauma response and recovery. Eur. J. Neurosci., 2020, 55, 9-10. PMID: 33131159
- Richards, D.M.; Kyewski, B.; Feuerer, M. Re-examining the nature and function of self-reactive T cells. Trends Immunol., 2016, 37(2), 114-125. doi: 10.1016/j.it.2015.12.005 PMID: 26795134
- Cohen, I.R. Real and artificial immune systems: Computing the state of the body. Nat. Rev. Immunol., 2007, 7(7), 569-574. doi: 10.1038/nri2102 PMID: 17558422
- Norris, G.T.; Kipnis, J. Immune cells and CNS physiology: Microglia and beyond. J. Exp. Med., 2019, 216(1), 60-70. doi: 10.1084/jem.20180199 PMID: 30504438
- Schwartz, M.; Abellanas, M.A.; Tsitsou-Kampeli, A.; Suzzi, S. The brain-immune ecosystem: Implications for immunotherapy in defeating neurodegenerative diseases. Neuron, 2022, 110(21), 3421-3424. doi: 10.1016/j.neuron.2022.09.007 PMID: 36150394
- Correale, J.; Fiol, M.; Villa, A. Neuroprotective Effects of Inflammation in the Nervous System. In: NeuroImmune Biology; Elsevier, 2008; pp. 403-431. doi: 10.1016/S1567-7443(07)10020-X
- Hohlfeld, R.; Kerschensteiner, M.; Stadelmann, C.; Lassmann, H.; Wekerle, H. The neuroprotective effect of inflammation: Implications for the therapy of multiple sclerosis. Neurol. Sci., 2006, 27(S1)(Suppl. 1), s1-s7. doi: 10.1007/s10072-006-0537-7 PMID: 16708174
- Popovich, P.G.; Longbrake, E.E. Can the immune system be harnessed to repair the CNS? Nat. Rev. Neurosci., 2008, 9(6), 481-493. doi: 10.1038/nrn2398 PMID: 18490917
- Schwartz, M.; Baruch, K. The resolution of neuroinflammation in neurodegeneration: Leukocyte recruitment via the choroid plexus. EMBO J., 2014, 33(1), 7-22. doi: 10.1002/embj.201386609 PMID: 24357543
- Kerschensteiner, M.; Gallmeier, E.; Behrens, L.; Leal, V.V.; Misgeld, T.; Klinkert, W.E.F.; Kolbeck, R.; Hoppe, E.; Oropeza-Wekerle, R.L.; Bartke, I.; Stadelmann, C.; Lassmann, H.; Wekerle, H.; Hohlfeld, R. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J. Exp. Med., 1999, 189(5), 865-870. doi: 10.1084/jem.189.5.865 PMID: 10049950
- Schulte-Herbrüggen, O.; Nassenstein, C.; Lommatzsch, M.; Quarcoo, D.; Renz, H.; Braun, A. Tumor necrosis factor-α and interleukin-6 regulate secretion of brain-derived neurotrophic factor in human monocytes. J. Neuroimmunol., 2005, 160(1-2), 204-209. doi: 10.1016/j.jneuroim.2004.10.026 PMID: 15710474
- van Buel, E.M.; Patas, K.; Peters, M.; Bosker, F.J.; Eisel, U.L.M.; Klein, H.C. Immune and neurotrophin stimulation by electroconvulsive therapy: is some inflammation needed after all? Transl. Psychiatry, 2015, 5(7), e609. doi: 10.1038/tp.2015.100 PMID: 26218851
- Raison, C.L.; Knight, J.M.; Pariante, C. Interleukin (IL)-6: A good kid hanging out with bad friends (and why sauna is good for health). Brain Behav. Immun., 2018, 73, 1-2. doi: 10.1016/j.bbi.2018.06.008 PMID: 29908964
- Patas, K.; Penninx, B.W.J.H.; Bus, B.A.A.; Vogelzangs, N.; Molendijk, M.L.; Elzinga, B.M.; Bosker, F.J.; Oude Voshaar, R.C. Association between serum brain-derived neurotrophic factor and plasma interleukin-6 in major depressive disorder with melancholic features. Brain Behav. Immun., 2014, 36, 71-79. doi: 10.1016/j.bbi.2013.10.007 PMID: 24140302
- Hunter, C.A.; Jones, S.A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol., 2015, 16(5), 448-457. doi: 10.1038/ni.3153 PMID: 25898198
- Papanicolaou, D.A.; Wilder, R.L.; Manolagas, S.C.; Chrousos, G.P. The pathophysiologic roles of interleukin-6 in human disease. Ann. Intern. Med., 1998, 128(2), 127-137. doi: 10.7326/0003-4819-128-2-199801150-00009 PMID: 9441573
- Jenkins, R.H.; Hughes, S.T.O.; Figueras, A.C.; Jones, S.A. Unravelling the broader complexity of IL-6 involvement in health and disease. Cytokine, 2021, 148, 155684. doi: 10.1016/j.cyto.2021.155684 PMID: 34411990
- Spooren, A.; Kolmus, K.; Laureys, G.; Clinckers, R.; De Keyser, J.; Haegeman, G.; Gerlo, S. Interleukin-6, a mental cytokine. Brain Res. Brain Res. Rev., 2011, 67(1-2), 157-183. doi: 10.1016/j.brainresrev.2011.01.002 PMID: 21238488
- Rohleder, N.; Aringer, M.; Boentert, M. Role of interleukin-6 in stress, sleep, and fatigue. Ann. N. Y. Acad. Sci., 2012, 1261(1), 88-96. doi: 10.1111/j.1749-6632.2012.06634.x PMID: 22823398
- ODonovan, A.; Chao, L.L.; Paulson, J.; Samuelson, K.W.; Shigenaga, J.K.; Grunfeld, C.; Weiner, M.W.; Neylan, T.C. Altered inflammatory activity associated with reduced hippocampal volume and more severe posttraumatic stress symptoms in Gulf War veterans. Psychoneuroendocrinology, 2015, 51, 557-566. doi: 10.1016/j.psyneuen.2014.11.010 PMID: 25465168
- Bruenig, D.; Mehta, D.; Morris, C.P.; Lawford, B.; Harvey, W.; McD Young, R.; Voisey, J. Correlation between interferon γ and interleukin 6 with PTSD and resilience. Psychiatry Res., 2018, 260, 193-198. doi: 10.1016/j.psychres.2017.11.069 PMID: 29202383
- Mac Giollabhui, N.; Foster, S.; Lowry, C.A.; Mischoulon, D.; Raison, C.L.; Nyer, M. Interleukin-6 receptor antagonists in immunopsychiatry: Can they lead to increased interleukin-6 in the central nervous system (CNS) and worsening psychiatric symptoms? Brain Behav. Immun., 2022, 103, 202-204. doi: 10.1016/j.bbi.2022.04.009 PMID: 35452794
- Mullard, A. New plaque psoriasis approval carries suicide warning. Nat. Rev. Drug Discov., 2017, 16(3), 155. doi: 10.1038/nrd.2017.44 PMID: 28248935
- Minnema, L.A.; Giezen, T.J.; Souverein, P.C.; Egberts, T.C.G.; Leufkens, H.G.M.; Gardarsdottir, H. Exploring the association between monoclonal antibodies and depression and suicidal ideation and behavior: A vigibase study. Drug Saf., 2019, 42(7), 887-895. doi: 10.1007/s40264-018-00789-9 PMID: 30617497
- Hunt, D. Inflammation, monoclonal antibodies and depression: Joining the dots. Drug Saf., 2019, 42(7), 811-812. doi: 10.1007/s40264-019-00819-0 PMID: 31069702
- Ottum, P.A.; Arellano, G.; Reyes, L.I.; Iruretagoyena, M.; Naves, R. Opposing roles of interferon-gamma on cells of the central nervous system in autoimmune neuroinflammation. Front. Immunol., 2015, 6, 539. doi: 10.3389/fimmu.2015.00539 PMID: 26579119
- Probert, L. TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects. Neuroscience, 2015, 302, 2-22. doi: 10.1016/j.neuroscience.2015.06.038 PMID: 26117714
- Zhang, L.; Hu, X.Z.; Li, X.; Chen, Z.; Benedek, D.M.; Fullerton, C.S.; Wynn, G.; Naifeh, J.A.; Wu, H.; Benfer, N.; Ng, T.H.H.; Aliaga, P.; Dinh, H.; Kao, T-C.; Ursano, R.J. Potential chemokine biomarkers associated with PTSD onset, risk and resilience as well as stress responses in US military service members. Transl. Psychiatry, 2020, 10(1), 31. doi: 10.1038/s41398-020-0693-1 PMID: 32066664
- Winter, A.N.; Subbarayan, M.S.; Grimmig, B.; Weesner, J.A.; Moss, L.; Peters, M.; Weeber, E.; Nash, K.; Bickford, P.C. Two forms of CX3CL1 display differential activity and rescue cognitive deficits in CX3CL1 knockout mice. J. Neuroinflammation, 2020, 17(1), 157. doi: 10.1186/s12974-020-01828-y PMID: 32410624
- Heim, C. Deficiency of inflammatory response to acute trauma exposure as a neuroimmune mechanism driving the development of chronic PTSD: Another paradigmatic shift for the conceptualization of stress-related disorders? Am. J. Psychiatry, 2020, 177(1), 10-13. doi: 10.1176/appi.ajp.2019.19111189 PMID: 31892300
- Rohleder, N.; Karl, A. Role of endocrine and inflammatory alterations in comorbid somatic diseases of post-traumatic stress disorder. Minerva Endocrinol., 2006, 31(4), 273-288. PMID: 17213794
- Segman, R.H.; Stein, M.B. C-reactive protein: A stress diathesis marker at the crossroads of maladaptive behavioral and cardiometabolic sequelae. Am. J. Psychiatry, 2015, 172(4), 307-309. doi: 10.1176/appi.ajp.2015.15010063 PMID: 25827026
- Agorastos, A.; Linthorst, A.C.E. Potential pleiotropic beneficial effects of adjuvant melatonergic treatment in posttraumatic stress disorder. J. Pineal Res., 2016, 61(1), 3-26. doi: 10.1111/jpi.12330 PMID: 27061919
- Behl, T.; Kaur, D.; Sehgal, A.; Singla, R.K.; Makeen, H.A.; Albratty, M.; Alhazmi, H.A.; Meraya, A.M.; Bungau, S. Therapeutic insights elaborating the potential of retinoids in Alzheimers disease. Front. Pharmacol., 2022, 13, 976799. doi: 10.3389/fphar.2022.976799 PMID: 36091826
- Colaço, H.G.; Moita, L.F. Initiation of innate immune responses by surveillance of homeostasis perturbations. FEBS J., 2016, 283(13), 2448-2457. doi: 10.1111/febs.13730 PMID: 27037950
- Deri, Y.; Clouston, S.A.P.; DeLorenzo, C.; Gardus, J.D., III; Bartlett, E.A.; Santiago-Michels, S.; Bangiyev, L.; Kreisl, W.C.; Kotov, R.; Huang, C.; Slifstein, M.; Parsey, R.V.; Luft, B.J. Neuroinflammation in World Trade Center responders at midlife: A pilot study using 18F-FEPPA PET imaging Brain, Behavior, & Immunity - Health, 2021, 16, 100287. doi: 10.1016/j.bbih.2021.100287 PMID: 34589784
- Toczek, J.; Hillmer, A.T.; Han, J.; Liu, C.; Peters, D.; Emami, H.; Wu, J.; Esterlis, I.; Cosgrove, K.P.; Sadeghi, M.M. FDG PET imaging of vascular inflammation in post-traumatic stress disorder: A pilot case-control study. J. Nucl. Cardiol., 2021, 28(2), 688-694. doi: 10.1007/s12350-019-01724-w PMID: 31073848
Supplementary files
