Epigenetics of Fear, Anxiety and Stress – Focus on Histone Modifications


Cite item

Full Text

Abstract

Fear-, anxiety- and stress-related disorders are among the most frequent mental disorders. Given substantial rates of insufficient treatment response and often a chronic course, a better understanding of the pathomechanisms of fear-, anxiety- and stress-related disorders is urgently warranted. Epigenetic mechanisms such as histone modifications - positioned at the interface between the biological and the environmental level in the complex pathogenesis of mental disorders - might be highly informative in this context. The current state of knowledge on histone modifications, chromatin-related pharmacology and animal models modified for genes involved in the histone-related epigenetic machinery will be reviewed with respect to fear-, anxiety- and stress-related states. Relevant studies, published until 30th June 2022, were identified using a multi-step systematic literature search of the Pub- Med and Web of Science databases. Animal studies point towards histone modifications (e.g., H3K4me3, H3K9me1/2/3, H3K27me2/3, H3K9ac, H3K14ac and H4K5ac) to be dynamically and mostly brain region-, task- and time-dependently altered on a genome-wide level or gene-specifically (e.g., Bdnf) in models of fear conditioning, retrieval and extinction, acute and (sub-)chronic stress. Singular and underpowered studies on histone modifications in human fear-, anxiety- or stress-related phenotypes are currently restricted to the phenotype of PTSD. Provided consistent validation in human phenotypes, epigenetic biomarkers might ultimately inform indicated preventive interventions as well as personalized treatment approaches, and could inspire future innovative pharmacological treatment options targeting the epigenetic machinery improving treatment response in fear-, anxiety- and stressrelated disorders.

About the authors

Marco Ell

Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg

Email: info@benthamscience.net

Miriam Schiele

Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg

Email: info@benthamscience.net

Nicola Iovino

Department of Chromation Regulation, Max Planck Institute of Immunobiology and Epigenetics

Email: info@benthamscience.net

Katharina Domschke

Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg

Author for correspondence.
Email: info@benthamscience.net

References

  1. Baxter, A.J.; Vos, T.; Scott, K.M.; Ferrari, A.J.; Whiteford, H.A. The global burden of anxiety disorders in 2010. Psychol. Med., 2014, 44(11), 2363-2374. doi: 10.1017/S0033291713003243 PMID: 24451993
  2. Kessler, R.C.; Petukhova, M.; Sampson, N.A.; Zaslavsky, A.M.; Wittchen, H.U. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int. J. Methods Psychiatr. Res., 2012, 21(3), 169-184. doi: 10.1002/mpr.1359 PMID: 22865617
  3. Maercker, A.; Cloitre, M.; Bachem, R.; Schlumpf, Y.R.; Khoury, B.; Hitchcock, C.; Bohus, M. Complex post-traumatic stress disorder. Lancet, 2022, 400(10345), 60-72. doi: 10.1016/S0140-6736(22)00821-2 PMID: 35780794
  4. Olesen, J.; Gustavsson, A.; Svensson, M.; Wittchen, H.U.; Jönsson, B. The economic cost of brain disorders in Europe. Eur. J. Neurol., 2012, 19(1), 155-162. doi: 10.1111/j.1468-1331.2011.03590.x PMID: 22175760
  5. Penninx, B.W.J.H.; Pine, D.S.; Holmes, E.A.; Reif, A. Anxiety disorders. Lancet, 2021, 397(10277), 914-927. doi: 10.1016/S0140-6736(21)00359-7 PMID: 33581801
  6. Wittchen, H.U.; Jacobi, F.; Rehm, J.; Gustavsson, A.; Svensson, M.; Jönsson, B.; Olesen, J.; Allgulander, C.; Alonso, J.; Faravelli, C.; Fratiglioni, L.; Jennum, P.; Lieb, R.; Maercker, A.; van Os, J.; Preisig, M.; Salvador-Carulla, L.; Simon, R.; Steinhausen, H.C. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol., 2011, 21(9), 655-679. doi: 10.1016/j.euroneuro.2011.07.018 PMID: 21896369
  7. Solis, E.C.; van Hemert, A.M.; Carlier, I.V.E.; Wardenaar, K.J.; Schoevers, R.A.; Beekman, A.T.F.; Penninx, B.W.J.H.; Giltay, E.J. The 9-year clinical course of depressive and anxiety disorders: New NESDA findings. J. Affect. Disord., 2021, 295, 1269-1279. doi: 10.1016/j.jad.2021.08.108 PMID: 34706441
  8. Schiele, M.A.; Gottschalk, M.G.; Domschke, K. The applied implications of epigenetics in anxiety, affective and stress-related disorders - A review and synthesis on psychosocial stress, psychotherapy and prevention. Clin. Psychol. Rev., 2020, 77, 101830. doi: 10.1016/j.cpr.2020.101830 PMID: 32163803
  9. Schiele, M.A.; Domschke, K. Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes Brain Behav., 2018, 17(3), e12423. doi: 10.1111/gbb.12423 PMID: 28873274
  10. Szyf, M.; Bick, J. DNA methylation: A mechanism for embedding early life experiences in the genome. Child Dev., 2013, 84(1), 49-57. doi: 10.1111/j.1467-8624.2012.01793.x PMID: 22880724
  11. Dion, A.; Muñoz, P.T.; Franklin, T.B. Epigenetic mechanisms impacted by chronic stress across the rodent lifespan. Neurobiol. Stress, 2022, 17, 100434. doi: 10.1016/j.ynstr.2022.100434 PMID: 35198660
  12. Weaver, I.C.G.; Korgan, A.C.; Lee, K.; Wheeler, R.V.; Hundert, A.S.; Goguen, D. Stress and the emerging roles of chromatin remodeling in signal integration and stable transmission of reversible phenotypes. Front. Behav. Neurosci., 2017, 11, 41. doi: 10.3389/fnbeh.2017.00041 PMID: 28360846
  13. Marshall, P.R.; Bredy, T.W. Neuroepigenetic mechanisms underlying fear extinction: Emerging concepts. Psychopharmacology (Berl.), 2019, 236(1), 133-142. doi: 10.1007/s00213-018-5084-4 PMID: 30506235
  14. Hing, B.; Gardner, C.; Potash, J.B. Effects of negative stressors on DNA methylation in the brain: Implications for mood and anxiety disorders. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2014, 165(7), 541-554. doi: 10.1002/ajmg.b.32265 PMID: 25139739
  15. Malan-Müller, S.; Seedat, S.; Hemmings, S.M.J. Understanding posttraumatic stress disorder: Insights from the methylome. Genes Brain Behav., 2014, 13(1), 52-68. doi: 10.1111/gbb.12102 PMID: 24286388
  16. Malan-Müller, S.; Hemmings, S.M.J. The big role of small rnas in anxiety and stress-related disorders. Vitam. Horm., 2017, 103, 85-129. doi: 10.1016/bs.vh.2016.08.001 PMID: 28061977
  17. Gottschalk, M.G.; Domschke, K.; Schiele, M.A. Epigenetics underlying susceptibility and resilience relating to daily life stress, work stress, and socioeconomic status. Front. Psychiatry, 2020, 11, 163. doi: 10.3389/fpsyt.2020.00163 PMID: 32265751
  18. Zannas, A.S.; Provençal, N.; Binder, E.B. Epigenetics of posttraumatic stress disorder: Current evidence, challenges, and future directions. Biol. Psychiatry, 2015, 78(5), 327-335. doi: 10.1016/j.biopsych.2015.04.003 PMID: 25979620
  19. Provençal, N.; Binder, E.B. The effects of early life stress on the epigenome: From the womb to adulthood and even before. Exp. Neurol., 2015, 268, 10-20. doi: 10.1016/j.expneurol.2014.09.001 PMID: 25218020
  20. Klengel, T.; Pape, J.; Binder, E.B.; Mehta, D. The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology, 2014, 80, 115-132. doi: 10.1016/j.neuropharm.2014.01.013 PMID: 24452011
  21. Narayanan, R.; Schratt, G. miRNA regulation of social and anxiety-related behaviour. Cell. Mol. Life Sci., 2020, 77(21), 4347-4364. doi: 10.1007/s00018-020-03542-7 PMID: 32409861
  22. Schmidt, U.; Keck, M.E.; Buell, D.R. miRNAs and other non-coding RNAs in posttraumatic stress disorder: A systematic review of clinical and animal studies. J. Psychiatr. Res., 2015, 65, 1-8. doi: 10.1016/j.jpsychires.2015.03.014 PMID: 25896120
  23. Hommers, L.G.; Domschke, K.; Deckert, J. Heterogeneity and individuality: MicroRNAs in mental disorders. J. Neural Transm. (Vienna), 2015, 122(1), 79-97. doi: 10.1007/s00702-014-1338-4 PMID: 25395183
  24. Svaren, J.; Klebanow, E.; Sealy, L.; Chalkley, R. Analysis of the competition between nucleosome formation and transcription factor binding. J. Biol. Chem., 1994, 269(12), 9335-9344. doi: 10.1016/S0021-9258(17)37113-2 PMID: 8132673
  25. Hildebrand, E.M.; Dekker, J. Mechanisms and functions of chromosome compartmentalization. Trends Biochem. Sci., 2020, 45(5), 385-396. doi: 10.1016/j.tibs.2020.01.002 PMID: 32311333
  26. Waddington, C.H. The epigenotype. Int. J. Epidemiol., 2012, 41(1), 10-13. doi: 10.1093/ije/dyr184 PMID: 22186258
  27. Feil, R. Environmental and nutritional effects on the epigenetic regulation of genes. Mutat. Res., 2006, 600(1-2), 46-57. doi: 10.1016/j.mrfmmm.2006.05.029 PMID: 16854438
  28. Iacobuzio-Donahue, C.A. Epigenetic changes in cancer. Annu. Rev. Pathol., 2009, 4(1), 229-249. doi: 10.1146/annurev.pathol.3.121806.151442 PMID: 18840073
  29. Skvortsova, K.; Iovino, N. Bogdanović O. Functions and mechanisms of epigenetic inheritance in animals. Nat. Rev. Mol. Cell Biol., 2018, 19(12), 774-790. doi: 10.1038/s41580-018-0074-2 PMID: 30425324
  30. Jirtle, R.L.; Skinner, M.K. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet., 2007, 8(4), 253-262. doi: 10.1038/nrg2045 PMID: 17363974
  31. Schuebel, K.; Gitik, M.; Domschke, K.; Goldman, D. Making sense of epigenetics. Int. J. Neuropsychopharmacol., 2016, 19(11), pyw058. doi: 10.1093/ijnp/pyw058 PMID: 27312741
  32. Zhang, Y.; Sun, Z.; Jia, J.; Du, T.; Zhang, N.; Tang, Y.; Fang, Y.; Fang, D. Overview of histone modification. Adv. Exp. Med. Biol., 2021, 1283, 1-16. doi: 10.1007/978-981-15-8104-5_1 PMID: 33155134
  33. Yun, M.; Wu, J.; Workman, J.L.; Li, B. Readers of histone modifications. Cell Res., 2011, 21(4), 564-578. doi: 10.1038/cr.2011.42 PMID: 21423274
  34. Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet., 2012, 13(5), 343-357. doi: 10.1038/nrg3173 PMID: 22473383
  35. Creyghton, M.P.; Cheng, A.W.; Welstead, G.G.; Kooistra, T.; Carey, B.W.; Steine, E.J.; Hanna, J.; Lodato, M.A.; Frampton, G.M.; Sharp, P.A.; Boyer, L.A.; Young, R.A.; Jaenisch, R. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. USA, 2010, 107(50), 21931-21936. doi: 10.1073/pnas.1016071107 PMID: 21106759
  36. Rada-Iglesias, A.; Bajpai, R.; Swigut, T.; Brugmann, S.A.; Flynn, R.A.; Wysocka, J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature, 2011, 470(7333), 279-283. doi: 10.1038/nature09692 PMID: 21160473
  37. Bannister, A.J.; Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res., 2011, 21(3), 381-395. doi: 10.1038/cr.2011.22 PMID: 21321607
  38. Bach, D.R. Cross-species anxiety tests in psychiatry: Pitfalls and promises. Mol. Psychiatry, 2022, 27(1), 154-163. doi: 10.1038/s41380-021-01299-4 PMID: 34561614
  39. Bienvenu, T.C.M.; Dejean, C.; Jercog, D.; Aouizerate, B.; Lemoine, M.; Herry, C. The advent of fear conditioning as an animal model of post-traumatic stress disorder: Learning from the past to shape the future of PTSD research. Neuron, 2021, 109(15), 2380-2397. doi: 10.1016/j.neuron.2021.05.017 PMID: 34146470
  40. Dresler, T.; Guhn, A.; Tupak, S.V.; Ehlis, A.C.; Herrmann, M.J.; Fallgatter, A.J.; Deckert, J.; Domschke, K. Revise the revised? New dimensions of the neuroanatomical hypothesis of panic disorder. J. Neural Transm. (Vienna), 2013, 120(1), 3-29. doi: 10.1007/s00702-012-0811-1 PMID: 22692647
  41. Namkung, H.; Thomas, K.L.; Hall, J.; Sawa, A. Parsing neural circuits of fear learning and extinction across basic and clinical neuroscience: Towards better translation. Neurosci. Biobehav. Rev., 2022, 134, 104502. doi: 10.1016/j.neubiorev.2021.12.025 PMID: 34921863
  42. Halder, R.; Hennion, M.; Vidal, R.O.; Shomroni, O.; Rahman, R.U.; Rajput, A.; Centeno, T.P.; van Bebber, F.; Capece, V.; Vizcaino, J.C.G.; Schuetz, A.L.; Burkhardt, S.; Benito, E.; Sala, M.N.; Javan, S.B.; Haass, C.; Schmid, B.; Fischer, A.; Bonn, S. DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat. Neurosci., 2016, 19(1), 102-110. doi: 10.1038/nn.4194 PMID: 26656643
  43. Gupta, S.; Kim, S.Y.; Artis, S.; Molfese, D.L.; Schumacher, A.; Sweatt, J.D.; Paylor, R.E.; Lubin, F.D. Histone methylation regulates memory formation. J. Neurosci., 2010, 30(10), 3589-3599. doi: 10.1523/JNEUROSCI.3732-09.2010 PMID: 20219993
  44. Webb, W.M.; Sanchez, R.G.; Perez, G.; Butler, A.A.; Hauser, R.M.; Rich, M.C.; O'Bierne, A.L.; Jarome, T.J.; Lubin, F.D. Dynamic association of epigenetic H3K4me3 and DNA 5hmC marks in the dorsal hippocampus and anterior cingulate cortex following reactivation of a fear memory. Neurobiol Learn Mem, 2017, 142(Pt A), 66-78.
  45. Gupta-Agarwal, S.; Franklin, A.V.; DeRamus, T.; Wheelock, M.; Davis, R.L.; McMahon, L.L.; Lubin, F.D. G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J. Neurosci., 2012, 32(16), 5440-5453. doi: 10.1523/JNEUROSCI.0147-12.2012 PMID: 22514307
  46. Levenson, J.M.; O’Riordan, K.J.; Brown, K.D.; Trinh, M.A.; Molfese, D.L.; Sweatt, J.D. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem., 2004, 279(39), 40545-40559. doi: 10.1074/jbc.M402229200 PMID: 15273246
  47. Park, C.; Rehrauer, H.; Mansuy, I.M. Genome-wide analysis of H4K5 acetylation associated with fear memory in mice. BMC Genomics, 2013, 14(1), 539. doi: 10.1186/1471-2164-14-539 PMID: 23927422
  48. Bousiges, O.; Neidl, R.; Majchrzak, M.; Muller, M.A.; Barbelivien, A.; Pereira de Vasconcelos, A.; Schneider, A.; Loeffler, J.P.; Cassel, J.C.; Boutillier, A.L. Detection of histone acetylation levels in the dorsal hippocampus reveals early tagging on specific residues of H2B and H4 histones in response to learning. PLoS One, 2013, 8(3), e57816. doi: 10.1371/journal.pone.0057816 PMID: 23469244
  49. Andero, R.; Ressler, K.J. Fear extinction and BDNF: Translating animal models of PTSD to the clinic. Genes Brain Behav., 2012, 11(5), 503-512. doi: 10.1111/j.1601-183X.2012.00801.x PMID: 22530815
  50. Dincheva, I.; Lynch, N.B.; Lee, F.S. The role of BDNF in the development of fear learning. Depress. Anxiety, 2016, 33(10), 907-916. doi: 10.1002/da.22497 PMID: 27699937
  51. Notaras, M.; van den Buuse, M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol. Psychiatry, 2020, 25(10), 2251-2274. doi: 10.1038/s41380-019-0639-2 PMID: 31900428
  52. Takei, S.; Morinobu, S.; Yamamoto, S.; Fuchikami, M.; Matsumoto, T.; Yamawaki, S. Enhanced hippocampal BDNF/TrkB signaling in response to fear conditioning in an animal model of posttraumatic stress disorder. J. Psychiatr. Res., 2011, 45(4), 460-468. doi: 10.1016/j.jpsychires.2010.08.009 PMID: 20863519
  53. Lubin, F.D.; Roth, T.L.; Sweatt, J.D. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci., 2008, 28(42), 10576-10586. doi: 10.1523/JNEUROSCI.1786-08.2008 PMID: 18923034
  54. Gupta-Agarwal, S.; Jarome, T.J.; Fernandez, J.; Lubin, F.D. NMDA receptor- and ERK-dependent histone methylation changes in the lateral amygdala bidirectionally regulate fear memory formation. Learn. Mem., 2014, 21(7), 351-362. doi: 10.1101/lm.035105.114 PMID: 24939839
  55. Bredy, T.W.; Wu, H.; Crego, C.; Zellhoefer, J.; Sun, Y.E.; Barad, M. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn. Mem., 2007, 14(4), 268-276. doi: 10.1101/lm.500907 PMID: 17522015
  56. Siddiqui, S.A.; Singh, S.; Ranjan, V.; Ugale, R.; Saha, S.; Prakash, A. Enhanced histone acetylation in the infralimbic prefrontal cortex is associated with fear extinction. Cell. Mol. Neurobiol., 2017, 37(7), 1287-1301. doi: 10.1007/s10571-017-0464-6 PMID: 28097489
  57. Ranjan, V.; Singh, S.; Siddiqui, S.A.; Tripathi, S.; Khan, M.Y.; Prakash, A. Differential histone acetylation in sub-regions of bed nucleus of the stria terminalis underlies fear consolidation and extinction. Psychiatry Investig., 2017, 14(3), 350-359. doi: 10.4306/pi.2017.14.3.350 PMID: 28539954
  58. Singh, S.; Siddiqui, S.A.; Tripathy, S.; Kumar, S.; Saha, S.; Ugale, R.; Modi, D.R.; Prakash, A. Decreased level of histone acetylation in the infralimbic prefrontal cortex following immediate extinction may result in deficit of extinction memory. Brain Res. Bull., 2018, 140, 355-364. doi: 10.1016/j.brainresbull.2018.06.004 PMID: 29908895
  59. Dunsmoor, J.E.; Cisler, J.M.; Fonzo, G.A.; Creech, S.K.; Nemeroff, C.B. Laboratory models of post-traumatic stress disorder: The elusive bridge to translation. Neuron, 2022, 110(11), 1754-1776. doi: 10.1016/j.neuron.2022.03.001 PMID: 35325617
  60. Hunter, R.G.; McCarthy, K.J.; Milne, T.A.; Pfaff, D.W.; McEwen, B.S. Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proc. Natl. Acad. Sci. USA, 2009, 106(49), 20912-20917. doi: 10.1073/pnas.0911143106 PMID: 19934035
  61. Nasca, C.; Zelli, D.; Bigio, B.; Piccinin, S.; Scaccianoce, S.; Nisticò, R.; McEwen, B.S. Stress dynamically regulates behavior and glutamatergic gene expression in hippocampus by opening a window of epigenetic plasticity. Proc. Natl. Acad. Sci. USA, 2015, 112(48), 14960-14965. doi: 10.1073/pnas.1516016112 PMID: 26627246
  62. Fuchikami, M.; Morinobu, S.; Kurata, A.; Yamamoto, S.; Yamawaki, S. Single immobilization stress differentially alters the expression profile of transcripts of the brain-derived neurotrophic factor (BDNF) gene and histone acetylation at its promoters in the rat hippocampus. Int. J. Neuropsychopharmacol., 2009, 12(1), 73-82. doi: 10.1017/S1461145708008997 PMID: 18544182
  63. Hollis, F.; Wang, H.; Dietz, D.; Gunjan, A.; Kabbaj, M. The effects of repeated social defeat on long-term depressive-like behavior and short-term histone modifications in the hippocampus in male Sprague–Dawley rats. Psychopharmacology (Berl.), 2010, 211(1), 69-77. doi: 10.1007/s00213-010-1869-9 PMID: 20454892
  64. Bilang-Bleuel, A.; Ulbricht, S.; Chandramohan, Y.; De Carli, S.; Droste, S.K.; Reul, J.M.H.M. Psychological stress increases histone H3 phosphorylation in adult dentate gyrus granule neurons: Involvement in a glucocorticoid receptor-dependent behavioural response. Eur. J. Neurosci., 2005, 22(7), 1691-1700. doi: 10.1111/j.1460-9568.2005.04358.x PMID: 16197509
  65. Bartlett, A.A.; DeRosa, H.; Clark, M.; Lapp, H.E.; Guffanti, G.; Hunter, R.G. Corticosterone dynamically regulates retrotransposable element expression in the rat hippocampus and C6 cells. Neurobiol. Stress, 2021, 15, 100397. doi: 10.1016/j.ynstr.2021.100397 PMID: 34584909
  66. Wei, J.; Xiong, Z.; Lee, J.B.; Cheng, J.; Duffney, L.J.; Matas, E.; Yan, Z. Histone Modification of Nedd4 Ubiquitin Ligase Controls the Loss of AMPA Receptors and Cognitive Impairment Induced by Repeated Stress. J. Neurosci., 2016, 36(7), 2119-2130. doi: 10.1523/JNEUROSCI.3056-15.2016 PMID: 26888924
  67. Wu, J.; Liu, C.; Zhang, L.; He, B.; Shi, W.P.; Shi, H.L.; Qin, C. Chronic restraint stress impairs cognition via modulating HDAC2 expression. Transl. Neurosci., 2021, 12(1), 154-163. doi: 10.1515/tnsci-2020-0168 PMID: 33986954
  68. Elliott, E.; Ezra-Nevo, G.; Regev, L.; Neufeld-Cohen, A.; Chen, A. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat. Neurosci., 2010, 13(11), 1351-1353. doi: 10.1038/nn.2642 PMID: 20890295
  69. Renthal, W.; Maze, I.; Krishnan, V.; Covington, H.E., III; Xiao, G.; Kumar, A.; Russo, S.J.; Graham, A.; Tsankova, N.; Kippin, T.E.; Kerstetter, K.A.; Neve, R.L.; Haggarty, S.J.; McKinsey, T.A.; Bassel-Duby, R.; Olson, E.N.; Nestler, E.J. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron, 2007, 56(3), 517-529. doi: 10.1016/j.neuron.2007.09.032 PMID: 17988634
  70. Covington, H.E., III; Maze, I.; Sun, H.; Bomze, H.M.; DeMaio, K.D.; Wu, E.Y.; Dietz, D.M.; Lobo, M.K.; Ghose, S.; Mouzon, E.; Neve, R.L.; Tamminga, C.A.; Nestler, E.J. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron, 2011, 71(4), 656-670. doi: 10.1016/j.neuron.2011.06.007 PMID: 21867882
  71. Covington, H.E., III; Maze, I.; LaPlant, Q.C.; Vialou, V.F.; Ohnishi, Y.N.; Berton, O.; Fass, D.M.; Renthal, W.; Rush, A.J., III; Wu, E.Y.; Ghose, S.; Krishnan, V.; Russo, S.J.; Tamminga, C.; Haggarty, S.J.; Nestler, E.J. Antidepressant actions of histone deacetylase inhibitors. J. Neurosci., 2009, 29(37), 11451-11460. doi: 10.1523/JNEUROSCI.1758-09.2009 PMID: 19759294
  72. Tsankova, N.M.; Berton, O.; Renthal, W.; Kumar, A.; Neve, R.L.; Nestler, E.J. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci., 2006, 9(4), 519-525. doi: 10.1038/nn1659 PMID: 16501568
  73. Wilkinson, M.B.; Xiao, G.; Kumar, A.; LaPlant, Q.; Renthal, W.; Sikder, D.; Kodadek, T.J.; Nestler, E.J. Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. J. Neurosci., 2009, 29(24), 7820-7832. doi: 10.1523/JNEUROSCI.0932-09.2009 PMID: 19535594
  74. Montagud-Romero, S.; Montesinos, J.; Pascual, M.; Aguilar, M.A.; Roger-Sánchez, C.; Guerri, C.; Miñarro, J.; Rodríguez-Arias, M. `Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 70, 39-48. doi: 10.1016/j.pnpbp.2016.04.016 PMID: 27180319
  75. Ferland, C.L.; Schrader, L.A. Regulation of histone acetylation in the hippocampus of chronically stressed rats: A potential role of sirtuins. Neuroscience, 2011, 174, 104-114. doi: 10.1016/j.neuroscience.2010.10.077 PMID: 21056634
  76. Ferland, C.L.; Harris, E.P.; Lam, M.; Schrader, L.A. Facilitation of the HPA axis to a novel acute stress following chronic stress exposure modulates histone acetylation and the ERK/MAPK pathway in the dentate gyrus of male rats. Endocrinology, 2014, 155(8), 2942-2952. doi: 10.1210/en.2013-1918 PMID: 24693964
  77. Sterrenburg, L.; Gaszner, B.; Boerrigter, J.; Santbergen, L.; Bramini, M.; Elliott, E.; Chen, A.; Peeters, B.W.M.M.; Roubos, E.W.; Kozicz, T. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat. PLoS One, 2011, 6(11), e28128. doi: 10.1371/journal.pone.0028128 PMID: 22132228
  78. Liu, D.; Qiu, H.M.; Fei, H.Z.; Hu, X.Y.; Xia, H.J.; Wang, L.J.; Qin, L.J.; Jiang, X.H.; Zhou, Q.X. Histone acetylation and expression of mono-aminergic transmitters synthetases involved in CUS-induced depressive rats. Exp. Biol. Med. (Maywood), 2014, 239(3), 330-336. doi: 10.1177/1535370213513987 PMID: 24495952
  79. Wan, Q.; Gao, K.; Rong, H.; Wu, M.; Wang, H.; Wang, X.; Wang, G.; Liu, Z. Histone modifications of the Crhr1 gene in a rat model of depression following chronic stress. Behav. Brain Res., 2014, 271, 1-6. doi: 10.1016/j.bbr.2014.05.031 PMID: 24867333
  80. Benoit, J.D.; Rakic, P.; Frick, K.M. Prenatal stress induces spatial memory deficits and epigenetic changes in the hippocampus indicative of heterochromatin formation and reduced gene expression. Behav. Brain Res., 2015, 281, 1-8. doi: 10.1016/j.bbr.2014.12.001 PMID: 25496779
  81. Zheng, Y.; Fan, W.; Zhang, X.; Dong, E. Gestational stress induces depressive-like and anxiety-like phenotypes through epigenetic regulation of BDNF expression in offspring hippocampus. Epigenetics, 2016, 11(2), 150-162. doi: 10.1080/15592294.2016.1146850 PMID: 26890656
  82. Cittaro, D.; Lampis, V.; Luchetti, A.; Coccurello, R.; Guffanti, A.; Felsani, A.; Moles, A.; Stupka, E.; D’ Amato, F.R.; Battaglia, M. Histone modifications in a mouse model of early adversities and panic disorder: Role for asic1 and neurodevelopmental genes. Sci. Rep., 2016, 6(1), 25131. doi: 10.1038/srep25131 PMID: 27121911
  83. Baĭdo, A.I.; Diuzhikova, N.A.; Shiriaeva, N.V.; Sokolova, N.E.; Vshivtseva, V.V.; Savenko, IuN. Systemic control of the molecular, cell, and epigenetic mechanisms of long-lasting consequences of stress. Genetika, 2009, 45(3), 342-348. PMID: 19382685
  84. Primeau, F.; Fontaine, R.; Beauclair, L. Valproic acid and panic disorder. Can. J. Psychiatry, 1990, 35(3), 248-250. doi: 10.1177/070674379003500309 PMID: 2111204
  85. Keck, P.E., Jr; Taylor, V.E.; Tugrul, K.C.; McElroy, S.L.; Bennett, J.A. Valproate treatment of panic disorder and lactate-induced panic attacks. Biol. Psychiatry, 1993, 33(7), 542-546. doi: 10.1016/0006-3223(93)90010-B PMID: 8513040
  86. Kinrys, G.; Pollack, M.H.; Simon, N.M.; Worthington, J.J.; Nardi, A.E.; Versiani, M. Valproic acid for the treatment of social anxiety disorder. Int. Clin. Psychopharmacol., 2003, 18(3), 169-172. PMID: 12702897
  87. Aliyev, N.A.; Aliyev, Z.N. Valproate (depakine-chrono) in the acute treatment of outpatients with generalized anxiety disorder without psychiatric comorbidity: Randomized, double-blind placebo-controlled study. Eur. Psychiatry, 2008, 23(2), 109-114. doi: 10.1016/j.eurpsy.2007.08.001 PMID: 17945470
  88. Lötsch, J.; Schneider, G.; Reker, D.; Parnham, M.J.; Schneider, P.; Geisslinger, G.; Doehring, A. Common non-epigenetic drugs as epigenetic modulators. Trends Mol. Med., 2013, 19(12), 742-753. doi: 10.1016/j.molmed.2013.08.006 PMID: 24054876
  89. Boks, M.P.; de Jong, N.M.; Kas, M.J.H.; Vinkers, C.H.; Fernandes, C.; Kahn, R.S.; Mill, J.; Ophoff, R.A. Current status and future prospects for epigenetic psychopharmacology. Epigenetics, 2012, 7(1), 20-28. doi: 10.4161/epi.7.1.18688 PMID: 22207355
  90. Whittle, N.; Singewald, N. HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: Where do we stand? Biochem. Soc. Trans., 2014, 42(2), 569-581. doi: 10.1042/BST20130233 PMID: 24646280
  91. Peedicayil, J. The potential role of epigenetic drugs in the treatment of anxiety disorders. Neuropsychiatr. Dis. Treat., 2020, 16, 597-606. doi: 10.2147/NDT.S242040 PMID: 32184601
  92. Stafford, J.M.; Lattal, K.M. Is an epigenetic switch the key to persistent extinction? Neurobiol. Learn. Mem., 2011, 96(1), 35-40. doi: 10.1016/j.nlm.2011.04.012 PMID: 21536141
  93. Zhao, Y.; Xing, B.; Dang, Y.; Qu, C.; Zhu, F.; Yan, C. Microinjection of valproic acid into the ventrolateral orbital cortex enhances stress-related memory formation. PLoS One, 2013, 8(1), e52698. doi: 10.1371/journal.pone.0052698 PMID: 23300985
  94. Bredy, T.W.; Barad, M. The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear. Learn. Mem., 2008, 15(1), 39-45. doi: 10.1101/lm.801108 PMID: 18174372
  95. Wilson, C.B.; McLaughlin, L.D.; Ebenezer, P.J.; Nair, A.R.; Francis, J. Valproic acid effects in the hippocampus and prefrontal cortex in an animal model of post-traumatic stress disorder. Behav. Brain Res., 2014, 268, 72-80. doi: 10.1016/j.bbr.2014.03.029 PMID: 24675160
  96. Kv, A.; Madhana, R.M.; Js, I.C.; Lahkar, M.; Sinha, S.; Naidu, V.G.M. Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behav. Brain Res., 2018, 344, 73-84. doi: 10.1016/j.bbr.2018.02.009 PMID: 29452193
  97. Qiao, M.; Jiang, Q.S.; Liu, Y.J.; Hu, X.Y.; Wang, L.J.; Zhou, Q.X.; Qiu, H.M. Antidepressant mechanisms of venlafaxine involving increasing histone acetylation and modulating tyrosine hydroxylase and tryptophan hydroxylase expression in hippocampus of depressive rats. Neuroreport, 2019, 30(4), 255-261. doi: 10.1097/WNR.0000000000001191 PMID: 30640193
  98. Wang, D.; Kosowan, J.; Samsom, J.; Leung, L.; Zhang, K.; Li, Y.; Xiong, Y.; Jin, J.; Petronis, A.; Oh, G.; Wong, A.H.C. Inhibition of the G9a/GLP histone methyltransferase complex modulates anxiety-related behavior in mice. Acta Pharmacol. Sin., 2018, 39(5), 866-874. doi: 10.1038/aps.2017.190 PMID: 29417943
  99. Itzhak, Y.; Anderson, K.L.; Kelley, J.B.; Petkov, M. Histone acetylation rescues contextual fear conditioning in nNOS KO mice and accelerates extinction of cued fear conditioning in wild type mice. Neurobiol. Learn. Mem., 2012, 97(4), 409-417. doi: 10.1016/j.nlm.2012.03.005 PMID: 22452925
  100. Valiati, F.E.; Vasconcelos, M.; Lichtenfels, M.; Petry, F.S.; de Almeida, R.M.M.; Schwartsmann, G.; Schröder, N.; de Farias, C.B.; Roesler, R. Administration of a histone deacetylase inhibitor into the basolateral amygdala enhances memory consolidation, delays extinction, and increases hippocampal BDNF levels. Front. Pharmacol., 2017, 8, 415. doi: 10.3389/fphar.2017.00415 PMID: 28701956
  101. Hawk, J.D.; Florian, C.; Abel, T. Post-training intrahippocampal inhibition of class I histone deacetylases enhances long-term object-location memory. Learn. Mem., 2011, 18(6), 367-370. doi: 10.1101/lm.2097411 PMID: 21576516
  102. Gundersen, B.B.; Blendy, J.A. Effects of the histone deacetylase inhibitor sodium butyrate in models of depression and anxiety. Neuropharmacology, 2009, 57(1), 67-74. doi: 10.1016/j.neuropharm.2009.04.008 PMID: 19393671
  103. Tran, L.; Schulkin, J.; Ligon, C.O.; Greenwood-Van Meerveld, B. Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Mol. Psychiatry, 2015, 20(10), 1219-1231. doi: 10.1038/mp.2014.122 PMID: 25288139
  104. Lattal, K.M.; Barrett, R.M.; Wood, M.A. Systemic or intrahippocampal delivery of histone deacetylase inhibitors facilitates fear extinction. Behav. Neurosci., 2007, 121(5), 1125-1131. doi: 10.1037/0735-7044.121.5.1125 PMID: 17907845
  105. Stafford, J.M.; Raybuck, J.D.; Ryabinin, A.E.; Lattal, K.M. Increasing histone acetylation in the hippocampus-infralimbic network enhances fear extinction. Biol. Psychiatry, 2012, 72(1), 25-33. doi: 10.1016/j.biopsych.2011.12.012 PMID: 22290116
  106. Mohammadi-Farani, A.; Pourmotabbed, A.; Ardeshirizadeh, Y. Effects of HDAC inhibitors on spatial memory and memory extinction in SPS-induced PTSD rats. Res. Pharm. Sci., 2020, 15(3), 241-248. doi: 10.4103/1735-5362.288426 PMID: 33088324
  107. Adachi, M.; Autry, A.E.; Covington, H.E., III; Monteggia, L.M. MeCP2-mediated transcription repression in the basolateral amygdala may underlie heightened anxiety in a mouse model of Rett syndrome. J. Neurosci., 2009, 29(13), 4218-4227. doi: 10.1523/JNEUROSCI.4225-08.2009 PMID: 19339616
  108. Fujita, Y.; Morinobu, S.; Takei, S.; Fuchikami, M.; Matsumoto, T.; Yamamoto, S.; Yamawaki, S. Vorinostat, a histone deacetylase inhibitor, facilitates fear extinction and enhances expression of the hippocampal NR2B-containing NMDA receptor gene. J. Psychiatr. Res., 2012, 46(5), 635-643. doi: 10.1016/j.jpsychires.2012.01.026 PMID: 22364833
  109. Matsumoto, Y.; Morinobu, S.; Yamamoto, S.; Matsumoto, T.; Takei, S.; Fujita, Y.; Yamawaki, S. Vorinostat ameliorates impaired fear extinction possibly via the hippocampal NMDA-CaMKII pathway in an animal model of posttraumatic stress disorder. Psychopharmacology (Berl.), 2013, 229(1), 51-62. doi: 10.1007/s00213-013-3078-9 PMID: 23584669
  110. Sah, A.; Sotnikov, S.; Kharitonova, M.; Schmuckermair, C.; Diepold, R.P.; Landgraf, R.; Whittle, N.; Singewald, N. Epigenetic mechanisms within the cingulate cortex regulate innate anxiety-like behavior. Int. J. Neuropsychopharmacol., 2019, 22(4), 317-328. doi: 10.1093/ijnp/pyz004 PMID: 30668714
  111. Whittle, N.; Maurer, V.; Murphy, C.; Rainer, J.; Bindreither, D.; Hauschild, M.; Scharinger, A.; Oberhauser, M.; Keil, T.; Brehm, C.; Valovka, T.; Striessnig, J.; Singewald, N. Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction. Transl. Psychiatry, 2016, 6(12), e974. doi: 10.1038/tp.2016.231 PMID: 27922638
  112. Gräff, J.; Joseph, N.F.; Horn, M.E.; Samiei, A.; Meng, J.; Seo, J.; Rei, D.; Bero, A.W.; Phan, T.X.; Wagner, F.; Holson, E.; Xu, J.; Sun, J.; Neve, R.L.; Mach, R.H.; Haggarty, S.J.; Tsai, L.H. Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell, 2014, 156(1-2), 261-276. doi: 10.1016/j.cell.2013.12.020 PMID: 24439381
  113. Bowers, M.E.; Xia, B.; Carreiro, S.; Ressler, K.J. The Class I HDAC inhibitor RGFP963 enhances consolidation of cued fear extinction. Learn. Mem., 2015, 22(4), 225-231. doi: 10.1101/lm.036699.114 PMID: 25776040
  114. Snigdha, S.; Prieto, G.A.; Petrosyan, A.; Loertscher, B.M.; Dieskau, A.P.; Overman, L.E.; Cotman, C.W. H3K9me3 inhibition improves memory, promotes spine formation, and increases BDNF levels in the aged hippocampus. J. Neurosci., 2016, 36(12), 3611-3622. doi: 10.1523/JNEUROSCI.2693-15.2016 PMID: 27013689
  115. Maddox, S.A.; Watts, C.S.; Doyère, V.; Schafe, G.E. A naturally-occurring histone acetyltransferase inhibitor derived from Garcinia indica impairs newly acquired and reactivated fear memories. PLoS One, 2013, 8(1), e54463. doi: 10.1371/journal.pone.0054463 PMID: 23349897
  116. Maddox, S.A.; Watts, C.S.; Schafe, G.E. p300/CBP histone acetyltransferase activity is required for newly acquired and reactivated fear memories in the lateral amygdala. Learn. Mem., 2013, 20(2), 109-119. doi: 10.1101/lm.029157.112 PMID: 23328899
  117. Marek, R.; Coelho, C.M.; Sullivan, R.K.P.; Baker-Andresen, D.; Li, X.; Ratnu, V.; Dudley, K.J.; Meyers, D.; Mukherjee, C.; Cole, P.A.; Sah, P.; Bredy, T.W. Paradoxical enhancement of fear extinction memory and synaptic plasticity by inhibition of the histone acetyltransferase p300. J. Neurosci., 2011, 31(20), 7486-7491. doi: 10.1523/JNEUROSCI.0133-11.2011 PMID: 21593332
  118. Wei, W.; Coelho, C.M.; Li, X.; Marek, R.; Yan, S.; Anderson, S.; Meyers, D.; Mukherjee, C.; Sbardella, G.; Castellano, S.; Milite, C.; Rotili, D.; Mai, A.; Cole, P.A.; Sah, P.; Kobor, M.S.; Bredy, T.W. p300/CBP-associated factor selectively regulates the extinction of conditioned fear. J. Neurosci., 2012, 32(35), 11930-11941. doi: 10.1523/JNEUROSCI.0178-12.2012 PMID: 22933779
  119. Kim, M.S.; Akhtar, M.W.; Adachi, M.; Mahgoub, M.; Bassel-Duby, R.; Kavalali, E.T.; Olson, E.N.; Monteggia, L.M. An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J. Neurosci., 2012, 32(32), 10879-10886. doi: 10.1523/JNEUROSCI.2089-12.2012 PMID: 22875922
  120. Morris, M.J.; Mahgoub, M.; Na, E.S.; Pranav, H.; Monteggia, L.M. Loss of histone deacetylase 2 improves working memory and accelerates extinction learning. J. Neurosci., 2013, 33(15), 6401-6411. doi: 10.1523/JNEUROSCI.1001-12.2013 PMID: 23575838
  121. Bahari-Javan, S.; Maddalena, A.; Kerimoglu, C.; Wittnam, J.; Held, T.; Bähr, M.; Burkhardt, S.; Delalle, I.; Kügler, S.; Fischer, A.; Sananbenesi, F. HDAC1 regulates fear extinction in mice. J. Neurosci., 2012, 32(15), 5062-5073. doi: 10.1523/JNEUROSCI.0079-12.2012 PMID: 22496552
  122. Oliveira, A.M.M.; Wood, M.A.; McDonough, C.B.; Abel, T. Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn. Mem., 2007, 14(9), 564-572. doi: 10.1101/lm.656907 PMID: 17761541
  123. Oliveira, A.M.M.; Estévez, M.A.; Hawk, J.D.; Grimes, S.; Brindle, P.K.; Abel, T. Subregion-specific p300 conditional knock-out mice exhibit long-term memory impairments. Learn. Mem., 2011, 18(3), 161-169. doi: 10.1101/lm.1939811 PMID: 21345974
  124. Barrett, R.M.; Malvaez, M.; Kramar, E.; Matheos, D.P.; Arrizon, A.; Cabrera, S.M.; Lynch, G.; Greene, R.W.; Wood, M.A. Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology, 2011, 36(8), 1545-1556. doi: 10.1038/npp.2011.61 PMID: 21508930
  125. Anderson, E.M.; Larson, E.B.; Guzman, D.; Wissman, A.M.; Neve, R.L.; Nestler, E.J.; Self, D.W. Overexpression of the histone dimethyltransferase G9a in nucleus accumbens shell increases cocaine self-administration, stress-induced reinstatement, and anxiety. j. neurosci., 2018, 38(4), 803-813. doi: 10.1523/JNEUROSCI.1657-17.2017 PMID: 29217682
  126. Anderson, E.M.; Sun, H.; Guzman, D.; Taniguchi, M.; Cowan, C.W.; Maze, I.; Nestler, E.J.; Self, D.W. Knockdown of the histone di-methyltransferase G9a in nucleus accumbens shell decreases cocaine self-administration, stress-induced reinstatement, and anxiety. Neuropsychopharmacology, 2019, 44(8), 1370-1376. doi: 10.1038/s41386-018-0305-4 PMID: 30587852
  127. Shen, E.Y.; Jiang, Y.; Javidfar, B.; Kassim, B.; Loh, Y.H.E.; Ma, Q.; Mitchell, A.C.; Pothula, V.; Stewart, A.F.; Ernst, P.; Yao, W.D.; Martin, G.; Shen, L.; Jakovcevski, M.; Akbarian, S. Neuronal deletion of Kmt2a/Mll1 histone methyltransferase in ventral striatum is associated with defective spike-timing-dependent striatal synaptic plasticity, altered response to dopaminergic drugs, and increased anxiety. Neuropsychopharmacology, 2016, 41(13), 3103-3113. doi: 10.1038/npp.2016.144 PMID: 27485686
  128. Jakobsson, J.; Cordero, M.I.; Bisaz, R.; Groner, A.C.; Busskamp, V.; Bensadoun, J.C.; Cammas, F.; Losson, R.; Mansuy, I.M.; Sandi, C.; Trono, D. KAP1-mediated epigenetic repression in the forebrain modulates behavioral vulnerability to stress. Neuron, 2008, 60(5), 818-831. doi: 10.1016/j.neuron.2008.09.036 PMID: 19081377
  129. Ramzan, F.; Baumbach, J.; Monks, A.D.; Zovkic, I.B. Histone H2A.Z is required for androgen receptor-mediated effects on fear memory. Neurobiol. Learn. Mem., 2020, 175, 107311. doi: 10.1016/j.nlm.2020.107311 PMID: 32916283
  130. Bam, M.; Yang, X.; Zhou, J.; Ginsberg, J.P.; Leyden, Q.; Nagarkatti, P.S.; Nagarkatti, M. Evidence for epigenetic regulation of pro-inflammatory cytokines, interleukin-12 and interferon gamma, in peripheral blood mononuclear cells from PTSD patients. J. Neuroimmune Pharmacol., 2016, 11(1), 168-181. doi: 10.1007/s11481-015-9643-8 PMID: 26589234
  131. Bam, M.; Yang, X.; Busbee, B.P.; Aiello, A.E.; Uddin, M.; Ginsberg, J.P.; Galea, S.; Nagarkatti, P.S.; Nagarkatti, M. Increased H3K4me3 methylation and decreased miR-7113-5p expression lead to enhanced Wnt/β-catenin signaling in immune cells from PTSD patients leading to inflammatory phenotype. Mol. Med., 2020, 26(1), 110. doi: 10.1186/s10020-020-00238-3 PMID: 33189141
  132. Josselyn, S.A. Continuing the search for the engram: Examining the mechanism of fear memories. J. Psychiatry Neurosci., 2010, 35(4), 221-228. doi: 10.1503/jpn.100015 PMID: 20569648
  133. Carlezon, W., Jr; Duman, R.; Nestler, E. The many faces of CREB. Trends Neurosci., 2005, 28(8), 436-445. doi: 10.1016/j.tins.2005.06.005 PMID: 15982754
  134. McCullough, K.M.; Chatzinakos, C.; Hartmann, J.; Missig, G.; Neve, R.L.; Fenster, R.J.; Carlezon, W.A., Jr; Daskalakis, N.P.; Ressler, K.J. Genome-wide translational profiling of amygdala Crh-expressing neurons reveals role for CREB in fear extinction learning. Nat. Commun., 2020, 11(1), 5180. doi: 10.1038/s41467-020-18985-6 PMID: 33057013
  135. D’Alessio, A.C.D.A.C.; Szyf, M. Epigenetic tête-à-tête: The bilateral relationship between chromatin modifications and DNA methylation. Biochem. Cell Biol., 2006, 84(4), 463-476. PMID: 16936820
  136. Stewart, M.D.; Li, J.; Wong, J. Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol. Cell. Biol., 2005, 25(7), 2525-2538. doi: 10.1128/MCB.25.7.2525-2538.2005 PMID: 15767660
  137. O’Neill, C. The epigenetics of embryo development. Anim. Front., 2015, 5(1), 42-49. doi: 10.2527/af.2015-0007
  138. Cao, J. The functional role of long non-coding RNAs and epigenetics. Biol. Proced. Online, 2014, 16(1), 42. doi: 10.1186/1480-9222-16-11 PMID: 25276098
  139. Frías-Lasserre, D.; Villagra, C.A. The importance of ncRNAs as epigenetic mechanisms in phenotypic variation and organic evolution. Front. Microbiol., 2017, 8, 2483. doi: 10.3389/fmicb.2017.02483 PMID: 29312192
  140. Peschansky, V.J.; Wahlestedt, C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics, 2014, 9(1), 3-12. doi: 10.4161/epi.27473 PMID: 24739571
  141. Schoberleitner, I.; Mutti, A.; Sah, A.; Wille, A.; Gimeno-Valiente, F.; Piatti, P.; Kharitonova, M.; Torres, L.; López-Rodas, G.; Liu, J.J.; Singewald, N.; Schwarzer, C.; Lusser, A. Role for chromatin remodeling factor Chd1 in learning and memory. Front. Mol. Neurosci., 2019, 12, 3. doi: 10.3389/fnmol.2019.00003 PMID: 30728766
  142. Wille, A.; Maurer, V.; Piatti, P.; Whittle, N.; Rieder, D.; Singewald, N.; Lusser, A. Impaired contextual fear extinction learning is associated with aberrant regulation of CHD-type chromatin remodeling factors. Front. Behav. Neurosci., 2015, 9, 313. doi: 10.3389/fnbeh.2015.00313 PMID: 26635563
  143. Wille, A.; Amort, T.; Singewald, N.; Sartori, S.B.; Lusser, A. Dysregulation of select ATP-dependent chromatin remodeling factors in high trait anxiety. Behav. Brain Res., 2016, 311, 141-146. doi: 10.1016/j.bbr.2016.05.036 PMID: 27208790
  144. Domschke, K. Prevention in psychiatry: A role for epigenetics? World Psychiatry, 2021, 20(2), 227-228. doi: 10.1002/wps.20854 PMID: 34002522
  145. Abi-Dargham, M.S.; Farzana, A.; DeLorenzo, C.; Domschke, K.; Horga, G.; Jutla, A.; Paulus, M.P.; Rubio, J.M.; Veenstra-VanderWeele, J.; Krystal, J.H. The search for biomarkers in neuropsychiatric disorders. World Psychiatry, under review
  146. McGarvey, K.M.; Fahrner, J.A.; Greene, E.; Martens, J.; Jenuwein, T.; Baylin, S.B. Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res., 2006, 66(7), 3541-3549. doi: 10.1158/0008-5472.CAN-05-2481 PMID: 16585178
  147. Edgar, R.D.; Jones, M.J.; Meaney, M.J.; Turecki, G.; Kobor, M.S. BECon: A tool for interpreting DNA methylation findings from blood in the context of brain. Transl. Psychiatry, 2017, 7(8), e1187. doi: 10.1038/tp.2017.171 PMID: 28763057
  148. Hannon, E.; Lunnon, K.; Schalkwyk, L.; Mill, J. Interindividual methylomic variation across blood, cortex, and cerebellum: Implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics, 2015, 10(11), 1024-1032. doi: 10.1080/15592294.2015.1100786 PMID: 26457534
  149. Braun, P.R.; Han, S.; Hing, B.; Nagahama, Y.; Gaul, L.N.; Heinzman, J.T.; Grossbach, A.J.; Close, L.; Dlouhy, B.J.; Howard, M.A., III; Kawasaki, H.; Potash, J.B.; Shinozaki, G. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl. Psychiatry, 2019, 9(1), 47. doi: 10.1038/s41398-019-0376-y PMID: 30705257
  150. Gilbert, T.M.; Zürcher, N.R.; Catanese, M.C.; Tseng, C.E.J.; Di Biase, M.A.; Lyall, A.E.; Hightower, B.G.; Parmar, A.J.; Bhanot, A.; Wu, C.J.; Hibert, M.L.; Kim, M.; Mahmood, U.; Stufflebeam, S.M.; Schroeder, F.A.; Wang, C.; Roffman, J.L.; Holt, D.J.; Greve, D.N.; Pasternak, O.; Kubicki, M.; Wey, H.Y.; Hooker, J.M. Neuroepigenetic signatures of age and sex in the living human brain. Nat. Commun., 2019, 10(1), 2945. doi: 10.1038/s41467-019-11031-0 PMID: 31270332
  151. Koole, M.; Van Weehaeghe, D.; Serdons, K.; Herbots, M.; Cawthorne, C.; Celen, S.; Schroeder, F.A.; Hooker, J.M.; Bormans, G.; de Hoon, J.; Kranz, J.E.; Van Laere, K.; Gilbert, T.M. Clinical validation of the novel HDAC6 radiotracer 18FEKZ-001 in the human brain. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(2), 596-611. doi: 10.1007/s00259-020-04891-y PMID: 32638097
  152. Matsuda, S.; Hattori, Y.; Matsumiya, K.; McQuade, P.; Yamashita, T.; Aida, J.; Sandiego, C.M.; Gouasmat, A.; Carroll, V.M.; Barret, O.; Tamagnan, G.; Koike, T.; Kimura, H. Design, synthesis, and evaluation of 18FT-914 as a novel positron-emission tomography tracer for lysine-specific demethylase 1. J. Med. Chem., 2021, 64(17), 12680-12690. doi: 10.1021/acs.jmedchem.1c00653 PMID: 34423983
  153. Pascoal, T.A.; Chamoun, M.; Lax, E.; Wey, H.Y.; Shin, M.; Ng, K.P.; Kang, M.S.; Mathotaarachchi, S.; Benedet, A.L.; Therriault, J.; Lussier, F.Z.; Schroeder, F.A.; DuBois, J.M.; Hightower, B.G.; Gilbert, T.M.; Zürcher, N.R.; Wang, C.; Hopewell, R.; Chakravarty, M.; Savard, M.; Thomas, E.; Mohaddes, S.; Farzin, S.; Salaciak, A.; Tullo, S.; Cuello, A.C.; Soucy, J.P.; Massarweh, G.; Hwang, H.; Kobayashi, E.; Hyman, B.T.; Dickerson, B.C.; Guiot, M.C.; Szyf, M.; Gauthier, S.; Hooker, J.M.; Rosa-Neto, P. 11CMartinostat PET analysis reveals reduced HDAC I availability in Alzheimer’s disease. Nat. Commun., 2022, 13(1), 4171. doi: 10.1038/s41467-022-30653-5 PMID: 35853847
  154. Tseng, C.E.J.; Gilbert, T.M.; Catanese, M.C.; Hightower, B.G.; Peters, A.T.; Parmar, A.J.; Kim, M.; Wang, C.; Roffman, J.L.; Brown, H.E.; Perlis, R.H.; Zürcher, N.R.; Hooker, J.M. In vivo human brain expression of histone deacetylases in bipolar disorder. Transl. Psychiatry, 2020, 10(1), 224. doi: 10.1038/s41398-020-00911-5 PMID: 32641695
  155. Turkman, N.; Liu, D.; Pirola, I. Design, synthesis, biochemical evaluation, radiolabeling and in vivo imaging with high affinity class-IIa histone deacetylase inhibitor for molecular imaging and targeted therapy. Eur. J. Med. Chem., 2022, 228, 114011. doi: 10.1016/j.ejmech.2021.114011 PMID: 34875522
  156. Stenz, L.; Schechter, D.S.; Serpa, S.R.; Paoloni-Giacobino, A. Intergenerational transmission of DNA tethylation signatures associated with early life stress. Curr. Genomics, 2018, 19(8), 665-675. doi: 10.2174/1389202919666171229145656 PMID: 30532646
  157. Zenk, F.; Loeser, E.; Schiavo, R.; Kilpert, F. Bogdanović O.; Iovino, N. Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science, 2017, 357(6347), 212-216. doi: 10.1126/science.aam5339 PMID: 28706074
  158. Gaydos, L.J.; Wang, W.; Strome, S. H3K27me and PRC2 transmit a memory of repression across generations and during development. Science, 2014, 345(6203), 1515-1518. doi: 10.1126/science.1255023 PMID: 25237104
  159. Inoue, A.; Jiang, L.; Lu, F.; Suzuki, T.; Zhang, Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature, 2017, 547(7664), 419-424. doi: 10.1038/nature23262 PMID: 28723896
  160. Dahl, J.A.; Jung, I.; Aanes, H.; Greggains, G.D.; Manaf, A.; Lerdrup, M.; Li, G.; Kuan, S.; Li, B.; Lee, A.Y.; Preissl, S.; Jermstad, I.; Haugen, M.H.; Suganthan, R.; Bjørås, M.; Hansen, K.; Dalen, K.T.; Fedorcsak, P.; Ren, B.; Klungland, A. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature, 2016, 537(7621), 548-552. doi: 10.1038/nature19360 PMID: 27626377
  161. Zhang, B.; Zheng, H.; Huang, B.; Li, W.; Xiang, Y.; Peng, X.; Ming, J.; Wu, X.; Zhang, Y.; Xu, Q.; Liu, W.; Kou, X.; Zhao, Y.; He, W.; Li, C.; Chen, B.; Li, Y.; Wang, Q.; Ma, J.; Yin, Q.; Kee, K.; Meng, A.; Gao, S.; Xu, F.; Na, J.; Xie, W. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature, 2016, 537(7621), 553-557. doi: 10.1038/nature19361 PMID: 27626382
  162. Bohacek, J.; Mansuy, I.M. A guide to designing germline-dependent epigenetic inheritance experiments in mammals. Nat. Methods, 2017, 14(3), 243-249. doi: 10.1038/nmeth.4181 PMID: 28245210
  163. Fuchikami, M.; Yamamoto, S.; Morinobu, S.; Okada, S.; Yamawaki, Y.; Yamawaki, S. The potential use of histone deacetylase inhibitors in the treatment of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 64, 320-324. doi: 10.1016/j.pnpbp.2015.03.010 PMID: 25818247

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers