Functional MRI Techniques Suggesting that the Stress System Interacts with Three Large Scale Core Brain Networks to Help Coordinate the Adaptive Response: A Systematic Review
- Authors: Paltoglou G.1, Stefanaki C.2, Chrousos G.3
-
Affiliations:
- Medical School, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital
- Medical School, University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens
- Medical School, University Research Institute of Maternal and Child Health and Precision Medicine, Medical School, National and Kapodistrian University of Athens
- Issue: Vol 22, No 5 (2024)
- Pages: 976-989
- Section: Neurology
- URL: https://hum-ecol.ru/1570-159X/article/view/644782
- DOI: https://doi.org/10.2174/1570159X21666230801151718
- ID: 644782
Cite item
Full Text
Abstract
Objective:Synthesis of functional MRI (fMRI) and functional connectivity (FC) analysis data on human stress system (SS) function, as it relates to the dynamic function of the Salience (SN), Default Mode (DMN) and Central Executive (CEN) networks.
Methods:Systematic search of Medline, Scopus, Clinical Trials.gov, and Google Scholar databases of studies published prior to September 2022 resulted in 28 full-text articles included for qualitative synthesis.
Results:Acute stress changes the states of intra-/inter- neural network FCs and activities from those of resting, low arousal state in the SN, DMN and CEN, during which intra- and inter-network FCs and activities of all three networks are low. SS activation is positively linked to the activity of the SN and negatively to that of the DMN, while, in parallel, it is associated with an initial decrease and a subsequent increase of the intra- network FC and activity of the CEN. The FC between the DMN and the CEN increases, while those between the SN and the CEN decrease, allowing time for frontal lobe strategy input and "proper" CEN activity and task decision. SN activation is linked to sensory hypersensitivity, "impaired" memory, and a switch from serial to parallel processing, while trait mindfulness is associated with FC changes promoting CEN activity and producing a "task-ready state".
Conclusion:SS activation is tightly connected to that of the SN, with stress hormones likely potentiating the intra-network FC of the latter, attenuating that of the DMN, and causing a biphasic suppression- to-activation response of the CEN, all adaptive changes favoring proper decisions and survival.
About the authors
George Paltoglou
Medical School, Medical School, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital
Author for correspondence.
Email: info@benthamscience.net
Charikleia Stefanaki
Medical School, University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens
Email: info@benthamscience.net
George Chrousos
Medical School, University Research Institute of Maternal and Child Health and Precision Medicine, Medical School, National and Kapodistrian University of Athens
Email: info@benthamscience.net
References
- Chrousos, G.P.; Gold, P.W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA, 1992, 267(9), 1244-1252. doi: 10.1001/jama.1992.03480090092034 PMID: 1538563
- Cobb, M. A brief history of wires in the brain. Front. Ecol. Evol., 2021, 9, 760269. doi: 10.3389/fevo.2021.760269
- Ludwig, P.E.; Reddy, V.; Varacallo, M. Neuroanatomy, Central Nervous System (CNS). In: StatPearls; Treasure Island (FL): StatPearls Publishing, 2022.
- Sporns, O.; Tononi, G.; Kötter, R. The human connectome: A structural description of the human brain. PLOS Comput. Biol., 2005, 1(4), e42. doi: 10.1371/journal.pcbi.0010042 PMID: 16201007
- Kim, S.Y.; Chung, K.; Deisseroth, K. Light microscopy mapping of connections in the intact brain. Trends Cogn. Sci., 2013, 17(12), 596-599. doi: 10.1016/j.tics.2013.10.005 PMID: 24210964
- Chrousos, G.P. Stress and disorders of the stress system. Nat. Rev. Endocrinol., 2009, 5(7), 374-381. doi: 10.1038/nrendo.2009.106 PMID: 19488073
- Stratakis, C.A.; Chrousos, G.P. Neuroendocrinology and pathophysiology of the stress system. Ann. N. Y. Acad. Sci., 1995, 771(1 Stress), 1-18. doi: 10.1111/j.1749-6632.1995.tb44666.x PMID: 8597390
- Gold, P.W. The organization of the stress system and its dysregulation in depressive illness. Mol. Psychiatry, 2015, 20(1), 32-47. doi: 10.1038/mp.2014.163 PMID: 25486982
- Kousta, S. Mapping the structural and functional architecture of the brain. Trends Cogn. Sci., 2013, 17(12), 595. doi: 10.1016/j.tics.2013.10.009
- Baliyan, V.; Das, C.J.; Sharma, R.; Gupta, A.K. Diffusion weighted imaging: Technique and applications. World J. Radiol., 2016, 8(9), 785-798. doi: 10.4329/wjr.v8.i9.785 PMID: 27721941
- Glover, G.H. Overview of functional magnetic resonance imaging. Neurosurg. Clin. N. Am., 2011, 22(2), 133-139. vii. doi: 10.1016/j.nec.2010.11.001 PMID: 21435566
- Uddin, L.Q. Complex relationships between structural and functional brain connectivity. Trends Cogn. Sci., 2013, 17(12), 600-602. doi: 10.1016/j.tics.2013.09.011 PMID: 24094797
- Le Bihan, D.; Breton, E.; Lallemand, D.; Grenier, P.; Cabanis, E.; Laval-Jeantet, M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 161(2), 401-407. doi: 10.1148/radiology.161.2.3763909 PMID: 3763909
- Biswal, B.; Zerrin Yetkin, F.; Haughton, V.M.; Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn. Reson. Med., 1995, 34(4), 537-541. doi: 10.1002/mrm.1910340409 PMID: 8524021
- Chang, C.; Glover, G.H. Timefrequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage, 2010, 50(1), 81-98. doi: 10.1016/j.neuroimage.2009.12.011 PMID: 20006716
- Fox, M.D.; Raichle, M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci., 2007, 8(9), 700-711. doi: 10.1038/nrn2201 PMID: 17704812
- Borogovac, A.; Asllani, I. Arterial Spin Labeling (ASL) fMRI: advantages, theoretical constrains, and experimental challenges in neurosciences. Int. J. Biomed. Imaging, 2012, 2012, 818456. PMID: 22966219
- Liégeois, R.; Li, J.; Kong, R.; Orban, C.; Van De Ville, D.; Ge, T.; Sabuncu, M.R.; Yeo, B.T.T. Resting brain dynamics at different timescales capture distinct aspects of human behavior. Nat. Commun., 2019, 10(1), 2317. doi: 10.1038/s41467-019-10317-7 PMID: 31127095
- Zhang, S.; Li, X.; Lv, J.; Jiang, X.; Guo, L.; Liu, T. Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations. Brain Imaging Behav., 2016, 10(1), 21-32. doi: 10.1007/s11682-015-9359-7 PMID: 25732072
- Logothetis, N.K. What we can do and what we cannot do with fMRI. Nature, 2008, 453(7197), 869-878. doi: 10.1038/nature06976 PMID: 18548064
- Patanaik, A.; Tandi, J.; Ong, J.L.; Wang, C.; Zhou, J.; Chee, M.W.L. Dynamic functional connectivity and its behavioral correlates beyond vigilance. Neuroimage, 2018, 177, 1-10. doi: 10.1016/j.neuroimage.2018.04.049 PMID: 29704612
- Honey, C.J.; Sporns, O.; Cammoun, L.; Gigandet, X.; Thiran, J.P.; Meuli, R.; Hagmann, P. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA, 2009, 106(6), 2035-2040. doi: 10.1073/pnas.0811168106 PMID: 19188601
- Allen, E.A.; Damaraju, E.; Plis, S.M.; Erhardt, E.B.; Eichele, T.; Calhoun, V.D. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex, 2014, 24(3), 663-676. doi: 10.1093/cercor/bhs352 PMID: 23146964
- Zhang, X.; Huettel, S.A.; Mullette-Gillman, O.D.A.; Guo, H.; Wang, L. Exploring common changes after acute mental stress and acute tryptophan depletion: Resting-state fMRI studies. J. Psychiatr. Res., 2019, 113, 172-180. doi: 10.1016/j.jpsychires.2019.03.025 PMID: 30959228
- Pan, J.; Zhan, L.; Hu, C.; Yang, J.; Wang, C.; Gu, L.; Zhong, S.; Huang, Y.; Wu, Q.; Xie, X.; Chen, Q.; Zhou, H.; Huang, M.; Wu, X. Emotion regulation and complex brain networks: association between expressive suppression and efficiency in the fronto-parietal network and default-mode network. Front. Hum. Neurosci., 2018, 12, 70. doi: 10.3389/fnhum.2018.00070 PMID: 29662443
- Barch, D.M. Brain network interactions in health and disease. Trends Cogn. Sci., 2013, 17(12), 603-605. doi: 10.1016/j.tics.2013.09.004 PMID: 24080424
- Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci., 2011, 15(10), 483-506. doi: 10.1016/j.tics.2011.08.003 PMID: 21908230
- Zhang, W.; Hashemi, M.M.; Kaldewaij, R.; Koch, S.B.J.; Beckmann, C.; Klumpers, F.; Roelofs, K. Acute stress alters the default brain processing. Neuroimage, 2019, 189, 870-877. doi: 10.1016/j.neuroimage.2019.01.063 PMID: 30703518
- Teng, J.; Ong, J.L.; Patanaik, A.; Tandi, J.; Zhou, J.H.; Chee, M.W.L.; Lim, J. Vigilance declines following sleep deprivation are associated with two previously identified dynamic connectivity states. Neuroimage, 2019, 200, 382-390. doi: 10.1016/j.neuroimage.2019.07.004 PMID: 31276798
- Shapiro, S.L.; Carlson, L.E.; Astin, J.A.; Freedman, B. Mechanisms of mindfulness. J. Clin. Psychol., 2006, 62(3), 373-386. doi: 10.1002/jclp.20237 PMID: 16385481
- Kabat-Zinn, J. Full catastrophe living: using the wisdom of your body and mind to face stress, pain, and illness, 2009.
- Mooneyham, B.W.; Mrazek, M.D.; Mrazek, A.J.; Mrazek, K.L.; Phillips, D.T.; Schooler, J.W. States of mind: Characterizing the neural bases of focus and mind-wandering through dynamic functional connectivity. J. Cogn. Neurosci., 2017, 29(3), 495-506. doi: 10.1162/jocn_a_01066 PMID: 27779908
- Hsu, N.S.; Fang, H.Y.; David, K.K.; Gnadt, J.W.; Peng, G.C.Y.; Talley, E.M.; Ward, J.M.; Ngai, J.; Koroshetz, W.J. The promise of the BRAIN initiative: NIH strategies for understanding neural circuit function. Curr. Opin. Neurobiol., 2020, 65, 162-166. doi: 10.1016/j.conb.2020.10.008 PMID: 33279793
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.M.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials, 1996, 17(1), 1-12. doi: 10.1016/0197-2456(95)00134-4 PMID: 8721797
- Sinha, R.; Lacadie, C.; Skudlarski, P.; Wexler, B. Neural circuits underlying emotional distress in humans. Ann. N. Y. Acad. Sci., 2004, 1032(1), 254-257. doi: 10.1196/annals.1314.032 PMID: 15677422
- Wang, J.; Rao, H.; Wetmore, G.S.; Furlan, P.M.; Korczykowski, M.; Dinges, D.F.; Detre, J.A. Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress. Proc. Natl. Acad. Sci. USA, 2005, 102(49), 17804-17809. doi: 10.1073/pnas.0503082102 PMID: 16306271
- Veer, I.M.; Oei, N.Y.L.; Spinhoven, P.; van Buchem, M.A.; Elzinga, B.M.; Rombouts, S.A.R.B. Beyond acute social stress: Increased functional connectivity between amygdala and cortical midline structures. Neuroimage, 2011, 57(4), 1534-1541. doi: 10.1016/j.neuroimage.2011.05.074 PMID: 21664280
- Henckens, M.J.A.G.; van Wingen, G.A.; Joëls, M.; Fernández, G. Corticosteroid induced decoupling of the amygdala in men. Cereb. Cortex, 2012, 22(10), 2336-2345. doi: 10.1093/cercor/bhr313 PMID: 22079927
- Qin, S.; Hermans, E.J.; van Marle, H.J.F.; Fernández, G. Understanding low reliability of memories for neutral information encoded under stress: alterations in memory-related activation in the hippocampus and midbrain. J. Neurosci., 2012, 32(12), 4032-4041. doi: 10.1523/JNEUROSCI.3101-11.2012 PMID: 22442069
- Schwabe, L.; Tegenthoff, M.; Höffken, O.; Wolf, O.T. Mineralocorticoid receptor blockade prevents stress-induced modulation of multiple memory systems in the human brain. Biol. Psychiatry, 2013, 74(11), 801-808. doi: 10.1016/j.biopsych.2013.06.001 PMID: 23871473
- Gathmann, B.; Schulte, F.P.; Maderwald, S.; Pawlikowski, M.; Starcke, K.; Schäfer, L.C.; Schöler, T.; Wolf, O.T.; Brand, M. Stress and decision making: neural correlates of the interaction between stress, executive functions, and decision making under risk. Exp. Brain Res., 2014, 232(3), 957-973. doi: 10.1007/s00221-013-3808-6 PMID: 24408441
- Oei, N.Y.L.; Both, S.; van Heemst, D.; van der Grond, J. Acute stress-induced cortisol elevations mediate reward system activity during subconscious processing of sexual stimuli. Psychoneuroendocrinology, 2014, 39, 111-120. doi: 10.1016/j.psyneuen.2013.10.005 PMID: 24275010
- Grimm, S.; Pestke, K.; Feeser, M.; Aust, S.; Weigand, A.; Wang, J.; Wingenfeld, K.; Pruessner, J.C.; La Marca, R.; Böker, H.; Bajbouj, M. Early life stress modulates oxytocin effects on limbic system during acute psychosocial stress. Soc. Cogn. Affect. Neurosci., 2014, 9(11), 1828-1835. doi: 10.1093/scan/nsu020 PMID: 24478326
- Fan, Y.; Pestke, K.; Feeser, M.; Aust, S.; Pruessner, J.C.; Böker, H.; Bajbouj, M.; Grimm, S. Amygdala-hippocampal connectivity changes during acute psychosocial stress: Joint effect of early life stress and oxytocin. Neuropsychopharmacology, 2015, 40(12), 2736-2744. doi: 10.1038/npp.2015.123 PMID: 25924202
- Vogel, S.; Klumpers, F.; Kroes, M.C.W.; Oplaat, K.T.; Krugers, H.J.; Oitzl, M.S.; Joëls, M.; Fernández, G. A stress-induced shift from trace to delay conditioning depends on the mineralocorticoid receptor. Biol. Psychiatry, 2015, 78(12), 830-839. doi: 10.1016/j.biopsych.2015.02.014 PMID: 25823790
- Khalili-Mahani, N.; Niesters, M.; van Osch, M.J.; Oitzl, M.; Veer, I.; de Rooij, M.; van Gerven, J.; van Buchem, M.A.; Beckmann, C.F.; Rombouts, S.A.R.B.; Dahan, A. Ketamine interactions with biomarkers of stress: A randomized placebo-controlled repeated measures resting-state fMRI and PCASL pilot study in healthy men. Neuroimage, 2015, 108, 396-409. doi: 10.1016/j.neuroimage.2014.12.050 PMID: 25554429
- Everaerd, D.; Klumpers, F.; van Wingen, G.; Tendolkar, I.; Fernández, G. Association between neuroticism and amygdala responsivity emerges under stressful conditions. Neuroimage, 2015, 112, 218-224. doi: 10.1016/j.neuroimage.2015.03.014 PMID: 25776217
- Maier, S.U.; Makwana, A.B.; Hare, T.A. Acute stress impairs self-control in goal-directed choice by altering multiple functional connections within the brains decision circuits. Neuron, 2015, 87(3), 621-631. doi: 10.1016/j.neuron.2015.07.005 PMID: 26247866
- Henckens, M.J.A.G.; Klumpers, F.; Everaerd, D.; Kooijman, S.C.; van Wingen, G.A.; Fernández, G. Interindividual differences in stress sensitivity: Basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress. Soc. Cogn. Affect. Neurosci., 2016, 11(4), 663-673. doi: 10.1093/scan/nsv149 PMID: 26668010
- Vogel, S.; Klumpers, F.; Schröder, T.N.; Oplaat, K.T.; Krugers, H.J.; Oitzl, M.S.; Joëls, M.; Doeller, C.F.; Fernández, G. Stress induces a shift towards striatum-dependent stimulus-response learning via the mineralocorticoid receptor. Neuropsychopharmacology, 2017, 42(6), 1262-1271. doi: 10.1038/npp.2016.262 PMID: 27876790
- Gavelin, H.M.; Neely, A.S.; Andersson, M.; Eskilsson, T.; Järvholm, L.S.; Boraxbekk, C.J. Neural activation in stress-related exhaustion: Cross-sectional observations and interventional effects. Psychiatry Res. Neuroimaging, 2017, 269, 17-25. doi: 10.1016/j.pscychresns.2017.08.008 PMID: 28917154
- Kohn, N.; Hermans, E.J.; Fernández, G. Cognitive benefit and cost of acute stress is differentially modulated by individual brain state. Soc. Cogn. Affect. Neurosci., 2017, 12(7), 1179-1187. doi: 10.1093/scan/nsx043 PMID: 28402480
- Luo, Y.; Fernández, G.; Hermans, E.; Vogel, S.; Zhang, Y.; Li, H.; Klumpers, F. How acute stress may enhance subsequent memory for threat stimuli outside the focus of attention: DLPFC-amygdala decoupling. Neuroimage, 2018, 171, 311-322. doi: 10.1016/j.neuroimage.2018.01.010 PMID: 29329979
- Vogel, S.; Kluen, L.M.; Fernández, G.; Schwabe, L. Stress affects the neural ensemble for integrating new information and prior knowledge. Neuroimage, 2018, 173, 176-187. doi: 10.1016/j.neuroimage.2018.02.038 PMID: 29476913
- Chang, J.; Yu, R. Hippocampal connectivity in the aftermath of acute social stress. Neurobiol. Stress, 2019, 11, 100195. doi: 10.1016/j.ynstr.2019.100195 PMID: 31832509
- Maier, A.; Scheele, D.; Spengler, F.B.; Menba, T.; Mohr, F.; Güntürkün, O.; Stoffel-Wagner, B.; Kinfe, T.M.; Maier, W.; Khalsa, S.S.; Hurlemann, R. Oxytocin reduces a chemosensory-induced stress bias in social perception. Neuropsychopharmacology, 2019, 44(2), 281-288. doi: 10.1038/s41386-018-0063-3 PMID: 29703998
- van Leeuwen, J.M.C.; Vink, M.; Joëls, M.; Kahn, R.S.; Hermans, E.J.; Vinkers, C.H. Increased responses of the reward circuitry to positive task feedback following acute stress in healthy controls but not in siblings of schizophrenia patients. Neuroimage, 2019, 184, 547-554. doi: 10.1016/j.neuroimage.2018.09.051 PMID: 30243958
- Woodcock, E.A.; Greenwald, M.K.; Khatib, D.; Diwadkar, V.A.; Stanley, J.A. Pharmacological stress impairs working memory performance and attenuates dorsolateral prefrontal cortex glutamate modulation. Neuroimage, 2019, 186, 437-445. doi: 10.1016/j.neuroimage.2018.11.017 PMID: 30458306
- Reinelt, J.; Uhlig, M.; Müller, K.; Lauckner, M.E.; Kumral, D.; Schaare, H.L.; Baczkowski, B.M.; Babayan, A.; Erbey, M.; Roebbig, J.; Reiter, A.; Bae, Y.J.; Kratzsch, J.; Thiery, J.; Hendler, T.; Villringer, A.; Gaebler, M. Acute psychosocial stress alters thalamic network centrality. Neuroimage, 2019, 199, 680-690. doi: 10.1016/j.neuroimage.2019.06.005 PMID: 31173902
- Herrmann, L.; Vicheva, P.; Kasties, V.; Danyeli, L.V.; Szycik, G.R.; Denzel, D.; Fan, Y.; Meer, J.V.; Vester, J.C.; Eskoetter, H.; Schultz, M.; Walter, M. fMRI revealed reduced amygdala activation after Nx4 in mildly to moderately stressed healthy volunteers in a randomized, placebo-controlled, cross-over trial. Sci. Rep., 2020, 10(1), 3802. doi: 10.1038/s41598-020-60392-w PMID: 32123197
- Teng, J.; Massar, S.A.A.; Lim, J. Inter-relationships between changes in stress, mindfulness, and dynamic functional connectivity in response to a social stressor. Sci. Rep., 2022, 12(1), 2396. doi: 10.1038/s41598-022-06342-0 PMID: 35165343
- Corr, R.; Glier, S.; Bizzell, J.; Pelletier-Baldelli, A.; Campbell, A.; Killian-Farrell, C.; Belger, A. Triple network functional connectivity during acute stress in adolescents and the influence of polyvictimization. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2022, 7(9), 867-875. doi: 10.1016/j.bpsc.2022.03.003 PMID: 35292406
- Quabs, J.; Caspers, S.; Schöne, C.; Mohlberg, H.; Bludau, S.; Dickscheid, T.; Amunts, K. Cytoarchitecture, probability maps and segregation of the human insula. Neuroimage, 2022, 260, 119453. doi: 10.1016/j.neuroimage.2022.119453 PMID: 35809885
- Buckner, R.L.; Carroll, D.C. Self-projection and the brain. Trends Cogn. Sci., 2007, 11(2), 49-57. doi: 10.1016/j.tics.2006.11.004 PMID: 17188554
- Bilevicius, E.; Smith, S.D.; Kornelsen, J. Resting-state network functional connectivity patterns associated with the mindful attention awareness scale. Brain Connect., 2018, 8(1), 40-48. doi: 10.1089/brain.2017.0520 PMID: 29130326
- Doll, A.; Hölzel, B.K.; Boucard, C.C.; Wohlschläger, A.M.; Sorg, C. Mindfulness is associated with intrinsic functional connectivity between default mode and salience networks. Front. Hum. Neurosci., 2015, 9, 461. doi: 10.3389/fnhum.2015.00461 PMID: 26379526
- Lim, J.; Teng, J.; Patanaik, A.; Tandi, J.; Massar, S.A.A. Dynamic functional connectivity markers of objective trait mindfulness. Neuroimage, 2018, 176, 193-202. doi: 10.1016/j.neuroimage.2018.04.056 PMID: 29709625
- Cannon, W.B. The wisdom of the body; W.W. Norton & Company: New York, 1932. doi: 10.1097/00000441-193212000-00028
- Gianaros, P.J.; Derbtshire, S.W.G.; May, J.C.; Siegle, G.J.; Gamalo, M.A.; Jennings, J.R. Anterior cingulate activity correlates with blood pressure during stress. Psychophysiology, 2005, 42(6), 627-635. doi: 10.1111/j.1469-8986.2005.00366.x PMID: 16364058
- Pace, T.W.W.; Gaylord, R.I.; Jarvis, E.; Girotti, M.; Spencer, R.L. Differential glucocorticoid effects on stress-induced gene expression in the paraventricular nucleus of the hypothalamus and ACTH secretion in the rat. Stress, 2009, 12(5), 400-411. doi: 10.1080/10253890802530730 PMID: 19065454
- Cunningham-Bussel, A.C.; Root, J.C.; Butler, T.; Tuescher, O.; Pan, H.; Epstein, J.; Weisholtz, D.S.; Pavony, M.; Silverman, M.E.; Goldstein, M.S.; Altemus, M.; Cloitre, M.; LeDoux, J.; McEwen, B.; Stern, E.; Silbersweig, D. Diurnal cortisol amplitude and fronto-limbic activity in response to stressful stimuli. Psychoneuroendocrinology, 2009, 34(5), 694-704. doi: 10.1016/j.psyneuen.2008.11.011 PMID: 19135805
- Qin, C.; Li, J.; Tang, K. The paraventricular nucleus of the hypothalamus: development, function, and human diseases. Endocrinology, 2018, 159(9), 3458-3472. doi: 10.1210/en.2018-00453 PMID: 30052854
- Ma, S.; Morilak, D.A. Norepinephrine release in medial amygdala facilitates activation of the hypothalamic-pituitary-adrenal axis in response to acute immobilisation stress. J. Neuroendocrinol., 2005, 17(1), 22-28. doi: 10.1111/j.1365-2826.2005.01279.x PMID: 15720472
- Aguilera, G. Regulation of the hypothalamic-pituitary-adrenal axis by neuropeptides. Horm. Mol. Biol. Clin. Investig., 2011, 7(2), 327-336. doi: 10.1515/HMBCI.2011.123 PMID: 25961271
- LeDoux, J. The amygdala. Curr. Biol., 2007, 17(20), R868-R874. doi: 10.1016/j.cub.2007.08.005 PMID: 17956742
- Uddin, L.Q. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci., 2015, 16(1), 55-61. doi: 10.1038/nrn3857 PMID: 25406711
- Sandi, C. Stress and cognition. Wiley Interdiscip. Rev. Cogn. Sci., 2013, 4(3), 245-261. doi: 10.1002/wcs.1222 PMID: 26304203
- Engert, V.; Kok, B.E.; Papassotiriou, I.; Chrousos, G.P.; Singer, T. Specific reduction in cortisol stress reactivity after social but not attention-based mental training. Sci. Adv., 2017, 3(10), e1700495. doi: 10.1126/sciadv.1700495 PMID: 28983508
Supplementary files
