Microneedles: A Versatile Drug Delivery Carrier for Phytobioactive Compounds as a Therapeutic Modulator for Targeting Mitochondrial Dysfunction in the Management of Neurodegenerative Diseases


Cite item

Full Text

Abstract

Neurodegenerative disease (ND) is the fourth leading cause of death worldwide, with limited symptomatic therapies. Mitochondrial dysfunction is a major risk factor in the progression of ND, and it-increases the generation of reactive oxygen species (ROS). Overexposure to these ROS induces apoptotic changes leading to neuronal cell death. Many studies have shown the prominent effect of phytobioactive compounds in managing mitochondrial dysfunctions associated with ND, mainly due to their antioxidant properties. The drug delivery to the brain is limited due to the presence of the blood-brain barrier (BBB), but effective drug concentration needs to reach the brain for the therapeutic action. Therefore, developing safe and effective strategies to enhance drug entry in the brain is required to establish ND's treatment. The microneedle-based drug delivery system is one of the effective non-invasive techniques for drug delivery through the transdermal route. Microneedles are micronsized drug delivery needles that are self-administrable. It can penetrate through the stratum corneum skin layer without hitting pain receptors, allowing the phytobioactive compounds to be released directly into systemic circulation in a controlled manner. With all of the principles mentioned above, this review discusses microneedles as a versatile drug delivery carrier for the phytoactive compounds as a therapeutic potentiating agent for targeting mitochondrial dysfunction for the management of ND.

About the authors

Akshay Bandiwadekar

Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed-to-be University)

Email: info@benthamscience.net

Kartik Khot

Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed-to-be University)

Email: info@benthamscience.net

Gopika Gopan

Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed-to-be University)

Email: info@benthamscience.net

Jobin Jose

Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed-to-be University)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Begley, D.J. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol. Ther., 2004, 104(1), 29-45. doi: 10.1016/j.pharmthera.2004.08.001 PMID: 15500907
  2. Hladky, S.B.; Barrand, M.A. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS, 2014, 11(1), 26. doi: 10.1186/2045-8118-11-26 PMID: 25678956
  3. Engelhardt, B.; Vajkoczy, P.; Weller, R.O. The movers and shapers in immune privilege of the CNS. Nat. Immunol., 2017, 18(2), 123-131. doi: 10.1038/ni.3666 PMID: 28092374
  4. Bélanger, M.; Allaman, I.; Magistretti, P.J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab., 2011, 14(6), 724-738. doi: 10.1016/j.cmet.2011.08.016 PMID: 22152301
  5. Harris, J.J.; Jolivet, R.; Attwell, D. Synaptic energy use and supply. Neuron, 2012, 75(5), 762-777. doi: 10.1016/j.neuron.2012.08.019 PMID: 22958818
  6. Grimm, A.; Eckert, A. Brain aging and neurodegeneration: from a mitochondrial point of view. J. Neurochem., 2017, 143(4), 418-431. doi: 10.1111/jnc.14037 PMID: 28397282
  7. Chistiakov, D.A.; Sobenin, I.A.; Revin, V.V.; Orekhov, A.N.; Bobryshev, Y.V. Mitochondrial aging and age-related dysfunction of mitochondria. BioMed. Res. Int., 2014, 2014, 1-7. doi: 10.1155/2014/238463 PMID: 24818134
  8. Rahman, M.A.; Rahman, M.D.H.; Biswas, P.; Hossain, M.S.; Islam, R.; Hannan, M.A.; Uddin, M.J.; Rhim, H. Potential therapeutic role of phytochemicals to mitigate mitochondrial dysfunctions in Alzheimer’s disease. Antioxidants, 2020, 10(1), 23. doi: 10.3390/antiox10010023 PMID: 33379372
  9. Ortiz, G.G.; Pacheco-Moisés, F.P.; Macías-Islas, M.Á.; Flores-Alvarado, L.J.; Mireles-Ramírez, M.A.; González-Renovato, E.D.; Hernández-Navarro, V.E.; Sánchez-López, A.L.; Alatorre-Jiménez, M.A. Role of the blood-brain barrier in multiple sclerosis. Arch. Med. Res., 2014, 45(8), 687-697. doi: 10.1016/j.arcmed.2014.11.013 PMID: 25431839
  10. Kuo, Y.C.; Wang, C.C. Cationic solid lipid nanoparticles with cholesterol-mediated surface layer for transporting saquinavir to the brain. Biotechnol. Prog., 2014, 30(1), 198-206. doi: 10.1002/btpr.1834 PMID: 24167123
  11. van der Maaden, K.; Jiskoot, W.; Bouwstra, J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J. Control. Release, 2012, 161(2), 645-655. doi: 10.1016/j.jconrel.2012.01.042 PMID: 22342643
  12. Ye, Y.; Yu, J.; Wen, D.; Kahkoska, A.R.; Gu, Z. Polymeric microneedles for transdermal protein delivery. Adv. Drug Deliv. Rev., 2018, 127, 106-118. doi: 10.1016/j.addr.2018.01.015 PMID: 29408182
  13. Brodal, P. The central nervous system: structure and function, 3rd ed; Oxford University Press, 2004.
  14. Ghavami, S.; Shojaei, S.; Yeganeh, B.; Ande, S.R.; Jangamreddy, J.R.; Mehrpour, M.; Christoffersson, J.; Chaabane, W.; Moghadam, A.R.; Kashani, H.H.; Hashemi, M.; Owji, A.A.; Łos, M.J. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol., 2014, 112, 24-49. doi: 10.1016/j.pneurobio.2013.10.004 PMID: 24211851
  15. Alzheimers-disease. https://www.hopkinsmedicine.org/health/conditions-and-diseases/alzheimers-disease/earlyonset-alzheimer-disease(Accessed September 19 2022).
  16. Liu, L.; Zhao, S.; Chen, H.; Wang, A. A new machine learning method for identifying Alzheimer’s disease. Simul. Model. Pract. Theory, 2020, 99, 102023. doi: 10.1016/j.simpat.2019.102023
  17. Tokuchi, R.; Hishikawa, N.; Sato, K.; Hatanaka, N.; Fukui, Y.; Takemoto, M.; Ohta, Y.; Yamashita, T.; Abe, K. Differences between the behavioral and psychological symptoms of Alzheimer’s disease and Parkinson’s disease. J. Neurol. Sci., 2016, 369, 278-282. doi: 10.1016/j.jns.2016.08.053 PMID: 27653908
  18. Kumar, A.; Singh, A.; Ekavali, A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep., 2015, 67(2), 195-203. doi: 10.1016/j.pharep.2014.09.004 PMID: 25712639
  19. Wang, J.; Chen, G.J. Mitochondria as a therapeutic target in Alzheimer’s disease. Genes Dis., 2016, 3(3), 220-227. doi: 10.1016/j.gendis.2016.05.001 PMID: 30258891
  20. Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med., 2020, 36(1), 1-12. doi: 10.1016/j.cger.2019.08.002 PMID: 31733690
  21. Kumar, A.; Chaudhary, R.K.; Singh, R.; Singh, S.P.; Wang, S.Y.; Hoe, Z.Y.; Pan, C.T.; Shiue, Y.L.; Wei, D.Q.; Kaushik, A.C.; Dai, X. Nanotheranostic applications for detection and targeting neurodegenerative diseases. Front. Neurosci., 2020, 14, 305. doi: 10.3389/fnins.2020.00305 PMID: 32425743
  22. Singh, E.; Devasahayam, G. Neurodegeneration by oxidative stress: a review on prospective use of small molecules for neuroprotection. Mol. Biol. Rep., 2020, 47(4), 3133-3140. doi: 10.1007/s11033-020-05354-1 PMID: 32162127
  23. Prasuhn, J.; Davis, R.L.; Kumar, K.R. Targeting mitochondrial impairment in Parkinson’s disease: Challenges and opportunities. Front. Cell Dev. Biol., 2021, 8, 615461. doi: 10.3389/fcell.2020.615461 PMID: 33469539
  24. Cai, M.; Yang, E.J. Complementary and alternative medicine for treating amyotrophic lateral sclerosis: a narrative review. Integr. Med. Res., 2019, 8(4), 234-239. doi: 10.1016/j.imr.2019.08.003 PMID: 31692669
  25. Bonafede, R.; Mariotti, R. ALS pathogenesis and therapeutic approaches: the role of mesenchymal stem cells and extracellular vesicles. Front. Cell. Neurosci., 2017, 11, 80. doi: 10.3389/fncel.2017.00080 PMID: 28377696
  26. Ralli, M.; Lambiase, A.; Artico, M.; de Vincentiis, M.; Greco, A. Amyotrophic lateral sclerosis: Autoimmune pathogenic mechanisms, clinical features, and therapeutic perspectives. Isr. Med. Assoc. J., 2019, 21(7), 438-443. PMID: 31507117
  27. Mehta, A.R.; Walters, R.; Waldron, F.M.; Pal, S.; Selvaraj, B.T.; Macleod, M.R.; Hardingham, G.E.; Chandran, S.; Gregory, J.M. Targeting mitochondrial dysfunction in amyotrophic lateral sclerosis: a systematic review and meta-analysis. Brain Commun., 2019, 1(1), fcz009. doi: 10.1093/braincomms/fcz009 PMID: 32133457
  28. Ochoa-Morales, A.; Hernández-Mojica, T.; Paz-Rodríguez, F.; Jara-Prado, A.; Trujillo-De Los Santos, Z.; Sánchez-Guzmán, M.A.; Guerrero-Camacho, J.L.; Corona-Vázquez, T.; Flores, J.; Camacho-Molina, A.; Rivas-Alonso, V.; Dávila-Ortiz de Montellano, D.J. Quality of life in patients with multiple sclerosis and its association with depressive symptoms and physical disability. Mult. Scler. Relat. Disord., 2019, 36, 101386. doi: 10.1016/j.msard.2019.101386 PMID: 31520986
  29. Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J., 2017, 19(1), 1-10. PMID: 28367411
  30. Correale, J.; Gaitán, M.I.; Ysrraelit, M.C.; Fiol, M.P. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain, 2017, 140(3), 527-546. PMID: 27794524
  31. Barcelos, I.P.; Troxell, R.M.; Graves, J.S. Mitochondrial Dysfunction and Multiple Sclerosis. Biology (Basel), 2019, 8(2), 37. doi: 10.3390/biology8020037 PMID: 31083577
  32. Ellis, N.; Tee, A.; McAllister, B.; Massey, T.; McLauchlan, D.; Stone, T.; Correia, K.; Loupe, J.; Kim, K.H.; Barker, D.; Hong, E.P. Genetic risk underlying psychiatric and cognitive symptoms in Huntington’s Disease. Biol. Psychiatry, 2019, 14(2), 12-16. PMID: 32087949
  33. Jimenez-Sanchez, M.; Licitra, F.; Underwood, B.R.; Rubinsztein, D.C. Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb. Perspect. Med., 2017, 7(7), a024240. doi: 10.1101/cshperspect.a024240 PMID: 27940602
  34. Illarioshkin, S.N.; Klyushnikov, S.A.; Vigont, V.A.; Seliverstov, Y.A.; Kaznacheyeva, E.V. Molecular pathogenesis in Huntington’s disease. Biochemistry (Mosc.), 2018, 83(9), 1030-1039. doi: 10.1134/S0006297918090043 PMID: 30472941
  35. Chaturvedi, R.K.; Beal, M.F. Mitochondria targeted therapeutic approaches in Parkinson’s and Huntington’s diseases. Mol. Cell. Neurosci., 2013, 55, 101-114. doi: 10.1016/j.mcn.2012.11.011 PMID: 23220289
  36. Wenning, G.K.; Colosimo, C.; Geser, F.; Poewe, W. Multiple system atrophy. Lancet Neurol., 2004, 3(2), 93-103. doi: 10.1016/S1474-4422(03)00662-8 PMID: 14747001
  37. Meissner, W.G.; Fernagut, P.O.; Dehay, B.; Péran, P.; Traon, A.P.L.; Foubert-Samier, A.; Lopez Cuina, M.; Bezard, E.; Tison, F.; Rascol, O. Multiple system atrophy: recent developments and future perspectives. Mov. Disord., 2019, 34(11), 1629-1642. doi: 10.1002/mds.27894 PMID: 31692132
  38. Palma, J.A.; Kaufmann, H. Novel therapeutic approaches in multiple system atrophy. Clin. Auton. Res., 2015, 25(1), 37-45. doi: 10.1007/s10286-014-0249-7 PMID: 24928797
  39. Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150. doi: 10.1038/nrneurol.2017.188 PMID: 29377008
  40. Elfawy, H.A.; Das, B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci., 2019, 218, 165-184. doi: 10.1016/j.lfs.2018.12.029 PMID: 30578866
  41. Kumar, R.; Harilal, S.; Parambi, D.G.T.; Kanthlal, S.K.; Rahman, M.A.; Alexiou, A.; Batiha, G.E.S.; Mathew, B. The role of mitochondrial genes in neurodegenerative disorders. Curr. Neuropharmacol., 2022, 20(5), 824-835. doi: 10.2174/1570159X19666210908163839 PMID: 34503413
  42. Bhat, A.H.; Dar, K.B.; Anees, S.; Zargar, M.A.; Masood, A.; Sofi, M.A.; Ganie, S.A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed. Pharmacother., 2015, 74, 101-110. doi: 10.1016/j.biopha.2015.07.025 PMID: 26349970
  43. Cha, M.Y.; Kim, D.K.; Mook-Jung, I. The role of mitochondrial DNA mutation on neurodegenerative diseases. Exp. Mol. Med., 2015, 47(3), e150. doi: 10.1038/emm.2014.122 PMID: 25766619
  44. Garrido, C.; Galluzzi, L.; Brunet, M.; Puig, P.E.; Didelot, C.; Kroemer, G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ., 2006, 13(9), 1423-1433. doi: 10.1038/sj.cdd.4401950 PMID: 16676004
  45. Picone, P.; Nuzzo, D.; Caruana, L.; Scafidi, V.; Di Carlo, M. Mitochondrial dysfunction: different routes to Alzheimer’s disease therapy. Oxid. Med. Cell. Longev., 2014, 2014, 1-11. doi: 10.1155/2014/780179 PMID: 25221640
  46. Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Unnikrishnan, M.K.; Uddin, M.S.; Mathew, G.E.; Pratap, R.; Marathakam, A.; Mathew, B. Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules. Brain Res. Bull., 2020, 160, 121-140. doi: 10.1016/j.brainresbull.2020.03.018 PMID: 32315731
  47. Smith, E.F.; Shaw, P.J.; De Vos, K.J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett., 2019, 710, 132933. doi: 10.1016/j.neulet.2017.06.052 PMID: 28669745
  48. Orsini, M.; Oliveira, A.B.; Nascimento, O.J.M.; Reis, C.H.M.; Leite, M.A.A.; De Souza, J.A.; Pupe, C.; De Souza, O.G.; Bastos, V.H.; De Freitas, M.R.G.; Teixeira, S.; Bruno, C.; Davidovich, E.; Smidt, B. Amyotrophic lateral sclerosis: new perpectives and update. Neurol. Int., 2015, 7(2), 5885. doi: 10.4081/ni.2015.5885 PMID: 26487927
  49. Carrì, M.T.; D’Ambrosi, N.; Cozzolino, M. Pathways to mitochondrial dysfunction in ALS pathogenesis. Biochem. Biophys. Res. Commun., 2017, 483(4), 1187-1193. doi: 10.1016/j.bbrc.2016.07.055 PMID: 27416757
  50. Su, K.; Bourdette, D.; Forte, M. Mitochondrial dysfunction and neurodegeneration in multiple sclerosis. Front. Physiol., 2013, 4, 169. doi: 10.3389/fphys.2013.00169 PMID: 23898299
  51. Patergnani, S.; Fossati, V.; Bonora, M.; Giorgi, C.; Marchi, S.; Missiroli, S.; Rusielewicz, T.; Wieckowski, M.R.; Pinton, P. Mitochondria in multiple sclerosis: Molecular mechanisms of pathogenesis. Int. Rev. Cell Mol. Biol., 2017, 328, 49-103. doi: 10.1016/bs.ircmb.2016.08.003 PMID: 28069137
  52. Sadeghian, M.; Mastrolia, V.; Rezaei Haddad, A.; Mosley, A.; Mullali, G.; Schiza, D.; Sajic, M.; Hargreaves, I.; Heales, S.; Duchen, M.R.; Smith, K.J. Mitochondrial dysfunction is an important cause of neurological deficits in an inflammatory model of multiple sclerosis. Sci. Rep., 2016, 6(1), 33249. doi: 10.1038/srep33249 PMID: 27624721
  53. Reddy, P.H.; Shirendeb, U.P. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(2), 101-110. doi: 10.1016/j.bbadis.2011.10.016 PMID: 22080977
  54. Quintanilla, R.A.; Johnson, G.V.W. Role of mitochondrial dysfunction in the pathogenesis of Huntington’s disease. Brain Res. Bull., 2009, 80(4-5), 242-247. doi: 10.1016/j.brainresbull.2009.07.010 PMID: 19622387
  55. Gil-Mohapel, J.; Brocardo, P.; Christie, B. The role of oxidative stress in Huntington’s disease: are antioxidants good therapeutic candidates? Curr. Drug Targets, 2014, 15(4), 454-468. doi: 10.2174/1389450115666140115113734 PMID: 24428525
  56. Fukui, H.; Moraes, C.T. Extended polyglutamine repeats trigger a feedback loop involving the mitochondrial complex III, the proteasome and huntingtin aggregates. Hum. Mol. Genet., 2007, 16(7), 783-797. doi: 10.1093/hmg/ddm023 PMID: 17356014
  57. Browne, S.E.; Beal, M.F. The energetics of Huntington’s disease. Neurochem. Res., 2004, 29(3), 531-546. doi: 10.1023/B:NERE.0000014824.04728.dd PMID: 15038601
  58. Foti, S.C.; Hargreaves, I.; Carrington, S.; Kiely, A.P.; Houlden, H.; Holton, J.L. Cerebral mitochondrial electron transport chain dysfunction in multiple system atrophy and Parkinson’s disease. Sci. Rep., 2019, 9(1), 6559. doi: 10.1038/s41598-019-42902-7 PMID: 31024027
  59. Bordoni, M.; Scarian, E.; Rey, F.; Gagliardi, S.; Carelli, S.; Pansarasa, O.; Cereda, C. Biomaterials in neurodegenerative disorders: A promising therapeutic approach. Int. J. Mol. Sci., 2020, 21(9), 3243. doi: 10.3390/ijms21093243 PMID: 32375302
  60. Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel), 2018, 11(2), 44. doi: 10.3390/ph11020044 PMID: 29751602
  61. Bandiwadekar, A.; Jose, J.; Khayatkashani, M.; Habtemariam, S.; Khayat Kashani, H.R.; Nabavi, S.M. Emerging novel approaches for the enhanced delivery of natural products for the management of neurodegenerative diseases. J. Mol. Neurosci., 2022, 72(3), 653-676. doi: 10.1007/s12031-021-01922-7 PMID: 34697770
  62. Mahajani, S.; Bähr, M.; Kügler, S. Patterning inconsistencies restrict the true potential of dopaminergic neurons derived from human induced pluripotent stem cells. Neural Regen. Res., 2021, 16(4), 692-693. doi: 10.4103/1673-5374.295316 PMID: 33063729
  63. Nikolenko, V.N.; Oganesyan, M.V.; Vovkogon, A.D.; Nikitina, A.T.; Sozonova, E.A.; Kudryashova, V.A.; Rizaeva, N.A.; Cabezas, R.; Avila-Rodriguez, M.; Neganova, M.E.; Mikhaleva, L.M.; Bachurin, S.O.; Somasundaram, S.G.; Kirkland, C.E.; Tarasov, V.V.; Aliev, G. Current understanding of central nervous system drainage systems: Implications in the context of neurodegenerative diseases. Curr. Neuropharmacol., 2020, 18(11), 1054-1063. doi: 10.2174/1570159X17666191113103850 PMID: 31729299
  64. Cecchelli, R.; Berezowski, V.; Lundquist, S.; Culot, M.; Renftel, M.; Dehouck, M.P.; Fenart, L. Modelling of the blood–brain barrier in drug discovery and development. Nat. Rev. Drug Discov., 2007, 6(8), 650-661. doi: 10.1038/nrd2368 PMID: 17667956
  65. Newton, H.B. Advances in strategies to improve drug delivery to brain tumors. Expert Rev. Neurother., 2006, 6(10), 1495-1509. doi: 10.1586/14737175.6.10.1495 PMID: 17078789
  66. Hawkins, B.T.; Davis, T.P. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev., 2005, 57(2), 173-185. doi: 10.1124/pr.57.2.4 PMID: 15914466
  67. Tom, A.; Nair, K.S. Branched-chain amino acids: metabolism, physiological function, and application. Biomarkers, 2006, 1, 3.
  68. Begley, D.J.; Brightman, M.W. Structural and functional aspects of the blood-brain barrier. Prog Drug Res, 2003, 61, 39-78. doi: 10.1007/978-3-0348-8049-7_2 PMID: 14674608
  69. Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 2006, 7(1), 41-53. doi: 10.1038/nrn1824 PMID: 16371949
  70. Liu, X.; Testa, B.; Fahr, A. Lipophilicity and its relationship with passive drug permeation. Pharm. Res., 2011, 28(5), 962-977. doi: 10.1007/s11095-010-0303-7 PMID: 21052797
  71. Patel, M.; Souto, E.B.; Singh, K.K. Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. Expert Opin. Drug Deliv., 2013, 10(7), 889-905. doi: 10.1517/17425247.2013.784742 PMID: 23550609
  72. Goldsmith, M.; Abramovitz, L.; Peer, D. Precision nanomedicine in neurodegenerative diseases. ACS Nano, 2014, 8(3), 1958-1965. doi: 10.1021/nn501292z PMID: 24660817
  73. Hersh, D.S.; Wadajkar, A.S.; Roberts, N.; Perez, J.G.; Connolly, N.P.; Frenkel, V.; Winkles, J.A.; Woodworth, G.F.; Kim, A.J. Evolving drug delivery strategies to overcome the blood brain barrier. Curr. Pharm. Des., 2016, 22(9), 1177-1193. doi: 10.2174/1381612822666151221150733 PMID: 26685681
  74. Groothuis, D.R. The blood-brain and blood-tumor barriers: A review of strategies for increasing drug delivery. Neuro-oncol., 2000, 2(1), 45-59. doi: 10.1093/neuonc/2.1.45 PMID: 11302254
  75. Lu, C.T.; Zhao, Y.Z.; Wong, H.L.; Cai, J.; Peng, L.; Tian, X.Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int. J. Nanomed., 2014, 9, 2241-2257. doi: 10.2147/IJN.S61288 PMID: 24872687
  76. Alyautdin, R.; Khalin, I.; Nafeeza, M.I.; Haron, M.H.; Kuznetsov, D. Nanoscale drug delivery systems and the blood-brain barrier. Int. J. Nanomed., 2014, 9, 795-811. PMID: 24550672
  77. Furukawa, S.; Hirano, S.; Yamamoto, T.; Asahina, M.; Uchiyama, T.; Yamanaka, Y.; Nakano, Y.; Ishikawa, A.; Kojima, K.; Abe, M.; Uji, Y.; Higuchi, Y.; Horikoshi, T.; Uno, T.; Kuwabara, S. Decline in drawing ability and cerebral perfusion in Parkinson’s disease patients after subthalamic nucleus deep brain stimulation surgery. Parkinsonism Relat. Disord., 2020, 70, 60-66. doi: 10.1016/j.parkreldis.2019.12.002 PMID: 31865064
  78. Tomycz, N.D. The proposed use of cervical spinal cord stimulation for the treatment and prevention of cognitive decline in dementias and neurodegenerative disorders. Med. Hypotheses, 2016, 96, 83-86. doi: 10.1016/j.mehy.2016.10.005 PMID: 27959284
  79. Rautio, J.; Laine, K.; Gynther, M.; Savolainen, J. Prodrug approaches for CNS delivery. AAPS J., 2008, 10(1), 92-102. doi: 10.1208/s12248-008-9009-8 PMID: 18446509
  80. Zhong, J.; Guan, X.; Zhong, X.; Cao, F.; Gu, Q.; Guo, T.; Zhou, C.; Zeng, Q.; Wang, J.; Gao, T.; Zhang, M. Levodopa imparts a normalizing effect on default-mode network connectivity in non-demented Parkinson’s disease. Neurosci. Lett., 2019, 705, 159-166. doi: 10.1016/j.neulet.2019.04.042 PMID: 31026534
  81. Misra, A.; Ganesh, S.; Shahiwala, A.; Shah, S.P. Drug delivery to the central nervous system: a review. J. Pharm. Pharm. Sci., 2003, 6(2), 252-273. PMID: 12935438
  82. Dong, X. Current strategies for brain drug delivery. Theranostics, 2018, 8(6), 1481-1493. doi: 10.7150/thno.21254 PMID: 29556336
  83. Noble, G.T.; Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol., 2014, 32(1), 32-45. doi: 10.1016/j.tibtech.2013.09.007 PMID: 24210498
  84. Donnelly, R.F.; Singh, T.R.R.; Woolfson, A.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv., 2010, 17(4), 187-207. doi: 10.3109/10717541003667798 PMID: 20297904
  85. Donnelly, R.F.; Singh, T.R.; Morrow, D.I.; Woolfson, A.D. Microneedle-mediated transdermal drug delivery; John Wiley & Sons,: Ltd: Hoboken,, 2012, 1295, pp. 71-79. doi: 10.1002/9781119959687
  86. Ma, G.; Wu, C. Microneedle, bio-microneedle and bio-inspired microneedle: A review. J. Control. Release, 2017, 251, 11-23. doi: 10.1016/j.jconrel.2017.02.011 PMID: 28215667
  87. Chen, X.; Wang, L.; Yu, H.; Li, C.; Feng, J.; Haq, F.; Khan, A.; Khan, R.U. Preparation, properties and challenges of the microneedles-based insulin delivery system. J. Control. Release, 2018, 288, 173-188. doi: 10.1016/j.jconrel.2018.08.042 PMID: 30189223
  88. Akhtar, N. Microneedles: An innovative approach to transdermal delivery—A review. Int. J. Pharm. Pharm. Sci., 2014, 6, 18-25.
  89. Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev., 2012, 64, 128-137. doi: 10.1016/j.addr.2012.09.032 PMID: 15019749
  90. Tucak, A.; Sirbubalo, M.; Hindija, L.; Rahić, O.; Hadžiabdić, J.; Muhamedagić, K.; Čekić, A.; Vranić, E. Microneedles: Characteristics, materials, production methods and commercial development. Micromachines (Basel), 2020, 11(11), 961. doi: 10.3390/mi11110961 PMID: 33121041
  91. Yan, G.; Warner, K.S.; Zhang, J.; Sharma, S.; Gale, B.K. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int. J. Pharm., 2010, 391(1-2), 7-12. doi: 10.1016/j.ijpharm.2010.02.007 PMID: 20188808
  92. Aldawood, F.K.; Andar, A.; Desai, S. A comprehensive review of microneedles: types, materials, processes, characterizations and applications. Polymers (Basel), 2021, 13(16), 2815. doi: 10.3390/polym13162815 PMID: 34451353
  93. Verbaan, F.J.; Bal, S.M.; van den Berg, D.J.; Groenink, W.H.H.; Verpoorten, H.; Lüttge, R.; Bouwstra, J.A. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J. Control. Release, 2007, 117(2), 238-245. doi: 10.1016/j.jconrel.2006.11.009 PMID: 17196697
  94. Pignatello, R., Ed.; Biomaterials: Applications for Nanomedicine; BoD–Books on Demand,, 2011, 15(1), 123-124.
  95. Gittard, S.D.; Narayan, R.J.; Jin, C.; Ovsianikov, A.; Chichkov, B.N.; Monteiro-Riviere, N.A.; Stafslien, S.; Chisholm, B. Pulsed laser deposition of antimicrobial silver coating on Ormocer® microneedles. Biofabrication, 2009, 1(4), 041001. doi: 10.1088/1758-5082/1/4/041001 PMID: 20661316
  96. Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother., 2019, 109, 1249-1258. doi: 10.1016/j.biopha.2018.10.078 PMID: 30551375
  97. Martin, C.J.; Allender, C.J.; Brain, K.R.; Morrissey, A.; Birchall, J.C. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J. Control. Release, 2012, 158(1), 93-101. doi: 10.1016/j.jconrel.2011.10.024 PMID: 22063007
  98. Donnelly, R.F.; Majithiya, R.; Singh, T.R.R.; Morrow, D.I.J.; Garland, M.J.; Demir, Y.K.; Migalska, K.; Ryan, E.; Gillen, D.; Scott, C.J.; Woolfson, A.D. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm. Res., 2011, 28(1), 41-57. doi: 10.1007/s11095-010-0169-8 PMID: 20490627
  99. Huang, H.; Fu, C. Different fabrication methods of out-of-plane polymer hollow needle arrays and their variations. J. Micromech. Microeng., 2007, 17(2), 393-402. doi: 10.1088/0960-1317/17/2/027
  100. Indermun, S.; Luttge, R.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Modi, G.; Pillay, V. Current advances in the fabrication of microneedles for transdermal delivery. J. Control. Release, 2014, 185, 130-138. doi: 10.1016/j.jconrel.2014.04.052 PMID: 24806483
  101. Li, J.; Zeng, M.; Shan, H.; Tong, C. Microneedle patches as drug and vaccine delivery platform. Curr. Med. Chem., 2017, 24(22), 2413-2422. PMID: 28552053
  102. Pradeep Narayanan, S.; Raghavan, S. Solid silicon microneedles for drug delivery applications. Int. J. Adv. Manuf. Technol., 2017, 93(1-4), 407-422. doi: 10.1007/s00170-016-9698-6
  103. Pradeep Narayanan, S.; Raghavan, S. Fabrication and characterization of gold-coated solid silicon microneedles with improved biocompatibility. Int. J. Adv. Manuf. Technol., 2019, 104(9-12), 3327-3333. doi: 10.1007/s00170-018-2596-3
  104. Song, Y.; Herwadkar, A.; Patel, M.G.; Banga, A.K. Transdermal delivery of cimetidine across microneedle-treated skin: effect of extent of drug ionization on the permeation. J. Pharm. Sci., 2017, 106(5), 1285-1292. doi: 10.1016/j.xphs.2017.01.005 PMID: 28161442
  105. Ilić, T.; Savić, S.; Batinić, B.; Marković, B.; Schmidberger, M.; Lunter, D.; Savić, M.; Savić, S. Combined use of biocompatible nanoemulsions and solid microneedles to improve transport of a model NSAID across the skin: In vitro and in vivo studies. Eur. J. Pharm. Sci., 2018, 125, 110-119. doi: 10.1016/j.ejps.2018.09.023 PMID: 30287408
  106. Li, S.; Li, W.; Prausnitz, M. Individually coated microneedles for co-delivery of multiple compounds with different properties. Drug Deliv. Transl. Res., 2018, 8(5), 1043-1052. doi: 10.1007/s13346-018-0549-x PMID: 29948917
  107. Chen, Y.; Chen, B.Z.; Wang, Q.L.; Jin, X.; Guo, X.D. Fabrication of coated polymer microneedles for transdermal drug delivery. J. Control. Release, 2017, 265, 14-21. doi: 10.1016/j.jconrel.2017.03.383 PMID: 28344014
  108. Jain, A.K.; Lee, C.H.; Gill, H.S. 5-Aminolevulinic acid coated microneedles for photodynamic therapy of skin tumors. J. Control. Release, 2016, 239, 72-81. doi: 10.1016/j.jconrel.2016.08.015 PMID: 27543445
  109. Zhu, D.D.; Wang, Q.L.; Liu, X.B.; Guo, X.D. Rapidly separating microneedles for transdermal drug delivery. Acta Biomater., 2016, 41, 312-319. doi: 10.1016/j.actbio.2016.06.005 PMID: 27265152
  110. Wang, Q.L.; Zhu, D.D.; Liu, X.B.; Chen, B.Z.; Guo, X.D. Microneedles with controlled bubble sizes and drug distributions for efficient transdermal drug delivery. Sci. Rep., 2016, 6(1), 38755. doi: 10.1038/srep38755 PMID: 27929104
  111. Quinn, H.L.; Bonham, L.; Hughes, C.M.; Donnelly, R.F. Design of a dissolving microneedle platform for transdermal delivery of a fixed-dose combination of cardiovascular drugs. J. Pharm. Sci., 2015, 104(10), 3490-3500. doi: 10.1002/jps.24563 PMID: 26149914
  112. Yao, G.; Quan, G.; Lin, S.; Peng, T.; Wang, Q.; Ran, H.; Chen, H.; Zhang, Q.; Wang, L.; Pan, X.; Wu, C. Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: In vitro and in vivo characterization. Int. J. Pharm., 2017, 534(1-2), 378-386. doi: 10.1016/j.ijpharm.2017.10.035 PMID: 29051119
  113. Mishra, R.; Maiti, T.K.; Bhattacharyya, T.K. Development of SU-8 hollow microneedles on a silicon substrate with microfluidic interconnects for transdermal drug delivery. J. Micromech. Microeng., 2018, 28(10), 105017. doi: 10.1088/1361-6439/aad301
  114. van der Maaden, K.; Heuts, J.; Camps, M.; Pontier, M.; Terwisscha van Scheltinga, A.; Jiskoot, W.; Ossendorp, F.; Bouwstra, J. Hollow microneedle-mediated micro-injections of a liposomal HPV E743–63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. J. Control. Release, 2018, 269, 347-354. doi: 10.1016/j.jconrel.2017.11.035 PMID: 29174441
  115. Donnelly, R.F.; Singh, T.R.R.; Alkilani, A.Z.; McCrudden, M.T.C.; O’Neill, S.; O’Mahony, C.; Armstrong, K.; McLoone, N.; Kole, P.; Woolfson, A.D. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: Potential for enhanced patient safety. Int. J. Pharm., 2013, 451(1-2), 76-91. doi: 10.1016/j.ijpharm.2013.04.045 PMID: 23644043
  116. Kim, Y.C.; Park, J.H.; Prausnitz, M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev., 2012, 64(14), 1547-1568. doi: 10.1016/j.addr.2012.04.005 PMID: 22575858
  117. Migdadi, E.M.; Courtenay, A.J.; Tekko, I.A.; McCrudden, M.T.C.; Kearney, M.C.; McAlister, E.; McCarthy, H.O.; Donnelly, R.F. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J. Control. Release, 2018, 285, 142-151. doi: 10.1016/j.jconrel.2018.07.009 PMID: 29990526
  118. Larrañeta, E.; Lutton, R.E.M.; Woolfson, A.D.; Donnelly, R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. Rep., 2016, 104, 1-32. doi: 10.1016/j.mser.2016.03.001
  119. Gill, H.S.; Denson, D.D.; Burris, B.A.; Prausnitz, M.R. Effect of microneedle design on pain in human volunteers. Clin. J. Pain, 2008, 24(7), 585-594. doi: 10.1097/AJP.0b013e31816778f9 PMID: 18716497
  120. Jose, J.; Netto, G. Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J. Cosmet. Dermatol., 2019, 18(1), 315-321. doi: 10.1111/jocd.12504 PMID: 29441672
  121. Birchall, J.C.; Clemo, R.; Anstey, A.; John, D.N. Microneedles in clinical practice--an exploratory study into the opinions of healthcare professionals and the public. Pharm. Res., 2011, 28(1), 95-106. doi: 10.1007/s11095-010-0101-2 PMID: 20238152
  122. Arnou, R.; Frank, M.; Hagel, T.; Prébet, A. Willingness to vaccinate or get vaccinated with an intradermal seasonal influenza vaccine: a survey of general practitioners and the general public in France and Germany. Adv. Ther., 2011, 28(7), 555-565. doi: 10.1007/s12325-011-0035-z PMID: 21626269
  123. Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Mathew, G.E.; Uddin, M.S.; Kim, H.; Mathew, B. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J. Pharm. Pharmacol., 2019, 71(9), 1370-1383. doi: 10.1111/jphp.13132 PMID: 31304982
  124. Duarah, S.; Sharma, M.; Wen, J. Recent advances in microneedle-based drug delivery: Special emphasis on its use in paediatric population. Eur. J. Pharm. Biopharm., 2019, 136, 48-69. doi: 10.1016/j.ejpb.2019.01.005 PMID: 30633972
  125. Kim, J.; Park, S.; Nam, G.; Choi, Y.; Woo, S.; Yoon, S.H. Bioinspired microneedle insertion for deep and precise skin penetration with low force: Why the application of mechanophysical stimuli should be considered. J. Mech. Behav. Biomed. Mater., 2018, 78, 480-490. doi: 10.1016/j.jmbbm.2017.12.006 PMID: 29248845
  126. Ye, Z.P.P.; Ai, X.L.; Faramand, A.M.; Fang, F. Macrophages as nanocarriers for drug delivery: Novel therapeutics for central nervous system diseases. J. Nanosci. Nanotechnol., 2018, 18(1), 471-485. doi: 10.1166/jnn.2018.15218 PMID: 29768873
  127. Lee, Y.H.; Wu, Z.Y. Enhancing macrophage drug delivery efficiency via co-localization of cells and drug-loaded microcarriers in 3D resonant ultrasound field. PLoS One, 2015, 10(8), e0135321. doi: 10.1371/journal.pone.0135321 PMID: 26267789
  128. Vora, L.K.; Moffatt, K.; Tekko, I.A.; Paredes, A.J.; Volpe-Zanutto, F.; Mishra, D.; Peng, K.; Raj, S.T.R.; Donnelly, R.F. Microneedle array systems for long-acting drug delivery. Eur. J. Pharm. Biopharm., 2021, 159, 44-76. doi: 10.1016/j.ejpb.2020.12.006 PMID: 33359666
  129. Kataoka, M.; Fukahori, M.; Ikemura, A.; Kubota, A.; Higashino, H.; Sakuma, S.; Yamashita, S. Effects of gastric pH on oral drug absorption: In vitro assessment using a dissolution/permeation system reflecting the gastric dissolution process. Eur. J. Pharm. Biopharm., 2016, 101, 103-111. doi: 10.1016/j.ejpb.2016.02.002 PMID: 26873006
  130. Liang, Z.; Currais, A.; Soriano-Castell, D.; Schubert, D.; Maher, P. Natural products targeting mitochondria: emerging therapeutics for age-associated neurological disorders. Pharmacol. Ther., 2021, 221, 107749. doi: 10.1016/j.pharmthera.2020.107749 PMID: 33227325
  131. Alikatte, K.; Palle, S.; Rajendra Kumar, J.; Pathakala, N. Fisetin improved rotenone-induced behavioral deficits, oxidative changes, and mitochondrial dysfunctions in rat model of Parkinson’s disease. J. Diet. Suppl., 2021, 18(1), 57-71. doi: 10.1080/19390211.2019.1710646 PMID: 31992104
  132. Anis, E.; Zafeer, M.F.; Firdaus, F.; Islam, S.N.; Anees, K.A.; Ali, A.; Hossain, M.M. Ferulic acid reinstates mitochondrial dynamics through PGC1α expression modulation in 6-hydroxydopamine lesioned rats. Phytother. Res., 2020, 34(1), 214-226. doi: 10.1002/ptr.6523 PMID: 31657074
  133. Ansari Dezfouli, M.; Zahmatkesh, M.; Farahmandfar, M.; Khodagholi, F. Melatonin protective effect against amyloid β-induced neurotoxicity mediated by mitochondrial biogenesis; involvement of hippocampal Sirtuin-1 signaling pathway. Physiol. Behav., 2019, 204, 65-75. doi: 10.1016/j.physbeh.2019.02.016 PMID: 30769106
  134. Ay, M.; Luo, J.; Langley, M.; Jin, H.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease. J. Neurochem., 2017, 141(5), 766-782. doi: 10.1111/jnc.14033 PMID: 28376279
  135. Bak, D.H.; Kim, H.D.; Kim, Y.O.; Park, C.G.; Han, S.Y.; Kim, J.J. Neuroprotective effects of 20(S)-protopanaxadiol against glutamate-induced mitochondrial dysfunction in PC12 cells. Int. J. Mol. Med., 2016, 37(2), 378-386. doi: 10.3892/ijmm.2015.2440 PMID: 26709399
  136. Chen, Y.; Huang, L.; Zhang, H.; Diao, X.; Zhao, S.; Zhou, W. Reduction in autophagy by (-)-epigallocatechin-3-gallate (EGCG): A potential mechanism of prevention of mitochondrial dysfunction after subarachnoid hemorrhage. Mol. Neurobiol., 2017, 54(1), 392-405. doi: 10.1007/s12035-015-9629-9 PMID: 26742518
  137. Ding, Y. Kong, D.; Zhou, T.; Yang, N.; Xin, C.; Xu, J.; Wang, Q.; Zhang, H.; Wu, Q.; Lu, X.; Lim, K.; Ma, B.; Zhang, C.; Li, L.; Huang, W. α-Arbutin protects against Parkinson’s disease-associated mitochondrial dysfunction in vitro and in vivo. Neuromolecular Med., 2020, 22(1), 56-67. doi: 10.1007/s12017-019-08562-6 PMID: 31401719
  138. Fu, J.; Jin, J.; Cichewicz, R.H.; Hageman, S.A.; Ellis, T.K.; Xiang, L.; Peng, Q.; Jiang, M.; Arbez, N.; Hotaling, K.; Ross, C.A.; Duan, W. trans-(-)-ε-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease. J. Biol. Chem., 2012, 287(29), 24460-24472. doi: 10.1074/jbc.M112.382226 PMID: 22648412
  139. Jang, Y.; Choo, H.; Lee, M.J.; Han, J.; Kim, S.J.; Ju, X.; Cui, J.; Lee, Y.L.; Ryu, M.J.; Oh, E.S.; Choi, S.Y.; Chung, W.; Kweon, G.R.; Heo, J.Y. Auraptene Mitigates Parkinson’s Disease-Like Behavior by Protecting Inhibition of Mitochondrial Respiration and Scavenging Reactive Oxygen Species. Int. J. Mol. Sci., 2019, 20(14), 3409. doi: 10.3390/ijms20143409 PMID: 31336718
  140. Kim, M.H.; Min, J.S.; Lee, J.Y.; Chae, U.; Yang, E.J.; Song, K.S.; Lee, H.S.; Lee, H.J.; Lee, S.R.; Lee, D.S. Oleuropein isolated from Fraxinus rhynchophylla inhibits glutamate-induced neuronal cell death by attenuating mitochondrial dysfunction. Nutr. Neurosci., 2018, 21(7), 520-528. doi: 10.1080/1028415X.2017.1317449 PMID: 28448247
  141. Lee, D.H.; Kim, C.S.; Lee, Y.J. Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem. Toxicol., 2011, 49(1), 271-280. doi: 10.1016/j.fct.2010.10.029 PMID: 21056612
  142. Lee, J.H.; Amarsanaa, K.; Wu, J.; Jeon, S.C.; Cui, Y.; Jung, S.C.; Park, D.B.; Kim, S.J.; Han, S.H.; Kim, H.W.; Rhyu, I.J.; Eun, S.Y. Nobiletin attenuates neurotoxic mitochondrial calcium overload through K + influx and ΔΨ m across mitochondrial inner membrane. Korean J. Physiol. Pharmacol., 2018, 22(3), 311-319. doi: 10.4196/kjpp.2018.22.3.311 PMID: 29719453
  143. Lv, C.; Liu, X.; Liu, H.; Chen, T.; Zhang, W. Geniposide attenuates mitochondrial dysfunction and memory deficits in APP/PS1 transgenic mice. Curr. Alzheimer Res., 2014, 11(6), 580-587. doi: 10.2174/1567205011666140618095925 PMID: 25034042
  144. Rashedinia, M.; Saberzadeh, J.; Khosravi Bakhtiari, T.; Hozhabri, S.; Arabsolghar, R. Glycyrrhizic acid ameliorates mitochondrial function and biogenesis against aluminum toxicity in PC12 cells. Neurotox. Res., 2019, 35(3), 584-593. doi: 10.1007/s12640-018-9967-2 PMID: 30317430
  145. Yang, L.; Ye, C.; Huang, X.; Tang, X.; Zhang, H. Decreased accumulation of subcellular amyloid-β with improved mitochondrial function mediates the neuroprotective effect of huperzine A. J. Alzheimers Dis., 2012, 31(1), 131-142. doi: 10.3233/JAD-2012-120274 PMID: 22531425
  146. Zafeer, M.F.; Firdaus, F.; Anis, E.; Mobarak, H.M. Prolong treatment with Trans-ferulic acid mitigates bioenergetics loss and restores mitochondrial dynamics in streptozotocin-induced sporadic dementia of Alzheimer’s type. Neurotoxicology, 2019, 73, 246-257. doi: 10.1016/j.neuro.2019.04.006 PMID: 31029786
  147. Zheng, A.; Li, H.; Xu, J.; Cao, K.; Li, H.; Pu, W.; Yang, Z.; Peng, Y.; Long, J.; Liu, J.; Feng, Z. Hydroxytyrosol improves mitochondrial function and reduces oxidative stress in the brain of db/db mice: role of AMP-activated protein kinase activation. Br. J. Nutr., 2015, 113(11), 1667-1676. doi: 10.1017/S0007114515000884 PMID: 25885653
  148. Tao, L.; Huang, X.; Chen, Y.; Tang, X.; Zhang, H. Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons. Acta Pharmacol. Sin., 2016, 37(11), 1391-1400. doi: 10.1038/aps.2016.78 PMID: 27498774
  149. van der Merwe, C.; van Dyk, H.C.; Engelbrecht, L.; van der Westhuizen, F.H.; Kinnear, C.; Loos, B.; Bardien, S. Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson’s disease from mitochondrial dysfunction and cell death. Mol. Neurobiol., 2017, 54(4), 2752-2762. doi: 10.1007/s12035-016-9843-0 PMID: 27003823
  150. Singh, M.; Murthy, V.; Ramassamy, C. Modulation of hydrogen peroxide and acrolein-induced oxidative stress, mitochondrial dysfunctions and redox regulated pathways by the Bacopa monniera extract: potential implication in Alzheimer’s disease. J. Alzheimers Dis., 2010, 21(1), 229-247. doi: 10.3233/JAD-2010-091729 PMID: 20421692
  151. Yan, Q.; Wang, W.; Weng, J.; Zhang, Z.; Yin, L.; Yang, Q.; Guo, F.; Wang, X.; Chen, F.; Yang, G. Dissolving microneedles for transdermal delivery of huperzine A for the treatment of Alzheimer’s disease. Drug Deliv., 2020, 27(1), 1147-1155. doi: 10.1080/10717544.2020.1797240 PMID: 32729341
  152. Prabhu, A.; Jose, J.; Kumar, L.; Salwa, S.; Vijay, K.M.; Nabavi, S.M. Transdermal delivery of curcumin-loaded solid lipid nanoparticles as microneedle patch: An in vitro and in vivo study. AAPS PharmSciTech, 2022, 23(1), 49. doi: 10.1208/s12249-021-02186-5 PMID: 34988698
  153. Joy, D.; Jose, J.; Bibi, S.; Bandiwadekar, A.; Gopan, G.; Mariana Gonçalves Lima, C.; Bin Emran, T.; A, Alhumaydhi. F.; Ashtekar, H.; D S, S.; Adam Conte-Junior, C. Development of microneedle patch loaded with Bacopa monnieri solid lipid nanoparticles for the effective management of Parkinson’s disease. Bioinorg. Chem. Appl., 2022, 2022, 9150205. doi: 10.1155/2022/9150205 PMID: 35992047
  154. Zhou, X.; Li, B.; Guo, M.; Peng, W.; Wang, D.; Guo, Q.; Wang, S.; Ming, D.; Zheng, B. Microneedle patch based on molecular motor as a spatio-temporal controllable dosing strategy of L-DOPA for Parkinson’s disease. Chem. Eng. J., 2022, 427, 131555. doi: 10.1016/j.cej.2021.131555
  155. Singh, N.D.; Banga, A.K. Controlled delivery of ropinirole hydrochloride through skin using modulated iontophoresis and microneedles. J. Drug Target., 2013, 21(4), 354-366. doi: 10.3109/1061186X.2012.757768 PMID: 23311703
  156. Matsuo, K.; Okamoto, H.; Kawai, Y.; Quan, Y.S.; Kamiyama, F.; Hirobe, S.; Okada, N.; Nakagawa, S. Vaccine efficacy of transcutaneous immunization with amyloid β using a dissolving microneedle array in a mouse model of Alzheimer’s disease. J. Neuroimmunol., 2014, 266(1-2), 1-11. doi: 10.1016/j.jneuroim.2013.11.002 PMID: 24315156
  157. Kearney, M.C.; Caffarel-Salvador, E.; Fallows, S.J.; McCarthy, H.O.; Donnelly, R.F. Microneedle-mediated delivery of donepezil: Potential for improved treatment options in Alzheimer’s disease. Eur. J. Pharm. Biopharm., 2016, 103, 43-50. doi: 10.1016/j.ejpb.2016.03.026 PMID: 27018330
  158. Kim, J.Y.; Han, M.R.; Kim, Y.H.; Shin, S.W.; Nam, S.Y.; Park, J.H. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer’s disease. Eur. J. Pharm. Biopharm., 2016, 105, 148-155. doi: 10.1016/j.ejpb.2016.06.006 PMID: 27288938
  159. Hoang, M.; Ita, K.; Bair, D. Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics, 2015, 7(4), 379-396. doi: 10.3390/pharmaceutics7040379 PMID: 26426039
  160. Jung, J.H.; Jin, S.G. Microneedle for transdermal drug delivery: current trends and fabrication. J. Pharm. Investig., 2021, 51(5), 503-517. doi: 10.1007/s40005-021-00512-4 PMID: 33686358

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers